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Abstract. Verifying correctness of real time systems, reachable states analysis method is amply 

developed and used. However, this method described in scientific literature cannot avoid the 

endless increase of reachable state space. This paper presents an equivalent nodes search algorithm 

enabling to reduce the number of nodes in the reachable states graph. The application of this 

algorithm allows transforming the graph of the infinite reachable states into the graph with the 

finite node numbers. An example illustrates the algorithm. 
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1. Introduction 

The systems whose functioning depends on the time constraints are called the real time 

systems (Logothetis, 2004; Kopetz, 2011). Strict time limitations and timely solutions of 

serious problems are the main factors describing the real time systems. The importance 

of these factors is described in the definition given in the paper (Silberschatz, 1998). 

Referring to the definition, the real time system properly functions only in case when it 

returns the correct result and performs the right actions during the defined time 

conditions. The definition shows that the real time systems have to process the 

information and give the answer during the determined time or otherwise it can cause the 

serious problem. Consequently, time performs an important role (Bonhomme, 2013; 

Furia, 2008; Logothetis, 2004; Pranevicius, 2008; Luckham, 2011).  

Modeling the real time system functioning continuous time models are often used. 

The continuous time models use the real numbers domain for the time. They are the best 

for the modeling of the real time systems (Logothetis, 2004).  

Various methods of the real time system analysis are used. One of them, such as a 

reachable states analysis method is widely developed and used for the real time system 

(Bouyer, 2010; Pranevicius, 2008). Any system can have thousands or even hundred 

thousands of reachable states. It is obvious that the system at any time moment is only in 

a single state. The target of the reachable state method is to generate and check all the 

system states that can be reached from the initial system state. 

The main problem of this method is the exponential growth of the reachable state 

space (Knorreck, 2013). The state abstraction methods can help to solve this problem 

while trying to get the abstract system with the finite number of states.  
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The region graphs or simulation graphs are used in the real time models with 

continuous time as the abstraction method (Logothetis, 2004; Bouyer, 2010; Berard, 

2010; Miao, 2006). These graphs are used for the mathematical formalization of time 

automate trying to transform the infinite states space into the finite one. However, 

practically the region graph model is not used as the number of states grows 

exponentially when the number of actions increases (Tripakis, 2005). 

The aim of this paper is to present the algorithm enabling to decrease the number of 

nodes in the graph using the equivalent relationships, when the real time systems are 

described in piece-linear aggregate mathematical formalism. This formalism allows to 

fulfill correctness analysis based on the common formal specification and to make the 

simulation model of the analyzed system (Pranevičius, 2008). The correctness analysis is 

fulfilled using different validation and verification methods. One of them is the method 

of reachable states. The essence of this method is generation of the entire graph of 

system states. This graph is called the reachable states graph (RSG). Analysis of the 

graph enables the checking the specification correctness. The graph can help to analyze 

the characteristics of system.  

Analysis of the composed RSG both for the discrete and continuous time models is 

rather difficult because of the infinite number of nodes in the graph. Thus, this paper 

presents an algorithm to decrease the number of nodes in the reachable states graph 

using the equivalent relationships. The algorithm enables to transform the issue graph 

into the smaller one. Using the reachable states graph received after the transformation, 

the same answers as in the initial graph can be achieved. This is especially important 

when RSG is made for the continuous time models. 

The transformation algorithm of the reachable states graph for the continuous time 

models is given in the second part of the paper while the third part presents the small 

fragment showing how the algorithm performs. 

2. Transformation algorithm of the reachable states graph  

This work is a continuation of the previous article (Makackas, 2013). In the previous 

paper, the authors presented an algorithm how to make the reachable states graph in the 

models with the continuous time. When RSG is made according to this algorithm, then 

the received infinitive reachable states graph has the tree structure. This paper presents 

transformation of the infinitive tree to finite states graph.  

Further, some definitions that will be used for transformation of the reachable state 

tree are presented.  

