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Abstract: This paper introduces the sensor-networked IoT model as a prototype to support the design
of Body Area Network (BAN) applications for healthcare. Using the model, we analyze the synergistic
effect of the functional requirements (data collection from the human body and transferring it to
the top level) and non-functional requirements (trade-offs between energy-security-environmental
factors, treated as Quality-of-Service (QoS)). We use feature models to represent the requirements at
the earliest stage for the analysis and describe a model-driven methodology to design the possible
BAN applications. Firstly, we specify the requirements as the problem domain (PD) variability
model for the BAN applications. Next, we introduce the generative technology (meta-programming
as the solution domain (SD)) and the mapping procedure to map the PD feature-based variability
model onto the SD feature model. Finally, we create an executable meta-specification that represents
the BAN functionality to describe the variability of the problem domain though transformations.
The meta-specification (along with the meta-language processor) is a software generator for multiple
BAN-oriented applications. We validate the methodology with experiments and a case study to
generate a family of programs for the BAN sensor controllers. This enables to obtain the adequate
measure of QoS efficiently through the interactive adjustment of the meta-parameter values and re-generation
process for the concrete BAN application.

Keywords: Internet of Things; security and privacy; body area network; WNS; quality-of-service;
BAN software design; model-driven approach

1. Introduction

In recent years, it has been a very broad discussion about the Internet of Things (IoT) and
IoT-related applications in healthcare [1,2]. A significant part of those concern Body Area Networks
(BANs) [3]. These, in fact, are Wireless Sensor Networks (WSNs). In the case of the IoT therefore, the
BAN (also Wireless BAN) represents a node of the IoT. The following explain BANs’ popularity: (1) in
general, the monitoring of human health is the predominant factor; (2) the BAN can cover different
sub-domains of a human’s activity. We can assume, for instance, that the BAN cell, as a node of the
IoT, is near to the human (e.g., it is in his/her pocket or bag) and the cell’s units such as sensors are
mounted on the body to collect data for evaluating the human’s health state. The human, for example,
may be a patient, a tourist climbing in the mountains, a worker operating in a harmful environment,
etc. for whom the monitoring of the health state is highly important. Both the cell and human represent
a thing of the IoT. The BAN, like many other IoT-based applications, has to operate under stringent
constraints when transferring data over the network.

Typically, security/privacy, energy-awareness and environmental factors represent the major
constraints in such applications. The first is due to the possibility that the data can be launched and
changed, e.g., during the transfer sessions. The second is due to the use of battery-charged devices
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within the network. The third is due to the noises that influence data transfer. Those factors are highly
related and extremely complex in their own way. For example, there are a variety of communication
protocols to ensure different levels of security. The more complex a protocol is (meaning the complexity
of the encryption algorithms used), the more energy is required to ensure the required level of
security. The same is true of environmental noises. All those factors, when considered together,
predefine the quality of service (QoS) of the application. Therefore, QoS should appear as a basic
non-functional requirement in designing the IoT applications. As our literature review shows, security
and energy issues are seen as predominant factors in healthcare and other WSN-related applications.
As those applications cover multiple aspects, we need to introduce the reader to the whole spectrum
of their heterogeneity.

In this paper, we consider the BAN prototype as a node of the IoT with respect to the QoS
requirements. The BAN itself consists of internal nodes (sensors and actuators). Typically, the number
of nodes ranges from a few to a dozen nodes. That depends on the type of each BAN application
(e.g., runners require less sensors than a patient). The nodes may be combined into groups to cover
different aspects of the same application, or even different but related applications. Therefore, the
functionality and structure of a node can differ significantly, depending on the requirements of a
particular application. On the other hand, there might be identical nodes (e.g., for ensuring better
performance, higher reliability, etc.). Sensors are for collecting and sending data from the body.
Actuators are for reacting to the changes and on this basis, making a decision by an actor. Both may
also possess the smart features such as the computation and decision making capabilities.

The hardware parts of a BAN (such as smart sensors and actuators) are rarely made from scratch.
Most likely, they are obtained as reusable components from commercial suppliers. That is possible due
to the technology advances (standardization, high-level of automation, etc.). However, this typically is
not the case with regard to software, because it is highly dependent on the particular requirements of
an application. Typically, the software of a particular IoT application is unique, though it also may
have common features with other applications, such as managing and control facilities for transferring
data. For IoT applications, software is regarded as a stem of the whole. It might be either embedded
into sensors, or be used as an external component [4]. Therefore, the software development process
is hard. The non-functional requirements such as for security and energy, along with the functional
requirements, make the software development even challenging and specific as compared to multiple
other software applications.

As the complexity of systems is steadily increasing, software development approaches should
rely on successful ones used in the industry, such as software Product Line Engineering (PLE).
The PLE approach is defined as a methodology to develop a family of related products in an
efficient way, taking full advantage of the products’ commonality and variability aspects [5]. It is also
concerned with the use of the variability management [6], high-level feature modeling [7] and feature model
transformations that typically are defined as model-to-model or model-to-program transformations [8].
Therefore, the model-driven software development approach is centered on the use of models and
their transformations [8].

In IoT applications, due to their novelty and specificity, model-driven approaches are not yet
exploited in full to ensure better quality, higher productivity, more flexible adaptability and reuse.
Therefore, the aim of the paper is to analyze and disclose the potential of the model-driven approach
for designing software for BAN-oriented applications. Currently, the main problems in designing
those applications are as follows: An insufficient extent of automation, inadequate capabilities for
process reuse, integration and adaptation. Furthermore, so far designers have largely ignored the
multiplicity and synergy of non-functional requirements in designing their systems.

Though in general the model-driven approach is well known and widely used, our contribution
is two-fold: (1) We have seamlessly integrated QoS, representing the important ingredients of
BAN uniformity, into the full development cycle that includes the BAN prototyping, requirement
statements, modeling and implementing the application software through model transformations;
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(2) Our approach results in the creation of an executable meta-specification to automatically generate the
essential part of software for a family of related BAN applications. That enables one to significantly
enhance the BAN development for multiple applications along with the semi-automatic adaptation to
fit the QoS requirements for the concrete BAN application.

