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Abstract: Ankle injuries caused by the Anterior Talofibular Ligament (ATFL) are the most common
type of injury. Thus, finding new ways to analyze these injuries through novel technologies is critical
for assisting medical diagnosis and, as a result, reducing the subjectivity of this process. As a result,
the purpose of this study is to compare the ability of specialists to diagnose lateral tibial tuberosity
advancement (LTTA) injury using computer vision analysis on magnetic resonance imaging (MRI).
The experiments were carried out on a database obtained from the Vue PACS - Carestream software,
which contained 132 images of ATFL and normal (healthy) ankles. Because there were only a few
images, image augmentation techniques was used to increase the number of images in the database.
Following that, various feature extraction algorithms (GLCM, LBP, and HU invariant moments)
and classifiers such as Multi-Layer Perceptron (MLP), Support Vector Machine (SVM), k-Nearest
Neighbors (kNN), and Random Forest (RF) were used. Based on the results from this analysis, for
cases that lack clear morphologies, the method delivers a hit rate of 85.03% with an increase of
22% over the human expert-based analysis.

Keywords: ankle ligament injury; MRI; data augmentation; feature extraction

1. Introduction

Chronic ankle instability is mostly caused by ankle strain and it develops mostly as
anterior talofibular ligament (ATFL) injury [1]. By observing its progressive nature, it may
also provoke a chain of injuries on tendons and cartilage, among them a few of which
are irreversible, where the early diagnosis and treatment of chronic ankle instability may
reduce morbidity [2]. ATFL injury is considered as one of the most frequent types of ankle
injury [3]. Lateral ligament injuries usually occur during plantar flexion and inversion,
which is the position of maximum stress on the ATFL ligament, which is the most common
ligament to tear, and may occur during inversion injury [4].

Among sedentary patients, instability complaints can be too late for making sub-
sidiary tests, which are crucial for early treatment. Magnetic resonance imaging (MRI)
provides optimal visualization of morphological changes in ankle ligament structures [5–8],
however, the present set of literature lacks an accurate definition of a normal ATFL
morphology [9–12]. Moreover, low accuracy is also observed in many studies [12–14] which
could be due to the fact that it is a static exam used to study a structure that performs dy-
namic joint control. Further, it can potentially produce false negatives for ligament lesions,
which would occur if the ligament was subjected to a yo-yo effect [11,13,15–18]. While
staying at rest, it would exhibit a normal morphological structure, but leads to increased
fiber elasticity, caused by a bad local collagen quality or quantity [19]. The prediction on the
dynamic behavior of the ligament is possible even in a static exam such as MRI since this
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exam generates a good definition of the ultrastructure of tissues [1,17,20,21]. However, this
detailed characterization is not possible in medical diagnosis due to its lack of precision,
however, it could be addressed with the aid of computer vision [13,22].

In view of this, several studies have been carried out with the aim of proposing
Computer Aided Design (CAD)-based medical diagnosis systems for various fields of
medicine such as the diagnosis of Parkinson’s disease [23] and the Alzheimer’s disease [24],
recognition and detection of atrial fibrillation [25,26], virtual nasal endoscopy system [27],
lung nodule detection [28], oral cancer classification [29], breast cancer detection [30,31], as
well as ankle prostheses and diseases [32–34], and many more [35–38].

This study aims to compare the human analysis of morphological changes in ATFL
with computer vision for extraction of image characteristics and analyze them in compari-
son with the patient’s clinical presentation.

The principle contributions of this study are listed below:

• Stratify the possibilities of morphological variations on the ligament and its correction
with ankle instability;

• Compare the ability for diagnosis by the magnetic resonance of different evaluators;
• To develop a method for extracting and classifying ankle ligaments to aid medical

management;
• To compare and analyze different feature extraction techniques;
• Validate the results through statistical evaluations;
• To compare and analyze human diagnostic capability with software-based capability.

2. Materials and Methods

In this section, the stages of patient selection and the application of the proposed
method will be presented, by addressing the forms of selection of the area of the ligament,
through the feature extraction methods. Subsequently, the classification strategies chosen
for analysis will be highlighted along with their core operational principles in automated
ankle ligament injury diagnosis.

2.1. Ethical Statements

All subjects gave their informed consent for inclusion before they participated in the
study. The study was conducted in accordance with the Declaration of Helsinki, and the
protocol was approved by the Institutional Research Ethics Committee Medical School of
the Federal University of Ceará, Fortaleza, Ceará, Brazil under CAE:54356421.5.0000.5043
in December 2021.

2.2. Patient Selection

In this work, according to the criteria adopted by the International Ankle Consortium
(IAC) as shown in Table 1 [22], patients were categorized into two groups: with or without
Chronic Ankle Instability (CAI). The evaluation was carried out with the consideration of
the following criteria compiled from the literature, as well as a foot and ankle surgeon with
10 years of experience and an orthopedist with 40 years of experience.

