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SANTRAUKA

Šiame darbe, panaudojant kelias skirtingas metodikas, atliekama chaotinių procesų anal-
izė. Apibendrinta diskreti Niutono dinaminė sistema su kompleksiniu valdymo parametru mod-
eliuojama kompiuterinėmis priemonėmis. Išgaunami skirtingi pritraukiančiųjų sričių išsidėstymo
scenarijai, randamos šių sričių kraštų aibės. Kraštų fraktalinės dimensijos vertinamos naudojant
”dėžučių” skaičiavimo algoritmą. Pritraukiančiųjų sričiųWada savybės vertinamos naudojant naują
pasiūlytą skaičiavimo algoritmą. Abi charakteristikos lyginamos parametrų plokštumoje, kurioje
stebimos netrivialios jų tarpusavio sąsajos. Prie tam tikrų fiksuotų pradinių sąlygų pateikiami
sudėtingo trajektorijų elgesio pavyzdžiai. Pabaigoje aptariami pasiūlytos Wada charakteristikos
privalumai bei trūkumai, pateikiamos tolimesnių tyrimų rekomendacijos.
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SUMMARY

Chaotic processes are analyzed in this thesis using multiple techniques. A relaxed Newton’s
discrete dynamical system with a complex control parameter is chosen and simulated numerically.
Different set-ups of attracting basins are obtained along with their boundaries. The fractal dimen-
sions of basin boundaries are measured using the box counting algorithm. The Wada qualities of
basins are evaluated using a novel proposed algorithm. Both characteristics are compared in a
two-dimensional parameter plane, non-trivial relations between them are emphasized. Examples
of a complex transient behavior under certain conditions are provided. Finally, advantages and
disadvantages of a proposed Wada characteristic are discussed, and recommendations are made
regarding further research.
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Nomenclature

C Set of complex numbers
C1 Subset of complex numbers [−1, 1]2

ℜ Real part of a complex number
ℑ Imaginary part of a complex number
Arg Argument of a complex number
|.| Modulus of a complex number
N Set of natural numbers
R Set of real numbers
RMSE Root mean square error
zn+1 = f(zn) Discrete nonlinear map
Z Set of integers
f ◦n Superposition of f applied n times
A Set of attracting points
N Set of neighboring points
B Basin of attraction
λ Lyapunov exponent
log Natural logarithm
Mk Hankel matrix of order k
det Determinant
H Hankel rank
F Fractal set
IFS System of iterated functions
H Collection of non-empty compact sets
d Metric function
ω Conformal transformation
F Fatou set
J Julia set
NDDS Newton’s discrete dynamical system
p Polynomial function
D Fractal dimension
W Wada measure
ρ Pearson’s correlation coefficient
r Spearman’s correlation coefficient
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Introduction

Attractors are some of the most important sets in the theory of nonlinear dynamical systems.
Analysis of attractors along with their basins of attraction is crucial in order to understand the be-
havior of a given dynamical relation. This knowledge can be applied with the purpose to simulate
and control a particular system, measure the associated uncertainty, or in various other cases. As
contemporary researchers seek to improve the state-of-the-art algorithms, novel methods are pro-
posed in the field of nonlinear dynamics on a regular basis [1].

An example of a relatively simple system which possesses some rich chaotic dynamics is

fp(z) = z − α
p(z)

p′(z)
;

where argument z ∈ C, parameter α ∈ C, and p is a complex-valued polynomial function. This
is known as a Newton’s method [2]. Despite the apparent simplicity, its boundaries of attracting
basins are not simple smooth curves but rather fractal shapes [3]. Moreover, sometimes these basins
of attraction are interwoven infinitely many times, which is also known as a Wada quality [4].

The general aim of this thesis is to develop and propose some novel tools and techniques for
the analysis of chaotic processes in complex dynamical systems.

The aim is achieved by accomplishing the following tasks:

1. Generate a large family of different set-ups of attracting basins.

2. Calculate the complexity of boundaries using known techniques.

3. Re-calculate the complexity of boundaries using novel proposed tools.

4. Compare the obtained results regarding complexity.

5. Provide relevant examples of applications.

8



Overview

In a relatively short and concise overview the necessary theoretical preliminaries and widely
accepted concepts used in this work are described.

Section 1.1 is dedicated to the realm of complex numbers and complex analysis, section 1.2
introduces discrete dynamical systems and, lastly, section 1.3 presents some general ideas regarding
self-similarity and fractals.

1.1. Complex analysis
Initially, some real numbers x, y ∈ R are considered. Under the well-known operations of

addition ”+”, subtraction ”−”, multiplication ”·” or division ”÷” the resulting quantities remain
real. However, in case of square roots (such as

√
x), or solutions to polynomial equations with

real coefficients (such as x2 = −1) the property of being real does not hold anymore. It has been
accepted that sometimes there are no solutions to the proposed problems amongst real numbers R
(see [5]). An alternative is to use a more general realm - like the set of complex numbers C.

1.1.1. Complex numbers

The earliest references to the concept of complex numbers are attributed to the mathemati-
cians of the ancient Greece [6]. The notion of an imaginary unit

√
−1 was introduced in the six-

teenth century, and later became (as discussed in [7]) simplified as i. Over years the idea matured
and evolved into the modern notion of complex numbers that is known nowadays.

Definition 1.1. A complex number is a pair z = x+ iy, where the components x, y ∈ R and i is
an imaginary unit satisfying i2 = −1. The set of all complex numbers is denoted C.

Following the introduced notation, for any complex number z = x+ iy ∈ C there is two parts:

• real part ℜ(z) = x, that does not have an imaginary unit;

• imaginary part ℑ(z) = y, that, on the contrary, is matched with an imaginary unit.

All the arithmetical operations are accomplished in an intuitive way, as in R. Real and imaginary
parts are treated as separate summands.

9
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Example 1.1. The multiplication of two complex numbers z1 and z2 is accomplished as follows

z1 · z2 = (x1 + iy1) · (x2 + iy2) = x1x2 + ix1y2 + iy1x2 + i2y1y2 =

= x1x2 + ix1y2 + iy1x2 − y1y2 = (x1x2 − y1y2) + i(x1y2 + y1x2).

1.1.2. Geometrical interpretation of complex numbers

Typically real and imaginary parts (say x and y) of a given complex number z ∈ C are
interpreted as components of some vector (x, y) ∈ R2 in a Euclidean plane. It is a consequence
of the fact that there exists a bijective mapping between C and R2. In other words, every complex
number z may be assigned a vector (x, y) as its visual counterpart, and vice versa. It is known as
a geometrical representation of a given complex number [6]. The idea is illustrated in figure 1.1.

Figure 1.1: Geometrical interpretation of a complex number. This includes real and imaginary
parts ℜ(z) and ℑ(z) respectively, complex modulus |z|, and also argument φ(z).

In terms of classical geometry, a two-dimensional vector may be characterized by its length,
angle with respect to some axis, and other properties. Since there exists a direct correspondence
between Euclidean R2 and complex C planes, the very same idea applies to complex numbers.
Therefore some more relevant definitions regarding complex numbers are presented below.

Definition 1.2. The modulus (or the norm) of a complex number z = x + iy is denoted and
defined as |z| =

√
x2 + y2.

It should be added that generally norm is a function that maps vectors to positive numbers
(except the origin vector which is mapped to zero) and satisfies the properties of scalability, sub-
additivity and separability [8]. Thus there can be different norms that are equally acceptable in
a particular field of mathematics. However, in this work the classical context is used, and the
traditional case of complex modulus is presented.

Definition 1.3. The argument of a complex number z = x+ iy is the angle φ ∈ [0; 2π) between
the vector (x, y) and the real positive semi-axis R+. It is denoted Arg(z).

Once again, there are different interpretations of this characteristic. For example, the values
of an angle φ can be chosen from [−π;π) or, for the sake or argument, even [−2π; 0). This would
not go against mathematical requirements. In this work the interval [0; 2π) is selected.
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1.1.3. Differentiation of complex functions

In case of real numbers, the idea of differentiation arises from the need to compute instanta-
neous velocities or slopes of tangent lines. In case of complex numbers, the differentiation is not
so intuitive. However, in both cases it is a matter of computing some limit values.

Definition 1.4. Function f(z) is differentiable at a point z0 ∈ C if it is defined in the neighborhood
of z0 and the following limit exists

f ′(z0) = lim
z→z0

f(z)− f(z0)

z − z0
. (1.1)

f ′(z0) is then referred to as the derivative of f at z0.