The methodology we discuss here has three significant parts: (1) specification of requirements
at the higher level of abstraction by feature models to specify the problem domain (i.e., BAN);
(2) introduction of generative technology (i.e., meta-programming as a solution domain that is also
presented by the feature model); (3) seamless integration of the problem and solution domains through
model transformations to achieve the goals of automation, adaptation and reuse. Though all the parts
are for the use by IoT software developers, part (1) may also be useful for the much larger community,
such as IoT domain policy makers, IoT and BAN researchers and practitioners.

The paper structure is as follows: In Section 2, we analyze the related work. In Section 3, we
formulate research objectives and tasks. In Section 4, we describe the requirements and the basic
idea of the approach. In Section 5, we present the methodology and its background. In Section 6, we
analyze the case study and experiments we carried out for the BAN-oriented applications. In Section 7,
we discuss and evaluate the results. Finally, in Section 8, we provide conclusions on the results.

2. Related Work

We categorize the related work into parts A and B. In part A, we analyze the general trends in IoT
research and healthcare applications, focusing on security, privacy and energy challenges within the
IoT, WSNs and WBANs. In the part B, we provide analysis of modeling and application aspects to
support the computational issues of the IoT, WSNs and WBANs.

2.1. Part A: Analysis of the Security, Privacy and Energy Challenges within the IoT, WSNs and Healthcare

As stated in the Introduction, the trends, vision, challenges and problems imposed by the IoT are
discussed in [1,2]. Though there are multiple IoT applications, healthcare applications are at the focus in
this regard. For example, Kumar et al. [9] discussed the challenges of security and privacy in healthcare
applications, an integral part of which are wireless medical sensors. The authors also defined the
relevant requirements of security for these applications and formulated some open research problems.

In mobile healthcare services, the accurate detection of an emergency situation and its notification
are critical to chronic patients’ life. Chun et al. [10] described the automatically detected emergency
condition of the individual bio-data collected from wireless BANs using a message flow diagram
based on a personalized emergency policy. Wan et al. [11] analyzed cloud computing applications in
healthcare systems and possible cloud-related WBAN solutions. They also considered approaches for
transmitting vital data to the cloud by using energy-efficient routing, for allocating cloud resources, as
well as semantic interactions and data security schemes.

Oh et al. [12] dealt with a lightweight security system for the IoT with regard to the limited
computing resource availability and memory capacity. The system exploits an innovative malicious
pattern-matching engine. The provided experiments showed that the proposed system offers scalable
performance for a variety of patterns. Choi et al. [13] presented a user-driven environment which is
designed for modeling and creating IoT services. As the IoT objects can acquire huge amounts of data
from different contexts (home, office, industry, body), data fusion processes are applied to form more
complex information structures.

Hughes et al. [14] reviewed the existing investigation in the field of WBAN engineering, including
protocol adaptation and energy effective cross-layers by highlighting how the existing solutions resolve
the various issues specific to remote permanent healthcare monitoring. Chen et al. [15] gave a holistic
review of security challenges in sensor networks divided into the following classes: cryptography
and key distribution, secure routing and location security, attack detection and prevention, secure
data fusion, and other security challenges. The authors also summarized the methods and techniques
used in these classes. Slavin et al. [16] introduced the security requirements as patterns to represent



Sensors 2016, 16, 670 4 of 22

reusable security technologies that software developers can use to improve the security of their
systems. The authors proposed a novel approach that combines an inquiry-cycle based method with
the feature diagram notation to check only relevant models and to select the most suitable models for
the situation.

Selimis et al. [17] emphasized the importance of ensuring and protecting patients’ sensitive
data obtained in WBANs and proposed a new microcontroller architecture in order to improve
the security and reduce the energy consumption of the system. In the context of using WBANs,
Crosby et al. in a survey paper [18] examined the following issues: Monitoring and sensing, power
efficient protocols, system architectures, routing and security and formulated some open research topics.
Jing et al. [19] discussed the cross-layer heterogeneous integration and the security problems of the IoT,
analyzed solutions to them and compared security challenges between the IoT and traditional networks,
and also highlighted emerging security challenges of the IoT. Hosseini-Khayat [20] considered the
security—energy relationship at the level of wireless implantable medical devices by providing the
lightweight encryption protocol that can be used to implement on the very low power ASIC chips.

Energy consumption is the main challenge in WSN as well as in the IoT. Therefore Zhou et al. [21]
presented the energy models of the device major components: processors, communication modules,
sensors and actuators. An IoT device energy model can exactly disclose the energy consumption
of the sensor unit. Rani et al. [22] considered the green networked IoT and addressed energy
consumption challenges by proposing a novel implementation scheme. This scheme consists of:
(1) a hierarchical network design; (2) a model for the energy efficient IoT; (3) a minimum energy
consumption transmission algorithm to implement the optimal model.

2.2. Part B: Analysis of Modeling to Support Implementation Issues of the IoT, WSNs and WBANs

Schmidt et al. [23] proposed an approach to design sensor node models based on ordinary
measures. They provided a case study where models are also incorporated in a modeling environment
in the runtime framework of a model driven design. Measurements on an experiment implementation
demonstrated a decrease in energy consumption as compared to an application without energy saving
technique (i.e., without the use of proposed models).

Ryu et al. [24] proposed an integrated semantic service platform to support ontological models in
different IoT-based service domains of a smart city, addressing three main issues for supplying complex
semantic services along with IoT systems: semantic discovery, dynamic semantic presentation, and
semantic data storage for IoT systems. Vu et al. [25] described an extensible modelling environment
to simulate WSNs. Particularly, the suggested modeling tools have facilitated the investigation of
the sensor nodes communication security. The simulator’s main components are: network topology
model, key establishment protocol, and adversary model for node capture, network analysis tools, and
a graphical user interface to facilitate the rapid simulation, visualization, and analysis of WSNs.

Ortiz et al. [26] considered the runtime variability, a main technology for Dynamic Software
Product Lines (DSPLs), as certain applications demand reconfiguration of system features and
execution plans at runtime. In this emerging research work, the authors addressed the problem
of dynamic changes in feature models in sensor networks product families, where the nodes of the
network demand dynamic reconfiguration at post-deployment time.

The functionalities provided by objects of the IoT can be viewed as ‘real-world services’ as they
provide a near real-time state of the environment [27]. Therefore, this paper described a semantic
modeling method for different units in an IoT framework. It also discussed how the model can be
included in the IoT framework by using automated association techniques with physical units and
how the data can be obtained using semantic search and reasoning techniques.

