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ABSTRACT
We introduce deep learning-based methodology for removing unwanted human-like shapes in videos. The
method uses Pareto-optimized Generative Adversarial Networks (GANs) technology, which is a novel
contribution. The system automatically selects the Region of Interest (ROI) for each humanoid shape
and uses a skeleton detection module to determine which humanoid shape to retain. The semantic masks
of human like shapes are created using a semantic-aware occlusion-robust model that has four primary
components: feature extraction, and local, global, and semantic branches. The global branch encodes
occlusion-aware information to make the extracted features resistant to occlusion, while the local branch
retrieves fine-grained local characteristics. A modified big mask inpainting approach is employed to
eliminate a person from the image, leveraging Fast Fourier convolutions and utilizing polygonal chains and
rectangles with unpredictable aspect ratios. The inpainter network takes the input image and the mask to
create an output image excluding the background humanoid shapes. The generator uses an encoder-decoder
structure with included skip connections to recover spatial information and dilated convolution and squeeze
and excitation blocks to make the regions behind the humanoid shapes consistent with their surroundings.
The discriminator avoids dissimilar structure at the patch scale, and the refiner network catches features
around the boundaries of each background humanoid shape. The method is evaluated on two video object
segmentation datasets (DAVIS and YouTube-VOS) and a database of 66 distinct video sequences of people
behind a desk in an office environment. The efficiency was assessed using the Structural Similarity Index
Measure (SSIM), Frechet Inception Distance (FID), and Learned Perceptual Image Patch Similarity (LPIPS)
metrics and showed promising results in fully automated background person removal task.

INDEX TERMS Semantic Segmentation, Occlusion-robust Network, Human Shape Extraction, Back-
ground Person Removal, Image Inpainting,

I. INTRODUCTION

THE worldwide intellectual community has discussed the
prospects for continuous human expansion in recent

years, using the metaphors of the fourth industrial revo-
lution and the next age of social interaction, produced by
prominent technology revolution missionaries [1], provides
a new social ontology in which modern technology plays
a significant (if not the most significant) role [2]. Modern

visual communication technologies introduce a radically new
formulation of the question of relationship in the system
of ’human-technology,"metaverse,’ and other virtual forms
of interaction, ushering in an era of collaboration between
advanced visualization technology, artificial intelligence sys-
tems, and people - all essential components of modern
interactive systems [3]. Background removal is a function
shared by virtual communication technologies such as Zoom,
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Teams, and the Big Blue Button. More advanced technology
allowing selecting zones to be removed may now be found
in applications like as Photoshop, Pxilemator, and others.
Unfortunately, the approaches used are not always smart in
their object choices and require human input to correct some
peculiar areas. Removing unwanted objects from movies
and live video feeds is even more critical in many applica-
tions, including film post-production and video editing [4],
ranging from automatic detection of specific subjects [5],
[6] to semantic pre-segmentation [7]. Background subject
of interest removal is also very important in remote work
communications to protect the privacy and confidentiality of
individuals. When personal information is shared in a remote
work setting, it can easily be intercepted by unauthorized
parties, potentially leading to identity theft, financial fraud,
or other forms of exploitation. By removing human subjects
from communications, organizations can reduce the risk of
sensitive information being disclosed and help maintain the
privacy and security of their employees, customers, and
partners. Schwab has also stressed the need for companies
to adopt a proactive and responsible approach to data protec-
tion, including implementing appropriate security measures
and being transparent about their data collection and usage
practices [8].

Object removal implies excluding the given object from
the image and then inpainting it with appropriate content.
While manually eliminating objects from a video involves
significant human work, automated video object removal has
the potential to save a significant amount of time. The aim of
automated video object exclusion is to inpaint the foreground
region using background information and produce a video
without the target item given the foreground object’s loca-
tion in each frame. Traditional video inpainting frequently
seeks to fill spatiotemporal gaps in a video with convincing
material, which necessitates both temporal and spatial con-
sistency; the inpainted part must blend seamlessly into the
background in a variety of scenes, and it must maintain a con-
sistent look in subsequent frames while its neighborhood may
change notable. Despite significant advances in deep learning
models for image inpainting, extending these methodologies
to the video domain remains challenging because of the
added dimension of time, which necessitates image-based
encoder-decoder models to gather and modify data from
adjacent frames and generate the unknown areas [9].

Graphical object removal can be treated as a subtask
of image inpainting. The earliest successful examples used
patch inpainting algorithms [10] that divided images into
small patches and recovered the masked region by inserting
the most comparable patch anywhere in the frame. These
approaches may produce genuine results, but these are typi-
cally time-consuming due to the intricacy of neighbor-finding
algorithms [11]. Furthermore, patch-based approaches pre-
sume the missing section has a reference and frequently fail
to restore non-repetitive and complicated regions in real-
world [12]. Deep learning (DL) is clearly a tool of choice
in computer vision, and image inpainting is included [13].

Based on the training data, such models may predict the
missing pieces and produce innovative outcomes of high
quality. Unfortunately, when applied to movies, most DL
image-based algorithms provide temporally erratic results,
resulting in flickering or dismorphed images, because they
ignore the temporal relationship between frames and process
it individually [14], requiring dedicated methods such as
foreground and spatial awareness to combat this issue.

We present a novel deep learning based methods for re-
moving of unwanted objects in videos. The method is em-
ploys Generative Adversarial Networks (GAN) technology.
The main novelty and contribution of this paper is the use
of Pareto-optimized GANs for the task of inpainting, which
has not been done before, and a novel approach for creating
semantic masks in images, which is robust to occlusion and
generalizes well to higher resolutions, while being efficient in
terms of computational complexity and required parameters.

Paper is structured as follows. Section II presents and dis-
cusses the state-of-the-art in inpainting. Section III explains
materials and methods. Section IV details the experiments
and their results. Finally, Section V presents a discussion of
the findings and concludes.

