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Abstract: In recent years machine learning algorithms have been gaining momentum in resolving
subsurface flow issues related to hydrocarbon flows, Carbon capture utilization and storage, hydrogen
storage, geothermal flows, and enhanced oil recovery. This paper presents and attempts to solve
subsurface flow problem using neural upscaling method. The neural upscaling method, described
in the present work, is a machine learning approach to calculate effective properties in each grid
block for subsurface flow modeling. This method is intended to be more accurate than traditional
analytical upscaling methods (which are only accurate for layered or homogeneous media) and
numerical upscaling methods (which are more accurate for heterogeneous media but involve higher
computational cost and are dependent on boundary conditions). The neural upscaling method is
based on learning from a large number of geological realizations, which allows it to account for
uncertainty in geology. It is also computationally fast and accurate. The method is demonstrated
through a series of 2D test cases, and its accuracy is compared to that of analytical and numerical
upscaling methods.

Keywords: porous-media; upscaling; averaging; homogenization; neural networks; neural network
(NN); deep learning

1. Introduction

Reservoir simulation is an important tool for studying various types of subsurface flow
problems, like, flow of hydrocarbons, contaminant transport in subsurface, carbon capture
storage (CCS) and enhanced oil recovery(EOR). Often while using reservoir simulation tools
simulation time is important to conduct a study in reasonable amount of time. Therefore,
Upscaling is a common technique used in reservoir simulation to represent the properties
of a fine-scale grid on a coarse-scale grid, which is necessary due to the difference in
size between the scales at which reservoir properties are measured and the scales at
which flow is being simulated. There are several different techniques that can be used for
upscaling, including both analytical methods (such as arithmetic or harmonic averaging)
and numerical methods (such as local or global flow-based averaging). When using an
upscaling technique, it is imperative to consider both local and global effects in order to
obtain a robust coarse-scale simulation model and to choose an appropriate upscaling
method for the specific flow patterns being simulated.

The choice of upscaling technique affects preservation of small-scale geological details
in grid blocks for feasible size. Techniques with local simulations over coarse grid blocks
may require special boundary conditions and discretization methods. Effective permeabil-
ity (K∗) is a crucial factor in subsurface flow modeling and is computed in single phase
upscaling as a measure of a porous material’s fluid transmission capacity. Computing effec-
tive permeability is often necessary for larger-scale flow modeling as fine-scale properties
may not be easily observable or computationally feasible to resolve.
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Over the years variety of analytical and numerical upscaling methods for porous-
media flow have been introduced and the literature on upscaling procedures are exten-
sive [1–8], ranging from re-normalization techniques, e.g., [7,9,10], via local simulation
techniques [7,11], to multi-scale methods [12–20]. A detailed review of different upscaling
techniques used in porous media is presented in [8,21]. There is generally no theoretical
framework or set of standards for assessing the quality of an upscaling technique, so
the quality of different techniques is often evaluated by comparing their results to those
obtained from a reference solution computed on a fine grid. This can be done by comparing
upscaled production characteristics, such as flow rates or pressure, with those obtained
from the fine-scale model. The accuracy of an upscaling technique can also be evaluated by
comparing the results of the upscaled model with measurements or observations made at
the field scale. In general, the quality of an upscaling technique is a function of its ability to
accurately represent the underlying fine-scale properties and behavior on a coarser grid,
while minimizing computational cost and complexity [6].

In recent years with the advances in machine learning and the development of deep
learning algorithms researchers have started to apply deep learning methods to solve a
variety of mathematical and engineering problems. For example permeability upscaling
in complex carbonate system is done using micro-computed tomography images [22]
and permeability prediction has been done for CO2 injectivity computation in Sandstone
reservoirs in Australia [23]. Some researchers have also used machine learning algorithms
for upscaling porosity-permeability relationships [24].

Additionally Researchers have also tried tried to compute ordinary differential equa-
tions using neural networks [25]. Neural networks have also been used now for solving
steady state and turbulent flow problems [26,27]. Moreover, Deep learning methods have
been used for solving poro-elastic problems in porous media as well [28]. And researchers
have also started to use the power of deep learning techniques, like RNN-LSTM type
models [29], for history matching and forecasting of hydrocarbon flows in heterogeneous
porous media. More recently deep learning based methods have also been used for fracture
network modelling [30–33].

In this paper an upscaling framework based on utilization of artificial neural net-
works is introduced for upscaling heterogeneous permeability field in porous media.
Although traditional analytical and numerical upscaling approaches yield accurate results
on homogeneous porous media, they often are not very accurate on complex heterogeneous
medium and involve challenging computations, particulary for numerical upscaling meth-
ods. On the other hand Neural upscaling method, using a feed-forward neural network,
proposed in this paper could serve as an alternate upscaling method for heterogeneous
and complex porous medium, which is also fast, efficient and easy to implement. In this
paper the results are presented for upscaling fine scale permeability using a neural upscal-
ing method in two-dimensions and results are compared with analytical and numerical
upscaling methods.

