
Baltic J. Modern Computing, Vol. 3 (2015), No. 4, 225-233

Equivalent States Search Algorithm for Models

with Continuous Time

Dalius MAKACKAS, Regina MISEVIČIENĖ

Kaunas University of Technology, K.Donelaicio 73, LT-44029 Kaunas, Lithuania

dalius.makackas@ktu.lt, regina.miseviciene@ktu.lt

Abstract. Verifying correctness of real time systems, reachable states analysis method is amply

developed and used. However, this method described in scientific literature cannot avoid the

endless increase of reachable state space. This paper presents an equivalent nodes search algorithm

enabling to reduce the number of nodes in the reachable states graph. The application of this

algorithm allows transforming the graph of the infinite reachable states into the graph with the

finite node numbers. An example illustrates the algorithm.

Keywords: real time systems, continuous time models, verification, piece-linear aggregate

formalism

1. Introduction

The systems whose functioning depends on the time constraints are called the real time

systems (Logothetis, 2004; Kopetz, 2011). Strict time limitations and timely solutions of

serious problems are the main factors describing the real time systems. The importance

of these factors is described in the definition given in the paper (Silberschatz, 1998).

Referring to the definition, the real time system properly functions only in case when it

returns the correct result and performs the right actions during the defined time

conditions. The definition shows that the real time systems have to process the

information and give the answer during the determined time or otherwise it can cause the

serious problem. Consequently, time performs an important role (Bonhomme, 2013;

Furia, 2008; Logothetis, 2004; Pranevicius, 2008; Luckham, 2011).

Modeling the real time system functioning continuous time models are often used.

The continuous time models use the real numbers domain for the time. They are the best

for the modeling of the real time systems (Logothetis, 2004).

Various methods of the real time system analysis are used. One of them, such as a

reachable states analysis method is widely developed and used for the real time system

(Bouyer, 2010; Pranevicius, 2008). Any system can have thousands or even hundred

thousands of reachable states. It is obvious that the system at any time moment is only in

a single state. The target of the reachable state method is to generate and check all the

system states that can be reached from the initial system state.

The main problem of this method is the exponential growth of the reachable state

space (Knorreck, 2013). The state abstraction methods can help to solve this problem

while trying to get the abstract system with the finite number of states.

mailto:dalius.makackas@ktu.lt
mailto:regina.miseviciene@ktu.lt

226 Makackas and Misevičienė

The region graphs or simulation graphs are used in the real time models with

continuous time as the abstraction method (Logothetis, 2004; Bouyer, 2010; Berard,

2010; Miao, 2006). These graphs are used for the mathematical formalization of time

automate trying to transform the infinite states space into the finite one. However,

practically the region graph model is not used as the number of states grows

exponentially when the number of actions increases (Tripakis, 2005).

The aim of this paper is to present the algorithm enabling to decrease the number of

nodes in the graph using the equivalent relationships, when the real time systems are

described in piece-linear aggregate mathematical formalism. This formalism allows to

fulfill correctness analysis based on the common formal specification and to make the

simulation model of the analyzed system (Pranevičius, 2008). The correctness analysis is

fulfilled using different validation and verification methods. One of them is the method

of reachable states. The essence of this method is generation of the entire graph of

system states. This graph is called the reachable states graph (RSG). Analysis of the

graph enables the checking the specification correctness. The graph can help to analyze

the characteristics of system.

Analysis of the composed RSG both for the discrete and continuous time models is

rather difficult because of the infinite number of nodes in the graph. Thus, this paper

presents an algorithm to decrease the number of nodes in the reachable states graph

using the equivalent relationships. The algorithm enables to transform the issue graph

into the smaller one. Using the reachable states graph received after the transformation,

the same answers as in the initial graph can be achieved. This is especially important

when RSG is made for the continuous time models.

The transformation algorithm of the reachable states graph for the continuous time

models is given in the second part of the paper while the third part presents the small

fragment showing how the algorithm performs.

2. Transformation algorithm of the reachable states graph

This work is a continuation of the previous article (Makackas, 2013). In the previous

paper, the authors presented an algorithm how to make the reachable states graph in the

models with the continuous time. When RSG is made according to this algorithm, then

the received infinitive reachable states graph has the tree structure. This paper presents

transformation of the infinitive tree to finite states graph.

Further, some definitions that will be used for transformation of the reachable state

tree are presented.