One important aspect that is not present in the case of real numbers, is that the limit value
has to be approached from infinitely many directions instead of just two. Furthermore, it is not a
straightforward procedure to interpret or visualize the outcome when the function f is of complex
nature. In some cases, it can be really challenging or even impossible [9].

Example 1.2. Let’s compute the derivative of f(z) = z3 for all z ∈ C,

f ′(z) = lim
∆z→0

(z +∆z)3 − z3

∆z
= lim

∆z→0

z3 + 3z2∆z + 3z∆z2 +∆z3 − z3

∆z
=

= lim
∆z→0

3z2∆z + 3z∆z2 +∆z3

∆z
= lim

∆z→0

(
3z2 + 3z∆z +∆z2

)
= 3z2.

1.1.4. Physical interpretation of complexity

The complex derivative cannot be interpreted as an instantaneous velocity or some steepness
of a tangent slope. No quantities can be measured nor counted as imaginary values in a usual
tangible sense. Despite all that, complex numbers are quite useful for enhancing different types of
mathematics, generalizing ideas, and extending the scope of real numbers [7].

• The complex modulus is directly related to the notions of magnitude, distance, and absolute
value in various physical contexts.

• The argument represents rotational characteristics and positioning in space.

• The existence of complex derivative is a very strong condition which comes in pair with an
opposite effect of integration.

As a consequence, in fluid dynamics complex valued functions are used to describe potential
flows [10]. Closely related disciplines such as aerodynamics, hydrodynamics, and hydraulics have
a range of applications that require usage of two dimensional quantities as well [11]. In electrical
engineering, the characteristics of resistors, capacitors, and inductors can be combined by intro-
ducing imaginary resistances [12]. In special and general relativity, some formulas manipulate
complex values, including the famous Schrödinger equation in quantum mechanics [13].
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All this is part of the foundation of modern mathematics and mathematical physics that would
not be possible without complex analysis.

1.2. Discrete dynamical systems
During recent decades the discipline of nonlinear dynamics has grown significantly [14].

Introduction of deterministic chaos and nonlinearity have provided some new and innovative tools
that allow scientific community to better assess and understand surprisingly complex behaviors
of relatively simple systems. The aim of this subsection is to provide some preliminaries that are
necessary in order to proceed with the complete research of this work.

1.2.1. Introduction to discrete dynamical systems

In case of discrete-time dynamical systems, the dynamics are fully described by some iterated
maps, also known as evolutionary functions [15].

Definition 1.5. An iteration of a discrete dynamical system is a function f of the form

zn+1 = f(zn); (1.2)

that takes and returns complex values zn, zn+1 ∈ C.

It is understandable that some further restrictions may be enforced on argument zn. The
model may only be valid under certain circumstances or in specific situations. However, these
restrictions vary from system to system.

Figure 1.2: Orbit of a given dynamical system. Initial seed z0 evolves into f(z0) = z1, then
f(z1) = z2 and so on as required.

Another important notion is to realize that the evolution of z0 may be immensely complex as
the iterations proceed in time under the specified rule f .

Definition 1.6. For a given dynamical system f , the orbit of z0 ∈ C is the sequence of iterates

(z0, z1, z2, . . .) =
(
z0 f(z0) f(f(z0)) . . .

)
; (1.3)

also referred to as a trajectory of z0.
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It is typical to denote the repeated applications of f using the notation of superposition

f ◦n(z0) = f(f(. . . f(︸ ︷︷ ︸
n times

z0) . . .). (1.4)

One of the main objectives in the modern theory of dynamical systems is to fully understand the
properties of orbits (see figure 1.2) [16].

Example 1.3. Let’s look at the specific orbit of the discrete dynamical system described by the
map f(z) = 3z(1− z). An initial seed z0 = 1/3 is fixed and further investigated

z0 = 1/3,

z1 = f(z0) = f(1/3) = 3 · 1/3 · (1− 1/3) = 2/3,

z2 = f(z1) = f(2/3) = 3 · 2/3 · (1− 2/3) = 2/3, and generally

zn = f(zn−1) = 2/3, whenever n ∈ N.

A precise orbit (1/3, 2/3, 2/3, . . .) which converges relatively quickly is obtained. The topics of
attractors and convergence are discussed in the following subsections.

1.2.2. Attractors of discrete dynamical systems

Dynamical systems may possess one or several attractors. Simply put, attractors are struc-
tures which initial conditions tend to evolve to. Some more rigorous definitions are presented
in [1, 16, 17]. One of possible approaches is formulated in this subsection.

Definition 1.7. An attractor is a set of points A ⊂ C that is invariant under the dynamics, that is

∀z0 ∈ A z1 = f(z0) ⇒ z1 ∈ A; (1.5)

and towards which some neighborhood N ⊂ C evolutes in the course of time

∀z0 ∈ N zn = f(zn−1) ⇒ lim
n→+∞

zn ∈ A. (1.6)

It is also the smallest unit which cannot be divided into two or more attractors with distinct neigh-
borhoods N .

Additionally, an attractor satisfies the following conditions:

1. A is a bounded and closed set that is invariant under the dynamical system.

2. A attracts some open neighborhood of initial conditions.

3. A is strictly minimal and has no proper subset satisfying previous conditions.

4. A is stable in terms of Lyapunov stability.
In simple terms, if the solutions around an attractor A stay in that vicinity forever, then A is
Lyapunov stable.
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An attractive set A has some peculiar properties. Once the attracting neighborhood N is
determined, it follows that the distance from an arbitrary element z0 ∈ N to A (in terms of a
Euclidean metric) tends to diminish over time. This is a crucial concept. The largest such set is
known as the basin of attraction.

Definition 1.8. The largest set N ⊂ C such that its members approach A over time

∀z0 ∈ N lim
n→+∞

d(zn,A) = 0; (1.7)

is called the basin of attraction B(A) or simply B.

It is quite common for discrete dynamical systems to have multiple attractors [15]. For each
such attractor, there exists a corresponding basin of attraction which consists of distinct elements
taken from the complex plane C.

Example 1.4. Let’s look at the attractors of the discrete dynamical system described by the map
f(z) = z/2. For an arbitrary initial seed z0 ∈ C, it is evident that

lim
n→+∞

f ◦n(z0) = lim
n→+∞

(z0/2
n) = 0.

By definition, it can be concluded that the system has a single attractor A = { 0 } with its basin of
attraction being the whole complex plane B = C.

1.2.3. Chaotic properties of discrete dynamical systems

There are many different met hods to look at the chaotic properties of a given dynamical
system [18]. One of the signs of chaos is the rapid divergence of nearby trajectories. In fact, this
divergence is sometimes even exponential in time (or with respect to iterations). Similarly, there
are various different tools proposed to effectively analyze chaos. These, for example, are Lyapunov
exponents or H-ranks that are presented in this subsection.

Lyapunov exponents

Say that an initial seed belongs to some attractor z0 ∈ A. Let’s look at how z0 differs from
z0 + ε over time for some arbitrary difference ε ∈ C. In other words, an iterated map f is applied.
Then the absolute difference between the orbits (previously defined as complex modulus 1.2) is

dn = |f ◦n(z0 + ε)− f ◦n(z0)|. (1.8)

In case that the behavior is chaotic, then the divergence should be exponential on n

dn
ε

=
|f ◦n(z0 + ε)− f ◦n(z0)|

ε
= eλn. (1.9)
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After expressing power λ, the result is

λ =
1

n
log
(
|f ◦n(z0 + ε)− f ◦n(z0)|

ε

)
. (1.10)

This defines what is meant by the speed of divergence. When ε → 0 and the chain rule for differ-
entiation is applied, then the strict definition of Lyapunov exponent is obtained.

Definition 1.9. The Lyapunov exponent around z0 ∈ C is defined by

λ =
1

n
log

(
n−1∏
k=0

|f ′(zk)|

)
=

1

n

n−1∑
k=0

log (|f ′(zk)|) . (1.11)

It is the rate of divergence between two neighboring trajectories.

In the presented definition the Lyapunov exponent is calculated only at a single point z0 ∈ C.
However, in the literature [19] it is usual to define the average Lyapunov exponent over all valid
initial seeds. Then it is said that a given discrete dynamical system has chaotic trajectories if the
average Lyapunov exponent is positive [20].

H-ranks

Begin by establishing a structural matrix whose elements depend only on the sum of their
indices. It is known as a Hankel matrix [21].

Definition 1.10. A Hankel matrix of depth k ∈ N (also known as a catalecticant, persymmetric
matrix [22]), is a square matrix

Mk =


z0 z1 . . . zk−1

z1 z2 . . . zk
... ... . . . ...

zk−1 zk . . . z2k−2

 ; (1.12)

whose skew-diagonal elements from left to right are constant.