Fajar et al. [28] performed feature modeling for analyzing commonality and variability among
the applications in terms of their features and visualize analyzed commonality and variability in a
tree-form diagram. The feature model provides a comprehensive view of the Wireless Sensor/Actuator
Network (WSAN)-based agriculture system and helps agriculture domain experts and software
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engineers communicate intuitively. Ruiz-Zafra et al. [29,30] described a model-driven approach for
developing high-level software interfaces that allow developers to easily interact with wearable devices
or BAN sensors and to reduce risks and development efforts.

In feature-based modeling there is an evident shift from static to dynamic modeling with the focus
on context modeling. Examples are the collaborative context features modeling of critical systems [31],
dynamic feature modeling of recommender systems [32], decision-making using dynamic feature
models [33], to name but a few. Capturing and representing this high-level dynamic context in creating
the IoT systems is also a big challenge. Context-awareness is extremely concerned with the high degree
of variability and its dynamic mode (changeability). The context variability modeling techniques,
as Venckauskas et al. analyzed in [34], are focused on the sensor (mainly) and middleware layers
(partially). In the variety of the IoT applications, the non-functional requirements (such as human
behavior models, information security at the application level or pure technology, such as the level of
the energy consumption, etc.) can be treated as the application-level context. Therefore, the feature
modeling at this level can be seen as a relevant technique.

Though the analysis provided here is by no means comprehensive, we are able to formulate the
following main findings (1) WSNs, as predecessors of the IoT, and BAN-oriented applications, as
an important segment in healthcare, and are at the focus of attention now; (2) typically, the factors
(security-privacy, energy savings and environmental factor) within IoT components (such as WSNs
and BANs) are widely discussed, but considered separately due to their complexity or due to the need
to substantially improve existing solutions. This, however, is not enough for building IoT applications.
For BANs, for example, a major challenge is not so much to take into account a separate factor, but
rather the synergistic effect of those factors on functionality and quality of such applications. As those
applications are relatively new, there is a lack of approaches that focus on such a vision, though
the understanding of that problem (typically it is identified as QoS) can already be found in the
literature; (3) so far, to our best knowledge, developers either design BAN-oriented software for the
concrete application, or use model-driven approaches restrictively, when one expresses models by
features; therefore, the capabilities for design automation and reuse are limited. This limitation, in fact,
motivates our approach; (4) another big issue is how to bridge the gap between the QoS requirements
and IoT applications and bring QoS into the system design process. Therefore, little is known in the
analyzed literature on how to close the gap, though there are a few works in the IoT domain that use
the model-driven development in designing the IoT systems. Those findings enabled us to motivate
our research tasks as described below.

3. Research Objectives and Tasks

As stated in the introduction, our research object is BANs. Since we consider the object as a node
of the IoT for multiple applications, multiple aspects are to be taken into account. Typically, the main
concern of BAN-related applications is to build: (1) the adequate software as effectively as possible
and (2) this software should be as adaptable and reusable as possible to fit the multiple requirements
and the multiple use cases. Therefore, the objectives of this research are to introduce a model-driven
methodology that enables one to enhance the processes in developing software for BAN applications.
The main focus of our research is the extended capabilities for automation, i.e., creating a generic
specification (through model transformations) to derive a family of application programs for possible
adaptation for a concrete use case). The research questions (RQs) we address in this work are:

RQ1. Creating consistent feature models for the problem domain (PD, i.e., BAN).
This RQ should be dealt with so that it would be possible to specify multiple requirements in

two modes (as separate entities and their relationships and as the unified measure of QoS for the
non-functional requirements).

RQ2. Representing the solution domain (SD, i.e., meta-programming) also by the feature model
and then specifying transformation rules for connecting both the PD and SD models.
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This RQ should be dealt with so that the mapping of the PD model onto the SD model would be
possible as well as the subsequent model-to-meta-program transformation resulting in the creation of
the meta-specification for generating BAN applications.

RQ3. Validating the results of RQ1 and RQ2 and overall methodology proposed.
This RQ is intended to be solved through experiments and a case study.

The novel parts of our approach are as follows: (i) the measure of QoS within the feature models
to specify a multiplicity of the predefined requirements (for security, energy, etc.) for a family of
possible BAN applications, though in general the model-driven approach is well known and widely
used [35]; (ii) the meta-specification we describe in this paper has a distinguishing property—an
interface combined with the feedback—to adapt the QoS characteristics to generate a particular BAN
application program on the user’s demand, though the use of heterogeneous meta-programming
as a part of the model-driven approach is also well known (see, e.g., [36,37]); (iii) furthermore, the
model-driven methodology as applied to BAN introduces systematization in designing software,
brings capabilities for automation and adaptation.

With regard to the model-driven approach, we have selected the feature models due to the
following reasons: (a) they are both human readable and machine interpretable, i.e., they have graphical
and textual representation; (b) they enable one to express the problem domain variability well (typically
through variation points and variants); (c) there is a dozen of examples and use cases of successfully
implementing the models in practice; (d) it is possible to discover the relationships between feature
concepts and meta-programming concepts.

4. Requirements for Implementing IoT-Oriented BAN Applications

The BAN-oriented sensor network is concerned with the data collecting from a human’s
body, manipulating the data and transferring/accepting the information to/from the application level.
There might be a variety of the BAN applications related to monitoring the human’s health state
(the two terms BAN and WBAN are synonymous, but hereinafter we will use the first). The sensor
network can be seen as a sub-net of the IoT. Those applications are indeed complex, because we need
to take into account a variety of issues such as device heterogeneity, scalability, energy-optimized
solutions, security, etc. [1]. The human, along with the series of sensors, are things connected via the
Internet to a remote station for monitoring or making a decision. The top level implementing the BAN
application is at the remote station. In the case of the patient, for example, the station is a hospital or
other treatment institution. In the other case, the station can be the remote environment monitoring
the human’s state within the harmful production area, etc. The remote thing is able: (1) to monitor the
health state; (2) to control changes of the measured data and provide the adequate reaction; (3) to react to
the physical changes within the cell hardware (e.g., significant reduction of the battery’s energy); (4) to
send messages to the remote station informing about any changes in the human’s state and physical
changes in the environment in order for it to be possible to make adequate decisions.