This is a prospective study done at a postgraduate program in surgery at Universi-
dade Federal do Ceará (UFC) conducted between August 2021 and January 2022 using
morphological analysis of the ATFL in MRI examinations, in a T2-weighted axial section,
from 321 patients. Tests were done for diagnostic purposes related and not related to ankle
instability. Exclusion criteria included were patients with ankle lesions and without a
history of fracture, surgery, or anatomical deformities [20,39]. ATFL usually consists of
two fiber bundles, and seldom has three bands, as reported in previous studies [40,41]. All
these bundles are usually present in the 0.57 mm anterior fibular margin from the tip of the
fibula [42]. In this area, the cut with the best visualization having the origin and insertion
of the ligament was selected for analysis by author number 1, with the protocol considered
for analysis with T2 axial cuts was TR = 3512 m, TE = 58.56, FOV = 66× 24 cm, and
ST = 4 mm.
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Table 1. Inclusion criteria for patients.

Standard inclusion criteria endorsed by the international ankle consortium for
enrolling patients who fall within the heterogeneous condition of chronic ankle
instability in controlled research
1. A history of at least one significant ankle sprain
At least 12 months prior
to study enrollment

Associated with inflammatory symptoms

Created at least one in-
terrupted day of desired
physical activity

Acute traumatic injury to the lateral ligament complex of
the ankle joint as a result of excessive inversion of the rear
foot or a combined plantar flexion and adduction of the foot.
This usually results in some initial deficits of functional and
disability.

2. A history of the previously injured ankle joint “giving way”, and/or recur-
rent sprain, and/or “feelings of instability”
Subjects should report
at least two episodes of
giving way in the six
months prior to study en-
rollment

Giving way: the recurring occurrence of uncontrolled and
unpredictable bouts of excessive rear foot inversion that do
not result in an acute lateral ankle injury.

Recurrent sprain: two or
more sprains to the same
ankle

Self-reported ankle instability confirmed with a validate an-
kle instability, a specific questionnaire using the associated
cutoff score: Ankle Instability Instrument, answering yes to
at least five yes/no question.

3. Foot and Ankle Outcome Score: score of <75% in three or more categories

2.3. Computational Characterization of the ATFL

With the image added, an interface is opened to select the region of the ligament. With
the selection of the ligament area performed, the feature extractors are applied, performing
all possible combinations, individually, in pairs, in trios, and all together. Finally, these
images are classified into ATFL Lesion and Healthy Control. Figure 1 highlights the general
sequence of stages involved in clinical decision-making from the acquisition of ankle
ligament MRI images.

Figure 1. Sequence of stages involved in the clinical decision making of ankle ligament injury from
the MRI images.
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2.4. Description of the Database

The MRI images considered for this study are obtained from the Vue PACS – Care-
stream program in DICOM format, as axial T2-weighted slices at the ATFL level. Among
them, 17 images are with ATFL diagnosis and another 17 images are with the healthy diag-
nosis kind. For increasing the number of images in the database, the data augmentation
technique was applied. The image transformations used were shear, rotation, horizontal
translation (x-axis), and vertical translation (y-axis), with 10◦, 10◦, 5 ◦ and 5◦ values, re-
spectively. For each image, the type of transformation is randomly selected, incrementing
three times. Thus, the final database will contain the images after the image transformation
process together with the original images.

2.5. Data Extraction

To perform feature extraction from ankle computed tomography images, the following
methods were used.

2.5.1. Gray Level Co-Occurrence Matrix (GLCM)

GLCM is used for analyzing pixels in the images, using texture calculations to de-
termine the level of gray in the second order. It represents the relative frequencies of a
pair of shades of gray, that are present at a certain distance and angle. The elements of
GLCM are the relative frequencies Pij of the presence in the image neighboring points
with bright points Ii and Ij located at a distance d from each other in one from four an-
gular direction {0, 45, 90, 135} degrees [43]. Six features are extracted through the GLCM
technique, namely: contrast, dissimilarity, homogeneity, energy, correlation, and angular
second moment [44–46].

2.5.2. Local Binary Patterns (LBP)

LBP is a method that considers eight neighbors of a pixel and labels the pixels in
the image with the neighborhood threshold of each one, treating the result as a binary
number [47]. LBP uses a local area pattern to describe the texture, where each pixel is
marked by a code value formed by the original texture from the local neighborhood that
best matches it. By applying the LBP operator to each pixel of the image, we can construct
a histogram in which each LBP code corresponds to a separate column. MRI images can
be viewed as a set of all sorts of local features that are well described using local binary
patterns. To take into account information about their location in the image, the image
is divided into sub-regions, wherein each LBP histogram is calculated. By concatenating
these histograms, a general histogram can be obtained that takes into account both local
and global features of the image.

