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NOMENCLATURE 

ℂ  – the set of complex numbers. 
( )m

d  – determinant of Hankel matrix of order m . 

( )E ε  – the absolute root mean square difference between two consecutive 

patterns of H-ranks. 
φ  – the argument of ρ . 

( )m
H  – Hankel matrix of order m . 
HrS  – H-rank of sequence S . 

( ),Hr i j  – digital image of the pattern of H-ranks. 

j

k

 
 
 

 – the number of different k -combination in a set of j  elements. 

ξ  – a random value distributed by the Gaussian white noise. 

LRS – linear recurrence sequence. 

m  – the upper limit for the H-rank (pseudorank) of the sequence. 
MAPE – mean absolute percentage error. 
ℕ  – the set of natural numbers. 
Nε  – the number of SVD eigenvalues greater than ε . 
ℝ  – athe set of real numbers. 
RMSE – root mean square error. 

kρ  – the H-eigenvalues of the sequence. 

ℚ  – the set of irrational numbers. 

( )1n nx f x+ =  – a discrete nonlinear map. 

WMA – weighted moving average. 
ℤ  – the set of integers. 
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INTRODUCTION 

Relevance of the topic 

Although nonlinear dynamical systems represent a classical research area, this 
field is being constantly developed. Almost every real world phenomenon is 
described as a nonlinear system. Hence the theory of nonlinear dynamical systems 
possesses a broad range of practical application. Engineering systems are becoming 
increasingly complex in nature. Thus the demand for control methods to obtain the 
desired system dynamics is highlighted. This also implies the rise of dynamical 
systems. Application of nonlinear dynamical systems has become interdisciplinary, 
and it spans research areas from physics to engineering, from economics to 
psychology and from medicine to biology. 

Extensive academic interest has been recently dedicated to the satellite 
industry. Problems concerning Satellite formation flying (SFF) (i.e. when several 
satellites work together to save the cost of a single space mission) or Tethered 
Satellite System (special satellites for the exploration of space) are an increasingly 
common topic in the latest scientific papers. The dynamics of these systems is 
described as highly nonlinear and sensitive to the environment. The orbits of the 
satellites are modelled by limit cycles in nonlinear dynamics. 

Complex systems described by large numbers of processes and highly 
nonlinear dynamics are often investigated in biology and medicine. Their examples 
include cancer progression, response to the treatment of a disease, molecular 
phenomena and hypoxia to name just a few. Some systems are intricately coupled 
and, evidently, are difficult to approach by restricting the research within only 
experimental methods. Nonlinear dynamical models and advanced computer 
simulations provide crucial insight into such systems and their dynamics. 

Population dynamics, epidemic modeling or the study of disease spreading 
have always been in the center of attention. Nonlinear iterative maps, ordinary or 
partial differential equation models as well as difference equation models describe 
the evolution of real world systems. Corresponding modelling approaches are 
capable of providing applicable control or analytical strategies. The ultimate aim 
may be to conserve endangered species, to control the outbreak of a disease or to 
limit the consumption of natural resources. Without the analysis of nonlinear effects 
in dynamical systems it would hardly be possible to investigate the above mentioned 
problems. 

Chaotic nonlinear systems were first considered by Henri Poincaré more than a 
century ago, and the famous term ‘butterfly effect’ was coined by Edward Lorenz in 
1972. But the peak in the research of the dynamics of nonlinear systems occurred 
during the last decade of the 20th century. This resulted in extensive application of 
the Chaos theory in practice taking place. The improvement of key properties of 
computers has also made an important contribution towards the implementation of 
new methods of nonlinear dynamics in a wide variety of fields. For example, the 
performance of a modern computer enables to model the thermal denaturation of 
DNA molecules and to control biological neural networks. Combined with the 
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innovative methods of nonlinear dynamics, this may lead to advanced understanding 
of our nature. 