It is possible to estimate the health state by measuring body data such as temperature, blood
pressure, pulse, etc. The data comes from the sensors mounted on the human’s body and connected
with the core cell, called Smart Sensor Controller. Note that there might be a specific kind of the
smart sensor, called smart actuator, which is responsible not for manipulating measured data, but for
performing some physical action such as injecting insulin into the human’s body, etc.

Further, we introduce and define some terms related to the BAN-oriented sensor network
applications. By a node of the IoT, we mean a patient with smart sensors mounted on his/her body
along with the smart sensor controller for the data acceptance, decision making and controlling data
transfer in both directions: From and to smart sensors and from and to the application level.

Definition 1. BAN is a net of the IoT nodes. BAN-oriented IoT model (prototype) is the two-layered
architecture containing the standard Internet and application modules at the top layer and the IoT
nodes at the lower layer (see Figure 1).
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Figure 1. Two-layered sensor-networked IoT model to support BAN-oriented applications.

As we consider the software development for such BAN-oriented applications, the specific
requirements are to be stated in the first place. We focus on non-functional and functional requirements
at two levels (generic specification and implementation). The first stands for specifying of a larger
family of the related applications. With regard to non-functional requirements (security/privacy,
energy etc.), we specify them as quality of service (QoS) [3] since a unified measure is more convenient
for the interpretation and implementation. The second level stands for representing more details
needed for the implementation we describe later.

Definition 2. QoS is a trade-off of the available energy resource, system performance, security level and
environmental factor to ensure the acceptable degree of the IoT node functionality for the user (see also
relationship (1) and Definitions 3 and 4).

Definition 3. Security level is the privacy/security requirement identified as a value taken from the
set {U, SU, R, C, S, TS}, where the elements of the set are fuzzy variables having the following meaning:
U—Unprotected, SU—Secure Unprotected, R—Restricted, S—Secret, TS—Top Secret [35].

The security level depends on the communication protocol and the encryption algorithm used
within the data transfer protocol. For example, the use of the most effective encryption algorithm
ensures the top security (TS).

By the system performance, we mean the clock frequency of the processing unit either within a
smart controller, within a smart sensor, or both. The decrease of the frequency highly impacts on the
energy needs [36].

With regard to the definition of QoS, there are a few important aspects to consider. First, each
constituent of the measure has a set of the possible values. Those values are either predefined in
advance such as security levels [35], or are defined during the operation on-the-fly dynamically such
as the battery’s energy amount. Second, we assume that it is possible to change the clock frequency
of the processing unit so that to make an impact on its performance (if needed, for example, due to
the significant drop in energy). Third, each constituent is supplied with the fuzzy variable to estimate
the weight of the constituent by equalizing its role in the measure of QoS [32]. Fourth, all constituents
are highly dependable in that the change of the value of one constituent causes the need to adapt the
value of another. Finally, it is worth to note that the energy is the most important attribute influencing
to QoS and the whole functionality of the node.
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Therefore, we can speak about the measure M of QoS, identified as M(QoS). It is varying over
time too. We can estimate the boundaries of this variation and write the following relationship:

MpQoSqmin ď MpQoSqc ď MpQoSqmax (1)

We obtained the measure by experiments described in [34,38,39]. In [39], it is treated as a
Pareto-optimal solution. However, in the case of developing a software application, it is more relevant
to express the measure at the top level through the needed security level (see Definition 3).

Definition 4. An acceptable degree of the functionality of the IoT node is the measure M(QoS)c

satisfying the relationship Equation (1) (where M(QoS)c is the current value of the measure M).

The main functional requirement is to ensure uninterruptable sessions of the data stream from the
smart sensors to the smart controller and from the latter to the remote station. Therefore, the smart
sensor’s functionality is at the focus. The control programs designed under the strict non-functional
requirements predefine the functionality. Further, due to its complexity we investigate not the whole
system, but its lower-layer part identified as a node of the IoT (see Figure 1).

Therefore, we have listed functional and non-functional requirements as generic ones along with
a generic two-level IoT model to investigate and implement BAN applications. More specifically,
functional requirements include: (i) identification of the type and the number of sensors and actuators
required to satisfy the BAN needs; (ii) definition of their functions; (iii) selection of communication
protocols and their operation modes; (iv) combining the selected items into a BAN-oriented WSN.
The list of non-functional requirements is expressed through QoS to uniformly define the impact of
security, energy, and environmental factors.

5. Methodology and Background

5.1. Basic Terms and Background

The methodology we use is based on: (1) representing both the problem domain (PD) and the
solution domain (SD) by feature models and (2) mapping of the PD model onto the SD model using
adequate transformation processes and rules. The PD model represents both non-functional (here
identified as QoS) and functional requirements for the BAN software to be designed. The SD model
specifies the heterogeneous meta-programming concepts and their relationships being represented at
the highest level of abstraction. Firstly, we introduce a motivating example (Figure 2) to explain the
basic concepts related to feature models [40]. Note that the example is not a part of our PD. In addition,
this example serves for understanding the model characteristics to be obtained using the adequate
tools (i.e., FAMILIAR [41] and SPLOT [42]).
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The feature-based notion is independent on any domain, including SD. However, when the
concepts of the notion are defined, it is assumed that those concepts are projected on some abstract
problem domain (Definitions 1–6). Note that the remaining Definitions of this section are SD specific.
Definition 1. A feature is the distinguishing characteristic of a domain (system, component, process,
requirement, etc.), which is important to consider by the stakeholder in the given context of use (for
other definitions, see [36]). The feature is treated:

(i) as mandatory features that is always selected, if its parent feature is selected;
(ii) as optional features that can be selected or not;

(iii) as alternative features that are grouped and the selection from the group is governed by logical
relations OR and XOR (see also Legend in Figure 2).

Definition 2. A feature model (further FM, also feature diagram) is a compound of the following
entities: root of the tree; set of edges of the type (i), (ii) and (iii) and constraints of the type Requires and
Excludes (Definition 2 adapted from [41]).

Definition 3. A variation point is the parent feature whose children are alternative or optional
group features (e.g., the feature passwordComplexity in Figure 2). A variant (also atomic feature, see
e.g., the feature digit in Figure 2) is the feature whose: (1) parent is a variation point and (2) which has
no children.