This paper is structured as follows: Section 2 gives a brief description of single-phase
permeability upscaling problem. Section 3 provides further details of the upscaling method-
ology using analytical and numerical upscaling methods along with their limitations. Need
for a neural upscaling method, describing the motivation for doing the work presented
in this paper, follows in Section 4. Neural upscaling method and its details are provided
in Section 5. Section 6 presents the upscaled permeability results obtained using various
upscaling techniques, such as, analytical, numerical, and neural upscaling. This is followed
by summary and conclusions in Section 7.

2. Upscaling Problem Description

Single-phase, in-compressible flow through a heterogeneous porous medium is de-
scribed by Darcy’s law and continuity equation as :

u = −K(x, y) · ∇p (1)
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∇ · u = 0 (2)

where u is the local fluid velocity vector, p is the local pressure and K is the local fine
scale symmetric Cartesian permeability tensor which can be a diagonal or full tensor with
general form

K =

(
K11 K12
K12 K22

)
(3)

In two-dimensions the full tensor pressure equation is assumed to be elliptic such that

K2
12 ≤ K11K22 (4)

Single-phase upscaling refers to the process of upscaling permeability from the pres-
sure Equation (1) in order to represent the properties of a fine-scale grid on a coarse-scale
grid for subsurface flow modeling. The goal of single-phase upscaling techniques is to find
homogeneous block permeabilities that produce the same total flow through each coarse
grid block as would be obtained by solving the pressure equation on the underlying fine
grid with the correct fine-scale heterogeneous structures. However, this can be challenging
because the heterogeneities at all scales can have a significant impact on the large-scale flow
pattern, and it is important to capture the impact of these heterogeneous structures in order
to obtain a accurate coarse-scale model. To achieve this, the fine-scale Equations (1) and (2)
can be replaced with a coarse-scale equation characterized by an effective permeability
tensor (denoted by K∗) that varies on the coarse scale, see Figure 1. This tensor represents
the ability of the porous material to transmit a fluid and is an important factor in subsurface
flow modeling, i.e.,

∇ · (−K∗(X, Y) · ∇p) = 0 (5)

This equation sates that the net flow-rate is related to the average pressure gradient
through an upscaled Darcy law.

Ci,j

ci,j

Figure 1. Permeability tensor on each fine-scale cell ci,j upscaled over each coarse-scale cell Ci,j.

3. Classification of Upscaling Methods

There has been ongoing research to develop new algorithms for calculating the ef-
fective properties of fluid flow in subsurface reservoirs, and a variety of techniques have
been developed for this purpose. These techniques can be broadly classified into analytical
methods, which use mathematical techniques to calculate the effective properties, and nu-
merical methods, which use computational techniques to solve the underlying equations.
Some of the techniques that have been developed include simple methods like arithmetic,
geometric, and harmonic averages, as well as more complex tensor methods like diagonal
and full tensor methods. Some of these algorithms are publicly available, while others
are commercially available and may be used in reservoir simulation software. In addition
to these methods, it is also possible to generate pseudo functions, such as pseudo rela-
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tive permeability and capillary pressure, based on reservoir simulation of the fine grid
model [11].

There are different ways to classify the upscaling methods. This classification can be
done on the basis of types of parameters that are upscaled (e.g., single or two-phase flow
parameters) and the methods that are used to compute these parameters (e.g., using local or
global calculations) [21]. In this paper we are interested in the latter classification, i.e., the
one which is related to the methods used for computing the upscaled parameters (single or
two-phase). Also within the parameter upscaling classification, upscaling could be either
defined as analytical or numerical upscaling. Analytical upscaling as the name suggests,
is related to mathematical averaging methods, whereas, numerical upscaling relates to
flow based averaging methods, which make use of underlying numerical methods to find
the average permeability values. In all cases, the intent of the upscaling procedure is to
replace the fine model with a coarse model. A brief overview of some of these methods is
presented in this section.

3.1. Analytical Upscaling

Several analytical upscaling methods currently exist ranging from from arithmetic
averaging to power law techniques, for more detail please see [7]. One of the most effective
analytical upscaling method is harmonic averaging. Harmonic averaging takes into account
impact of internal no-flow boundary conditions, which is not possible to capture using
arithmetic averaging methods. Mathematically harmonic averaging is expressed as follows:

K∗ = n/(1/K1 + 1/K2 + . . . . . . + 1/Kn) (6)

Although harmonic upscaling methods are most effective, they are limited to isotropic
permeability tensor only. And therefore are limited in application to text book exam-
ples only.