II. STATE OF THE ART REVIEW IN INPAINTING
This section is aimed at presenting the reader with some
of the most common existing image inpainting algorithms,
which have been divided into two and a half common cat-
egories: sequential, generic image processing oriented deep
learning, and their subset called adversarial networks, sepa-
rating object removal into its own subsection. Furthermore,
for every group, a summary of techniques for various forms
of visual distortion is offered. An objective comparison is
offered in the discussion part of the paper.

A. SEQUENTIAL APPROACHES
Patch-based solutions rely on methods that refill in the
required (cut object) section patch by patch, by looking
for well-matching potential replacement patches surrounding
the part of the image we wish to trim and then copying
them to corresponding spots. The problem of image inpaint-
ing may be approached from the standpoint of consecutive
partial signal recovery by assuming that each image patch
permits a sparse expression over a redundant vocabulary
[15]. Li’s approach employs the super-wavelet transforma-
tion to predict the multi-direction features of an affected
image, which is then combined with color data to calculate
the weighted color-direction distance of two patches [16].
Traditional inpainting approaches based on low-rank priors
often require an iterative singular value shrinking procedure
to solve a convex optimization problem in order to restore
the distorted pixels [17]. This can be solved with low rank
approximation, which saves time on repeated shrinking [11].
Xu et al. developed patch-level sparsity ideas for modeling
patch representation and priorrity, i.e., two critical phases
for patch propagation in the example-oriented inpainting
technique [10]. Others suggested a use numerous pyramids
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[18], [19], localized patch stats, and geometrical feature-
based sparse representation to eliminate new items in images
while keeping texture integrity and structural consistency
[20]. Study [21] highlighted that post-processing reduces
the resemblance of block pairings while also disrupting the
correlations between neighboring pixels to a certain degree.
Zhang et al. suggested an approach based on prior data of
surface fitting areas and angle-aware patch comparison [22].
The top-down splitting approach proposed by Ruzit was able
to separate the image into variable - sized blocks based on
their context, limiting the search for potential patches to non-
local image areas with fitting frame of reference [23]. Li and
Wozniak [24], based on bilateral filtering, proposed a hole in-
filling and optimization approach for remote sensing pictures.
The compensation function of similarity determination and
the Thiele continuous fraction approximation exponential
function are used to augment the standard bilateral filtering
process. The picture is binarized to construct a hole mask
after the histogram sets the threshold. The constraint term
is incorporated to the modified bilateral filtering method
for further improvement. The remote sensing image’s hole
region is filled based on the features that pixels in a given
range have the same gray value.

More recent techniques are often hybrids of the other
two kinds discussed in this section. Yang et al. propose
a multi-dimensional neural patch synthesis approach based
on collaborative enhancement of image content and texture
constraints that not only keeps context - specific structures
but also generates higher details by matching and adapting
patches to the DL’s most comparable mid-layer feature corre-
lations [25], or exploring the semantic relevance [26], while
Zhu suggests using a convolutional neural network (CNN)
to detect patch-based inpainting operation [27]. Meanhile,
another hybrid example is the PGGAN method which sug-
gests using a discriminator network that blends a global GAN
model with a patchGAN technique [28] with a variation using
spectral-normalized discriminator on dense frame patches
[29].

B. GENERAL INPAINTING ORIENTED DEEP LEARNING
ARCHITECTURES
Deep convolutional networks show great promise in multiple
computer vision problems, including image inpainting [30].
CNNs in particular are the most common architecture used
for this task, used to enhance predicted results, often utilizing
huge training data [31]. CNN-based image inpainting has
several drawbacks [32]. For starters, convolution improves
the repair network’s performance on rectangular hole image
repair assignments, leading the network to look over-fitting
and unsuitable for general scenarios. Also, convolution in-
creases the reliance of the image restoration result on the
original value of the hole region, achieving bad repair out-
comes such as artifacts. To compensate for these repair flaws,
costly post-processing is required. Alternatively, Zheng et al.,
suggested a deep multi-resolution mutual learning approach
capable of fully exploring data from multiple resolutions

[33]. Liu et al. [34] suggeste using partial convolutions, in
which the convolution is masked and renormalized so that
it is only conditioned on valid pixels. Wang et al. created a
concurrent multi-resolution inpainting network using cross
partial convolution, whereas low-resolution sections focus
on overall structure and high-resolution sections concentrate
on local texture details, in contrast to the standard image
inpainting architecture [35]. Xu et al. presented an universal
deep learning algorithm for high-resolution image inpainting
that produces a semantically consistent blurred outcome us-
ing low-resolution inpainting while suppressing computing
cost [36]. Given that multi-task image recognition network
CNNs cannot completely utilize all image scale features
extracted during the feature extraction process, the authors of
[37] recommend using Feature Pyramid Networks and back
connections to acquire more features.

Baupame et al. [38] introduced a U-NET-based technique
for portraying metro traffic by creating an image that dis-
plays the geographical data of trains traveling on a metro
line while accounting for the sporadic temporal sampling of
train loads for improved precision and reliability. Lee et al.
[39] presented the Copy-and-Paste Networks architecture for
video inpainting, which takes advantage of extra data in other
frames of the video. The network was taught to copy and
paste relevant data from reference frames to fill gaps in the
target frame. Li et al. suggested recurrent feature reasoning,
which is similar to how people solve puzzles, initially aiming
at easier locations, then more difficult ones [40]. This method
frequently insinuates the unit borders of the convolutional
feature maps and afterwards utilizes these as cues for any
further inferences. To combat same issue, Zhou proposed a
multi-homography transformed fusion approach that refers
to a different source image having the scene with the target
image [41]. The model aligns the source and target images
by predicting several homographies guided by various depth
levels.