An orbit (z0, z1, z2, . . .) of some dynamical system can be used to populate the Hankel
matrix. The so-called Hankel transform of this orbit yields a sequence of determinants det(Mk).

Definition 1.11. The orbit (z0, z1, z2, . . .) is of n-th order if

det(Mn) ̸= 0, det(Mn+k) = 0, ∀k ∈ N. (1.13)

This integer value is known as H-rank and noted H(z0, z1, z2, . . .) = n.

Hankel rank is an important tool in evaluation of convergence rates, especially in discrete
chaotic maps. The higher the rank, the more complex the calculated trajectory. The rate of con-
vergence analyzed on a wide scale may provide some insights into the nature of some dynamical
attractors [23].
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Example 1.5. Let’s check theH-rank of a simple sequence (e, π, e, π, . . .) where odd-positioned
elements are equal to e and even-positioned elements are equal to π. Proceed by taking some
Hankel matrices and their corresponding determinants

det(M1) = det(e) = e ̸= 0;

det(M2) = det

(
e π

π e

)
= e2 − π2 ̸= 0;

which happen to be non-zero. The tendency can be noticed

det(M3) = det

e π e

π e π

e π e

 = 0;

det(M4) = det


e π e π

π e π e

e π e π

π e π e

 = 0;

and similarly det(Mk) = 0 for all k > 2 because odd-positioned rows of the Hankel matrices are
the same as the even-positioned rows. Then by definitionH(e, π, e, π, . . .) = 2. It means that the
complexity of the sequence in question is of order two. This fact is understandable because there
are precisely two alternating elements in the sequence.

1.2.4. Applications of dynamical systems

There are applications of nonlinear dynamical systems in virtually every field of science.
In the field of medicine and chemistry, applications include genetic control systems [24],

biological rhythms of various neuronal systems [25], search of cure for cancer or other highly
complex diseases [26].

In biology, insect outbreaks are modeled and predicted [27] alongside with management and
analysis of animal populations in general [28].

Contemporary engineering includes studies of superconducting circuits and quantum simu-
lations [29], building sophisticated oscillators in meta-materials [30], measuring mechanical vibra-
tions [31, 32] with extreme precision.

Computer science revolves around improving algorithms of optimization with meta-heuristic
approaches to solve structural problems [33], multi-label machine learning and classification [34]
and even techniques for using chaos to send encrypted messages [35].

In each and every case, the scientific background varies but is generally closely integrated
with the mathematical theory.
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1.3. Fractals
Many physical systems in nature and many artifacts in human activities are not actually reg-

ular geometric shapes. These shapes do not conform to the standard geometry derived by Euclid.
Aforementioned shapes belong to some more general geometry which offers more ways of describ-
ing, measuring and predicting natural phenomena. It is known as a fractal geometry [36].

1.3.1. The concept of fractality

In spite of some common sense concepts of fractals, it is not that easy to give a rigorous
definition for one. According to Mandelbrot [37], it is “a rough or fragmented geometric shape
that can be split into parts, each of which is (at least approximately) a reduced-size copy of the
whole”. Sometimes a strict definition for an arbitrary fractal structure is given by the following
definition.

Definition 1.12. A set or structure F whose Hausdorff-Besicovitch dimension (see section 2.2)
strictly exceeds its topological dimension is called a fractal.

The above definition, no matter how precise, is quite difficult to apply in practice because
the Hausdorff-Besicovitch characteristic itself possesses quite a complicated nature. As a matter of
fact, for a lot of widely used fractals it is the case that the exact Hausdorff-Besicovitch dimension is
unknown. Therefore, some alternative and usually easier to evaluate definitions of fractal structures
are used along with some compromises.

Besides, there exist different types of fractals. Two of the most prevalent types are: Iterated
function system (IFS) fractals and algebraic fractals.

Iterated function system fractals

Iterated function system fractals are obtained by using transformations in a space (H, d) of
non-empty compact sets H (possibly subsets of R2) and some metric d : H2 → R+. Transforma-
tions are conformal and include scaling, translation and rotation [38].

The creation of an iterated function system IFS fractal consists of defining a set of multiple
conformal transformations {ωk : H → H | k = 1, . . . , n } and finding its fixed pointF ∈ H under
the set union operationW

F = W (F) =
n∪

k=1

wk(F). (1.14)

This fixed pointF is the fractal of interest. Some of the most famous IFS fractals are the Sierpinski
triangle and the Koch snowflake [39].

Algebraic fractals

Fractalsmay be created by applying a discrete dynamical system f : C → C repeatedly. Since
the iteration f(zk) = zk+1 must be applied indefinitely many times, computational techniques are
almost always necessary in order to generate, investigate and see the visual representation of the
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fractal [40]. Concepts of Julia set J and Fatou sets Fk are used to describe two complementary sets
obtained from an evolutionary function f [41].

The Fatou set Fk, for some k ∈ N, of the function f consists of elements with the property
that all nearby values behave similarly under the repeated iteration of the function, for example
converge to some attractor Ak. It is also completely invariant under iterations, meaning

f−1(Fk) = f(Fk) = Fk. (1.15)

On the contrary, the Julia set J consists of values such that an arbitrarily small perturbation
can cause drastic changes in the sequence of iterated function values. No convergence may be
predicted. It is the complement of all aforementioned Fatou sets

J = C \
∪
k

Fk. (1.16)

In this case the Julia set is the fractal entity of interest J = F .

Example 1.6. Let’s investigate a particular complex-valued function f(z) = z2, z ∈ C. According
to the discussed properties of complex numbers (see section 1.1), it is understandable that

∀z ∈ C |z| < 1 ⇒ lim
n→+∞

f ◦n(z) = lim
n→+∞

|z|neinArg(z) = 0.

So the values inside a unit circle converge to a particular attractorA1 = { 0 }. Moreover, they form
a Fatou set F1 = { z ∈ C | |z| < 1 }. Similarly, there is an effect

∀z ∈ C |z| > 1 ⇒ lim
n→+∞

f ◦n(z) = lim
n→+∞

|z|neinArg(z) = +∞;

which makes sense only in an extended complex plane. Simply put, all the values diverge in a
similar manner and therefore form a second Fatou set F2 = { z ∈ C | |z| > 1 }.

The complement J = C \ (F1 ∪ F2) = { z ∈ C | |z| = 1 } is a Julia set. When the function
f acts upon the values of a Julia set, then the angles are doubled Arg(f(z)) = 2Arg(z) for z ∈ J .
The operation is also chaotic for the points where complex argument is not a fraction of 2π.

1.3.2. Properties of fractals

Two of the most apparent properties of fractals are self-similarity and non-integer dimension.
Despite the disagreements on the exact definition, authors usually emphasize at least the basic ideas
of self-similarity and an unconventional relationship with the space a fractal is embedded in.

According to widespread research [42] here are some of the characteristics used to describe
fractal structures. In other words, a set F that has the property of fractality tends to satisfy the
following conditions more often than not:

1. F has a detailed and fine structure on arbitrary small scales.

2. F is locally and globally irregular in terms of Euclidean geometry.
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3. F possesses a property of self-similarity.

4. F has some fractal dimension which is greater than its topological dimension.

5. F can be defined with ease using recursive or iterative methods.

1.3.3. Numerical approximations of fractals

The deterministic algorithm

For a set of multiple conformal transformations {ωk : H → H | k = 1, . . . , n } it is possible
to approximate the corresponding IFS fractal using (1.14)

F =
n∪

k=1

wk(F). (1.17)

Initially an arbitrary compact set A0 ∈ H is chosen. Then a sequence of successive elements
Ak = W (Ak−1), k ∈ N, is computed, that is (A0, A1, A2, . . . , An). By theorem of contractive
mappings (the proof can be found in [43]), this sequence converges to the fixed point of the IFS

lim
n→+∞

An = F . (1.18)

If a finite, yet sufficiently large, timespan n ∈ N is chosen, then the resulting set An is an approxi-
mation of F .

The random iteration algorithm

Once again let’s start off with a set of multiple conformal transformations {ωk : H → H |
k = 1, . . . , n }. This time a probability pk > 0 is assigned to each transformation ωk and addition-
ally

∑n
k=1 pk = 1. The probabilities are typically based on the coefficients of contractivity that

certain transformations possess.
Initially an arbitrary point z0 is chosen from any element ofH, so typically z0 ∈ C or z0 ∈ R2.