New algorithms for the analysis of nonlinear systems and previously unknown 
properties are being created and discovered. What concerns matrices of special form 
(Hankel matrices in this case), their extensive recent applications in time series 
forecasting, system identification or algebraic analysis have yielded major benefits. 
The Hankel matrix preserves the algebraic structure of the sequence, which makes it 
possible to use this type of matrix for the development of special methods for 
nonlinear systems. 

It must be emphasized that this work mostly focuses on the application and the 
use of H-ranks in the identification of the properties of nonlinear systems rather than 
on constructing new algorithms. In this respect, H-ranks act as a rich computational 
tool in nonlinear systems analysis. H-rank based algorithms enable researchers to 
reveal and solve a set of new system identification, forecasting and control 
problems. The development of the theory of H-ranks is the main value of this work. 

The object of the research: 

Patterns of H-ranks and their application for the identification, forecasting and 
control of nonlinear dynamical systems. 

The aim of the research: 

To use and develop H-rank based techniques for the analysis of nonlinear 
systems and real world time series. 

The aim is achieved by solving the following problems: 

1. To develop the strategy for constructing patterns of H-ranks for discrete 
and continuous nonlinear dynamical systems. To consider the quality of 
these patterns regarding numerical aspects of floating point arithmetic. 

2. To employ patterns of H-ranks for the identification of manifolds of 
convergence in nonlinear systems. 

3. To construct and implement the control algorithm based on the patterns of 
H-ranks for discrete and continuous nonlinear dynamical systems. 

4. To propose an algebraic approach based on the rank of the sequence for 
the analysis of the onset of chaos in discrete nonlinear dynamical systems. 

5. To construct and implement a short-term time series forecasting technique 
based on the properties of skeleton sequence of a time series. 

6. To perform algebraic analysis of the data from the real world 
magnetometer representing the intensity of the local magnetic field. 

The methods and software for the research: 

1. Techniques of mathematical and statistical analysis were used for the 
research. Algebraic analysis took an important role in this work in 
developing the theory of H-ranks. Practical application tools were 
developed. Methods originating from the dynamical systems theory were 
employed for nonlinear models used in the research. 

2. Throughout the entire thesis, principles of digital image processing were 
applied. Some aspects of floating point arithmetic were considered. 

3. Matlab and its standard toolboxes (Image processing toolbox, Parallel 
Computing Toolbox, Statistics Toolbox, Signal Processing Toolbox, 
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Symbolic Math Toolbox), C++ programming language and LAPACK 
libraries (mainly on Linux platform for better performance) served as the 
programming tools used for the research. 

4. A set of programming tools and applications was also created by the 
author of the thesis. 

Scientific novelty and practical significance of the research: 

Manifolds of convergence cannot be found directly for nonlinear maps. 
Previously existing computational tools (e.g. Dynamics or XPP software) 
comprising numerical algorithms largely differ in application areas and/or 
performance. Identification methodology of manifolds of convergence by using H-
rank based techniques for both discrete and continuous dynamical systems is 
developed in this work. Considerations of using LAPACK package (which is a 
standard for high performance computations) enabled to implement the algorithms 
presented in this work efficiently in comparison with the Matlab package. 

Development of novel control techniques based on H-ranks is presented in this 
work. Patterns of H-ranks were used for this purpose. Examples with two discrete 
nonlinear systems and one continuous nonlinear system are considered. 

New forecasting techniques for short time series are proposed and applied to 
real world time series. 

Practical significance of the research was accomplished by applying the 
algebraic analysis discussed in this work to the real world magnetometer data. 

Information provided for the defense: 

1. Computation strategy for the construction of patterns of H-ranks. 
2. Computation strategy for the identification of manifolds of non-asymptotic 

convergence. 
3. Computation strategy for the control of unstable orbits in discrete and 

continuous dynamical systems. 
4. Novel methodology for time series forecasting based on the algebraic 

properties of the H-rank. 
Approval of the results: 

The results of the dissertation were presented in 7 publications including 3 
papers in international journals indexed in the Institute for Scientific information 
(ISI) as the main list of publications with citing indexes and 2 papers in ISI indexed 
American Institute of Physics (AIP) proceedings. The topics covered in the 
dissertation were presented in 4 international and 2 national conferences including 
“International Conference on Numerical Analysis and Applied Mathematics 2012 
(ICNAAM 2012)”, “International Conference on Numerical Analysis and Applied 
Mathematics 2013 (ICNAAM 2013)”, “International Conference on Recent 
Advances in Pure and Applied Mathematics (ICRAPAM 2014)” and “8th Chaotic 
Modeling and Simulation International Conference (CHAOS 2015)”. 