Usually the system functioning is described by the states sequence: 

,,,
321

sss .            (1) 

An event that transfers the system is into another state is included trying to disclose 

the cause of the system state change. In this case, the system behavior is defined by the 

trajectory: 

,,,,,,,,
33221100

eseseses             (2) 

Other notion can be used:  

      3210

3210
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The trajectory or the route is called finite if it is made of finite numbers of elements. 

 



 Equivalent States Search Algorithm for Models with Continuous Time 227 

 

 

Rarely the real time system functions according to the strict event sequence because 

it is usually conditioned by various accidental changes. In this case the system 

functioning is described by the trajectory set  . Pointing out that the trajectories are 

analyzed beginning with the peculiar state, it can be written as:  

  


21
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e

k

e

kk
sss            (4) 

The trajectory set from the state 
k

s  is marked as  
k

s  and it is called as the end of 

the trajectory  ,,,,,,,,,,,
33221100 kk

seeseseses  from the k transition in the 

sequence. 

  

Definition 1. The trajectory is called periodical, if the two states 
i

s , j
s  exist,  where 

   
ji

ss  , ji  . 

 

When all the trajectories are periodical or have the finite length, then   can be 

expressed by the finite graph, otherwise the graph has the tree structure.  

When describing the system state change not only the event sequence should be 

known, but the time when the events take place as well. It is especially important for the 

real time systems. In this case, the system behavior is defined by the following 

trajectories that are called traces:  

              ,,,,,,,
3222111000

stestestes             (5) 

Other notion can be used:  
         33221100

3210
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Analyzing the trace      ,,,,,,
222111000

testestes  by T time units from the 

modeling start time moment 
0

t , the events time will be also recalculated from the point 

of view of the time moment Tt 
0

. The newly received trace is shown as follows: 

     ,,,,
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Definition 2. The trace 

         ,,,,,,,,,,,
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stestesstestess  is called 

periodical, if two states 
i

s and j
s exist, where    

ji
tt   , ji  . 
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considered equivalent when they matched the same trajectory, where 
2

1

1


 jj tt  and 

1

1

2


 jj tt , 0j . 

The equivalent class generated by the traces is called behavior and is defined as 

follows: 

     ,,,,,,
222111000

IesIesIes                (8) 

Other notation is used: 
             33221100
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In the formula (9) j
I  notes the time interval of the event j

e  occurrence.  
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Two behaviors     ,,,,, 1
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are called equal when 21

jj ss   ( 1

je  matches 2

je ), and their occurrence intervals are equal  

21

jj II   for all j . 

All the possible system behaviors marked as  , and  
k

s  – define the behavior 

system from the state 
k

s  or is called the end of the behavior 

         ,,,,,,,,,
222111000 kkk

sIeIesIesIes  from the k transition in the 

sequence. 

 

Definition 3. The behavior   is called periodical when its traces are periodical.  

 

The system detailed functioning can be shown by the graph when all the behaviors in 

the set   are periodical or finite. 

Having the behavior      ,,,,,,
222111000

IesIesIes  and moving the modeling 

start to the time moment T , the system behavior will be described as follows:  
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222

*

111

*




kkkkkkkkk
IesIesIesT .         (10) 

In the formula (10)   
jj

IaTaI  ,0max*
,  

jjj
j

ItTtjk  ,1max . 

Definition 4. Two states 
i

s  and j
s , are called equivalent in the behavior
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Assume the analysis of behavior 
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that corresponds to any tree branch.  

Seeking to check whether the states 
i

s  and j
s  are equivalent, there is necessary to 

check if the state discrete elements match. Fig. 1 presents the search algorithm of the 

equivalent states. Besides, there is necessary to check whether the continuous 

components describe the same further functioning of the system. As in the composing of 

RSG the absolute time is used then the values of the continuous components vary in 

those nodes. Trying to persuade that the continuous elements also match one should 

check whether this difference is “constant”. 