3.2. Numerical Upscaling

There are several numerical methods that can be used to upscale the fine-scale per-
meability tensor to a coarser scale for subsurface flow modeling. These methods can
be broadly classified into two categories: diagonal methods and full tensor methods.
The choice of method can depend on factors such as the underlying fine-scale permeability
tensor, the grids being used, and the boundary conditions for the numerical method [21].

Diagonal methods involve calculating the effective permeability in each direction
independently, assuming that the permeability is isotropic in that direction. These methods
are relatively simple and computationally efficient, but may not be as accurate as full tensor
methods in representing the anisotropic nature of the permeability tensor [21].

Full tensor methods, on the other hand, involve calculating the full effective perme-
ability tensor, which includes all components of the tensor and can account for anisotropy.
These methods are more accurate than diagonal methods, but may be more computationally
expensive [21].

Both diagonal and full tensor methods can be useful depending on the specific needs
and constraints of the problem being modeled. It is important to carefully consider the
trade-offs between accuracy and computational cost when choosing an upscaling method.

A standard numerical approach for upscaling the permeability tensor with Equation (5)
involves determining the geometry of fine-scale cells, followed by the application of ap-
propriate pressure drop and boundary conditions in a particular direction to estimate the
effective permeability tensor. One of the significant issues that arises at this stage is the
choice of appropriate boundary conditions to be imposed. One option is to use global
pressure gradient boundary conditions, in which a pressure gradient is applied across
the cell in a specific direction (e.g., the x-direction) and no-flow boundary conditions are
applied on the top and bottom boundaries of the cell, Figure 2. These boundary conditions
require solving the Equation (5) for upscaling the permeability tensor twice. Other possible
boundary conditions include imposing a fixed pressure or flow rate on one or more bound-
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aries of the cell, or using periodic boundary conditions. The choice of boundary conditions
can affect the accuracy and computational cost of the upscaling method, and it is important
to carefully consider these trade-offs when selecting boundary conditions.

Figure 2. Fine scale permeability upscaling with no-flow boundary conditions.

In the first solution we have following equations:

p(0, y) = 1 (7)

p(Lx, y) = 0 (8)

v(x, 0) · (n1) = v(x, Lx) · (n2) = 0 (9)

In the second solution we have following equations:

p(x, 0) = 1 (10)

p(x, Ly) = 0 (11)

v(0, y) · (n1) = v(Lx, y) · (n2) = 0 (12)

While in the second solution the pressure difference is specified to be in the y direction.
This upscaling procedure gives us an effective diagonal permeability tensor. Using the
above pressure and velocity boundary condition upscaled permeability K∗ determined by
global mass conservation conditions is given as

−K∗11
(p(0, y)− p(L1, y))L2

Lx
= −

ny

∑
i=1

(pi+1,j − pi,j)Ki+1/2,j∆y
∆x

(13)

where pressure differential in x-direction on upscaled grid is compared with pressure differ-
ential in x-direction on fine scale grid. The boundary conditions can then be interchanged
between x and y to find the upscaled permeability in other direction

−K∗22
(p(x, L2)− p(x, 0))L1

Ly
= −

nx

∑
j=1

(pi,j+1 − pi,j)Ki,j+1/2∆x
∆y

(14)

The Equations (13) and (14) represent the equivalent permeabilities in the x-direction
(K∗11) and y-direction (K∗22) respectively. Because of the no-flow boundary condition, there
is no cross-flow over the domain, which results in the equivalent permeability tensor being
diagonal and cross-terms K∗12, K∗21 being equal to zero. However, for non-K-orthogonal
grids, the cross-terms can be significant, requiring the use of full tensor upscaling methods.
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The standard no-flow boundary condition used in upscaling is consistent with the harmonic
average approximation in the presence of a one-dimensional permeability field.

Periodic boundary conditions are a popular option for upscaling the permeability
tensor using numerical methods. With these boundary conditions, each grid block is
assumed to be a periodic cell in a periodic medium, and full correspondence is imposed
between the pressure and velocities at opposite sides of the block. Periodic boundary
conditions have several useful features, including the fact that they guarantee that the
resulting effective permeability tensor K∗ will be symmetric and positive definite, which
means that post-processing of the results is not required to ensure these properties. This
can be a useful feature in situations where the symmetry and positive definiteness of the
permeability tensor are important for the accuracy of the model. However, it is important
to note that periodic boundary conditions may not be appropriate in all cases, and it is
necessary to carefully consider the trade-offs between accuracy and computational cost
when choosing boundary conditions for upscaling the permeability tensor.