Then during every iteration, a next point zt, t ∈ N, is chosen recursively and independently

zt ∈ {ω1(zt−1), ω2(zt−1), . . . , ωn(zt−1) }; (1.19)

with the probability of an event zt = ωk(zt−1) being pk. A resulting collection of such points
{xt | t ∈ N } approximates the fractal F . The proof of this fact can be found in [43].

The escape time algorithm

This algorithm compares how fast an arbitrary point z0 ∈ C escapes a given boundary under
the action of some dynamical system f : C → C. Intuitively, it is expected that some orbits of the
dynamical system settle to some attractor Ak slower than others. For example, initial seeds that
are close to the boundary of corresponding Fatou sets Fk, for some k ∈ N, may demonstrate a
complicated behavior [44].
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Figure 1.3: Approximation of the Mandelbrot set. Selected points (color black) do not escape the
boundary circle |z| = 2 after n = 50 iterations.

In fact, it can be the case that some points never converge to any of the attractors. They are
precisely the points of Julia set J and the fractal F which is the subject of interest. During the
algorithm, it is investigated whether a finite orbit (z0, z1, . . . , zn) crosses some boundary around
the attracting set A. The decision is made based on the following facts:

1. If the boundary is crossed at or before the time n ∈ N, then z0 ̸∈ F .

2. If the whole finite orbit (z0, z1, . . . , zn) stays inside the boundary, then z0 ∈ F .

Example 1.7. Consider aMandelbrot set. By definition this set consists of complex numbers c ∈ C
for which the discrete dynamical system f(zk) = z2k + c, k ∈ N, does not diverge when iterated
from a constant initial seed z0 = 0.

Choose a complex boundary circle |z| = 2 and state that the system diverges if this boundary
is crossed (this fact is proved in [37]). Then investigate different values c ∈ C for the orbits of
length n = 50. The visual result is presented in figure 1.3. The parameters c ∈ C that do not cause
the suspected divergence are painted black. This is an approximation of the Mandelbrot set.

1.3.4. Applications of fractals

Fractal geometry has influenced many areas of contemporary science such as biology, astro-
physics, engineering and especially techniques in computer graphics.
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Fractals appear in biological sciences as representations of animal movement [45] and the
structure of their habitat [46]. Additionally, the basic architecture of a chromosome is believed to
be fractal-like [47] similarly to the DNA sequences [48].

In astrophysics, the formation process of interstellar clouds is believed to resemble a forma-
tion process of fractals [49]. The universe appears as if it is a classically self-similar random process
at all astrophysical scales [50]. Galaxy samples are considered to possess fractal properties [51].

There are applications of fractals in the field of engineering. In antennas, the fractal shapes are
translated into the electromagnetic behavior [52]. Self-similar processes and multifractal processes
are needed in order to model a network traffic [53]. The growth or urban ares can be described using
fractal techniques [54].

Finally, fractals are used in computer science. Image compression schemes use fractal algo-
rithms to compress graphic files [55]. Artists use self-similar forms to create, model and present
textured landscapes, mountain ranges and coastlines [56]. Fractal art and architecture is believed
to possess an aesthetic quality based on their visual complexity [57].

Overall, fractal concepts can be used to model natural objects. They allow to mathematically
define the used environment with high accuracy and precision.

1.4. Motivation of thesis
In order to accomplish the aims of this thesis, it is adequate to choose a family of complex

discrete dynamical systems. The set of complex numbers C is a substantial generalization over
a set of real numbers R. Consequently, more advanced tools can be adopted and more profound
insights can be made if a complex-valued function f is chosen.

The aforementioned systems are to be thoroughly evaluated in terms of complexity and tran-
sient dynamics. Discrete dynamical systems zn+1 = f(zn), where n ∈ N, may exhibit highly
non-trivial behavior that is not initially apparent. Advanced techniques are required to describe
and measure the chaotic tendencies.

Attracting basins and their boundaries are to be evaluated in terms of fractal geometry. Frac-
tals F are the results of chaos. These sets may form structures that are fully connected yet discon-
tinuous everywhere, and have non-integer dimensions.

Finally, numerical results are to be compared and conclusions are to be made.



Methodology

The purpose of a more detailed methodology is to present the ideas and algorithms that are
originally applied in this work.

Section 2.1 is dedicated to the discrete Newtonian dynamical system and its generalizations.
Section 2.2 introduces box counting algorithm which is used to evaluate the fractal dimension of
a basin boundary. Lastly, section 2.3 presents a novel algorithm for measuring Wada property of
some basins of attraction.

2.1. Newton’s discrete dynamical system
Basic Newton’s method (also known as the Newton-Raphson method) is one of the most

influential methods for finding the roots of a real-valued polynomial p(x) [58].
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Figure 2.1: Basins of attraction for the NDDS with p(z) = z3 − 1. Each color corresponds to the
different attractor Ak, where k ∈ { 1, 2, 3 }.
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After the method was established in the seventeenth century, modern interpretations and im-
plementations began to differ substantially from the original version (see subsection 2.1.4 for var-
ious applications).

In the nineteenth century Schröder [59] and Cayley [60] came up with problems and solutions
that eventually led to the formal generalization of the Newton’s method for a polynomial p(z) with
complex coefficients. In this work it is referred to as the Newton’s discrete dynamical system.

2.1.1. Introduction to Newton’s discrete dynamical system

A Newton’s dynamical system f : C → C is a discrete dynamical system fully described by
its iterations zk+1 = f(zk), where zk, zk+1 ∈ C.

Definition 2.1. For a given complex polynomial p(z) a singleNewton’s iteration at a point z ∈ C
is defined as

fp(z) = z − p(z)

p′(z)
. (2.1)

Once the evolutionary process is fully described, the discrete Newton’s dynamical system
(NDDS for short) corresponding to some complex polynomial p(z) can be considered. The be-
havior of the aforementioned dynamical system is characterized by orbits { z0, z1, z2, . . . }. Each
orbit is determined unambiguously by the initial seed z0 ∈ C using the known iterative process

zn = f ◦n
p (z0), ∀n ∈ N. (2.2)

The emphasis on a general polynomial p is omitted during the further analysis. The third degree
polynomial p(z) = z3 − 1 is taken by default, unless specified otherwise.
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(a) p(z) = z4 − z;
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(b) p(z) = z5 − 1.

Figure 2.2: Basins of attraction for the NDDS with polynomials of higher order. Different poly-
nomials p(z) are used.

In figure 2.1 basins of attraction Bk, where k ∈ { 1, 2, 3 }, of the NDDS are calculated and
presented visually using the default polynomial p(z) = z3 − 1. It is apparent that the basins are
intertwined in a complex manner and further investigations are needed.
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Polynomials of higher order p(z) = z4 − z and p(z) = z5 − 1 are also assigned to NDDS
and presented visually in figure 2.2. In this case similarly complex processes are observed near the
boundary of basins ∂B.

A variation of escape time algorithm (see subsection 1.3.3) is used for calculations. The
appropriate attractor is assigned to an initial seed z0 ∈ C after n = 30 iterations.

2.1.2. Properties of Newton’s discrete dynamical system

Attractors

Newton’s discrete dynamical system fp has some attractors A ⊂ C, provided that the poly-
nomial p is non-constant. The set of attractors comprises the fixed points satisfying the definition
{ r ∈ C | p(r) = 0 }. Consequently, it is important to understand the basins of attraction B for
each attractor - the structure, properties and dynamics of these peculiar sets [61].
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Figure 2.3: H-ranks for the NDDS with p(z) = z3 − 1.

Basin boundaries

In the twentieth century Fatou [62] and Julia [63] made some independent discoveries re-
garding the basins of attraction B and especially the boundaries of these basins ∂B that are present
in NDDS. If there are multiple Fatou domains (basins) Fk = Bk, for some k = 1, . . . , n, then each
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point of the Julia set (boundary) J = ∂B must contain points from multiple basins in its neigh-
borhood. If there are more than two different basins of attraction n > 2, then the Julia set is not a
simple curve but rather a fractal shape J = F [2].

Speed of convergence

Another important aspect is the speed of convergence that is characterized by H-ranks. In
figure 2.3 Hankel ranks are calculated using the default polynomial p(z) = z3 − 1. Since the con-
vergence of a Julia set J cannot be predicted, Hankel ranks are substantially higher in the vicinities
of the basin boundary ∂B. It also shows that the system can be very sensitive to its choice of starting
points outside of certain regions.