Definition 4. FM is said to be:

(i) specialized if it is derived from its ancestor FM through removing some features (if a parent feature
is removed, all its children features are removed too);

(ii) abstract if some features have no atomic features with concrete values or, in the other context,
some features may be decomposed into parts;

(iii) concrete if atomic features have the concrete values.

Definition 5. FM configuration is the model that contains all mandatory nodes of the given FM, may
contain optional nodes, and includes variation points, but the only one variant for each variation point
is selected. A valid configuration is the configuration that takes into account the constraints (if any)
among variation points and variants (e.g., there are 240 valid configurations in our example).

Definition 6. A variability model is the sub-model containing variation points and variants of the
FM. The variability in space is the number of the valid FM configurations.

The next definitions (adapted from [36]) define the basic terms related to the SD (i.e., heterogeneous
meta-programming). Furthermore, for better understanding of those terms, we introduce also an
abstract FM to specify the SD (Figure 3). Definition 7. Heterogeneous meta-programming is the paradigm
to express generic specifications using at least two languages at once: Meta-language (ML) and target
(domain) language (TL). The first is a subset of the functions, called meta-functions, taken from a
general purpose programming language (GPPL). It serves for expressing generalization through the
external parameterization. The second is any domain-specific language (DSL) or GPPL and serves for
expressing the base domain functionality through a domain program.

Definition 8. A meta-program is the generic specification having the interface and meta-body.
An interface is the set of prescribed parameters and their values. A meta-body is the implementation of the
prescribed problem domain variability through the parameters and parameter-(meta-) function-target
program relationships.

Note that the argument of a meta-function may be the parameter, the other function, the target
program construct, or the combination thereof. In Figure 3, we summarize the meta-programming
concepts using the feature-based notion. Here, the feature ‘Relationships’ means the possible parameter
dependencies or interaction among their values (they are denoted as vij in Figure 3). It is possible to
express the parameter relationship through constraints requires and excludes (see also Definition 2).
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We distinguish among vertical and horizontal transformations. By vertical transformation (VT) we
mean the lowering the level of abstraction, i.e., introducing more details in the model in order for it to
be possible to first discover the transformation rules and then to apply them through the horizontal
transformation (HT).



Sensors 2016, 16, 670 11 of 22

First, we consider the VT. That is the model-to-model transformation that preserves the same
abstraction level. For example, on the Y-chart left branch that represents the PD model transformations,
notions FM1(PD), FM2(PD) and FM3(PD) mean the following VT:

FM1pPDqÑFM2pPDqÑFM3pPDq,

where FM1(PD) is the initial aggregated abstract FM; FM2(PD) is the intermediate FM; FM3(PD) is the
specialized concrete FM (see Definition 4 in Section 5.1). Note that the VT is realized using the adequate
feature modeling and verification tools (FAMILIAR and SPLOT). As the selected SD model is applied
to the multiple problem domain tasks in the same way, the VT is not needed for the SD. However, to
preserve the comprehensiveness in describing the methodology, we also present VT for the SD in the
same way, but with the slightly different interpretation as follows:

FM1pSDqÑFM2pSDqÑFM3pSDq,

where FM1(SD) is the abstract SD FM, containing the top part of the model given in Figure 3, i.e., the
following features: interface (parameters, relationships), meta-body, languages (ML, TL); FM2 (SD) is
the intermediate abstract FM derived from FM1(SD) by adding the remaining upper features given in
Figure 3; FM3(SD) is the concrete specialized SD FM derived from FM2 (SD) by substituting abstract
feature variants with concrete values (e.g., MLÑPHP, TLÑC#, etc.). Now we consider the HT. The
latter is defined as the two-level transformation process as follows:

(L1): FM3(PD)ÑFM3(SD)ÑFM*3(SD)ÑMeta-specification (for the family of possible BAN applications);
(L2): Meta-specificationÑBAN sensors control program or programs for concrete application.

Note that FM*3(SD) is derived from FM3(SD) by substituting abstract parameter values with
the concrete ones taken from FM3(PD). Also, at the level L1, a target language should be identified
to describe the PD (i.e., the sensor’s functionality for sending and receiving data). The language is
introduced in the process by selecting or creating a program instance (or instances, here treated as a part
of the SD, see Figure 3) which are to be generalized using a meta-language and the PD variability model.
The latter is extracted from the requirement feature model (i.e., FM3(PD)). By applying the prescribed
transformation rules, it is possible to create the meta-specification (the result of the transformation)
either manually or using some transformation tool (e.g., given in [37]) as it is outlined in Figure 4a (see
the level L1).

The meta-specification (aka meta-program) is the parameterized description. The parameters
and fragments of a target language are arguments of the meta-language functions to perform various
manipulations (it is treated as horizontal transformation) using the adequate transformation rules.
For example, at the level L1, some items abstractly represented on the left branch as FM3(PD) should
be thought of as variation points (along with variants) of PD FM. Some items of FM3(SD) on the right
branch can be thought of as parameters of a meta-program to be created. Therefore, applying the
predefined transformation rules, it is possible to create the meta-specification. Of course, there are
more complex items (e.g., target language instance, meta-language functions on the right branch) and
more complex transformation rules should be at hand in designing meta-specifications (those rules are
not considered here).

The level L2 is for the application user. Again, we use the same visualization scheme. On the left
branch, there is the meta-program interface (i.e., parameters and their values are presented abstractly
by circles). The application designer selects parameter values according to the specific requirements
of the application. The meta-program implements the requirement variability space for the Smart
Sensor Controller (SSC) that can be applied to a set of possible BAN applications. In our case study,
the meta-program specification has been coded in two languages: PHP as a meta-language and C# as a
target language. It was accepted that the BAN application should be realized just in the C# language.
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The PHP processor is the tool to automatically generate the BAN application programs (i.e., SSC) on
demand. Therefore, at the level L2, the tool serves as SD.

Now we are able to formulate the contribution of our approach in more details. Though at the
model-to-model (M2M) transformation level our approach is similar to the known model-driven
ones [8], it is novel in terms of the model-to-program (M2P) transformations. Typically, in known
approaches by the program within M2P transformation, it is meant either the executable program,
or its template (such as Visual Studio 2013 code). In our approach, the executable specification is
the meta-program that enables us to automatically generate domain program instances on demand
through the user defined parameter values. Therefore, our approach supports, to a larger extent, the
reuse and adaptation capabilities.