3.3. Local Upscaling Methods

Local upscaling methods are a type of numerical upscaling technique that involve
calculating coarse-scale parameters by considering only the fine-scale region corresponding
to the target coarse block. No additional fine-scale information is included in the upscaling
calculation. In these methods, each local problem is solved one at a time, with one coarse
block being associated with one fine block, as shown in Figure 3. The upscaled permeability
values are then computed over each coarse block. Local methods are generally quite fast
computationally, but they can lack accuracy if the boundary conditions chosen for solving
the local upscaling problems are not appropriate. It is important to carefully consider the
trade-offs between accuracy and computational cost when choosing an upscaling method,
and to select the method that is most appropriate for the specific needs of the problem
being modeled.

 Coarse block Fine block 

 Figure 3. Local method for upscaling conditions.

3.4. Global Upscaling Methods

In a global upscaling technique, the entire fine scale model is simulated for the cal-
culation of the coarse scale parameters. Here, the coarse scale parameters are assumed
to be applicable to other (related) flow scenarios. Global system is solved subjected to a
boundary condition (Figure 4) and upscaled parameters are computed. In highly heteroge-
neous models, a significant fraction of these transmissibilities may be negative. Therefore,
iteration continues until all transmissibilities are positive and there is an adequate level of
agreement between the fine and coarse solutions. The global methods of upscaling have
potentially high accuracy and they can guarantee very high degree of coarsening as well.
These methods can provide very accurate results for a particular set of wells and boundary
conditions. However, they prove to be computationally expensive because of their need
for information about global solution. Robustness is also an issue associated with global
methods with respect to some boundary conditions and well arrangements [3,14].
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P=1 P=0 

Coarse Grid 

Figure 4. Global method for upscaling conditions.

3.5. Extended Local Upscaling Methods

In extended local methods, coarse scale parameters are computed by taking into
account both the target coarse block and a fine scale “border region” around it, as depicted
in Figure 5. The coarse scale quantities are obtained by averaging the fine scale solution
(e.g., pressure and velocity) over just the target coarse block. The figure shows the fine
grid represented by finer lines, the coarse grid by heavier lines, and the shaded block is
the target cell for which K∗ is to be calculated. The size of the extended/border region is
specified by the parameter r, which determines the number of coarse cell rings composing
the border region. The extended local solution covers all the fine cells corresponding to the
target cell and its border regions. The region shown in Figure 5, which corresponds to r = 1,
is appropriate for permeability upscaling. Any boundary condition can now be applied
to the expanded domain shown in the figure. The advantage of using extended local
methods is that it reduces the impact of the assumed boundary conditions in upscaling,
resulting in improved coarse scale description compared to purely local methods. However,
these methods may not be reliable in media with high discontinuities or geology with
channelized systems.

 Global Coarse Grid 

Target Cell 

Border Region 

Figure 5. Extended local method for upscaling conditions.

3.6. Quasi Global or Local-Global Upscaling Methods

Quasi global methods are a type of numerical upscaling technique that involve using
global flow data to inform the upscaling process, although this information is only approxi-
mate. In the case of quasi global two-phase parameter upscaling, for example, the global
flow field might be estimated from a single solution of the single-phase pressure equation
rather than by a more computationally expensive transient solution of the two-phase flow
equations. The main idea of quasi global methods is to use global coarse-scale simulations
to estimate the boundary conditions that should be used in extended local methods for
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calculating transmissibilities. This process is iterated until the upscaled quantity is con-
sistent with the global flow. The main advantage of quasi global methods is that they are
self-consistent and use realistic boundary conditions, which can lead to improved accuracy.
However, the need for a fine-scale simulation for the global flow scenario and the iterative
nature of the self-consistency process can make these methods computationally expensive.

3.7. Upscaling in Digital Rock Physics

An insight into the arrangement of subsurface pore networks can be achieved through
the examination of scanned sections and volumes of core samples. This is done using Digital
Rock Physics (DRP), which employs digital volumes, obtained from tools such as micro
computed tomography (microCT) or scanning electron microscope (SEM), to determine
the properties, like porosity and permeability [34,35]. Since DRP operates at the pore-
scale, it’s essential to upscale the properties to the reservoir scale for a comprehensive
reservoir characterization. Machine learning algorithms can be utilized for this purpose,
as demonstrated by [36], who used classification of images into various textures to upscale
the properties. A machine learning technique was employed to identify texture spatial
locations and subsets were created, which were then scanned at high resolutions to calculate
porosity and permeability for each texture subset. These properties were then incorporated
into a coarse model [22]. Another approach involves using Convolutional Neural Networks
(CNNs) and downsampling methods to upscale permeability values [37]. Thus, these
techniques and approaches have proven to be valuable tools in the field of reservoir
characterization.

Finally, the topic of upscaling itself and the use of different types of numerical methods
for upscaling along with the choices of different types of boundary conditions have been
extensively presented in literature. The intent of this paper is not to provide a comprehen-
sive review of upscaling but to explore neural upscaling method instead as an alternative
upscaling technique. Therefore, it is recommended that for a complete overview of existing
upscaling techniques that are applied in reservoir simulation one can refer to published
literature e.g., [3,7,19,21].