2.5.3. Hounsfield Unit Invariant Moments

The Hounsfield scale is a quantitative scale for the radiodensity of MRI and other
similar type images. The scale of Hounsfield units (HU) is a linear lesion scale relation to
dispersed water, the bulk density of which was taken as 0 HU. By using HU, one can easily
filter images, removing all pixel values that differ from the one we are interested in, in a
range by more than the specified threshold. Thus, one can select all pixels in the image, on
which, according to the Hounsfield scale bones are displayed.

The HU invariant moment is a method used to obtain the characteristics of digital
objects, such as position, axis rotation, and changes in scale, reducing errors in recognition
or identification [48]. In [49], seven functions were defined as nonlinear representation at
regular moments that are invariant to rotation, scale, and translation.

2.5.4. Dimensional Characteristics (DC)

In order to analyze some relevant information regarding the computed tomography
of the ankle, measures such as ligament length, total area, the standard deviation of the
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ligament, and the standard deviation of the selected area were calculated, which analyzes
both the ligament and the neighboring regions.

2.6. Classification Methods

To classify the data extracted by GLCM, LBP, Invariant Moments of HU, and dimen-
sional characteristics, the following set of classifiers were used for analysis.

2.6.1. Multi Layer Perceptron (MLP)

MLP is a supervised learning algorithm, of the type feedforward artificial neural
network (ANN) that consists of at least three layers. Here, the input layer is used to collect
the input signal, and the output layer provides a decision. The set of layers between the
input and output layers are treated as a hidden layer [50].

This classifier uses a backpropagation algorithm to perform data training, thus each
layer is connected by weight, threshold, and transfer function to transfer data from the
front to the back to the output layer. If the error between output layer data and the known
data does not match the target error, the layer weights and limits are adjusted backward
according to the training algorithm until the error converges to the desired limit [51].

2.6.2. Support Vector Machine (SVM)

SVM is a supervised learning algorithm that employs structural risk minimization
from statistical learning theory [52]. SVM can be used both on linearly separable and
non-linearly separable data. In cases where the data are linearly separable, SVM builds an
optimal hyperplane that separates two different groups of feature vectors with a maximum
margin. In certain cases, where the data are not linearly separable, SVM maps its input into
a high-dimensional feature space by applying a kernel function [53].

2.6.3. Random Forest (RF)

The RF algorithm is one of a supervised learning method that includes a series of
tree predictors, where each tree is based on the values of a randomly sampled vector with
the same distribution across all trees in the forest. Thus, the results of each of these trees
are calculated separately and then combined to provide a favorable prediction [54,55]. RF
is an enhanced version of the decision tree algorithm, considering that the classification
capacity of a single tree may be small. When a large number of decision trees are generated
at random, the most likely categorization of the test samples may be determined based on
the classification results of each tree [56].

2.6.4. k-Nearest Neighbors (k-NN)

The k-NN algorithm is one of a non-parametric method, which is used for classification
that checks the classes of a chosen number of training data samples surrounding a test
data sample. Further, in order to make a prediction of which class the training data sample
will belong to, it finds similarities in the data on every test observation [57,58]. The input
consists of the k-training samples, while the classification is done by voting the class of
each neighboring data point by assigning it to the class. So, the samples find their place at
k-nearest neighbors in the class, so that when completed, the output is classified, and its
association indicates which of the data points belongs to which class.

3. Experimental Setup and Performance Metrics

In this section, the experimental setup chosen for the deployment of the MRI analysis
of the classifiers, as well as the validation metrics with the chosen configurations are
presented. Subsequently, the medical analysis strategy used in this study is elaborated. As
the most recent studies analyzed between 100 and 600 patients, and most of them classified
the ligament in a more simplified fashion as normal ligament or altered ligament [14,17],
this study made the difference between a normal, abnormal, and absent ligament, and so a
larger sample was chosen.
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The dataset obtained through the extractors used was split using K-fold
Cross-Validation with 20 fields. Hyper-parameters were tuned using a grid search. The
SVM parameters are the γ ∈ [2−15, 2−1] and C ∈ [2−5, 25]. The RF parameter is the num-
ber of trees in the forest ∈ [50:500]. The MLP parameters were the number of hidden
layers ∈ [1:5], the number of neurons in hidden layer ∈ [50:500], α ∈ [00001.1], and learning
rate ∈ [00001, 0.9999]. In K-NN, the number of neighbors ∈ [3, 10] and leaf size ∈ [10, 50].

The experiments were executed on a PC with Windows 11 operating system, 8-core
i7 11800H 4.6GHz CPU, 16Gb of DDR4 RAM, 3200 MHz, and NVIDIA Geforce RTX 3060,
6GB GDDR6 graphics card.

3.1. Validation Metrics

To assess the performance, a confusion matrix was used employing the concepts of
True Positive (TP), False Positive (FP), True Negative (TN), and False Negative (FN), as
shown in Figure 2.