Definition 5. Assuming that in both states 
i

s and j
s are active the same operations 

1
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2
O , …, 

n
O . The interval condition   i
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k
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i
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k
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aaaa   minmin  are valid. Then the 

continuous components match. 
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The system behavior  is chosen  

For the state is  from the behavior   the 

next equivalent state js , with the same 

discrete component is determined. 

Checking whether the same active 

operations and corresponding continuous 

components values coincide. 

 

Fig. 1. The search algorithm of the equivalent states 

3. The example of equivalent state search 

The algorithm of the equivalent state search is illustrated by the small example. The 

system of two service equipment described in the previous paper (Makackas, 2013) is 

discussed. The mentioned paper depicts the algorithm estimating the time intervals 

where the events occurring in the system are defined. In this case, the tree node of the 

reachable states describes one system state that is made of three components: 

 Discrete state component  t ; 

 Continuous state component  tz ; 

 The time moment limitation sets 
R . This set elements are inequalities of 

the form 
ij

tt , where   is the constant and 
ij

tt ,  are time moments 

when the events occurred. 

The arch of the graph connecting two nodes defines: 

 When the transition can occur; 

 Which event generates this transition. 

The reachable states tree is composed using the algorithm of the reachable states 

graph described in the previous paper (Makackas, 2013). The composed tree of the 

reachable states has infinite number of nodes. It can be noticed that the same discrete and 

continuous node components start to repeat in the same branch, because they are similar 

from the point of view of the measurable period. 

To illustrate the algorithm of equivalent states search presented in this paper the tree 

fragment made of 10 nodes was used (Fig. 2). Black arrows indicate that the tree goes 

into an infinite number of states. 

The parameters of tree nodes from the previous article are these: 

  
000
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    
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  
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Fig. 2. Reachable state tree fragment 

While studying RSG nodes it can be noticed that some nodes structure is identical. It 

differs only by time moments during the given event number. For example, discussing 

the structure of the nodes 3 and 9 it can be noticed that these nodes are equivalent. It 

enables to state that such nodes that repeat after some measurable time exist. Thus the 

tree of the reachable states can be transformed into the graph where the nodes are 

connected and the system functioning is shown up to repeating nodes saying that the 

system functioning is analogous to the equivalent nodes.  
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The equivalent states are searched in the reachable state tree in accordance with the 

described transformation algorithm of reachable state graph. It should be proved that the 

nodes 3 and 9 are equivalent: 

  
2111

;,,6,4;0:3 Rtt  ,  

      where   64
01021
tttR   43

121
 ttt   

  
6133
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 where     4364
12101061
ttttttR       

  64
131
ttt  43

343
 ttt .  

The discrete components of these states are equal. It should be proved that the 

condition   i

k

i

k

i

l
l

aa min  j
k

j

k

j

l
l

aa  min  is valid for the 

continuous state components. In this case in the third node it is 
i

l
min 

  44min
11
 tt  and in the ninth node it is 

i

l
min    44min

33
 tt .  

Examining the first continuous component of the third state we get 

   2;06,4
11

 tt . Examining the first continuous component of the ninth state 

applying the condition we get    2;06,4
33

 tt . It follows that the continuous 

components satisfy the condition, thus these states are equivalent.  
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Fig. 3. Transformed graph 

The transformed graph shown in Fig. 3 connects the discussed nodes. 

All the rest tree nodes are studied analogically. The further calculations are fulfilled 

by the analogue thus, they are not presented. Finding all the equivalent states the 

reachable state tree was transformed into the reachable state graph. 
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4. Conclusions 
 

Verifying correctness of real time systems, a reachable states graph analysis method 

is widely developed. Because of the infinite number of the nodes in the reachable states 

graph is impossible to analyze the graph.  

This paper presented an algorithm that enables to minimize the nodes number of the 

reachable state graph using the equivalent relationships. Using the relations, the 

reachable states graph can be transformed into the graph with the finite nodes number. 

It is especially important for continuous time models when transforming the graph 

into the smaller one and solving the same problems as in the original graph.  
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