4. Need for Neural Upscaling

Although analytical and numerical methods have been around for a long time, they
are often not very accurate when applied to heterogeneous permeability distribution. Ana-
lytical upscaling methods are only accurate for layered or homogeneous medium, whereas
numerical upscaling methods have higher accuracy and could be applied to different geo-
logical heterogeneities, but suffers from higher computational costs because the process
involves solving series of small scale Darcy flow problems, which could quickly become
computationally expensive depending on grid dimensions/size of computational domain,
particularly for three-dimensional domains. Whereas, online computational costs are much
better with neural networks. Another main drawback of numerical upscaling methods
is the choice of boundary conditions having a major impact on the results. The most
important limitation of the two methods is that neither of them account for uncertainty in
geological heterogeneity and its impact on the upscaled permeabilities. Pros and cons of
each of the analytical and the numerical upscaling methods is covered in great detail by
authors of the publications [8,21].

In recent years, there has been a significant growth in the development of machine
learning models with applications to subsurface fluid flow. New surrogate models have
been proposed as alternatives to conventional numerical simulations [38–40]. A compre-
hensive review of machine learning applications for porous rock modeling is presented
in [41]. Additionally, machine learning methods have been used to solve ordinary differ-
ential equations using neural networks [25], whereas deep learning framework has been
developed to solve even partial differential equations [42]. Neural networks have been
used for solving steady state and turbulent flow problems [26,27] and some other deep
learning methods have also been implemented for solving poro-elastic problems in porous
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media [28]. The power of deep learning techniques, like RNN-LSTM type models, have
also been used by researchers for history matching and forecasting of hydrocarbon flows in
heterogeneous porous media [29].

Geological uncertainty is the most important parameter in reservoir simulation and
this is where the most benefit could potentially come from the application of machine
learning. Finding upscaled permeability and other geological properties is essentially an
inverse problem, which needs to be solved until accurate results are obtained. Machine
learning algorithms are well suited for solving inverse problems and our aim in this study is
to use this algorithm to predict the reservoir properties. Application of data driven machine
learning approach to solve the upscaling problem for homogeneous and heterogeneous
porous media is the novelty of this work.

5. Neural Upscaling

Neural upscaling method described in this section refers to a new class of upscaling
method where the upscaling is performed with the help of a trained a neural network, such
that the upscaled permeability K∗ is given as:

K∗upscaled = NN(Kfinescale, n) (15)

where NN refers to a neural network, K refers to fine scale permeability and n refers to the
level of coarsing/upscaling being asked for from the network.

For this purpose, a function fitting multilayered neural network with hidden layers of
different sizes is used for training using back-propagation. The multilayered feed-forward
network could be used for training of function approximation (nonlinear regression) or for
pattern recognition. Once the network weights and biases are initialized, the network can
be used for forecasting/pediction. The training process requires a large set of samples for
capturing network behavior through inputs and targeted output samples.

The process of training a neural network involves tuning the values of the weights
and biases of the network to optimize network performance, which is defined through
the network performance function. The default performance function for feed-forward
networks is mean square error mse the average squared error between the network outputs
and the target outputs and is defined as follows:

F = mse =
1
N
{ΣN

i=1(errori)
2} = 1

N
{ΣN

i=1(ti − ai)
2} (16)

where N is the number of total samples, t—is the target input of the network and a—is
the trained network output. In the Neural upscaling target function t is the numerically
upscaled permeability. And a is the output upscaled permeability from the network. Input
training also includes the several fine scale realizations, see Figure 6 for clarification on
the workflow.

The network could be trained either using batch mode training or incremental training
mode. The deep learning MATLAB [43] (Version 2022a) toolbox used in this work with
batch training model as it is significantly faster and results in smaller errors. For training
multilayered feed-forward networks, any standard numerical optimization algorithm can
be used to optimize the performance function, but there are a few key ones that have
shown excellent performance for neural network training. These optimization methods use
either the gradient of the network performance with respect to the network weights, or the
Jacobian of the network errors with respect to the weights.

The gradient and the Jacobian are calculated using a technique called the backpropaga-
tion algorithm, which involves performing computations backward through the network.
The backpropagation computation is derived using the chain rule of calculus and the details
of the method are described in [44].

As an illustration of how the training works, consider the simplest optimization
algorithm gradient descent. It updates the network weights and biases in the direction in
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which the performance function decreases most rapidly, the negative of the gradient. One
iteration of this algorithm can be written as:

xi+1 = xk − akgk (17)

where xk is a vector of current weights and biases, gk is the current gradient, and ak is the
learning rate. This equation is iterated until the network converges. For this paper network
is trained using scaled conjugate gradient algorithm.

---------
---------

---------
---------

ANN

Fine Scale Perm Upscaled Perm

Figure 6. A conceptual plot of the neural upscaling workflow.