The experiments presented in the final chapter were performed by using the 
data of a real world magnetometer which is the only one of the kind in Europe; it is 
located in central Lithuania. The results were also used while carrying out the 
project “Research on the relations between Earth’s magnetic field, human’s and 
animal’s cardiovascular systems (GEOMAG)” funded by R&D and Innovation Fund 
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of Kaunas University of Technology. The time period of the project spanned from 
March 2014 to December 2014. 

The structure and length of the dissertation: 

This doctoral dissertation consists of an introduction, 4 major sections, 
conclusions, a list of references and a list of the author’s publications. The total 
length of the dissertation is 124 pages. The thesis features 65 figures, 10 tables and a 
list of 162 cited sources. 
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1. LITERATURE REVIEW 

Control of Nonlinear systems 

Depending on the problem to be solved, it is important to measure the amount 
of uncertainty in a system in order to predict or to control it. The classical approach 
to controlling chaos is to reduce the amount of uncertainty in dynamical systems. An 
efficient method of chaos elimination as the control method for a system (OGY 
method) was suggested by Ott, Grebogi and Yorke in (Ott, Grebogi and Yorke, 
1990). One of the parameters of a system is the state of being perturbed in the form 
of feedback. The perturbation here is time-dependent. Another approach towards 
chaos control called Pyragas method was suggested 2 years later in (Pyragas, 1992). 
OGY method and its variations have been broadly applied for the solution of 
scientific (Akhmet and Fen, 2012) and engineering problems (Ferreira, Savi and de 
Paula, 2014; Gritli, Belghith and Khraief, 2014). Stabilization of unstable periodic 
orbits has also been employed as in OGY scheme. The difference of the methods 
stems from Pyragas method using time continuous perturbation with the help of an 
external oscillator or delayed self-controlling feedback. Delayed feedback control 
also appears in various practical applications such as the stabilization of traffic flow 
(Jin and Hu, 2013) or the elimination of contact loss in the clearance joint (Olyaei 
and Ghazavi, 2012) to name a few. 

The application of both methods mentioned above does not require a priori 
information about the analytics of the system’s dynamics. H-rank based techniques 
are rather different because they are non-feedback control methods and require the 
system’s dynamics or its realization in time to be known a priori. Thus feedback 
control methods are primarily used in experimental problems whereas H-rank 
possesses a stronger potential in analytical applications. 

A chaotic system can be controlled by synchronizing it with a system of 
harmonic oscillators. This idea was proposed by (Olyaei and Wu, 2015). The 
uniqueness of the method is the fact that it does not change the solution of the 
system. It stabilizes the periodic behavior of solutions by applying small 
perturbations. Examples under consideration include the well-known Duffing 
oscillator which is a real word physical system. The scheme can be implemented 
experimentally even if the analytical expression of the dynamical system is not 
known. The application of the technique requires the knowledge of the fundamental 
frequency of the desired motion. If the quantity is not known, it still can be 
approximated by using, for example, the phase space reconstruction. 