Some of these methods result in deformed architecture or
hazy, uneven texturing. The issue stems from the encoder
layers’ inability to construct a comprehensive and accurate
embedding of the missing areas from start. Suin et al. [42]
suggested a distillation-based strategy for inpainting training
in which they gave direct feature-level supervision. They
used cross and self-distillation methods, as well as a special-
ized completion-block in the encoder, to generate more pre-
cise hole encoding. Splitting inpainting task into two steps,
namely structure reconstruction and texture generation, is
another common approach [43]. As a viariant, Guo et al. [44]
suggested a two-stream architecture for image inpainting that
couples structure-constrained image synthesis with image-
guided structure restoration to better utilize each other for
more believable production. Liu employed CNN character-
istics from the encoder’s shallow and deep layers to describe
the structures and texture of an input image, correspondingly.
The shallow layer characteristics were routed to a texture
side, whereas the deep layer characteristics were routed to
a structure side [45]. Although modern inpainting algorithms
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using deep neural networks have shown great progress, they
still suffer from other artifacts, such as harsh shapes and
abrupt colors when filling in the empty regions. Wang et
al. [46] presented an external-internal inpainting approach
with a monochromic bottleneck to enable image inpainting
models eliminate these artifacts to solve these concerns. The
authors of [47] presented a dynamic selection network to
address image inpainting challenges in which stochastically
corrupted patches in the input images likely to mislead the
inpainting procedure and provide illogical content. [48] cre-
ated the Mask-Aware Dynamic Filtering module to success-
fully train multi-scale features for missing parts during the
encoding process. Filters for each convolution window were
created using characteristics from the mask’s corresponding
area.

1) Generative adversarial networks
Generative adversarial networks has strong data generating
capabilities, making it ideal for image inpainting [49]. The
Context Encoder network [50] was the first to integrate
CNN and GAN for image inpainting, while a later variant
featured pyramid style attention transfer to further enhance
the effectiveness [51]. The authors of [52] offered a method
for image inpainting that improves the reproduction of filled
regions with fine features by employing a two-stage adversar-
ial model called EdgeConnect [53], which consists of an edge
generator accompanied by an image completion network.

Cai et al. [54] proposed devising a consistency loss to lead
the produced image toward an approximate representation of
the ground truth. After several rounds, their generator learned
the mapping of styles to numerous sets of vectors. The
suggested model might produce a vast variety of solutions
that are consistent with the image’s context semantics. The
authors of [55] advocated dividing the hole filling process
into various phases, with each phase aiming to complete a
course of the full curriculum. The use of a two-discrimination
network was proposed in the [56] paper. The suggested
technique creates a fusion network by combining an image
inpainting, global discrimination, and local discrimination
networks to apply computational images. The suggested
algorithm’s training technique employs a comparable patch
method to fill the damaged region in the image and use them
for input training objects, which dramatically enhances the
speed and reliability of image inpainting. Following that, a
Long short-term memory (LSTM) framework was utilized to
connect all of the stages. By using this learning mechanism,
their approach was able to employ a progressive GAN to
gradually decrease huge corrupted regions in natural images,
yielding encouraging inpainting outcomes.

Lui proposed changing the GAN during image formation
to adjust deep characteristics of input noisy data from coarse-
to-fine by inserting an originally recovered image and the
hole areas at numerous scales [57]. Wu et al. proposed
a coarse-to-fine generative model for reducing artifacts by
merging a local binary pattern learning architecture within
an actual inpainting architecture [58]. Unsupervised three-

part Cross-space Translation Generative Adversarial Net-
work was introduced by Zhao et al. [59]. The manifold
projection and generation modules were merged to learn un-
supervised one-to-one image mapping among two spaces by
trying to project instance image space and contingent com-
pletion image space into a prevalent low-dimensional mani-
fold space, which might significantly improve the variety of
the reconditioned samples. Yang et al. [60] proposed training
a shared generator to generate the corrupted image and ac-
companying structures — edge and gradient — at the same
time, implicitly encouraging the generator to use pertinent
structural information during inpainting. Zeng tackled the
problem of significant computational overhead by suggesting
to train a patch-borrowing procedure to an attention-free gen-
erator through joint training of a supplementary contextual
restoration task, which incentivizes generated outcome to be
feasible even when rebuilt by neighboring regions [61].

C. OBJECT REMOVAL
Object removal is the process of eliminating a specific object
from an image and replacing it with appropriate content [62],
and applying numerous intelligent methods to maintain the
realistic recreation of the surrounding image areas [63]. The
segmentation technique may be used to select the region to be
inpainted first [64]. Le et al. [65] proposed a semi-automated
(manual object marking) approach in which segmentation
masks were improved initially and then automatically trans-
mitted over the video. Using video inpainting methods, miss-
ing sections were then reconstituted. Tuperware et al. [66]
suggested a video inpainting approach employing region seg-
mentation employing the robust exemplar-based inpainting
procedure. To overcome the dropping effect, they employed a
strong priority function and region segmentation to establish
the adaptable patch size and search region. Others suggested
using spatial contextual dependencies [64]. In comparison
to de-fencing, the target point of object removal is fixed
and focused, and the background info of the image is not
affected across a wide range, resulting in a superior inpainted
outcome. Object removal is often split into three steps: recog-
nition, elimination, and inpainting [67]. Some deep learning
algorithms for image inpainting employ a regular convolu-
tional network to regenerate the holes left by the removal
of the item. However, the outcome of this process is subpar,
since the resulting image is frequently damaged and unclear
[68]. Multiple types of algorithms were used to solve this
problem: texture synthesis methods were used for generating
large image areas from sample textures or image recognition
methods were used to find the neccessary object in the image,
and "inpainting" approaches were used for filling in small
image gaps [69]. Another difficulty is dealing with photos
of busy settings containing objects with complicated details.
The authors of [70] proposed using an image’s depth map
to discover the order of items in the target image and a
collection of multi-views of objects to inpaint the gaps, while
others suggested the spatial consistency of aligned frames by
employing a region-based homography computing approach
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[71].
The assessment of the surroundings by the algorithms

frequently hinders the execution of critical tasks including
mapping and localization. Researchers partially solved this
issue in study [72] by generating convincing texture, color
and geometry in image parts hidden by dynamic objects. Au-
thors suggested a geometry-aware architecture with a coarse-
to-fine topology with gated reccurrent feedback method for
adaptively fusing data from prior timesteps. Criminisi et al.
[73] presented a best-first approach in which confidence in
synthesized pixel values is conveyed similarly to information
propagation in inpainting. Color values were calculated via
exemplar-based synthesis. Pyo et al. [74] suggested utilizing
GANs to remove the desired item from an image. They
designed the network that combines two GANs: The first
GAN removes the target item from the input frame, while the
second GAN creates a frame with the backdrop filling up the
empty area. The network may delete the desired item from
the input frame and receive a frame with the erased region
refilled with the background while avoiding employing any
object detection approach.