A sample of the neural network with hidden layers and its sizes is, used in this
work, shown in Figure 7. The network takes series of realization of fine scale permeability,
as appended row vector, as input (it could be 256 × 256 or 128 × 128 or 64 × 64 reshaped
into a row vector). And output vector consist of a series of coarse/upscaled permeabilities
as row vector.

N hidden layer different sizes are used for training using function like Scaled Conjugate
Gradient. Initially the input, output and output layers sizes are decided based on the input
(fine scale) and output (upscaled) permeability field.

Figure 7. Sample neural network used for training.

5.1. Training Data Set Generation

Although the network architecture is simple, the results of high accuracy are produced
thanks to large training data set. The network is given a large number of 2-D permeability
distribution as input data set, which are generated using Perlin noise function [45] on a
specified grid dimension. And the output data comprises of large number of upscaled
permeability distribution, corresponding to the input permeability field, generated using
numerical upscaling method described in the section Numerical Upscaling. A sample
subset of input (fine scale permeability distribution) and output (upscaled permeability
distribution) data used for training the network is shown in Figures 8 and 9 respectively.
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Close to 100 such input and output distributions were used for training the network. These
inputs represent different geological realizations, which might exist in the subsurface.

(a) (b) (c)

Figure 8. (a) Sample input data of permeability field “a” on a 128 × 128 grid used for training the
neural network. (b) Sample input permeability field “b” on a 128 × 128 grid used for training the
neural network. (c) Sample input permeability field “c” on a 128 × 128 grid used for training the
neural network.

(a) (b) (c)

Figure 9. (a) Sample output data of upscaled permeability field “a” on 64 × 64 grid generated using
numerical upscaling and used in training the neural network. (b) Sample output data of upscaled
permeability field “b” on 64 × 64 grid generated using numerical upscaling and used in training the
neural network. (c) Sample output data of upscaled permeability field “c” on 64 × 64 grid generated
using numerical upscaling and used in training the neural network.

5.2. Network Training

Next we divide the data-set into training testing and evaluation data-set. Out of
the total input and output data 80% is used for the training and 20% is used for testing
purposes. The Neural upscaling network regression results for training, testing, validation
and overall fit shown in Figure 10. As a measure of the network’s accuracy it can be seen
that a very good fit is obtained with value of R, a measure of regression fit, close to 1 for
training, testing, validation and overall fit.

5.3. Network Training Parameters

Training was carried out using a network with 3 hidden layers, with each layer
comprising of 30, 20 and 10 neurons (plus biases) respectively. A total of 1000 permeability
realizations were used for training the network for each upscaling case. The network
training involved a split of data into 80 percent for training a model a total of 1000 epochs
were used. Initial learning rate of 0.001 was assigned to the model with a batch size of 20.
A snapshot of training is shown in Figure 11.
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Figure 10. (a) Figure showing the regression fit for the data. (b) Figure showing the regression fit
and error estimates of the fit. (c) Figure showing regression fit for training, testing, validation and
overall fit.
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(a) (b)

Figure 11. (a) Snapshot of Network Training. (b) Training Parameters conditions.

6. Neural Upscaling Results

This section presents the upscaling results obtained using the neural upscaling method
for various test cases. Initially validation of the neural upscaling method is performed
on layered permeability field in 2D for which the analytical solution is known to be exact.
These layered examples help to benchmark the neural upscaling method against the known
exact analytical methods. Following which more complex heterogeneous upscaling cases
are presented.

6.1. Neural Upscaling—Layered Medium

In this section, we will first present a few test cases to benchmark the neural up-
scaling technique against standard analytical and numerical upscaling methods. This
benchmarking can be done by comparing the neural upscaling method with the analytical
and numerical upscaling methods, for the cases where the methods are known to produce
precise results. Initially, two test problems of single-phase Darcy flow will be considered
over a square 2-D domain. For these examples, the fine-scale permeability has a layer cake
structure. Analytical upscaling methods have known solution for layered medium given
by arithmetic or harmonic averaging. For numerical upscaling, local flow simulations will
be performed over the local fine blocks to obtain upscaled coarse block permeability of the
square domain, for details see [7]. For the Neural upscaling method, series of layered cake
test medium are used for training the network using the approach already described in this
paper. The first test case is of a layer cake type permeability distribution with flow taking
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place along the direction of the layers, Figure 12a. Whereas, in the second test case the flow
is perpendicular to the direction of the layers, Figure 12b.

Figure 12. A layer cake-like permeability distribution with alternate layers of low permeability,
shown in gray color and high permeability shown in red color, (a) with flow occurring from left to
right along the layers and, (b) with flow occurring from top to bottom across the layers.