Figure 2. The confusion matrix highlights the validation metrics chosen for experimentation and analysis.

Thus, we have the definitions of TP, FP, TN, and FN below:

• True Positive (TP): The TP occurs when considering the real dataset, where the ATFL
class was predicted correctly as the ATFL class;

• True Negative (TN): The TN occurs when considering the actual dataset, where the
healthy control class was correctly predicted as the healthy control class;

• False Negative (FN): The FN occurs when considering the real set of data, where the
class that is sought to be predicted was incorrectly predicted. This happens, when it
was supposed to be ATFL and was classified as a healthy control;

• False Positive (FP): The FP occurs considering the real set of data, where the class
that is sought to be predicted was incorrectly predicted. This happens, when it was
supposed to be healthy control and was classified as ATFL.

Considering the confusion matrix, five metrics were used in order to evaluate the
results, namely: Accuracy (AccGlobal), f1-score (F1score), ATFL class hit rate (ATFL), and
class hit rate Healthy Control (HealthyControl).

• Accuracy: Refers to the global hit probability, which is the measure of general hit rate
considering the two analyzed classes, considering errors and hits.

AccGlobal =
TP + TN

TP + TN + FP + FN
× 100%

• F1-score: Refers to the harmonic mean between accuracy and recall. It is often used to
evaluate unbalanced bases.

F1− score = 2× Precision ∗ Recall
Precision + Recall

× 100%

• ATFL class hit rate (ATFL): Refers to the probability that a patient who has a positive
diagnosis for ATFL actually has ATFL.
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ATFL =
TP

TP + FP
× 100%

• Healthy control class hit rate (HealthyControl): Refers to the probability of a patient
who has a negative diagnosis for ATFL, that is, a patient from the healthy control class
and that does not have ATFL.

HealthyControl =
TN

TN + FN
× 100%

3.2. Medical Analysis

For human analysis, ATFL was assessed by two examiners (one foot and ankle surgeon,
both with rich experience of 10 and 40 years, respectively, in their corresponding fields) to
address potential sources of bias, with comparative intra and interobserver analysis using
the intraclass correlation coefficient (ICC). ATFL thickness was measured in T2-weighted
axial sections, selecting the section where the highest ligament thickness was obtained at
its midpoint. In addition to thickness, the ligaments were classified as normal, abnormal
(altered signal or contour), or absent (Figure 3).

IBM SPSS Statistics (IBM, Armonk, NY, USA) was used for calculations. The char-
acteristics of the study population were analyzed using the t-test with equal variables
(after analysis with the F-test) and a fixed alpha of 0.05 for all the comparisons. The fol-
lowing variables were analyzed: minimum, maximum, average, standard deviation, and
Student’s t-test at a 95% confidence interval of the ligament thickness obtained in addition
to the intraclass correlation coefficient (0.83). Moreover, the minimum, maximum, average,
and standard deviation of the participant’s age was also calculated to analyze possible
study limitations.

Figure 3. MRI of the ankle in a T2-weighted axial section at the height where the talus is most visible
for ATFL analysis. (A): normal ligament (rectilinear and homogeneous); (B): abnormal ligament due
to altered signal; (C): abnormal ligament due to altered contours; and (D): absent ligament.

4. Results and Discussion

In this section, the results obtained from the proposed methodology in association
with the state-of-the-art methods used in this work will be discussed, both for human and
computational analysis.
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4.1. Human Analysis

A total of 321 patients were included for the study, among them 220 and 101 were
women and men, respectively, aged between 18 and 81 years, with an average of 33.5 years.
After analysis, 276 patients were found to have stable ankles and 45 were diagnosed as
unstable. An alpha of 0.830 was used for the statistical analysis of interrater reliability. The
Intraclass Correlation Coefficient (ICC) was 0.710 and the 95% confidence interval exhibited
a lower and upper limit of 0.627 and 0.777, respectively. The proportions between the
morphological characteristics of the ligaments and CAI diagnosis are presented in Figure 4.

Figure 4. Distribution of normal, abnormal, and absent ATFL and CAI.

MRI sensitivity and specificity in diagnosing CAI were assessed in two situations,
considering CAI when the ligament exhibited any morphological change or only CAI when
the ligament was absent. The findings from these analysis are described in Table 2.

Table 2. MRI sensitivity, specificity, and accuracy for the diagnosis of CAI in three different situations:
normal, abnormal, or absent ligament. In the normal ligament scenario, only a normal ATFL is
considered a stable ankle and the MRI is negative for CAI, in the absent ligament scenario only
absence is considered positive for CAI. In the abnormal ligament scenario, absent ligament cases
were excluded and any other abnormality on ATFL was considered positive for CAI.