Conditional random fields as RNNs can be employed to
further segment the target in semantic sense, without the need
for masking or artificial pre-processing. The representation
characteristics may then be derived from the CNN feature
maps of the missing region’s neighbouring regions. The miss-
ing area can then be synthesized using large-scale bound-
constrained optimization based on the CNN encoding prop-
erties of similar nearby regions [75]. Using such semantic
segmentation to recognize different groups of objects, Paper
[76] developed an image-based object elimination approach
for automated object removal and inpainting with generative
adversarial networks, automating the city-scape object detec-
tion and processing, while paper [77] applied a similar way to
indoor-scape scenarios and paper [78] for autonomous driv-
ing data preparation. Li et al. [79] proposed a more universal
approach, using three trainable GAN modules, including flow
completion, feature propagation, and content hallucination,
which gave improved outcomes in object removal accuracy.

Popular in object removal exemplar-based image inpaint-
ing strategy has two main components: estimating the fill
priorities of patches in the vacant region and selecting the
best matched patch. Wang et al. demonstrated a robust
exemplar-based strategy that used a regularized variable to
change the patch prioritization parameter [80]. Neleema et
al. suggested a best-first approach in which confidence in
synthesized pixel values is conveyed similarly to information
diffusion in inpainting [81], with color values calculated via
exemplar-based synthesis. Quite a few such exemplar-based
image inpainting approaches have the following drawbacks:
searching for abnormally similar patches is time-intense and
imprecise, there is a high false detection rate, and there is
a lack of resilience to many post-processing combination
procedures [82]. In light of the aforementioned drawbacks,
a detection approach for visual object removal based on
LSTM-CNN hybrid was developed [83].

Pinjankar et al. proposed combining the examplar strategy
with region segmentation to minimize the drop effect and
to estimate the adaptable patch size and decreased search
area [84]. Even though the exemplar-based classical object
removal technique offers advantages such as the capacity
to keep image texture and structure characteristics as well
as image clarity, it fails to retain the graphical fidelity of
inpainted images [85]. To address these shortcomings, the
creators of [86] developed a two-stage approach. The dual-
tree complex wavelet transform is used in the first stage to
get sub-bands of wavelets from a low-resolution image. The
image is then improved using the super-resolution approach
in the second stage. Bandei developed a robust image refitting
algorithm for both synthesized and genuine unshaded tex-
tured images, in which the local features from the generated
patch is utilized to recreate the target area in the image
pixel-by-pixel, thus promulgating structural and textural data
concurrently [87].

Bonde et al. [88] set out to create a robust approach for
image inpainting that could mend minute fissures as well as
broad areas, such as those created by object removal. The
image to be recovered is split into sub-bands using DWT, im-
proving on [89] suggested use of regular Wavelet transform.
In [90], a technique for calculating the structural sparsity
of the targeted area and subsequently identifying the local
features of the area where the targeted area is situated was
proposed. Then, based on different geographical features,
defined different search areas for the targeted areas. Next,
in the search area, located the example area and restored
the targeted area. Sum of Squared Differences is also a
popular method for determining the level of resemblance
between the exemplar patch and the target patch, which has a
significant influence on restoration outcomes. Although the
matching rule is straightforward, it is likely to result in a
mismatch error. The authors of [91] presented a difference
degree constraint-based inpainting approach for object re-
moval called Mean of Squared Differences. They utilized
it to calculate the degree of separation between matching
pixels in known places in the target patch and the exemplar
patch. In addition, the authors of [92] proposed an adaptable
two-round search approach. They employed the Differences
Between Patches between both the target patch and the
exemplar patch, and then utilized it to calculate the degree
of distinction in the two patches.

III. MATERIALS AND METHODS
A. DATASETS AND IMPLEMENTATION
To train and assess our technique, we employed two promi-
nent video object segmentation datasets: DAVIS [93]–[95]
and YouTube-VOS [96]–[98]. We have used only the se-
quences related to humanoid masks in different contexts
and environments. To replicated frequent vlogging scenarios
in which only half of the body is visible, we utilized our
own database of persons behind the desk in various posi-
tions, which included 66 distinct collected video sequence
instances comprising 133 minutes of recording [99] in of-
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fice environment. The proportion for training, validation and
testing was 70/15/15. Pytorch v1.12.0 was used to build the
project, which was trained on the above dataset in 320x180
frames per video. The warping temporal distance was set
to 1, 3, and 5. The loss was handled by the relu layer. The
patch was 12x12 in size. The loss weights were set at 0.01.
A machine running Linux Mint, with AMD Ryzen 7 5700G
CPU with 64 Gb of RAM and Nvidia Geforce 2060RTX
Super GPU was used for training. The overall process of
training took 122 hours.