Usually the system functioning is described by the states sequence:

,,,
321

sss . (1)

An event that transfers the system is into another state is included trying to disclose

the cause of the system state change. In this case, the system behavior is defined by the

trajectory:

,,,,,,,,
33221100

eseseses (2)

Other notion can be used:

  3210

3210

eeee
ssss (3)

The trajectory or the route is called finite if it is made of finite numbers of elements.

 Equivalent States Search Algorithm for Models with Continuous Time 227

Rarely the real time system functions according to the strict event sequence because

it is usually conditioned by various accidental changes. In this case the system

functioning is described by the trajectory set  . Pointing out that the trajectories are

analyzed beginning with the peculiar state, it can be written as:

  


21

1

e

k

e

kk
sss (4)

The trajectory set from the state
k

s is marked as  
k

s and it is called as the end of

the trajectory  ,,,,,,,,,,,
33221100 kk

seeseseses from the k transition in the

sequence.

Definition 1. The trajectory is called periodical, if the two states
i

s , j
s exist, where

   
ji

ss  , ji  .

When all the trajectories are periodical or have the finite length, then  can be

expressed by the finite graph, otherwise the graph has the tree structure.

When describing the system state change not only the event sequence should be

known, but the time when the events take place as well. It is especially important for the

real time systems. In this case, the system behavior is defined by the following

trajectories that are called traces:

       ,,,,,,,
3222111000

stestestes (5)

Other notion can be used:
         33221100

3210

tetetete ssss (6)

Analyzing the trace      ,,,,,,
222111000

testestes by T time units from the

modeling start time moment
0

t , the events time will be also recalculated from the point

of view of the time moment Tt 
0

. The newly received trace is shown as follows:

     ,,,,
111

TtesTtesT
kkkkkk



 , where

kk
tTt 

1
. (7)

Definition 2. The trace

         ,,,,,,,,,,,
211121110 


jjjjjjjiiiiiii

stestesstestess is called

periodical, if two states
i

s and j
s exist, where    

ji
tt   , ji  .

Two traces    ,,,, 1

1

1

1

1

1

1

0

1

0

1

0

1 testes and    ,,,, 2

1

2

1

2

1

2

0

2

0

2

0

2 testes are

considered equivalent when they matched the same trajectory, where
2

1

1


 jj tt and

1

1

2


 jj tt , 0j .

The equivalent class generated by the traces is called behavior and is defined as

follows:

     ,,,,,,
222111000

IesIesIes (8)

Other notation is used:
             33221100

3210

IeIeIeIe
ssss , (9)

In the formula (9) j
I notes the time interval of the event j

e occurrence.

228 Makackas and Misevičienė

Two behaviors     ,,,,, 1

2

1

1

1

1

1

1

1

0

1

0

1

01
sIesIes and     ,,,,, 2

2

2

1

2

1

2

1

2

0

2

0

2

02
sIesIes

are called equal when 21

jj ss  (1

je matches 2

je), and their occurrence intervals are equal

21

jj II  for all j .

All the possible system behaviors marked as  , and  
k

s – define the behavior

system from the state
k

s or is called the end of the behavior

         ,,,,,,,,,
222111000 kkk

sIeIesIesIes from the k transition in the

sequence.

Definition 3. The behavior  is called periodical when its traces are periodical.

The system detailed functioning can be shown by the graph when all the behaviors in

the set  are periodical or finite.

Having the behavior      ,,,,,,
222111000

IesIesIes and moving the modeling

start to the time moment T , the system behavior will be described as follows:

       ,,,,,, *

222

*

111

*




kkkkkkkkk
IesIesIesT . (10)

In the formula (10)   
jj

IaTaI  ,0max*
,  

jjj
j

ItTtjk  ,1max .

Definition 4. Two states
i

s and j
s , are called equivalent in the behavior

             ,,,,,,,,,,,,,,,
21112111111000 


jjjjjjjiiiiiii

sIesIessIesIesIesIes ,

when    
2121

:, TTITIT
ji

  .

Assume the analysis of behavior

             ,,,,,,,,,,,,,,,
21112111111000 


jjjjjjjiiiiiii

sIesIessIesIesIesIes ,

that corresponds to any tree branch.

Seeking to check whether the states
i

s and j
s are equivalent, there is necessary to

check if the state discrete elements match. Fig. 1 presents the search algorithm of the

equivalent states. Besides, there is necessary to check whether the continuous

components describe the same further functioning of the system. As in the composing of

RSG the absolute time is used then the values of the continuous components vary in

those nodes. Trying to persuade that the continuous elements also match one should

check whether this difference is “constant”.