Metric Values, % Normal Ligament Absent Ligament Abnormal Ligament

Sensitivity 100% 68% 100%
Specificity 16% 63% 22%
Accuracy 26% 63% 16%

In this way, it is demonstrated that the most frequent morphology found for LFTA is
not a rectilinear homogeneous ligament, since only 39 of the 321 ankles analyzed exhibited
this morphology. Among the 282 ligaments with some morphological change, only 45 had
a history of chronic ankle instability. This high prevalence of morphological ligament
changes is likely explained by the high incidence of ankle strains and primarily instability.
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Indeed, it is unlikely that an individual that walks on irregular terrain and engages in
sports would not experience some ankle injury by adulthood, including a painless lesion
such as in the case of instability. Our results indicate that despite being painless, ankle
instability that occurs over time may cause morphological changes in the LFTA.

4.2. Computational Analysis

For each algorithm considered for the analysis, the feature extraction time is estimated,
which could be inferred from Table 3.

Table 3. Extraction times for each algorithm in seconds.

Algorithm Time (s)

GLCM 2.219
LBP 0.121
HU 0.026
DC 1.528

Thus, it can be observed that the HU algorithm reached the shortest extraction time
with 0.026 s, followed by the LBP with 0.121 s. The GLCM algorithm obtained the highest
extraction time compared to the others, with a total of 2.219 s. For identification purposes,
we defined representations for each combination of extraction algorithms, as shown in
Table 4.

Thus, for each Set, the classification processes were carried out using the chosen set
of algorithms in this study. The Table 5 highlights the results obtained with the obtained
metrics from each of the classification algorithms. Although ACC Global verifies a general
measure of accuracy, the important consideration for medical diagnosis is the accuracy of
the ATFL, so the algorithm with the highest of accuracy in the ATFL will be considered to
be most appropriate.

Analyzing the extractors individually from Set 1 to Set 4, the highest percentage
of correct answers was obtained for Set 2, which represents the LBP extractor with the
RF classifier, reaching 80.60% of Global Acc and 83.35% of ATFL. The observations from
the extractors analyzed individually is that Set 3, that is, the HU extractor, was one of
those that obtained the lowest percentages by considering the analysis among all the four
classifiers. This situation is expected to be due to the shape data features extracted by the
HU algorithm.

Table 4. Representation of the combinations of feature sets.

Algorithms Representation

GLCM Set 1
LBP Set 2
HU Set 3
DC Set 4

GLCM + LBP Set 5
GLCM + HU Set 6
GLCM + DC Set 7

LBP + HU Set 8
LBP + DC Set 9
HU + DC Set 10

GLCM + HU + LBP Set 11
GLCM + DC + LBP Set 12
GLCM + HU + DC Set 13

LBP + HU + DC Set 14
GLCM + LBP + HU + DC Set 15
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Table 5. Detailed results of the evaluation metrics.

Algorithms Metrics (%) MLP kNN SVM RF

Set 1

ACC Global 49.26 ± 2.12 55.73 ± 5.18 59.75 ± 5.14 70.60 ± 5.74
ATFL 49.40 ± 43.60 54.70 ± 11.94 57.64 ± 13.49 75.98 ± 11.03

HealthyControl 48.92 ± 44.98 56.79 ± 11.66 61.83 ± 14.96 65.29 ± 10.60
F1-score 35.99 ± 30.36 54.62 ± 7.35 58.13 ± 7.06 96.50 ± 1.82

Set 2

ACC Global 74.87 ± 3.94 72.56 ± 7.51 58.90 ± 5.88 80.60 ± 4.84
ATFL 73.28 ± 8.95 72.20 ± 12.38 81.69 ± 15.37 83.35 ± 6.98

HealthyControl 76.39 ± 8.20 72.69 ± 10.19 36.94 ± 22.44 77.72 ± 9.70
F1-score 74.21 ± 4.75 72.03 ± 8.65 66.05 ± 4.75 81.11 ± 4.45

Set 3

ACC Global 48.78 ± 1.11 44.51 ± 6.06 48.78 ± 1.11 51.58 ± 7.28
ATFL 60.00 ± 48.98 43.40 ± 9.06 60.00 ± 48.98 49.78 ± 9.62

HealthyControl 40.00 ± 48.98 45.69 ± 8.10 40.00 ± 48.98 53.36 ± 9.57
F1-score 39.34 ± 32.12 43.49 ± 7.72 39.34 ± 32.12 50.35 ± 7.92

Set 4

ACC Global 62.80 ± 6.40 60.36 ± 5.91 65.85 ± 5.82 65.73 ± 6.38
ATFL 65.55 ± 12.84 61.82 ± 11.46 77.98 ± 14.22 68.23 ± 13.68

HealthyControl 60.19 ± 14.29 58.92 ± 8.96 53.70 ± 12.01 63.27 ± 9.19
F1-score 63.32 ± 7.54 60.47 ± 7.72 69.00 ± 6.98 65.94 ± 8.38