Nonlinear models and chaos analysis 

The circle map is used to model cardiac arrhythmias and the so-called 
pacemaker of the human heart (Glass and Shrier, 2014). The circle map is 
represented by the one-dimensional iterative map: 

( ) ( )1 = = 2
2n n n n

K
f sinθ θ θ πθ

π+ + Ω − ⋅ ; (1)  
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where θ  is a polar angle ( [ )0;1θ ∈ ); K  is the coupling strength; Ω  is the driving 

phase and = 0,1,n … . For small to intermediate values of K  ( 0 < < 1K ), and for 
certain values of Ω , the circle map exhibits a phenomenon called phase locking 
(also known as entrainment). In the phase-locked region, values 

nθ  advance 

essentially as a rational multiple of n . 
The phase-locked regions in KΩ −  parameter plane are called Arnold tongues 

(Boyland, 1986). Fig. 1 shows the numerical reconstruction of these phase-locked 
regions. Arnold tongues are observed in a variety of nonlinear physical models 
whenever the effect of phase locking occurs in those systems (Boyland, 1986; 
Escalona, José and Tiesinga, 2002; McGuinness, Hong, Galletly and Larsen, 2004; 
Rosa, Correia and Rech, 2009; Schilder and Peckham, 2007). 

 

Fig. 1. Numerical reconstruction of Arnold tongues for the circle map. For K  values greater 
than 1, the regions start to overlap each other 

The circle map is exploited in numerous models of nonlinear dynamical 
systems whenever the effects of quasiperiodicity are encountered (Boyland, 1986; 
Escalona et al., 2002; Rosa et al., 2009; Schilder and Peckham, 2007). 

The existence of Arnold tongues in the circle map has already been known for 
more than five decades (Arnold, 1961). There exist a number of computational 
techniques for the visualization of Arnold tongues. The universal algorithm for the 
identification of Arnold tongues is based on two simple steps. At first, the system 
must be iterated far away from initial conditions until all transient processes cease 
down. Secondly, one must identify the effect of the phase locking in the discrete 
stationary attractor. Different modes of the phase locking are then visualized by 
different colors. 

Limit cycles and natural phenomena 

A wide range of oscillators in biological systems experience limit cycle 
behavior. A network of driven coupled oscillators (e.g. neurons) could be regarded 
as a simple circadian system. Analysis and simulation of a circadian clock is 
presented in (Bordyugov, Granada and Herzel, 2011). Exploiting limit cycles of 
nonlinear dynamical systems allowed us to describe the events of the cell cycle and 
to understand why these events occur (Ferrell, Tsai and Yang, 2011; Gérard and 
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Goldbeter, 2012). There are more applications involving, e.g. pacemaker cells 
(González-Miranda, 2012) or calcium oscillations (Ji and Lu, 2013). 

One of the most practically important problems related to limit cycles is the 
presence of noise in the system. It is a classical topic in circuit analysis. The 
nonlinear analysis of noise in free running oscillators affected by white Gaussian 
noise sources was performed by (Traversa and Bonani, 2011). Adding the noise 
blurs the phase-lock behavior of the system. In the case of the limit cycle oscillator, 
the noise makes its orbit irregular. This may also shift the phase. Academic 
researches showed that phase-locking to the every possible rational ratio is observed 
only in the limit cycle oscillator (Mitarai, Alon and Jensen, 2013). 

A periodically driven pendulum 

A periodically driven pendulum is a paradigmatic model in the study of 
oscillations and other phenomena in physics and nonlinear dynamics (Bhattacharjee 
and Kumar, 2014; Sakthivel and Rajasekar, 2012). It has deserved much attention, 
from many viewpoints, including different model complexity, forcing and damping 
aspects. It is also one of the simplest physical systems whose dynamical description 
can be reduced to a circle map (Jensen, Bak and Bohr, 1983; Jensen, Bak and Bohr, 
1984; Ostlund, Rand, Sethna and Siggia, 1983). In turn, the circle map is used in 
numerous models of nonlinear dynamical systems whenever the effects of 
quasiperiodicity are encountered (Boyland, 1986; Escalona et al., 2002; McGuinness 
et al., 2004; Schilder and Peckham, 2007). 

The model reads: 

( )
2

2
sin = cos

d x dx
b x f t

dt dt
ω+ + . (2)  

where t  is time; x  is the angular coordinate; b  is the linear damping coefficient (
> 0b ); f  and ω  is the amplitude and the angular frequency of the harmonic 

forcing. Eq. (2) exhibits rich chaotic behavior at = 1b ; = 2.048f  and 
2

=
3

ω  

(Hilborn, 2000): strobing at the drive frequency produces a cascade of period 
doubling bifurcations at 1 1.05b≤ ≤  (Fig. 2).  