B. ALGORITHM
Our approach is illustrated in Figure 4. Given an image
with a multiple humans as input, the system automatically
approximately assigns a Region of interest (ROI) block for
each shape, sketches the contour of each humanoid shape
region, and an internal binary mask is constructed for that
region. A skeleton detection module is utilized to determine
which humanoid shape is the main object to be retained. This
is based on the analysis of quantity (visible number of body
parts) and relevant size (distance) of the 32 monitored bones.
This method also allows for the retention of two or more ma-
jor characters, common in vloggins scenarios when a group
of people is conversing behind a table, with a camera distance
comparable to each individual. The inpainter network uses
the fusion of the input image and the mask, to create a
coarse output image free of bacground humanoid shapes.
The generator, is an encoder-decoder architecture with skip
connections to enable the recovery of spatial information lost
due to network contracting and expansion by merging local
and global information while upsampling. Encoder feature
maps are supplied to the decoder through skip connections
and concatenated with the matching decoder feature maps.
GAN is configured using 4 layers of dilated convolution,
and squeeze and excitation blocks between the encoder and
decoder. Dilated convolution is used to record a broad field
of vision with fewer parameters, making the regions behind
each humanoid shape consistent with its surrounds. Squeeze
and excitation improves a network’s representational capa-
bility by learning channel weights based on their significance
and re-calibrating feature maps. Except for the first and last
layers, each layer is made up of ReLu, convolution, and in-
stance normalization. Leaky ReLu was used as the activation
function in the last layer as we empirically determined it to
show the best performance. The decoder network gradually
scales up the characteristics to image scale, using transpose
convolution. The discriminator penalizes dissimilar structure
at the patch scale. The refiner network design is similar to
the inpainter network in that input is utilized at the refiner
input as well as the inpainter outcomes. The refiner network
catches features around the boundaries of each background
humanoid area, which is a benefit. We receive the image
without the background humanoid figures, but with an ad-
equate amount of clarity in the excised region. A feature
level reconstruction mistake is managed by a pre-trained loss
network to improve quality.

1) ROI localization
The ROI (region of interest) is localized autonomously; the
first stage in this procedure is to remove the background
image. Non localized Gaussian Mixture Model was adapted
from [100] to extract the background section of each frame
of the video series (using previous frames) and computes
the average value of each of these backgrounds images as
the resultant background model. Inpainted video frames are
utilized for the computation since they simplify the procedure
by eliminating unwanted background people. The patch error
function was selected to be Gaussian, that ensures that the
weight of pixel defects nearer to the centre of the block is
greater, while the weight of pixel defects nearer towards both
sides of the block is less. Once the average background image
for the image is retrieved, it is converted to grayscale and
Fuzzy edge detection is applied [101] as it allows for a more
dynamic content handling than a flood fill algorithm used
by original authors of the approach. This enables values to
be obtained from the x and y directions, resulting in finer
edge detection by searching for similar or identical values
as in the treated area center. As a result, all pixels till the
edges are joined. Figure 2 shows the detected ROI. When
ROI is identified, it is used to filter detections outside and to
some extent) The generated bounding box is an axis-aligned
rectangle containing all pixels discovered by our approach.

2) Masking and sorting of humanoid shapes
Blazepose [102] model was used to automatically designate
a primary person (most frontal from camera perspective) to
keep after semantic preprocessing by using the best accurate
skeleton model and greatest bone area. We have manually
adjusted the mediapipe to apply a two-step detector-tracker
technique in which the tracker runs on a cropped region-
of-interest including the person inside the original image
suggested in the improved version called BlazePose GHUM
Holistic [103] as the authors did not yet shared the source
code for it. A bounding box, humanoid ID, detection proba-
bility are all part of each mask movement tracking operation.
Because tracking may include erroneous class values, a spe-
cific class value must be specified for the entire processing
stage. When the item was outside the ROI, the time should
be any hundred or so miliseconds. It is essential to compute
an array of time values in miliseconds and round down to
the closest integer. Such time values are aggregated into
distinct groups that correlate to correct seconds values. The
location of the group with the greatest cumulative value is
then resultant value in tracking.

The semantic masks for all human-like forms in the image
were constructed using a method based by [104], which com-
prises of four basic components: a feature extraction block,
and three branches: a local, a global, and a semantic one.
The approach extracts global features for the global branch
in order to encode occlusion-aware local data, resulting in
occlusion-resistant extracted features. The fine-grained local
properties of the local branch are obtained. To identify non-
occluded parts, the semantic mask is built for the semantic
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FIGURE 1. Architecture of DAIWA network. DC stands for Dilated Convolution. S - Squeeze. E - Excite.

FIGURE 2. Detected ROI of the video frame

branch. This implementation adapted to our purposes was
able to include even ocluded human shapes as seen in Figure
3.

FIGURE 3. Adjusted masks of the video frame

To eliminate a person, we employed a modified big mask
inpainting approach [105] that leverages Fast Fourier convo-
lutions (FFC) and generalizes well to resolutions greater than
those visible at train time while requiring fewer parameters
and taking less time. The use of dilation also improves the
identified human masks. It helps to construct some higher ex-

terior borders, and less ghosting artifacts appear in the frame.
This approach employs samples from polygonal chains with
a high random width (broad masks) and rectangles with
unpredictable aspect ratios (box masks).

FFC employs a channel-wise FFT and has a receptive field
that includes the whole picture. FFC separates channels into
two parallel branches: one that uses classic convolutions and
one that uses real FFT to account for the global environment.
Real FFT can only be used with real valued signals, and
inverse real FFT produces the real-valued output. In compar-
ison to FFT, real FFT employs just half of the spectrum. FFC
specifically performs the following actions:

• applies Real FFT2d on a tensor as an input

RealFFT2d : RH×W×C → CH×W
2 ×C (1)

• and combines actual and fictitious elements

ComplexToReal : CH×W
2 ×C → RH×W

2 ×C (2)

• applies a frequency-domain convolution block

ReLU ◦BN ◦Conv1×1 : RH×W
2 ×2C → RH×W

2 ×2C

(3)
• recovers a spatial structure using the inverse transform.

RealToComplex : RH×W
2 ×2C → CH×W

2 ×C ,

InverseRealFFT2d : CH×W
2 ×C → RH×W×C .