2.1.3. Generalization of Newton’s discrete dynamical system

NDDS itself is a classical tool whose typical speed of convergence varies from quadratic to
linear depending on initial conditions [64]. A more general case is considered in order to gain
additional flexibility

fp(z) = z − α
p(z)

p′(z)
. (2.3)

The modified Newtonian iteration (2.3) introduces an arbitrary coefficient α ∈ C instead of a
constant value α = 1.
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(a) α = 0.5;
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(b) α = 2.

Figure 2.4: Basins of attraction for the relaxed NDDS with p(z) = z3 − 1. Different parameters
α ∈ R are used.

This generalization is called a relaxed Newton’s discrete dynamical system [65]. It introduces
a quantitative change in the speed of convergence as well as a qualitative change in the basins of
attraction for the NDDS, even for α ∈ R. Typically 0 < α < 1 softens the fractal pattern of the
basin boundary while performing smaller changes in variable during every iteration (see fig. 2.4a).
On the other hand, α > 1 typically sharpens the fractal pattern while providing bigger and more
aggressive changes in variable (see fig. 2.4b). Overall this effect can be clearly seen in figure 2.4.
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2.1.4. Applications of Newton’s discrete dynamical system

NDDS can be used to analyze dynamical systems of varying degree of difficulty. In [64]
Newton’s method is considered as an iterative scheme to compute the complicated basins of attrac-
tion for some discrete dynamical systems. The chaotic number of iterations needed by Newton’s
method to converge to its attractors is discussed in [66]. A general behavior of Newton’s method
for cubic polynomials is investigated in [67], including the emergence of period-three orbits.

The emergence of fractals inNDDS iswell-acknowledged amongst contemporary researchers.
Both theoretical and experimental evidence of fractal characteristics of Newton‘s method is pre-
sented in [3]. Another overview of Newton‘s method and the convergence to fractal patterns is
published in [68]. Some peculiar examples of fractals obtained using Newton’s method are pre-
sented in [69]. The theory for stabilization of Newton‘s method in order to eliminate fractal basin
boundaries is developed in [70]. Implications of the fractal basin boundaries generated by New-
ton’s method for the aero-elastic analysis of a helicopter motion is discussed in [71].

Complicated relations between the basins of attraction lead to peculiar applications. An in-
depth analysis of interwoven basins of attraction using a damped Newton’s method is discussed
in [72]. A graphical presentation of interlacement amongst three different basins of attraction is
Newton’s method is presented in [73].

A variety of alternatives and modifications to Newton’s method are known. A modification
of Newton’s method using some novel adaptive step size control procedure is proposed in [74].
Standard Newton’s method, Halley’s method, and Schroder’s method is compared in terms of struc-
tural characteristics of Julia sets in [75]. A variety of different possible generalizations of Newton’s
method is reviewed in [65].

2.2. Fractal dimension

2.2.1. Introduction to fractal dimension

For a lot of usual and familiar objects the notion of dimensionality is very intuitive and
straightforward. For example, a manifold is D-dimensional if locally it resembles a Euclidean
space of dimension D, which obviously has an integer value [76]. However, sometimes an object
does not conform to any integer dimension. In that case, some more general tools are needed in
order to understand and evaluate the dimension.

Ideally, a generalized definition of dimension D should satisfy the following requirements:

1. Points as well as countable unions of points X have D(X) = 0.

2. Manifolds M have an integer dimension D(M) ∈ N which coincides with the usual notion
of topological dimension.

3. General sets F may have some fractional dimension D(F) /∈ Z.
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Unfortunately, it can be exceptionally hard to determine the precise fractal dimension of a
given entityF in general case. Numerical approximations are typically used instead. The following
subsections are dedicated to this matter in order to give some deeper insights regarding the problem.

2.2.2. Concept of fractal dimension

There are multiple characteristics that may be referred to as fractal dimensions. These mea-
sures provide an objective means to compare sets in terms of various features.

Box counting dimension (also known as Minkowski or Minkowski–Bouligand dimension)
provides a way of determining the fractal dimension of a setF in any metric space. However some
more preliminary definitions are necessary before further introduction.

Definition 2.2. The box of side length ε around the point z0 ∈ C is defined

B(ε, z0) =
{
z ∈ C

∣∣∣ℜ(z0)− ε

2
≤ ℜ(z) ≤ ℜ(z0) +

ε

2
,ℑ(z0)−

ε

2
≤ ℑ(z) ≤ ℑ(z0) +

ε

2

}
. (2.4)

The box defined above is actually a closed ball described usingManhattan metric [77] instead
of a more typical Euclidean one. Nevertheless, it is useful when working in discrete grids which
typically occur in computational environments.

Definition 2.3. The minimal number of boxes of side length ε that are needed to cover a given
closed and compact set F is denoted

N(ε) = min

{
n ∈ N

∣∣∣∣∣F ⊂
n∪

k=1

B(ε, zk), zk ∈ C

}
. (2.5)

Such a number will always be found in case of F being compact because it follows from the
very definition of compactness that there exists a finite subcover of (open) balls. Amongst these
well-defined and finite coverings some (or at least one) will be minimal.

Now a particular proposed dimension D is related to the number N such that

N(ε) ≈ Cε−D, for some C > 0; (2.6)

and the above approximation becomes more precise as the multiplier ε decreases. Then it is natural
to solve for D by taking the logarithm to the base e and obtain

D ≈ logN(ε)− logC
log(1/ε)

. (2.7)

Since the evaluation of dimension in question involves counting the number of ε-sized boxes
N(ε), it suffices to have a reasonable approximation of F and work at a fine precision ε. Then the
second summand in the numerator of (2.7) disappears and this leads to the following definition.
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Definition 2.4. The box counting dimension (or simply dimension) D of a compact non-empty
set F ⊂ C is defined as

D(F) = lim
ε→0

logN(ε)

log(1/ε)
; (2.8)

where N(ε) is the number of ε-sized boxes that are required to cover F .
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Figure 2.5: Basin boundary F = ∂B for the NDDS with p(z) = z3 − 1.

It is possible to extend the definition 2.4 and provide a value of dimension for a wider variety
of sets. It is possible to use the following superior limit

D(F) = lim
ε→0

sup
logN(ε)

log(1/ε)
. (2.9)

It can be proved that the above two presentations (2.8) and (2.9) are mathematically consistent [43].
However, the latter is obviously more general. This broader definition (2.9) can be applied in some
more complicated cases where the first one fails. However, in the scope of this work it is sufficient
to use the former approach (2.8).

Example 2.1. Let’s consider a unit square F = { z ∈ C | 0 ≤ ℜ(z) ≤ 1, 0 ≤ ℑ(z) ≤ 1 } which
intuitively has dimensionality equal to 2. Take a decreasing positive sequence(

1 1/2 1/4 . . . 1/2n . . .
)
.
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It is understandable that for this set F the associated box counts

N(1) = 1,

N(1/2) = 4,

N(1/4) = 16, and generally

N(1/2n) = 4n.

The expression (2.8) is applied in order to obtain the fractal dimension

D(F) = lim
n→+∞

logN(1/2n)

log(2n)
= lim

n→+∞

log(4n)
log(2n)

=
log 4
log 2

= 2.

Example 2.2. It can be approximated using the box counting algorithm (see [61]) that the fractal
dimension of the basin boundary seen in figure 2.5 is equal to D(F) = 1.437.

2.2.3. Algorithm to approximate fractal dimension

In short, the conventional idea of approximation involves scanning a non-overlapping ε-sized
grid, finding the portions containing F , and making conclusions according to the definition of box
counting dimension.
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(a) ε = 0.1; N(ε) = 145;
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(b) ε = 0.05; N(ε) = 355.

Figure 2.6: The principle of box counting using boxes of various sizes ε. The digital representation
of F is split into an ε-grid, then count the nodes where the basin boundary ∂B is present.

In reality the ability to reduce ε is limited. For digital images (the representation of fractal
structures) it is not possible to zoom more than to an individual pixel. The proposed solution:

1. Look at some finest ε ∈ S values.
These should initially cover 1×1 grid of pixels, then 2×2 grid pixels and so on (see fig. 2.6).

2. Calculate the observations logN(ε) and log(1/ε) in each case.
This step is self-explanatory. The definition 2.3 is applied.
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3. Approximate the slope using the least square linear regression or an alternative method.
Assume that some pairs of observations (xk, yk), k = 1, . . . , n, are supposed to be related
yk = γxk + C up to some level of disturbance. Here γ is the slope and C is the constant
term. Then the evaluations that minimize root-mean-square error (RMSE) are

C =

∑n
k=1 yk − γ

∑n
k=1 xk

n
; (2.10)

γ =
n
∑n

k=1(xkyk)− (
∑n

k=1 xk)(
∑n

k=1 yk)

n
∑n

k=1 x
2
k − (

∑n
k=1 xk)2

. (2.11)

After aforementioned procedures the approximation of fractal dimensionDmay be expressed

D(F) ≈
|S|
∑

ε∈S logN(ε) log(1/ε)−
(∑

ε∈S logN(ε)
)
·
(∑

ε∈S log(1/ε)
)

|S|
∑

ε∈S log
2(1/ε)− (

∑
ε∈S log(1/ε))2

. (2.12)

This approximation is used in further research and analysis.