Set 5

ACC Global 51.82 ± 4.74 58.29 ± 6.16 64.75 ± 6.09 81.95 ± 4.52
ATFL 30.88 ± 38.94 54.96 ± 12.33 69.63 ± 10.70 85.03 ± 7.10

HealthyControl 72.67 ± 38.65 61.72 ± 9.15 59.98 ± 10.15 78.92 ± 7.65
F1-score 26.37 ± 28.20 56.11 ± 8.96 66.02 ± 6.53 82.35 ± 4.54

Set 6

ACC Global 53.04 ± 5.71 55.48 ± 6.97 65.24 ± 6.97 71.09 ± 4.89
ATFL 17.95 ± 29.87 54.64 ± 12.58 70.03 ± 13.38 76.54 ± 8.30

HealthyControl 87.30 ± 23.85 56.50 ± 10.91 60.35 ± 9.23 65.74 ± 8.65
F1-score 17.99 ± 25.98 54.52 ± 8.65 66.25 ± 8.80 72.43 ± 5.06

Set 7

ACC Global 50.36 ± 8.70 59.51 ± 5.99 68.65 ± 7.95 76.46 ± 6.51
ATFL 68.92 ± 30.36 60.99 ± 12.56 72.57 ± 14.54 80.97 ± 9.90

HealthyControl 32.15 ± 34.19 57.95 ± 10.00 64.82 ± 10.35 71.84 ± 7.67
F1-score 53.64 ± 20.43 59.63 ± 7.93 69.31 ± 9.70 77.34 ± 6.88

Set 8

ACC Global 71.95 ± 6.83 68.41 ± 9.64 58.04 ± 6.00 78.78 ± 5.92
ATFL 73.58 ± 9.03 67.66 ± 11.93 70.89 ± 29.58 80.19 ± 8.07

HealthyControl 70.41 ± 10.63 69.21 ± 10.96 46.39 ± 26.99 77.44 ± 9.46
F1-score 72.25 ± 6.58 67.88 ± 10.01 58.24 ± 20.06 78.96 ± 5.77

Set 9

ACC Global 65.12 ± 5.97 59.39 ± 5.41 58.04 ± 6.00 62.80 ± 4.21
ATFL 69.96 ± 14.58 63.65 ± 9.00 70.89 ± 29.58 75.02 ± 12.15

HealthyControl 60.27 ± 10.47 55.17 ± 9.08 46.39 ± 26.99 50.88 ± 13.31
F1-score 65.89 ± 8.20 60.68 ± 5.89 58.24 ± 20.06 66.36 ± 4.80

Set 10

ACC Global 60.12 ± 6.78 57.92 ± 4.99 65.48 ± 6.13 64.63 ± 4.11
ATFL 61.95 ± 14.54 59.32 ± 10.99 77.72 ± 12.80 69.15 ± 10.49

HealthyControl 58.48 ± 9.81 56.55 ± 7.64 53.39 ± 12.50 60.21 ± 9.55
F1-score 60.07 ± 10.43 58.13 ± 7.06 68.98 ± 6.47 65.87 ± 5.56

Set 11

ACC Global 49.39 ± 1.86 58.17 ± 6.95 62.31 ± 4.39 78.90 ± 5.93
ATFL 9.25 ± 27.76 55.41 ± 9.15 69.30 ± 7.65 82.65 ± 8.35

HealthyControl 90.00 ± 30.00 61.01 ± 13.41 55.30 ± 9.33 75.13 ± 7.91
F1-score 6.21 ± 18.65 56.86 ± 6.71 64.68 ± 4.11 79.55 ± 6.11

Set 12

ACC Global 52.56 ± 5.89 60.85 ± 6.38 71.09 ± 7.03 80.60 ± 5.08
ATFL 42.41 ± 43.44 59.57 ± 9.06 75.77 ± 12.73 84.34 ± 6.79

HealthyControl 62.39 ± 42.59 62.23 ± 10.82 66.39 ± 9.33 76.83 ± 8.99
F1-score 33.87 ± 31.76 60.48 ± 6.49 64.68 ± 4.11 81.48 ± 4.68

Set 13

ACC Global 50.60 ± 4.28 62.19 ± 5.94 70.36 ± 6.95 76.09 ± 6.43
ATFL 68.67 ± 37.71 61.95 ± 9.41 75.64 ± 9.73 81.19 ± 8.34

HealthyControl 33.40 ± 39.97 62.48 ± 9.89 65.30 ± 13.51 71.00 ± 7.47
F1-score 50.97 ± 23.54 61.89 ± 6.58 71.79 ± 6.31 77.15 ± 6.33
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Table 5. Cont.