Now we present the remaining part of the background, i.e., transformation rules. We categorize
them into two categories: (i) Model-to-Model (M2M) and (ii) Model-to-Program (M2P).

Rule 1. Abstract FMs are obtained through domain analysis (DA) and modeling using the
relevant DA approaches (such as FODA [35]) along with adequate tools (such as FAMILIAR [41] and
SPLOT [42]).

Rule 2. If an abstract model consists of separate models, then a model aggregation follows.
The latter composes two or more input models without common features into the output model using
the tool (such as FAMILIAR [41]).

Rule 3. An abstract feature model is transformed into a concrete one by extending some lower-level
features into features with concrete values so as to satisfy the design aims and requirements.

Rule 4. A specialized model is derived (e.g., using the mentioned tools) from the concrete model
under given specific requirements (such as narrowing the design space, etc.).

Rule 5. The specialized concrete PD FM is transformed into the concrete SD FM using the abstract
SD FM through mapping of corresponding PD items (e.g., variation points and variant) onto SD items
(i.e., meta-program interface and body) as it is defined by Rules 6 and 7.

Note that these rules are about M2M transformations that preserve roughly the same abstraction
level. The rules are valid for both the PD and SD (for the latter, however, it is applied only once,
because typically SD is common for different applications). Furthermore, these rules support both
vertical and horizontal transformations (see Figure 4). Rule 6. The variation points of PD FM correspond
to parameters within the meta-program or its model, and variants of a variation point correspond to the
parameter value.

We explain this rule in detail: In case of realizing our motivating example, an abstract parameter
name (say P1, see Figure 3) is substituted by the concrete variation point (say, passwordAge, see Figure 2).
Also, an abstract parameter value (say, v11) is substituted by the variant (say, inDays).

Rule 7. The parameter and their values are to be specified in the interface of the meta-program.
The dependences among parameter values (if any) are to be specified in the interface too and expressed
through the constraints (requires, excludes) to be implemented by the alternative meta-function (such as
if -function of the meta-language).

For instance, the realization of the rule in a pseudo-code for ‘requires’ in our motivating example
might look as follows:

if read/write is equal to restricted then permissions is true;

This example also illustrates the essence of HT (see Figure 4), though abstractly and in a very
simplified mode. We present a real implementation of HT in our case study.

Rule 8. The SD model (i.e., meta-program model) is transformed into the executable meta-program
specification (MPS) by performing the following actions: (i) selecting the concrete meta-language (ML)
constructs; (ii) choosing the relevant target language (TL) scenario or scenarios (that depends on the
task complexity); (iii) generalizing them using the ML constructs and PD variability model through
coding and testing the specification.
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Rule 9. The executable MPS is transformed into the application programs (such as the BAN
controller in our case) via the following actions: (i) selecting a pre-programmed parameter values
taken from the interface; (ii) processing (interpreting) MPS by the ML processor and generating the
concrete target program; (iii) adapting it to the different use cases (if any) by the re-generation process.

Note that Rules 6–9 are about M2P transformations. The latter changes the abstraction level,
lowering it. The rules are the background to understand the processes we abstractly outlined in
Figure 4. The formal definition of our approach, however, was not the intention of this paper. A more
deep theoretical reasoning can be found in the numerous other publications (e.g., also in those we
have cited with regard to FM transformations [35,40,41] and meta-program transformations [36,37]).

6. Case Study and Results

The case study includes two sections. In Section 6.1, we present some hardware-software
implementation results with regard to energy-security issues in the IoT obtained through physical
modeling and provided measurements. In Section 6.2, we describe the development of the generic
specification (i.e., meta-program) to cover a variety of the sensor controller programs for the multiple
BAN applications.

6.1. Results on Hardware-Software Implementation

In Figure 5, we present the requirements specification for the IoT node (IoTN) using feature-based
notation (see also Section 5.1). The model has been derived from the statement of initial requirements
given by the domain expert. The background of doing so is Rules 1–4 (see Section 5.2). The model is a
specialized concrete feature model (see Definition 4 in Section 5.1), which is restricted by specifying the
requirements of three dedicated sensors for the pulse, temperature and gas measurements (so is done
for narrowing the possible solution space). The constraint relationships are given separately in Table 1
due to the better readability of the model. The model characteristics obtained using the FAMILIAR
and SPLOT tools [41,42] are given in Table 2.

Table 1. Constraint relationships within the feature model (Figure 5).

No. Features Constraints Features

1 Pulse Wi-Fi Requires Wi-Fi
2 Gas ZigBee Requires ZigBee
3 Temperature Bluetooth Requires Bluetooth
4 25 Kb Requires 150 kb/s
5 2 Mb Requires 5 Mb/s
6 0.5 Mb Requires 1.5 Mb/s
7 Wi-Fi Requires 5 Mb/s
8 Bluetooth Requires 1.5 Mb/s
9 ZigBee Requires 150 kb/s

10 Bluetooth Requires C
11 ZigBee Excludes TS
12 TS Requires Wi-Fi
13 Pulse sensor Requires Max: (15; 30]
14 Gas sensor Requires Aver: (5; 15]
15 Temperature sensor Requires Min: [1; 5]
16 Pulse Wi-Fi Requires Pmax
17 Temperature Bluetooth Requires Paver
18 Gas ZigBee Requires Pmin
19 Pulse sensor Requires 1 s
20 Gas sensor Requires 5 s
21 Temperature sensor Requires 10 s
22 Pulse Wi-Fi Requires 2 Mb
23 Temperature Bluetooth Requires 25 kb
24 Gas ZigBee Requires 0.5 Mb
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Table 2. Basic metrics of the SC feature model taken from the tool SPLOT.