(4)

3) Handling reconstruction errors using pretrained loss
Naive supervised losses need the generator correctly re-
constructing the ground truth. But the viewable regions of
the image frequently do not include enough information to
recreate the masked area precisely. As a result of the average
of many probable modes of the inpainted material, utilizing
naïve supervision produces hazy results. A gap between
characteristics retrieved from anticipated and target images
by a base pre-trained model is measured as perceptual loss
combined with Structural Similarity Index (SSIM) [106].
Adversarial loss can then be used to make that the inpaint-
ing model produces natural-looking local features. We may
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define a discriminator that distinguishes between "genuine"
and "fake" patches at the local patch level. Only patches that
connect with the veiled region are labeled "fake." Because
of the guided perceptual loss, the generator quickly learns to
reproduce the known elements of the input image, hence the
known parts of produced images are labeled as "real." Finally,
the quasi adversarial loss is applied.

The adversarial loss is paired with the difference between
the real and synthetic pictures. The generator is then updated
with the help of a

G∗ = arg min
G

max
D

λGANLcGAN (G,D) + λdLL2(G),

(5)
where

LGAN (G,D) = Ex∼px(x) [logD (x, u)] +

Ez∼pz(z) [log(1−D (G (z, u))] .
(6)

and
LL2 = Ex∼px(x)

[
(x−G(u))

2
]

(7)

The final loss will be a weighted accumulation of all these
losses, like in [105], yet in our approach we use dynamic
weights, shifting in response to observed data and global
image structure integrity.

On each sampled RoI during training, we define a multi-
task loss lossmulti as follows:

lossmulti = αlosscls + βlossbox + γlossmask + ηlosspart
(8)

where α, β, γ and η are predetermined positive constants.
The definitions of the classification loss losscls, bounding-

box loss lossbox, and mask loss lossmask are found in [107].
The part branch determined the binary cross-entropy loss
losspart for each part box and then determined the loss of
this RoI as the average of the part losses.

The following is the calculation’s mathematical formula:

lossnp = − (yn ∗ log (δ (zn)) + (1− yn) ∗ log (1− δ (zn)))
(9)

lossn =
1

10

N∑
p=1

(lnp) (10)

losspart(z, y) =
1

N

N−1∑
i=0

(li) (11)

here zn is the likelihood that the target object will be found
in n samples, where yn are sample labels and δ is the sigmoid
function. Calculate the cross-entropy loss of each instance’s
parts on average, and then use the mean of all the cases in an
image to determine the part loss value.

Our final loss includes GAN loss, multi-part loss, and
mathcalR1 = Ex∥ ∇Dξ(x) ∥2 as:

lossfinal = κlossmulti + νlossadv + ρR1 (12)

where κ, ν, ρ control the weight of each part.

IV. EXPERIMENTAL EVALUATION AND RESULTS
A. EVALUATION METRICS
We used the Learned Perceptual How Image Patch Similarity
(LPIPS) [108], [109], Frechet inception distance (FID) [110],
[111] and structural similarity index measure (SSIM) [112]
measurements, as these are standard procedure metrics to
produce a valid comparison.

The LPIPS is computed done as:

d (x, x̂) =
∑
l

1

HlWl

∑
h,w

∥ wl ⊙
(
ŷlhw − ŷl0hw

)
∥2
2

(13)

where x denotes the true image, x̂ denotes the synthesized
image, and d denotes the distance between two images.

LPIPS is calculated as: x and x̂ are fed into the VGG
network to extract features, which activates the output of each
layer and normalizes as ŷl, ŷl0 ∈ RHl×Wl×Cl .

Following the weight of the w layer, the L2 distance is
calculated. Finally, we compute the distance by taking the
average.

The FID shows how similar two image datasets are. It can
be used to assess the quality of samples from GANs. Lower
scores are associated with higher-quality images, and smaller
values indicate that the two sets of images have more in com-
mon. The FID is calculated by finding the Fréchet distance
between two Gaussians fitted to the Inception network’s
feature representation. The following is the FID calculating
expression:

FID (x, x̂) = ∥ µx − µx̂ ∥22+

Tr
(
Ax +Ax̂ − 2 (AxAx̂)

1
2

) (14)

where Tr is the sum of the main diagonal elements (the
matrix trace), µ is the mean, A is the matrix of covariance,
x is real image, and x is synthetic image.

The SSIM index can compare the similarity of two images.
SSIM considers image degradation to be a perceptual change
in structural information, whereas taking into account some
perceptual operations like luminance masking and contrast
masking. SSIM is an appropriate verification metric for im-
age completion. The following is the SSIM calculation:

SSIM (x, x̂) =
(2µxµx̂ + c1) (2σxx̂ + c2)

(µ2
x + µ2

x̂ + c1) (σ2
x + σ2

x̂ + c2)
(15)

where µx and µx̂ are the mean of images x and x̂, σx and
σx̂ are the covariance of images x and x̂, and σxx̂ is the
covariance of images x and x̂.

When many natural completion percentage are possible,
LPIPS and FID are more appropriate for testing performance
of big masks inpainting than pixel-level L1 and L2 distances.
Lower values of LIPS and FID indicate a better result, and on
the contrary higher values of SSIM indicate a better result.

B. EXPERIMENTAL SETTINGS
Because of the nature and goal of our methodology, only
photos with humans were examined on the DAVIS and
Youtube-VOS datasets. Images of persons seated behind the
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table were included in our proprietary dataset. LaMa [105],
MADF [48], Regionwise [113], and AOTGAN [114] were
chosen for comparison since they were based on a large mask
inpainting method, suitable for human-like forms and thus
were similar in this regard to our approach. We have also
included a state of the art method E2FGVI [115], operating
on semantic masks, as it claims the best accuracy of most
recent methods. Each of these methods was reproduced using
the code available on their respective github repositories.
Every one of these methods also required to manually select a
backdrop humanoid form to be deleted, however our method
was designed to pick the background humanoid shapes auto-
matically, yet retaining a highly respectful outcome in LIPS,
FID and SSIM.

C. RESULTS WITH ORIGINAL IMAGES
PyTorch was used to build the metrics pipeline. We test per-
formance with narrow, wide, and segmentation-based masks.
Results are displayed in Tables 1, 2, 3.