2.2.4. Applications of fractal dimension

Many various real-world phenomena exhibit some fractal properties. These properties are
well described using the concept of fractal dimension. In neuroscience, different cell types appar-
ently have significantly different dimensions [78]. In medicine, the dimension is useful for studies
of X-ray and MR images [79]. Overall, the fractal dimension is an important tool for studies of
natural patters and textures [80].

On the other hand, applications of fractal dimension are directly related to applications of
fractals themselves. These aspects are discussed in detail in subsection 1.3.4.

2.3. Wada measure

2.3.1. Introduction to Wada characteristic

In theoretical mathematics, there exists a concept called lakes of Wada. It occurs in a plane
which is divided into three disjoint connected open sets that have a peculiar and highly counterin-
tuitive property: they all share the same boundary.

In applied mathematics, there exists a variety of vastly different nonlinear dynamical systems
describing both natural and unnatural phenomena. Typically, these systems possess multiple non-
trivial attractors. It is therefore understandable that the principles of Wada are defined in terms of
basins of attraction and their respected boundaries, which are shared.

Example 2.3. Let’s construct a region that has full Wada property. For that purpose, three differ-
ent basins of attraction R, Y , B are used. The basins correspond to colors red, yellow and blue
respectively.

1. Without loss of generality it can be said that the region is rectangular.
Initially all points in the region are undefined (not assigned to any basin of attraction).
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2. The undefined region is divided vertically into three equal parts.
Side parts are assigned to two different basins of attraction; the middle part is left undefined.

3. The undefined parts are divided vertically into three equal even smaller parts.
Side parts are left undefined; the middle part is assigned to the basin which is not nearby.

4. Step 3 is repeated indefinitely.

(a) Iteration n = 1;

(b) Iteration n = 2;

(c) Iteration n = 3;

(d) Iteration n = 4.

Figure 2.7: Emergence of Wada property. A region is divided into three pieces, side pieces are
assigned to two different basins of attraction, the middle piece is undefined. In every subsequent
turn an undefined portion is again divided into three pieces, side pieces are undefined, the middle
piece is assigned to the basin of attraction which is not nearby.

As the number of repeated iterations n increases, the set of undefined points is getting smaller.
In the limit case n → +∞, a whole region of points is assigned to some basins R, Y , B. More-
over, all these basins have a common boundary, thus the full Wada property. The whole process is
illustrated in figure 2.7.

2.3.2. Concept of Wada measure

As already discussed, the situation when every boundary point neighbors more than two
distinct basins of attraction Bk, k ∈ 1, . . . , n, is known as the Wada property [81]. If the system
has exactly three different attractorsA1, A2, A3, it follows that all basins of attraction B1, B2, B3

have a common boundary ∂B. Some more preliminary definitions are needed before proceeding
with quantitative approximations of Wada measure.

Definition 2.5. The number of n-boxes Nn(ε) is the minimal number of boxes (according to the
definition 2.3) that satisfy an additional property

B(ε, z) ∩ Bk ̸= ∅, for all k ∈ { k1, k2, . . . , kn }; (2.13)

for a fixed side length ε and compact nonempty set F .
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Simply put, the number of n-boxes counts the size of (partial) F covering which contains
points from at least n different basins of attraction. Then the following inequality holds

0 ≤ Nn(ε) ≤ N(ε), ∀n ∈ N, ∀ε > 0. (2.14)

Let’s look at the case where a given dynamical system has exactly three attractors and three
corresponding basins of attraction B1, B2, B3 more closely. In extreme cases where the basins are
relatively far away and form distinct boundaries it is reasonable to expect N3(ε) ≈ 0, whereas if
basins are intertwined and close together it should be N3(ε) ≈ N(ε).

Finally, the Wada measure can be defined with precision.

Definition 2.6. AWada measureW for a compact non-empty set F ⊂ C is defined as

W (F) = lim
ε→0

N3(ε)

N2(ε)
= lim

ε→0

N3(ε)

N(ε)
(2.15)

where N(ε) and N3(ε) is the number of ε-sized boxes that cover F .

In terms of the classical theory of probability, theWadameasure is the probability of a random
point taken from boundary ∂B having at least three different basins of attraction in its immediate
neighborhood. If the region of interest has fullWada property, then its boundary ∂B has a theoretical
Wada measureW (∂B) = 1. On the contrary, if the region does not resemble Wada situation at all,
thenW (∂B) = 0.

2.3.3. Algorithm to approximate Wada measure

Once again, the idea involves scanning a non-overlapping ε-sized grid, finding the portions
containingF , counting the number of basins of attraction that they contain, andmaking conclusions
according to the definition of Wada measure.

The ability to reduce ε is similarly limited to no more than an individual pixel. The proposed
solution is this:

1. Look at some finest ε ∈ S values.
These should initially cover 2×2 grid of pixels, then 3×3 grid pixels and so on (see fig. 2.8).

2. Calculate the observations N(ε) and N3(ε) in each case.
The empirical probability of any given box being a 3-box is N3(ε)/N(ε).

3. Take the mean empirical probability of the observations.

After aforementioned procedures the outcome may be expressed as

W (F) ≈ 1

|S|
∑
ε∈S

N3(ε)

N(ε)
. (2.16)
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(a) ε = 0.1; N3(ε) = 143; N(ε) = 145;
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(b) ε = 0.05; N3(ε) = 342; N(ε) = 355.

Figure 2.8: The principle of Wada measure using boxes of various sizes ε. The digital representa-
tion of F is split into an ε-grid, then count the nodes where the basin boundary ∂B is present and
count the occurrences from different basins of attraction.

Realistically, the approximated value ofW (F) is never quite equal to 1. On the other hand, it serves
its purpose of measuring and comparing Wada characteristics of different dynamical systems and
situations. This approximation is mainly used in further research and analysis.

2.3.4. Applications of Wada characteristic

Rigorous theorems and important statements regardingWada basin boundaries and basin cells
are presented in [82]. Wada property for different types of attractors including strange nonchaotic
attractors is discussed in [83]. Sufficient and necessary conditions guaranteeing that three Wada
basins are emerging from a tangent bifurcation are presented in [84].

Wada property emerges in a variety of systems of high interest in physics. Unpredictable
behavior of Wada basin boundaries in the Duffing oscillator is noted in [85]. Wada property in
some systems of chaotic scattering with multiple exit modes is analyzed in [86]. Topological
characteristics, including Wada property, are considered for some systems of chaotic scattering
in [87]. Fractal and – more specifically – Wada exit basin boundaries are analyzed in a tokamak
system in [88].

Basins are highly interwoven even in non-standard situations. Seemingly unexpected situa-
tions where basins of attraction have Wada property are revealed in [81].

Wada effect is present in nature. Unpredictability of ecological models related toWada basins
is interpreted graphically in [89]. Examples of Wada characteristic in a periodically forced Lotka-
Volterra predator-prey model are found in [90].

Modifications and generalizations ofWada quality are proposed by contemporary researchers.
Transitions from totallyWada basins to partiallyWada basins and vice versa are constructed in [91].
A novel method for testing for basins of Wada is proposed in [92].
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In this chapter that is dedicated to research the original numerical results and calculations
are presented. All the following insights are directly related to the preliminaries, methods and
mathematical tools described up to this point.

Section 3.1 reveals the analysis of basin boundaries. It is split into three important parts:
analysis of dimensionality, Wada measure, and the relation between both of them.

Section 3.2 presents implications of chaos in the present setting. Once again it is divided into
two subsections where different aspects are discussed. The first one considers the evaluation of
uncertainty, the second one considers the control of the dynamical system.

3.1. Analysis of basin boundaries
Artificially generated visual representations of attractors and basins of attraction are amongst

typical choices for researchers who seek to describe and analyze the behavior of some dynamical
systems [93]. Therefore, it is important to do a quality presentation of characteristics that describe
these basins of attraction, relations between aforementioned characteristics and possible implica-
tions of these results.