Algorithms Metrics (%) MLP kNN SVM RF

Set 14

ACC Global 53.53 ± 7.99 60.24 ± 6.41 67.92 ± 5.57 82.56 ± 6.27
ATFL 39.85 ± 40.03 60.75 ± 9.12 76.44 ± 6.62 83.85 ± 8.96

HealthyControl 68.01 ± 38.75 59.72 ± 8.70 59.53 ± 10.73 81.36 ± 8.70
F1-score 34.45 ± 27.98 60.11 ± 6.70 70.31 ± 4.53 82.62 ± 6.43

Set 15

ACC Global 56.09 ± 10.34 60.48 ± 6.96 72.43 ± 5.29 81.70 ± 5.94
ATFL 49.59 ± 31.67 61.88 ± 12.69 78.58 ± 13.05 83.38 ± 11.25

HealthyControl 63.27 ± 32.64 58.98 ± 12.01 66.35 ± 8.56 79.95 ± 9.35
F1-score 46.76 ± 24.75 60.55 ± 8.49 73.54 ± 7.02 81.77 ± 6.47

When analyzed in pairs, that is, from Set 5 to Set 10, the Set 5, GLCM with LBP,
obtained the highest result with ATFL of 85.03% when classified with the RF algorithm.
The lowest result found in this analysis was Set 6, GLCM with HU, and MLP classifier with
ATFL 17.95%. The combinations of three extractors, from Set 11 to Set 14, with Set 12 and
RF classifier obtained an ATFL percentage of 84.34%. The trio that obtained the lowest
result was the trio from Set 11 and MLP classifier with ATFL of 9.25%.

In general, after vigorous analysis by considering all the sets, the ones that obtained
the best results for the ATFL was Set 5 with the RF classifier. It is observed to be statistically
similar, through the Wilcoxon test, with Set 12 and the RF classifier. It can be seen that the
MLP classifier obtained the lowest success rates, whether in the ATFL class or in global
accuracy, which could have been caused by the low number of images, unlike the RF
classifier, which obtained the highest percentages of success.

We summarize and compare the performance measures (ATFL, F1-score, HealthyCon-
trols, ACC Global) achieved using various combinations of feature extraction methods
(GLCM, LBU, HU, DC) and classification methods (SMLP, kNN, SCM, RF) used in this
study in Figure 5. Note that the selection between different feature sets has a small influ-
ence on performance measures, while more variability can be observed when selecting
different classifiers.

Figure 5. Cont.
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Figure 5. Comparison of mean values of performance measures for various combinations of feature
sets and classifiers.

To analyze the performance differences between feature extraction and classification
methods, we have adopted a two-sample t-test, which returns a decision on the null
hypothesis that the data in both samples has equal means and equal but unknown variances.
The 5% significance level was used. We compared the remaining results of all sets using the
considered feature set (e.g., LBP) vs. all sets that are not using the considered feature set.
The procedure was repeated for all combinations of feature sets and classifiers. The results
are visualized as heatmaps in Figure 6, while the most notable cases are discussed below:

• Using the GLCM features improves the ACC Global measure when using the MLP
classifier (p < 0.01);

• Using the HU features improves the ACC Global measure when using the RF classifier
(p < 0.01), and the HealthyControl measure when using the MLP classifier (p < 0.01);

• SVM is never able to outperform significantly (p < 0.05) other classifiers;

Figure 6. Results of the statistical t-test (p-values) for various combinations of feature sets and classifiers.
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When comparing more than two methods, a multiple test procedure is recommended.
When the null hypothesis of equivalent performances for multiple methods is rejected, post
hoc tests are used to identify the significantly different methods. The Nemenyi test is a
post-hoc test that is performed after the Friedman test. The Nemenyi test is used to compare
the relative performance of all classifiers evaluated in the study [59]. The differences in
performance of various classifiers are compared to the value of Critical Distance (CD)
obtained using the following equation.

CD = qα

√
m(m + 1)

6n
(1)

where m is the number of classifiers, n is the number of datasets, and q is based on the
Nemenyi test’s studentized range statistics. The Nemenyi test can be easily understood
using the critical distance diagrams shown in Figure 7. The results show the superiority of
RF classifier results as compared to SVM, MLP, and kNN.

Figure 7. Critical Distance diagrams for performance metrics of the machine learning methods.

In Figure 8, the confusion matrix is presented for the highest percentage of correct
ATFL, obtained by Set 5 with the RF classifier. A higher success rate is obtained in identi-
fying ATFL. Further, consequently, a lower rate of false positives rate was 0.15, i.e., 15%,
which may have been caused by the texture similarities of the normal and ATFL areas, as
well as the failure to analyze geometric structures.

Figure 8. Confusion matrix obtained for the RF classifier with Set 5 chosen for analysis.
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However, when analyzing the texture extractors together with the shape extractors,
there is not a big difference in the percentage of correct predictions, as can be seen in
Set 12, which was statistically equal to Set 5. Thus, other characteristics besides shapes and
textures can contribute to the reduction of false positives.