Our model Daiwa performed well while doing a fully
automated background person removal, yet the other models
were not far behind in manual mask selection (automatic was
not supported on either), with semantic masks producing the
best result in almost all cases. Interestingly, we were unable
to duplicate the high values shown in the E2FGVI [115]
study, presumably due to the fact that we only employed
a sample of persons from the DAVIS and Youtube-VOS
datasets.

D. ROBUSTNESS EVALUATION
Real-world circumstances provide measurements and estima-
tions that are far from perfect and frequently contain noise.
In this part, we explore the impacts of noisy data inputs,
such as semantic mask and depth, and report on how well
an actual system performed when used to make inferences.
In this part, we give an assessment of the robustness of our
Daiwa approach. This is crucial in real-world inpainting set-
tings since several post-processing processes, such as noise
addition, scaling, and/or compression, may have an influence
on inpainting accuracy. To that purpose, we used various
post-processing techniques of varying kinds and magnitudes,
and the results are shown in Figure 5.

For robustness evaluation, we follow the methodology
outlined in [72]. In order to deform forms for depth noise,
we first distort all semantic classes of pixels rather than just
semantic masks . Furthermore, we employ the Sobel filter
in the x-direction and set any pixels in the initial depth map
that are greater than the Sobel threshold to 0. In our instance,
the Sobel thresholds was set to 5. Then, we simulate pixel-
level noise using the Kinetic depth noise model, ensuring
that the offset does not exceed 5 meters and multiplying
the standard deviation of the noise by the value of noise
parameter pn ∈ [0, 1] that we use to alter the quantity of
noise in order to compare the impacts of noise for each
of the inputs. Each blob in a dynamic object binary mask
is approximated with 20% of all the pixels in the relevant

contour in order to mimic the semantic segmentation noise.
We then shift (pij − ci)/∥pij − ci∥2 · εi for each pixel
pij =

[
uij vij

]
from the i-th contour, where ci is the center

pixel of the i-th blob and εi ∼ N (0, (pnσi)
2). The radius of

the i-th contour, ri = max
j,k

∥pij − pik∥2/2, is used in this

case as σi = ri/5. Finally, with probability of pn, all of the
pixels with the highest depth value are likewise set to 0. The
results of robustness evaluation are shown in Figure [?].

While the intensity of the perturbations is relatively low,
the overall performance is good; for example, when execut-
ing H.264 compression with a quality factor of less than 1
Mbps (vs normal 3 Mbps), the performance is essentially
unaffected. As the severity of the disturbance increases, so
does the performance. According to the robustness evaluation
findings, Daiwa has desirable resilience against disturbances
of minor or medium scale. Of course, as the strength of the
disturbance increases, the inpainting accuracy decreases, and
significant perturbations result in badly deteriorated pictures,
which defeats the objective of inpainting. This behavior is
consistent with the findings from [116].

The results of the robustness study show that our proposed
Daiwa model has a satisfactory level of resilience against
disturbances of small to medium scale noise. Naturally, when
the noise intensity increases, the inpainting evidence will
be lost, leading to significant detection mistakes. However,
significant noise amount can produce pictures that are highly
damaged, which defeats the goal of applying inpainting.

E. PERFORMANCE EVALUATION
Picture inpainting is known to be directly proportional to the
input image resolution and how distant the linked pixels are
positioned within the image from the missing regions. We
conducted a dedicated experiment to focus on the compu-
tation time necessary to complete the inpainting. We have
selected the DAVIS dataset in order to assess our suggested
model in terms of computing cost, using 512x512 blocks of
images (only the category with humans in the picture). Table
4 shows the model, platform and computational expenses
(compute time, memory) for the evaluated techniques. As
can be observed, our suggested technique has the lowest
computing cost, demonstrating that our proposed model not
only achieves strong efficacy in terms of inpainting quality,
but also good efficiency in terms of processing time in mil-
liseconds for both GPU (consumer card: Geforce 2060 RTX
Super) and CPU (consumer cpu: AMD Ryzen 7 5700G). As it
can be seen LaMa is about 15% more efficient on CPU/GPU,
but consumes more memory as this approach was more of
a "universal" design in comparison to our approach, with
flow-based based E2FGVI trailing close behind. We believe
the computational load could be reduced to acceptable 100
ms using a more powerfull GPU or running a few cards in
parallel.

The performance of the methods is summarized in Figure
6. We analyze performance according to two criteria: infill
time and memory consumption. We treat the problem of find-
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(a) (b) (c)

(d) (e) (f)

(g)
FIGURE 4. Comparison of background person removal (top to bottom): (a) original frame, (b) Daiwa, (c) E2FGVI, (d) LaMa, (e) MADF, (f) RegionWise, (g) AOTGAN

TABLE 1. Results on DAVIS dataset: comparison with state-of-the-art method performance

Narrow masks Wide masks Segmentation masks
Method LIPS FID SSIM LIPS FID SSIM LIPS FID SSIM
Daiwa 0.08 0.58 0.71 0.11 1.99 0.76 0.02 5.01 0.79

E2FGVI [115] - - - - - - 0.03 5.09 0.72
LaMa [105] 0.11 0.66 0.62 0.18 2.88 0.59 0.02 5.22 0.62
MADF [48] 0.28 0.79 0.63 0.37 2.49 0.61 0.22 6.22 0.61

RegionWise [113] 0.41 0.88 0.59 0.55 3.51 0.62 0.24 7.01 0.65
AOTGAN [114] 0.57 1.12 0.60 0.69 3.88 0.60 0.31 6.98 0.59

TABLE 2. Results on Youtube-VOS dataset: comparison with state-of-the-art methods

Narrow masks Wide masks Segmentation masks
Method LIPS FID SSIM LIPS FID SSIM LIPS FID SSIM
Daiwa 0.12 1.22 0.68 0.58 4.12 0.69 0.03 6.22 0.78

E2FGVI [115] - - - - - - 0.03 6.02 0.71
LaMa [105] 0.18 1.41 0.62 0.71 4.88 0.63 0.03 6.91 0.64
MADF [48] 0.59 2.41 0.60 1.22 6.11 0.62 0.34 8.78 0.64