The analytical upscaled permeability for the first test case, where the flow is along
the layers, is equal to the arithmetic mean i.e., K∗ = (K1 + K2 + K3)/3. Whereas,for the
second test case, where the flow is across the layers, it is equal to the harmonic mean,
i.e., K∗ = 3/(1/K1 + 1/K2 + 1/K3). In the numerical upscaling, the boundary conditions
are set as no-flow at the top and bottom with fixed pressure at the left and right sides of
the domain, creating a pressure gradient of 1. K1 = 1 MD, K2 = 10 MD and K3 = 1 MD.
A comparison of the upscaled permeability obtained via the analytical, the numerical
upscaling and the neural upscaling techniques is presented in Table 1. It should be noted
that for these test cases since the underlying fine scale permeability tensor is isotropic
therefore the upscaled permeability tensor is also isotropic. Results clearly show that the
neural upscaling procedures give exactly same results as the analytical and the numerical
upscaling technique for these test cases.

Table 1. A comparison of the upscaled permeability values obtained using analytical, numerical and
neural upscaling methods. The results are in close agreement for both the test cases.

Upscaling K∗
analytical K∗

numerical K∗
neural

Case 1 (K1 + K2 + K3)/3 = 4.000 < u > /∇p = 4.000 NN(K, n) = 4.000

Case 2 3/(1/K1 + 1/K2 + 1/K3) = 1.4826 < u > /∇p = 1.4826 NN(K, n) = 1.4826

Next, we perform similar comparison for a 2-D example of layered permeability
field on a fine grid of 128 × 128 grid cells, which is then upscaled using numerical and
neural upscaling method. The input permeability distribution is shown in Figure 13a,
the numerically upscaled permeability field on a grid of 64 × 64 grid cells is shown in
Figure 13b and the neural upscaled permeability field on a grid of 64 × 64 grid cells is
shown in Figure 13c. For neural upscaling the model is trained on a series of data-sets
with layered permeability field as input and numerically upscaled permeability as output.
The neural upscaled permeability is then compared against the numerically upscaled
permeability values and it can again be seen from the results that neural and numerical
upscaling gives exactly the same results.

6.2. Neural Upscaling—Heterogeneous Medium

Next, we perform upscaling on a heterogeneous channel type permeability distribution.
Initially a large data-set of 2D channel type permeability distribution is generated for
training the network using Perlin noise function. The network is trained until the regression
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fit is close to 1, Figure 14 shows the input and output target images along with outcomes of
network training for the case where upscaling is performed using a factor of 2.

(a) (b) (c)

Figure 13. (a) Input layer cake permeability distribution on a 128 × 128 grid size. (b) The numerically
upscaled permeability field on a grid of 64 × 64 grid cells. (c) The neural upscaled permeability field
on a grid of 64 × 64 grid cells.
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Figure 14. Figure showing a sample subset of input and output target permeability distribution used
for the network training along with outcome of the network training.

Once the network is training is complete a typical permeability distribution on a fine
mesh is generated using Perlin noise function is given as input to the Neural upscaling
network. The Neural upscaling is then performed using the trained network. The fine
scale permeability distribution along with numerically upscaled permeability on a coarse
mesh obtained using no-flow boundary condition is shown in Figure 15a,b. The neural
upscaled permeability is shown in Figure 15c. The regression fit for the training, testing and
validation is shown in Figure 15d and error measure is shown as a log plot of difference
between numerical and neural upscaling results in Figure 15e. It can be seen from the
log error plot that the differences are very small. From image of the neural upscaled
permeability it can be seen that the channeled heterogeneity is very accurately captured
and is comparable to the numerical upscaling results.
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Figure 15. (a) Input channel permeability distribution on a 128 × 128 grid size. (b) The numerically
upscaled permeability field on a grid of 64 × 64 grid cells. (c) The neural upscaled permeability
field on a grid of 64 × 64 grid cells. (d) Figure showing regression fit on training and testing
data. (e) Figure showing log plot of error between numerically upscaled permeability and neural
upscaled permeability.

6.3. Neural Upscaling—Successive Re-Normalization

Next, successive upscaling is performed on a heterogeneous channel type permeabil-
ity distribution using neural upscaling method. The local permeability is hierarchically
upscaled to the next coarse grid level, re-normalizing the permeability values to each
coarser level. In this case the fine scale permeability is initially upscaled by a factor of 2
and then followed by a factor 4. The objective here is to test impact of successive upscaling
on the quality of upscaled permeability field. The results are compared with equivalent
permeability obtained from numerical upscaling. The results are shown in Figure 16.