A scope of initial conditions z0 ∈ C1 is considered. These are the conditions that belong to
a complex square defined as C1 = [−1, 1]2. This set includes all attractors for the default NDDS
polynomial p(z) = z3−1 and otherwise suits the needs of this work. Within the chosen scope values
which are |∆z| = 0.0025 distance apart are evaluated, for example −1,−0.9975,−0.995, . . . , 1.
It is easy to see that after aforementioned discretization a 801 × 801-sized grid of possible values
for z0 is obtained.

Similarly, a scope of parameters α ∈ C1 is considered. It is enough for the experiments
because outside of this set the behavior of NDDS can be quite extreme and too rapid-changing
for the delicate numerical analysis. Within the chosen scope some values which are |∆α| = 0.01

distance apart are chosen, for example −i,−0.99i,−0.98i, . . . , i. Once again, it is easy to see that
after discretization a 201× 201-sized grid of possible values for α is obtained.

Lastly, the number of iterations used in the model is n = 30. It corresponds to the depth of
the trajectories (z0, z1, z2, . . . , z30) and after z30 the orbit is assigned to the nearest attractor A.
It is possible to use a higher depth but the orbits tend to stabilize before n recalculations. Also the
number of elements in the grid is limited anyway. Therefore, the benefits of significantly higher
depth are questionable in the present setting.

34
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3.1.1. Fractal dimension of basin boundaries

For the purposes of research the algorithm discussed in subsection 2.2.3 is used. In the process
of approximation, different coverings ranging from 1×1 to 100×100 pixels are taken into account.
This means |S| = 100 cases overall.
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(a) α = −0.55 + 0.6i; D(Fα) = 1.21;
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(b) α = 0.5 + 0.9i; D(Fα) = 1.63.

Figure 3.1: Basins of attraction for the relaxed NDDS with varying values of fractal dimension.
Two different system parameters α ∈ C are used.

In general, a fractal dimension D is a characteristic of complexity comparing how detail in
a pattern changes with the scale at which it is being measured. For smooth simple curves this
characteristic is a constant unit D = 1 meaning that there is no change in detail. But other possi-
bilities exist. For example, let’s take a particular parameter α = −0.55 + 0.6i. Using the relaxed
NDDS, its basins of attraction B, basin boundary ∂B = F and finally the corresponding fractal
dimension D(Fα) = 1.21 is obtained. This result is quite different from, say, α = 0.5 + 0.9i and
corresponding dimension D(Fα) = 1.63. The comparison can be seen visually in figure 3.1.
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(b) α ∈ [0, 1]i.

Figure 3.2: Fractal dimensions for the relaxed NDDS with varying parameter α ∈ C.
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As the parameter α fluctuates starting from α = 0, the changes in global characteristics are
inspected. At this stage the aim of the procedure is to detect any possible peculiarities.

Initially some small positive constant ε ≈ 0.001 is added so that α ∈ [0, 1]. Beginning from
D(F0) ≈ 1 the fractal dimension increases almost monotonically untilD(F1) ≈ 1.38 and onwards
(for example, D(F2) ≈ 1.60). This effect can be clearly seen in figure 3.2 part (a).

Next, starting from the same α = 0, some small imaginary constant ε ≈ 0.001i is added
so that α ∈ [0, 1]i. Effectively this creates a section of the parameter plane along the imaginary
axis. But this time the dimension does not increase monotonically at all, see figure 3.2 part (b).
Instead it demonstrates periodic-like behavior and has some local minima approximately at α ∈
{ 0.2i, 0.4i, 0.6i, 0.8i }. This is indeed a peculiar behavior that requires further investigation.
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Figure 3.3: Fractal dimension D(Fα) in the parameter plane α ∈ C.

Then some computationally-intensive calculations are performed for many more possible α
values. As a result, fractal dimensions for thewhole grid of parameter values is obtained. This result
is presented in figure 3.3. It shows that the fractal dimension D is a highly non-trivial function of
complex parameter α ∈ C which apparently is symmetric with respect to the ℑ(α) = 0.

For ℜ(α) ≤ 0, the dimensions tend to be relatively low, with the maximum being found
to be D(F0.45i) ≈ 1.39. The periodic-like behavior along imaginary axis is also present only in
this semi-plane. Otherwise the imaginary part of the parameter α does not impact the observed
dimension dramatically.
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On the other hand, let’s look at ℜ(α) ≥ 0. In this semi-plane the dimensions vary substan-
tially betweenD(F0) ≈ 1 andD(F0.76+0.98i) ≈ 1.68. The periodic-like behavior is not to be found
here. As the ℑ(α) approaches either ±1, the observed dimension increases dramatically.

3.1.2. Wada measure of basin boundaries

The algorithm discussed in subsection 2.3.3 is used for the following part of this research. In
the process of approximating Wada measure different coverings ranging from 2 × 2 to 101 × 101

pixels are taken into account (the single pixel case is trivial). This means |S| = 100 cases overall.
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(a) α = −0.85 + 0.53i; W (Fα) = 0.28;
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(b) α = 0.1 + 0.6i; W (Fα) = 0.88.

Figure 3.4: Basins of attraction for the relaxed NDDS with varying values of Wada measure.
Different parameters α ∈ C are used.

In general, Wada measureW indicates what percentage of boundary points F is neighboring
more than two basins of attraction simultaneously. Naturally W = 0 corresponds to 0% while
W = 1 corresponds to 100%.
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(b) α ∈ [0, 1]i.

Figure 3.5: Wada measures for the relaxed NDDS with varying parameter α ∈ C.
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For example, let’s take a particular parameter α = −0.85 + 0.53i. Using Newton’s discrete
dynamical system its basins of attraction B, basin boundary ∂B = F and finally the corresponding
Wada measure W (Fα) = 0.28 is obtained. This result is very different from, say, α = 0.1 + 0.6i

and corresponding measureW (Fα) = 0.88. The comparison is presented visually in figure 3.1.
As the parameterα varies in some direction starting fromα = 0, the changes inWadameasure

are inspected. Some resemblance to fractal dimension is expected. However, it’s worth emphasiz-
ing that Wada measure takes into account more data (basins of attraction themselves) compared to
fractal dimension (only basin boundaries).

Initially some reasonably small positive constant ε ≈ 0.001 is added so that α ∈ [0, 1].
Beginning fromW (F0) ≈ 0 theWadameasure then increases rapidly until approximatelyα ≈ 0.03

when W (F0.03) ≈ 0.91. Afterwards it stays at a similar level until the end of simulations when
W (F1) ≈ 0.96. This effect can be clearly seen in figure 3.5 part (a).

In another scenario, let’s add some small imaginary constant ε ≈ 0.001i so that α ∈ [0, 1]i.
This creates a section of the parameter plane along the imaginary axis. This time the measure be-
haves in a very similar manner to fractal dimension, see figure 3.5 part (b). Namely it demonstrates
periodic-like behavior and has some local minima approximately at α ∈ { 0.2i, 0.4i, 0.6i, 0.8i }.

Overall this shows an expected resemblance compared to fractal dimension in one case (imag-
inary values), yet yields some new results in another scenario (real parameters).
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Figure 3.6: Wada measureW (Fα) in the parameter plane α ∈ C.
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Once again some computationally-intensive calculations for manymore possibleα values are
performed. As a result, Wada measure for the whole grid of parameter values α ∈ C1 is obtained.
This obtained result is presented in figure 3.6. It shows that the Wada measureW is indeed a non-
trivial function of complex parameter α ∈ C. It is also apparently the case that the characteristic
W (Fα) is invariant under α = x± iy.

For ℜ(α) ≤ 0, the Wada measures vary significantly within W ∈ [0.03, 0.90]. The average
measure in this case is W ≈ 0.53. The periodic-like behavior along imaginary axis is present
only in this semi-plane. This time the imaginary part of the parameter α can impact the observed
measure noticeably.

On the other hand, let’s look at ℜ(α) ≥ 0. In this semi-plane the measure is relatively high.
The highest observed value is W (F0.59−i) ≈ 0.99. In fact the values are high almost everywhere
except for ℜ(α) ≈ 0 with average being W ≈ 0.94. Also the periodic-like behavior is not found
and ℑ(α) has no substantial impact on the observed Wada measures.

3.1.3. Relation between characteristics of basin boundaries

The results concerning fractal dimensions and Wada measures have been described sepa-
rately. It was presented how and when these characteristics change within the family of basin
boundaries. The logical follow-up is to integrate the two characteristics and present the joint re-
sults regarding the relation between both measures.

Figure 3.7: Fractal dimensions D(F) and Wada measuresW (F) for all parameters α ∈ C1.