RegionWise [113] 1.31 2.99 0.59 1.87 7.52 0.61 0.38 8.61 0.60
AOTGAN [114] 1.67 2.82 0.54 2.22 6.99 0.60 0.29 7.58 0.59

TABLE 3. Results on our occluded person posture (sitting behind a table) dataset

Narrow masks Wide masks Segmentation masks
Method LIPS FID SSIM LIPS FID SSIM LIPS FID SSIM
Daiwa 0.04 0.38 0.74 0.07 1.09 0.76 0.02 4.01 0.78

E2FGVI [115] - - - - - - 0.03 6.12 0.68
LaMa [105] 1.78 2.99 0.54 1.98 5.45 0.54 0.03 8.04 0.61
MADF [48] 1.99 4.54 0.53 2.37 7.41 0.54 0.44 9.45 0.61

RegionWise [113] 2.81 4.96 0.46 2.78 8.66 0.49 0.41 10.44 0.55
AOTGAN [114] 2.46 4.72 0.45 2.56 7.97 0.44 0.55 9.49 0.50

ing the best model as multi-objective optimization problem,
ie. selecting a most preferred solution based on more than
one criterion as follows.

min
x∈Q

{F (x)}, (16)

where Q ⊂ Rn and F is a vector of the objective functions
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FIGURE 5. Evaluation of input noisyness on the performance of Daiwa model.

TABLE 4. Computational performance on Davis dataset (categories with
humans)

Model Platform Infill (ms) RAM (Gb)
Daiwa CPU 3141 0.61
Daiwa GPU 274 2.05

E2FGVI [115] CPU 2746 1.12
E2FGVI [115] GPU 239 4.22

LaMa [105] CPU 2612 0.78
LaMa [105] GPU 226 3.21
MADF [48] CPU 4208 1.03
MADF [48] GPU 405 4.03

RegionWise [113] CPU 4586 0.66
RegionWise [113] GPU 312 3.66
AOTGAN [114] CPU 6248 1.25
AOTGAN [114] GPU 784 4.84

F : Q → R
k, F (x) = (f1(x), . . . , fk(x)), and where

each fi : Q → R is continuously differentiable.
Let v, w ∈ Q. v is smaller than w (v <p w), if vi < wi

for all i ∈ {1, . . . , k}. The relation ≤p is set accordingly.
y ∈ R

n is dominated by a point x ∈ Q (x ≺ y) with
respect to (16) if F (x) ≤p F (y) and F (x) ̸= F (y), else
y is nondominated by x. x ∈ Q is a Pareto point if there is no
y ∈ Q which dominates x.

In this study we use the product of infill time and memory
as the objective function and calculate the Pareto fronts
for various values of the objective function. Note that the
performance of Daiwa on both CPU and GPU is Pareto
optimal, that is the models dominate over over models.

V. DISCUSSION AND CONCLUSIONS
We have presented a new method for removing the back-
ground from an image that contains human-like shapes using
a semantic-aware occlusion-robust architecture. The method
consists of four primary components: feature extraction and
three branches (local, global branch, and semantic). By com-
bining these components, we were able to extract global fea-
tures for the global branch to encode occlusion-aware local
information, and retrieve fine-grained local characteristics for
the local branch. The semantic mask was constructed for the

FIGURE 6. Summary of performance with Pareto fronts.

semantic branch to indicate the non-occluded sections. We
then employed a modified big mask inpainting approach to
eliminate the person, which leverages Fast Fourier convolu-
tions (FFC) and generalizes well to higher resolutions while
requiring fewer parameters and taking less time. The use of
dilation also improved the identified human masks, resulting
in higher exterior borders and fewer ghosting artifacts. The
performance of our model, Daiwa, was evaluated using the
LPIPS, FID, and SSIM measurements, which are standard
procedure metrics for comparison. Our results showed that
Daiwa performed well in fully automated background person
removal, and other models were not far behind in manual
mask selection. The semantic masks produced the best result
in almost all cases.

However, there are some limitations to this study that need
to be addressed. Firstly, the study only employs a sample of
persons from the DAVIS and Youtube-VOS datasets, which
may not be representative of all human-like objects. This
limits the generalizability of the results. Secondly, the study
only compares the performance of the proposed method with
a few other models, and more models need to be evaluated in
order to establish the validity of the results. Additionally, the
study does not explore the scalability of the method, and it is
not known how well the method will perform on large images
with many human-like objects. Furthermore, the study only
focuses on removing human-like objects from images, and
does not address the challenge of removing other types of
objects, such as animals or inanimate objects. Finally, the
study does not consider the computational efficiency of the
method, and it is not known how well the method will
perform in real-time applications.

In conclusion, our approach provides a new and effec-
tive solution for removing the background from an image
that contains human-like shapes. The use of semantic-aware
occlusion-robust network and the modified big mask inpaint-
ing approach enabled us to produce high-quality results that
are resistant to occlusion and generalize well to higher resolu-
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tions. However, it should be noted that the high values shown
in previous studies could not be duplicated in this study,
likely due to the fact that we only used a sample of persons
from the DAVIS and Youtube-VOS datasets. Further research
is needed to validate the efficiency of our methodology on
larger and more diverse datasets.

VI. ABBREVIATIONS
We used these abbreviations:

DL Deep learning
GAN Generative Adversarial Network
CNN Convolutional Neural Network
LSTM Long short-term memory
DAVIS Dateset used
YouTube-VOS Dateset used
Pytorch Machine learning framework used
GPU Graphical Processing Unit
CPU Central Processing Unit
ROI Region of interest
Leaky ReLu Activation function
Blazepose Skeleton detection model
FFC Fast Fourier convolutions
FFT Fast Fourier transform
SSIM Structural Similarity Index
LLIPS Learned Perceptual Image Patch Similarity
FID Frechet inception distance
LaMa Competing approach
MADF Competing approach
Regionwise Competing approach
AOTGAN Competing approach
E2FGVI Competing approach
H.264 Video codec
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