(a) (b) (c)

(d) (e) (f)

256x256 128x128 128x128

256x256 64x64 64x64

Figure 16. Figure showing successive comparison of upscaling from input permeability of 256 × 256
upscaled to 128 × 128 to 64 × 64. (a,d): 256 × 256 input permeability. (b,c): 128 × 128 input
permeability. (e,f): 64 × 64 input permeability.
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6.4. Sensitivity Analysis

Next, a sensitivity analysis is carried out to test the impact of network parameters on
the upscaling results. Here we perform two types of sensitivity analysis. First experiment
is related to changing the network architecture by changing the number of layers and
keeping input training data same for both networks. Second by changing the amount of
input data for same network architecture. The results for the first set of sensitivity are
shown in Figure 17. In this case network architecture is changed from 4–6 hidden layers.
With each added layer no. of neurons increased by 10. We can see from the results that
adding additional number of layers and neurons does not have a significant impact on the
results. For the second case the amount of data used for training is successively increased
by a factor of 10. The improved regression fit is obtained as expected, see Figure 18. The test
demonstrates that results are more sensitive to the total data compared to the number of
hidden layers.

Input Perm
Numerical. 

Upscaled
Neural. 

Upscaled Error

R = 0.99

Input Perm
Numerical. 

Upscaled

Neural. 

Upscaled Error

R = 0.99

Input Perm
Numerical. 

Upscaled
Neural. 

Upscaled Error

R = 0.99

Layer 1 Layer 2 Layer 3 Layer 4

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6

Figure 17. Figure showing sensitivity to number of layers and neurons. Changing the no. of layers
from 4, 5 to 6 with each layer having 10 additional neurons compared to previous layer. The error
does not changes significantly and regression plot remains more or less the same.

6.5. Neural Upscaling—Impact on Flow

Finally, we demonstrate that the upscaled permeability, obtained using neural up-
scaling, is able to reproduce flow and pressure profiles similar to the one generated using
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fine scale and numerically upscaled permeability. Figure 19 presents the results of this
demonstration. Figure 19a shows the fine scale permeability on 128 × 128 × 1 grid, fine
Scale pressure and saturation Profiles for Quarter-5-spot pattern injection. Figure 19b
shows the numerically upscaled permeability on 64 × 64 × 1 grid, Upscaled pressure
and saturation Profiles for Quarter-5-spot pattern injection. Figure 19c shows the neural
upscaled permeability on 64 × 64 × 1 grid, upscaled pressure and saturation Profiles for
Quarter-5-spot pattern injection. It can be seen that neural upscaling results are comparable
to numerically upscaled results.

Input Perm
Numerical. 

Upscaled

Neural. 

Upscaled Error

R = 0.90

Input Perm
Numerical. 

Upscaled
Neural. 

Upscaled Error

R = 0.91

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

R = 0.89

Neural. 

Upscaled
Neural. 

Upscaled Error
Input Perm

Figure 18. Figure showing sensitivity to number data set used for training and testing. Total data set
is increased by a factor of 10 in 3 successive cases. As expected the regression fit improves for each
case with more data values for training.
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(a) (b) (c)

Figure 19. (a) Figure showing Fine Scale Permeability on 128 × 128 × 1 grid, Fine Scale Pressure and
Saturation Profiles for Quarter-5-spot pattern injection. (b) Figure showing Numerically Upscaled
Permeability on 64 × 64 × 1 grid, Upscaled Pressure and Saturation Profiles for Quarter-5-spot
pattern injection. (c) Figure showing Neural Upscaled Permeability on 64 × 64 × 1 grid, Upscaled
Pressure and Saturation Profiles for Quarter-5-spot pattern injection.

7. Summary and Conclusions

In this paper the details of constructing a Neural network for tackling upscaling
problem is presented, referred to as Neural upscaling.

• The Neural upscaling method is developed using a feed-forward neural network with
fully connected hidden dense layers, and is trained using automatic differentiation
through a process called backpropagation.

• Paper also presents a study using the Neural upscaling method. Series of upscaling
tests are performed on cases involving varying degree of fine scale permeability het-
erogeneity. A self consistent study is performed where stochastically generated Perlin
field [45], which mimics the subsurface permeability distribution and heterogeneity,
is used for each grid level including the reference solution. Mean square error is
used a parameter to optimize network performance with the help of a large training
data-set comprising of over 100 realizations of permeability distribution. Equivalent
upscaled permeability is used as a measure of the performance of the neural upscaling
method in comparison to numerical and analytical upscaling methods. Error estimates
between Numerical upscaling and Neural upscaling are also obtained. Results for
various test cases that mimic the 2D permeability distribution are presented.

• Sensitivity to network layers and number of neurons is also performed, which indicates
that minimum 4 hidden layers are needed to achieve a reasonably good upscaled
permeability with minimum errors.
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• Sensitivity analysis also shows that results are sensitive to the total data set used for
training more compared to number of hidden layers of the neural network architecture.

• Although the neural upscaling method is a new approach to upscaling, it has one
limitation. The need for large amount of training data. In this paper Pseudo training
data has been generated using classical upscaling approach.
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