Definition 5. Assuming that in both states
i

s and j
s are active the same operations

1
O ,

2
O , …,

n
O . The interval condition   i

kk

i

k
tew   , , nk ,,2,1  in the state

i
s satisfies the condition   j

kk

j

k
tew   , , nk ,,2,1  ., in the state j

s only if

the conditions    j
k

j

k

j

l
l

i

k

i

k

i

l
l

aaaa   minmin are valid. Then the

continuous components match.

 Equivalent States Search Algorithm for Models with Continuous Time 229

The system behavior  is chosen

For the state is from the behavior  the

next equivalent state js , with the same

discrete component is determined.

Checking whether the same active

operations and corresponding continuous

components values coincide.

Fig. 1. The search algorithm of the equivalent states

3. The example of equivalent state search

The algorithm of the equivalent state search is illustrated by the small example. The

system of two service equipment described in the previous paper (Makackas, 2013) is

discussed. The mentioned paper depicts the algorithm estimating the time intervals

where the events occurring in the system are defined. In this case, the tree node of the

reachable states describes one system state that is made of three components:

 Discrete state component  t ;

 Continuous state component  tz ;

 The time moment limitation sets
R . This set elements are inequalities of

the form 
ij

tt , where  is the constant and
ij

tt , are time moments

when the events occurred.

The arch of the graph connecting two nodes defines:

 When the transition can occur;

 Which event generates this transition.

The reachable states tree is composed using the algorithm of the reachable states

graph described in the previous paper (Makackas, 2013). The composed tree of the

reachable states has infinite number of nodes. It can be noticed that the same discrete and

continuous node components start to repeat in the same branch, because they are similar

from the point of view of the measurable period.

To illustrate the algorithm of equivalent states search presented in this paper the tree

fragment made of 10 nodes was used (Fig. 2). Black arrows indicate that the tree goes

into an infinite number of states.

The parameters of tree nodes from the previous article are these:

  
000

;,,6,4;0:1 Rtt  , where 
0

R

    
111111

;,5,3,6,4;0:2 Rtttt  , where  64
010011
 tttRR

  
2111

;,,6,4;0:3 Rtt  , where  43
1211121
 tttRR

  
2212

;,,6,;0:4 Rtt  , where  54
1211122
 tttRR

      
23221222

;4,2,5,,6,4;0:5 Rtttttt  ,

230 Makackas and Misevičienė

 where  54
1211123
 tttRR

    
313333

;,5,3,6,4;0:6 Rtttt  , where  64
1312131
 tttRR

    
413333

;,5,3,6,4;0:7 Rtttt  , where  6
1322241
 tttRR

    
512222

;4,2,,6,4;0:8 Rtttt  , where  5
1322351
 tttRR

  
6133

;,,6,4;0:9 Rtt  , where  43
3433161
 tttRR

  
6234

;,,6,;0:10 Rtt  , where  54
3433162
 tttRR

  6,4,
001111
 tttel

  4 ,3,
112221
 tttel

  5 ,4,
112222
 tttel

  5,4,
112123
 tttel

  6,4,
113131
 tttel

  6,,
123141
 tttel

  6,,
123251
 tttel

  4 ,3,
334261
 tttel

  5 ,4,
334262
 tttel

5

21l

22l
23l

51l

8

4

41l

7

2

3

31l

6

1

11l

61l
62l

10 9

Fig. 2. Reachable state tree fragment

While studying RSG nodes it can be noticed that some nodes structure is identical. It

differs only by time moments during the given event number. For example, discussing

the structure of the nodes 3 and 9 it can be noticed that these nodes are equivalent. It

enables to state that such nodes that repeat after some measurable time exist. Thus the

tree of the reachable states can be transformed into the graph where the nodes are

connected and the system functioning is shown up to repeating nodes saying that the

system functioning is analogous to the equivalent nodes.

 Equivalent States Search Algorithm for Models with Continuous Time 231

The equivalent states are searched in the reachable state tree in accordance with the

described transformation algorithm of reachable state graph. It should be proved that the

nodes 3 and 9 are equivalent:

  
2111

;,,6,4;0:3 Rtt  ,

 where   64
01021
tttR  43

121
 ttt

  
6133

;,,6,4;0:9 Rtt  ,

 where     4364
12101061
ttttttR

  64
131
ttt  43

343
 ttt .