Characteristics Specialized FM (Figure 5)
of the Prototype (Figure 3)

FM of the Motivating
Example (Figure 2)

#Features 69 18
-Optional 0 3

-Mandatory 18 6
-Grouped 40 8
-Groups 16 3

Tree Depth 5 4
#Extra constraints 24 2

Debugging Analyses
#Dead Features 0 0

Count Configurations 8 240
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In Figure 6, we outline the view of the hardware implementation along with the sensor measured
data (see also the dash line rectangle in Figure 5) obtained in real time mode. Three control programs
(in C# language) to read and send data from the sensor were developed and tested taking into account
the concrete characteristics of the sensors. The provided experiments proved the correct functioning of
the proposed network model. The control programs were developed manually and required a great
deal of designer efforts. Therefore, this fact was the stimulus to automate the process as it is presented
in the second part of this case study.
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6.2. Results of BAM Meta-Program Implementation

In this part of the case study, we have used the tested control programs as instances to develop
the generic specification (meta-program). They were obtained as a result of experiments described
in Section 6.1. Firstly, in Figure 7, we present requirements as an abstract FM to design the SSC for
BAN applications. In Figure 8, we present the implementation level of the SSC feature model as the
initial specification to develop the generic specification. To derive the models, we have used Rules 2–4.
The characteristics of the model are given in Table 3. Note that, one configuration in the feature model
corresponds to the sensor’s control program, when the FM is implemented correctly. Therefore, as the
configuration count of the FM is at least equal to 9450 (see Table 3), we are able to derive the same
number of sensor’s control programs from the generic specification. They differ by parameter values
(they are seen as feature variants of the grouped features in Figure 8).

Sensors 2016, 16, 670 15 of 22 

 

6.2. Results of BAM Meta-Program Implementation 

In this part of the case study, we have used the tested control programs as instances to develop 
the generic specification (meta-program). They were obtained as a result of experiments described in 
Section 6.1. Firstly, in Figure 7, we present requirements as an abstract FM to design the SSC for BAN 
applications. In Figure 8, we present the implementation level of the SSC feature model as the initial 
specification to develop the generic specification. To derive the models, we have used Rules 2–4. The 
characteristics of the model are given in Table 3. Note that, one configuration in the feature model 
corresponds to the sensor’s control program, when the FM is implemented correctly. Therefore, as 
the configuration count of the FM is at least equal to 9450 (see Table 3), we are able to derive the same 
number of sensor’s control programs from the generic specification. They differ by parameter values 
(they are seen as feature variants of the grouped features in Figure 8). 

 
Figure 7. Abstract feature model to specify requirements of BAN-related applications. 

 
Figure 8. SSC implementation-level concrete feature model. 

Table 3. Basic metrics of the SSC feature model taken from the tool SPLOT. 

Characteristics SSC FM
#Features  47 
-Optional  0 

-Mandatory  12 
-Grouped  34 
-Groups  5 

Tree Depth  3 
#Extra constraints  0 

Debugging Analyses
#Dead Features 0 

Count Configurations Since 9450 

The concrete feature models (Figures 5 and 8, see also Section 5.2) are the solution of task 1 and 
also the high-level specification to deal with task 2 (see Section 3). Using this specification, we have 
developed the meta-program using Rules 5–9 (see Section 5.2). The interface is shown in Figure 9. 
The top-level of the interface (on left) serves for the system designer to select the initial QoS and 
sensors’ parameter values. The body of the top-level meta-program is fully hidden from the 

Figure 7. Abstract feature model to specify requirements of BAN-related applications.

Sensors 2016, 16, 670 15 of 22 

 

6.2. Results of BAM Meta-Program Implementation 

In this part of the case study, we have used the tested control programs as instances to develop 
the generic specification (meta-program). They were obtained as a result of experiments described in 
Section 6.1. Firstly, in Figure 7, we present requirements as an abstract FM to design the SSC for BAN 
applications. In Figure 8, we present the implementation level of the SSC feature model as the initial 
specification to develop the generic specification. To derive the models, we have used Rules 2–4. The 
characteristics of the model are given in Table 3. Note that, one configuration in the feature model 
corresponds to the sensor’s control program, when the FM is implemented correctly. Therefore, as 
the configuration count of the FM is at least equal to 9450 (see Table 3), we are able to derive the same 
number of sensor’s control programs from the generic specification. They differ by parameter values 
(they are seen as feature variants of the grouped features in Figure 8). 

 
Figure 7. Abstract feature model to specify requirements of BAN-related applications. 

 
Figure 8. SSC implementation-level concrete feature model. 

Table 3. Basic metrics of the SSC feature model taken from the tool SPLOT. 

Characteristics SSC FM
#Features  47 
-Optional  0 

-Mandatory  12 
-Grouped  34 
-Groups  5 

Tree Depth  3 
#Extra constraints  0 

Debugging Analyses
#Dead Features 0 

Count Configurations Since 9450 

The concrete feature models (Figures 5 and 8, see also Section 5.2) are the solution of task 1 and 
also the high-level specification to deal with task 2 (see Section 3). Using this specification, we have 
developed the meta-program using Rules 5–9 (see Section 5.2). The interface is shown in Figure 9. 
The top-level of the interface (on left) serves for the system designer to select the initial QoS and 
sensors’ parameter values. The body of the top-level meta-program is fully hidden from the 

Figure 8. SSC implementation-level concrete feature model.

Table 3. Basic metrics of the SSC feature model taken from the tool SPLOT.

Characteristics SSC FM
#Features 47
-Optional 0

-Mandatory 12
-Grouped 34
-Groups 5

Tree Depth 3
#Extra constraints 0

Debugging Analyses
#Dead Features 0

Count Configurations Since 9450

The concrete feature models (Figures 5 and 8 see also Section 5.1) are the solution of task 1 and
also the high-level specification to deal with task 2 (see Section 3). Using this specification, we have
developed the meta-program using Rules 5–9 (see Section 5.2). The interface is shown in Figure 9.
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The top-level of the interface (on left) serves for the system designer to select the initial QoS and
sensors’ parameter values. The body of the top-level meta-program is fully hidden from the designers.
The essential part of the body is the call to the software agent. The latter accepts the submitted data and
decides, whether it is possible to satisfy the requirements, or not. If not, the software agent indicates
on miss-matched parameter values and returns this information to the system designer for making
the correction. If the requirements are valid, the identified parameter values are transferred to the
lower-level interface (see boxes on the right). Having those values, the PHP processor generates the
adequate variant of the control program for the SSC automatically.
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Note that we use a set of PHP functions as a meta-language to specify the generalization through
parameterization. Therefore, the PHP processor is the control program generator (aka meta-program).
We use C# as a target language (assuming that the BAN software system should be realized in that
language) to specify the base SSC functionality (see also Section 5.2). Note also that the development of
the software agent is not the subject of this paper. We summarize the characteristics of the developed
meta-program in Table 4.