Regarding the training and testing times of each classifier for each Set, the k-NN
algorithm for Set 14 achieved the shortest training time with 0.00018 s. Moreover, the
SVM algorithm for Set 2 obtained the shortest training time with 0.00019 s. Later on, it
is observed that the longest training time was achieved by the SVM classifier, while the
longest testing time was obtained by the RF algorithm. These times can be observed as
shown in Table 6.

Table 6. Training and testing times of the chosen algorithms on the ankle MRI images.

Algorithms Metrics (%) MLP kNN SVM RF

Set 1 Training 0.01696 0.00026 7.99108 0.07679
Test 0.00024 0.00110 0.00022 0.00659

Set 2 Training 0.78163 0.00019 0.00087 0.08279
Test 0.00025 0.00109 0.00019 0.00672

Set 3 Training 0.01699 0.00031 0.00090 0.08290
Test 0.00028 0.00115 0.00024 0.00718

Set 4 Training 1.01803 0.00031 0.13495 0.07867
Test 0.00025 0.00115 0.00022 0.00683

Set 5 Training 0.03747 0.00020 3.61693 0.07941
Test 0.00023 0.00099 0.00023 0.00672

Set 6 Training 0.02615 0.00030 3.67280 0.08182
Test 0.00026 0.00112 0.00024 0.00696

Set 7 Training 0.03339 0.00029 13.56860 0.08361
Test 0.00026 0.00121 0.00021 0.00690

Set 8 Training 0.90728 0.00020 0.00093 0.08563
Test 0.00022 0.00108 0.00021 0.00696

Set 9 Training 0.77169 0.00021 0.14240 0.08291
Test 0.00029 0.00107 0.00024 0.00679

Set 10 Training 1.41660 0.00028 0.12939 0.08386
Test 0.00027 0.00121 0.00023 0.00743

Set 11 Training 0.02186 0.00020 3.24591 0.08495
Test 0.00023 0.00109 0.00023 0.00688

Set 12 Training 0.03380 0.00019 11.99871 0.08607
Test 0.00027 0.00118 0.00022 0.00666

Set 13 Training 0.03712 0.00018 13.16548 0.07790
Test 0.00024 0.00105 0.00023 0.00662

Set 14 Training 0.04402 0.00021 14.03406 0.08386
Test 0.00027 0.00105 0.00023 0.00665

Set 15 Training 0.08085 0.00022 12.39197 0.08032
Test 0.00029 0.00106 0.00023 0.00638

The comparison of classifiers based on training and testing times is presented in
Figure 9. The lowest training times are achieved by kNN while the lowest testing time is
reported by SVM. RF has the worst time performance both in terms of training time and
testing time.
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Figure 9. Comparison of classifiers based on training and testing times.

4.3. Comparative Evaluation between Human Analysis and Computational Analysis

Human assessment of ligament morphological quality is limited. As shown in this
study, the sensitivity of the evaluation only increases when the ligament has a clear mor-
phology, that is, when the ligament was completely intact or completely absent. When
analyzing the MRI images of the ligaments that do not show clear morphologies, the
diagnosis of the ligament injury status using the proposed ATFL method is 85.03%, while
the specialist’s diagnosis is below 63%. Thus, a gain of approximately 22% in the hit rate
can be observed when using the proposed computational method.

On the other hand, in other tissues such as the ACL, this difference was not observed
as expected [60,61]; this may occur because the ACL is a larger ligament, surrounded by
joint fluid that enhances its border. However, the ATFL considers the thickening of the
joint capsule by having joint fluid on the joint face, but also considers the no fluid case to
enhance ligament definition on the anterior face of the ligament.

5. Conclusions and Future Work

Medical analysis of the quality of the ATFL is limited, with ligament damage evident in
the complete absence of the ligament or normality of ligament function when, in its perfect
anatomy (parallel edges, homogeneous dark gray pattern in the ligament), morphological
changes are present, such as alteration of the contour or homogeneity of the shade of gray,
and the diagnosis becomes inaccurate. This study aimed to compare the human analysis of
morphological changes in ATFL with computer vision strategy for image characteristics
extraction and to compare it with the patient’s clinical presentation. The analyses were
carried out by specialists and computational analysis using a computer vision method for
ligament analysis. Using the proposed method can significantly increase the accuracy rate
when analyzing images that do not have ligaments with perfect anatomy. From the analysis
through these cases, the method reached a hit rate of 85.03% while the hit rate based on the
expert analysis achieved a rate below 63%.

For future work, one might consider increasing the characterization of ankle instability
by adding ultrasonography under the stress of the ligament to the clinical diagnosis that
was made of the ligament injury, in addition to increasing the database with more patients
in the ankle instability group. In computational matters, one can seek to reconstruct the 3D
images to analyze the images in different ways and metrics such as volumetric analysis.
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