Initially the scatter points are marked in figure 3.7 to plot the set of observationsD andW for
the data. Some tendencies can be noticed right away. Apparently there exists a positive correlation
between the characteristics: the higher the fractal dimension D, the higher the Wada measure W .
Different coefficients may be used to evaluate possible correlation:

1. Pearson’s correlation coefficient measures the linear relationship between two continuous
variables. The normality is not assumed nor checked. In fact only finite (co)variances are
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assumed. The obtained outcome is

ρD,W =
DW −D ·W√

D2 −D
2
√
W 2 −W

2
= 0.82 (3.1)

which indeed reveals a positive correlation.

2. Spearman’s correlation coefficient measures the monotonic relationship between two con-
tinuous variables. The outcome is calculated very similarly, yet the measures themselves are
replaced with ranks

rD,W = ρrank(D),rank(W ) = 0.87 (3.2)

and once again a positive correlation is revealed. Because of ranking feature, the measure is
relatively robust to outliers (unlike Pearson’s correlation). It is possible that there exist some
numerical outliers since the nature of the calculations is quite delicate.

Despite some positive correlation the relationship is still complex. It is possible to provide
a sequence of fractal basin boundaries whose dimension D strictly increases, yet at the same time
the corresponding Wada measure decreases. The aforementioned effect can be demonstrated in the
scatter plot (see figure 3.7) by selecting a negatively correlated subset of observations (ρ ≈ −1).
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Figure 3.8: Minimum and maximum fractal dimensions for the ε-neighborhoods of a fixed Wada
measureW (F).

Now in figure 3.8 it is checked what fractal dimensions D exist when a particular Wada
measure W is fixed. It is actually possible to find relatively low fractal dimensions D < 1.2 for
(almost) all Wada measures W < 0.9. Afterwards when W ≥ 0.9 the minimal dimension D is
necessarily higher within the scope of parameters 1.2 ≤ D < 1.6. On the other hand, the maximal
dimension increases along with fixed Wada measure with few exceptions in the present setting.

These observations can also be presented the other way around. For example, once the com-
plex patterns haveD > 1.2, a substantial Wada measure is expected as well - otherwise there would
be no matches.
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3.2. Implications of chaos

3.2.1. Uncertainty of the final attractor

In order to check the underlying uncertainty of the final attractor the setting of the NDDS is
fixed as described below. The initial seeds belong to a grid of values around z0 = −0.793 within
the radius of |∆z0| = 0.01. To ensure that there are enough simulations the distance between
nodes in the grid has to be sufficiently small, around ε ≈ 0.0006. This leads to the total number of
simulations being s = 795 which is considered to be enough for reliable results.
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(c) α = 1 + 0.005i.

Figure 3.9: Uncertainty of the final attractor when the initial seed z0 = −0.793 fluctuates within
|∆z0| = 0.01 and the parameter α is slightly perturbed.

Initially the control parameter α = 0.97 is set. It leads to the emergence of slightly smoothed
basin boundary. After running the simulations, it is noticeable that the outcomes are quite ten-
dentious: 523 cases converge to the attractor A3 while the other two A1 and A2 attract s(A1) =

s(A2) = 136 precisely. The radar plot can be seen in figure 3.9(a).
Next the control parameter α = 1 is set. It leads to the emergence of a standard basin

boundary of the NDDS. Simulations reveal that the likelihood of outcomes is almost even now:
s(A3) = 259 cases go to the attractor A3 while 268 cases are attracted by A1 and A2 each. The
result is shown in figure 3.9(b).

Finally, the control parameter α = 1 + 0.005i is chosen. It leads to the emergence of a
rotated boundary. After inspecting the outcomes, the change in situation is seen: attractor A2 is
now dominant with s(A2) = 472 cases while A1 and A3 attract 261 and 62 different initial seeds
respectively. The visual outcome is shown in figure 3.9(c).

α s(A1) s(A2) s(A3)

0.97 136 136 523
1 268 268 259
1 + 0.005i 261 472 62

Table 3.1: Distribution of simulations (out of s = 795) that go to different attractors A1, A2, A3

under various values of parameter α.

The overall resulting situation is reviewed in table 3.1 and presented visually in figure 3.9.
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To sum up, some complicated interactions between the resulting attractors are observed during
simulations. Moreover, these interactions involve more than two attractors simultaneously. This
means that during research it is crucial to consider not only the boundary itself (in terms of fractal
dimension or equivalent characteristic) but also the neighboring basins of attraction (in terms of
Wada measure or some other means).

3.2.2. Controlling the dynamical system

In some cases it is important to stabilize and control the nonlinear dynamical system as re-
quired. It is not always an easy task. Some particular initial seeds are chosen z0 ∈ {−0.793 −
0.001i,−0.793,−0.793 + 0.001i }, then the evolution of dynamics is observed while the control
parameter α = 1 is slightly perturbed until α = 0.99.
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Figure 3.10: Trajectories of the Nn orbits when the initial seed z0 = −0.793 varies by∆z = 0.001i
and the parameter α is slightly perturbed.

It is not possible to plot complex orbits in less than three dimensions so other acceptable
ways of representing the situation are considered. Because of fluctuations in magnitude that occur
while observing orbits the complex arguments (see figure 3.10) are plotted. Understandably the
convergence of arguments does not ensure the convergence of values hence this aspect is checked
separately.

Then α = 1 is set along with aforementioned initial seeds which have the property Arg(z0) ≈
π. As the orbits evolve the trajectories diverge briefly, approximately until iterationn = 4 and begin
to stabilize afterwards. By the time the iteration n = 35 is reached, the arguments are stable and
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so are the values. In fact the values have converged to three distinct attractors A1, A2, A3. The
values are shown in figure 3.10(a).

In another case the control parameter is perturbed to α = 0.99. It is a relatively slight shift
yet the effect is critical. All initial seeds remain the same and the property Arg(z0) ≈ π does not
change during iterations. In fact the values continue to remain in the starting region during the
whole experimental period n = 0, . . . , 35. These orbits are presented in figure 3.10(b).

To sum up the trajectories of orbits depend on the control parameter α. In case of more than
two attractors the final outcomes are attracted by multiple distinct regions. Therefore, the ability
to predict convergence of an arbitrary initial seed is influenced not only by the positioning and
complexity of the basin boundary but also by the intertwining of the basins themselves. While the
formal aspect can be somewhat measured using fractal dimension, the latter requiresWada measure
or equivalent tools.

3.3. Discussion
Newton’s discrete dynamical system is analyzed numerically in terms of basins of attraction

B and their fractal boundaries ∂B = F , using control parameter α ∈ C.
Fractal dimension D is evaluated using the box counting technique. Some peculiar dynam-

ical processes are noticed, especially when the imaginary part of α varies, revealing periodic-like
behavior. The dimension itself fluctuates from D = 1 in a trivial case, to D = 1.68 for a very
complicated structure.

Wada measureW is calculated using a novel proposed algorithm. The results only somewhat
resemble those concerning fractal dimension. Most notably the proposed Wada characteristic also
takes into account the basins of attraction. The measure itself varies from W = 0.03 in a trivial
case, toW = 0.99 for especially intertwined boundaries.

The relation between characteristics D and W is highly non-trivial. There is a positive cor-
relation but nothing like a bijective correspondence can be defined. This is understandable since
Wada measure takes into account more data.

The uncertainty of the final attractor A is examined. It can be an extremely complicated
task to determine when (and where) a specific trajectory converges. This difficulty to predict the
outcome can be evaluated quantitatively in terms of both characteristics.

Unlike other research, the limited precision is emphasized in this work. It means that once
the grid of value simulations is obtained, it is not possible to zoom in order to obtain an even more
detailed picture of the model. This apparent drawback can also be seen as a realistic situation when
only some experimental observations are available instead of the precise model.



Conclusions

1. Relaxed Newton’s discrete dynamical system exhibits rich dynamics and a high variety of
set-ups of attracting basins, using parameters α ∈ C1 and p(z) = z3 − 1.

2. Fractal dimension is found to be in range D(Fα) ∈ [1, 1.68] when α ∈ C1. However, it can
be higher when α ∈ C.

3. Wada measure is found to be in rangeW (Fα) ∈ [0.03, 0.99] when α ∈ C1.

4. There exists a non-trivial relation between D(F) andW (F).
Pearson’s correlation coefficient ρ = 0.82.
Spearman’s correlation coefficient r = 0.87.

5. Slight perturbations to the control parameter α may cause extreme changes in the long-term
behavior of trajectories.

6. In order to better characterize a dynamical system, Wada measureW should be used in pair
with fractal dimension D.
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