Table 4. Basic metrics of meta-program and its instances for BAN-oriented applications.

No. Criteria Value Properties

1 Meta-language PHP May be used another language

2 Target language C# May be used another language

3 Meta-program size 11.7 kB

4 The average size of the generated program 1.56 kB
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Table 4. Cont.

No. Criteria Value Properties

5 # of instances that can be generated Since
9450

Depends on the number of
parameters and their values

6 # of tested variants of generated programs 15 Covers all critical points of
meta-program

7 # of parameters 24 All parameters are independent

8 # of different meta-functions 5
Functions that perform simple
operations (fopen, fwrite, fclose),
conditional function (if)

9 Total # of meta-functions 69 Allows to evaluate the complexity
of meta-program

10 Total # of parameters 329
Defines cognitive
understandability of the
meta-program

11

Relative Kolmogorov’s Complexity (RKC). A
high value of RKC means that there are fewer
capabilities for compression, i.e., there are less
repeating parts within the meta-program, and
therefore this meta-program is regarded as
being less complex.

0.22

A ratio of the size of the
compressed meta-program using
a compression algorithm BWT
(Burrows-Wheeler transform, see
GnuWin32) to the size of the
initial meta-program [33].

We provide more details on the developed specifications in Appendix A. In Figure A1, we present
a fragment of the meta-program written in PHP. Note that for representing parameters and their values
(see the bottom box in Figure 9 on right) also HTML is to be used. For other details, see comments
within the specification (Figure A1). In Figure A2, we present the generated program (instance) in C#
for data transferring. The parameter values used for generating the instance are also seen in Figure 9.

7. Discussion and Evaluation

IoT-oriented healthcare applications, among others, have been widely discussed in recent years.
Body Area Networks (BANs) are seen as an important segment of those applications. In this paper,
we have introduced a BAN-oriented IoT model (prototype) as the two-layered architecture containing
the standard Internet and application modules at the top layer and the IoT nodes in the lower layer.
The node of the IoT is a set of the smart sensors mounted on the human’s body along with the smart
controller for data acceptance, decision making and control of data transfer in both directions: from
and to smart sensors and from and to the application level. BAN is a net of the IoT nodes. The whole
functionality of the applications depends highly on the quality and timelessness of the initial data
collected from the human’s body by the BAN and then transferred to the top level for evaluation and
management. The quality of service (QoS) is predefined, to the largest extent, by the strict requirements
for energy resources, security and environmental factors. As those issues are very dependent, it is
extremely important to understand and represent those relationships at the early stage of the BAN
development, i.e., at the stage of specifying requirements.

Feature-based modeling in analysis of the requirements is regarded as the relevant approach in
developing systems for many other applications. However, in the case of BAN development, this
approach to our best knowledge, either has not been exploited at all yet or there are only incipient
attempts in this direction. Therefore, in this paper we have introduced the concept of feature-based
modeling and applied them in designing software for BAN applications to achieve two objectives:
(1) showing the relevance of feature-based notion in specifying multiple aspects of relationships for
analysis and the whole understanding of the requirements and system functionality at the early stage;
(2) using specialized feature models for automated software design.
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We have discussed the methodology that has three significant parts: (1) requirements specified
at a higher abstraction level using feature models for the IoT and BAN applications; (2) generative
technology as a solution domain also presented by feature models; (3) seamless integration of both
models through model transformations to achieve the goals of automation. Though the parts (2) and
(3) are more related to the interests of IoT software developers, part (1) may be useful to the much
larger community, such as the IoT domain policy makers, the IoT researchers and the practitioners.
This is so because the high-level feature modeling introduces and supports the systematic vision of
complex items relationships and constraints in the human readable form.

We have evaluated the proposed methodology by presenting a case study. The latter includes
two parts. In the first part, we have presented the hardware-software implementation of the
simplified concrete BAN structure (i.e., prototype) and some experiments we have carried out.
Taking from the experimental system the sensors’ control programs and applying the proposed
model-driven methodology in the second part, we have developed the generic meta-specifications
to specify the functionality of the smart sensor controller for a variety of possible BAN applications.
The meta-specification has been developed using PHP as a meta-language. It is possible to
automatically generate the sensor controller’s control programs on demand for a concrete BAN
application, using this specification and the PHP processor. The number of such programs depends on
the number of parameters and their values that were incorporated into the specification. This number
may be huge, e.g., in our case study, it may exceed 9450. Therefore, the designer of a BAN application
has a huge space for selecting the most relevant solution automatically. In doing that, i.e., instead
of writing the program manually, he or she needs to do only one thing—indicate the concrete
parameter values.

8. Conclusions

A great deal of IoT applications are concerned with healthcare. The typical case is the
BAN-oriented application that is based on using WSNs. The development of those applications is
hard due to the following reasons: (a) the need to satisfy not only the functional requirements for data
collection and management, but also to ensure the strict requirements for non-functional requirements
(energy, security, privacy, etc.); (b) applications cover both hardware and software parts; (c) typically
the software part is unique and requires essential human efforts and therefore is complex. The relevant
solution as the response to the emerging challenges is the use of prototyping combined with modern
model-driven methodologies in designing the systems. The feature modeling approach used in this
research allows one to extract and represent the requirements at the early stage of the development for
analysis, evaluation and introduction of changes before implementation. Furthermore, the specialized
feature models to specify BAN application requirements, combined with the generative technology,
such as meta-programming, enables one to automatically generate software for a family of related
BAN applications. Having the generic specification (such as the one demonstrated in our case study to
describe the smart sensor controller), it is possible to make the decision and receive the final solution
(i.e., executable control program) (i) as fast as possible and (ii) to obtain the acceptable degree of the
functionality (in terms of quality of service of the system to be designed, meaning also a Pareto-optimal
solution) through the interactive adjustment of parameter values and re-generation process in adapting the
requirements for the concrete application.

Author Contributions: Algimantas Venčkauskas—BAN prototyping, the developments of conceptual framework,
including requirements statement and QoS concept and experiment planning, the overall evaluation;
Vytautas Štuikys—the problem statement, the methodology and the background, the paper writing; Nerijus Jusas
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