The discrete components of these states are equal. It should be proved that the

condition   i

k

i

k

i

l
l

aa min  j
k

j

k

j

l
l

aa  min is valid for the

continuous state components. In this case in the third node it is
i

l
min 

  44min
11
 tt and in the ninth node it is

i

l
min    44min

33
 tt .

Examining the first continuous component of the third state we get

   2;06,4
11

 tt . Examining the first continuous component of the ninth state

applying the condition we get    2;06,4
33

 tt . It follows that the continuous

components satisfy the condition, thus these states are equivalent.

5

21l
22l 23l

51l

8

4

41l

7

2

3

31l

6

1

11l

61l

62l

10

Fig. 3. Transformed graph

The transformed graph shown in Fig. 3 connects the discussed nodes.

All the rest tree nodes are studied analogically. The further calculations are fulfilled

by the analogue thus, they are not presented. Finding all the equivalent states the

reachable state tree was transformed into the reachable state graph.

232 Makackas and Misevičienė

4. Conclusions

Verifying correctness of real time systems, a reachable states graph analysis method

is widely developed. Because of the infinite number of the nodes in the reachable states

graph is impossible to analyze the graph.

This paper presented an algorithm that enables to minimize the nodes number of the

reachable state graph using the equivalent relationships. Using the relations, the

reachable states graph can be transformed into the graph with the finite nodes number.

It is especially important for continuous time models when transforming the graph

into the smaller one and solving the same problems as in the original graph.

References

Berard B.; Bidoit M.; Finkel A.; Laroussinie F.; Petit A.; Petrucci L.; Schnoebelen P. (2001).

Systems and Software Verification: Model-Checking Techniques and Tools, Springer -Verlag

Bonhomme, P. (2013). Scheduling and control of real-time systems based on a token player

approach, Journal of DiscreteEvent Dynamic Systems, 23(2), 197-209

Bouyer, P.; Laroussinie, F. (2010). Model Checking Timed Automata, Merz S.; Navet N. (Eds),

Modeling and Verification of Real-Time Systems: Formalisms and Software Tools, ISTE,

London

Furia, C. A., Pradella, M., and Rossi, M. (2008). Automated verification of dense-time MTL

specifications via discrete-time approximation. In Proceedings of the 15th International

Symposium on Formal Methods (FM'08), 132-147

Knorreck, D., Apvrille, L., Pacalet, R. (2013). Formal system‐level design space exploration.

Concurrency and Computation: Practice and Experience, 25, 250-264

Kopetz, H. (2011). Real-time systems: design principles for distributed embedded applications.

Springer Science+ Business Media

Logothetis, G. (2004). Specificication, Modelling, Verification and Runtime Analysis of Real Time

Systems, IOS Press

Luckham, David C. (2011). Event Processing for Business: Organizing the Real-Time Enterprise.

Hoboken, New Jersey: John Wiley & Sons, Inc.

Makackas, D.; Miseviciene R.; Pranevicius H. (2013). Behavior Analysis of Real-Time Systems

Using PLA Method, Proceeding of Information and Software Technologies, 392-402

Miao, H.; Xu, Q. (2006). Constructing the Reaching Region Graph for Timed Automata with PVS,

IJCSNS, 6(7A), 175

Pranevicius, H. (2008). Complex systems formalization and analysis, Technologija, Kaunas

Silberschatz A., Galvin P.B. (1998). Operating System Concepts. Addison Weslwy Longman, Inc.

Tripakis, S., Yovine, S., Bouajjani, A. (2005) Checking Timed Büchi Automata Emptiness

Efficiently. Formal Methods in System Design 26, 267–292

http://dl.acm.org/citation.cfm?id=1965314&CFID=448087037&CFTOKEN=58320829
http://dl.acm.org/citation.cfm?id=1965314&CFID=448087037&CFTOKEN=58320829

 Equivalent States Search Algorithm for Models with Continuous Time 233

Authors’ information

Dalius Makackas is a doctor of informatics sciences, an associated professor in the Department of

Applied Informatics at Kaunas University of Technology. His main research interests include

formal methods, real time systems and theory of algorithms.

Regina Misevičienė is a doctor of informatics sciences, an associated professor in Applied

Informatics Department at Kaunas University of Technology. Her interests include creation of

formal specifications using logic programming techniques, validation, and verification of

protocols, business processes and knowledge bases.

Received August 5, 2015, accepted October 5, 2015