   

Fig. 2. The bifurcation diagram of the mathematical pendulum 
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The bouncing ball problem 

A particle falling down in a constant gravitational field on a moving platform 
is called a bouncing ball problem, or a bouncer. This model was suggested more 
than thirty years ago (Pustilnikov, 1983; Zaslavsky, 1978) as an alternative 
simplification to the Fermi–Ulam model (Lieberman and Lichtenberg, 1972) of 
cosmic ray acceleration (Fermi, 1949). Many different approaches to the bouncer 
model have been studied theoretically and experimentally (Chirikov, 1979; Everson, 
1986; Lichtenberg, Lieberman and Cohen, 1980; Pierański and Malecki, 1986). It 
has been proven to be a useful model for experimental exploration of several new 
nonlinear effects (Guo and Luo, 2011; Kowalik, Franaszek and Pieranski, 1988; Luo 
and Guo, 2013; Wiesenfeld and Tufillaro, 1987). Moreover, it has been implemented 
in a number of engineering applications (Hongler, Cartier and Flury, 1989; Hongler 
and Figour, 1989; Luo and Han, 1996). 

The bouncer model can be briefly characterized by the following basic 
statements: 

(i) Maps derived for the bouncer model can be exactly iterated for any number 
of iterations into the future (Pierański and Malecki, 1986; Wiesenfeld and Tufillaro, 
1987). 

(ii) The ball-platform collisions can be characterized by a coefficient of 
restitution α  changing from = 1α  for a perfectly elastic case to = 0α  for a 
completely inelastic situation. 

(iii) The chaotic bouncer can be easily used to relate theoretical predictions to 
experimental results, (Kowalik et al., 1988; Wiesenfeld and Tufillaro, 1987) which 
renders it into a paradigmatic model in nonlinear dynamics. 

The bouncer model is a discrete dynamical system as the time evolution of the 
dynamics of the system is discontinuous at collisions. If the impact between the 
table and the ball is inelastic, the velocity of the ball just after the impact can be 
represented with the help of a discrete map which is called the bouncer system 
(Guckenheimer and Holmes, 1983; Holmes, 1982; Joseph, Ines and Sanjuan, 2012) 

( )
( ) ( )

1

1

, ;

, ;
n B n n n n

n B n n n n n

x F x y x y

y G x y y cos x yα β
+

+

 = = +


= = + +
 (3) 

where the variable 
nx  is the time interval between the ( 1n − )-th and the n -th 

collisions of the ball while 
ny  is the velocity of the ball immediately after the n -th 

impact. The parameter ( ]0,1α ∈  is the coefficient of restitution and the parameter 

β  is associated with the table frequency. If the coefficient of restitution is = 1α  
then Eq. (3) is reduced to the standard map. We should note that the bouncer system 
described as Eq. (3) is a good approximation of the bouncing ball (Guo and Luo, 
2011). 

1.1. Linear Recurrence Sequences 

An order n  linear homogeneous recurrence relation with constant coefficients 
is an equation of the following form: 
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1 1 2 2 0=j n j n j j nx x x xα α α− − − − −+ + +… , (4) 

where coefficients 
kα , = 0,1, , 1k n −…  are constants. A sequence which satisfies a 

relation of this form is a linear recurrence sequence (LRS). The initial values 
kx , 

= 0,1, , 1k n −…  uniquely determine the evolution of this LRS (Kurakin, 2001; Park 
and Elden, 2003; V. L. Kurakin and Nechavev, 1995). The auxiliary polynomial to 
Eq. (4) reads: 

( ) 1 2
1 2 0= n n n

n nP ρ ρ α ρ α ρ α− −
− −− − − −⋯  (5) 

whose n  roots describe the sequence satisfying the recurrence. If roots 1 2, , , nρ ρ ρ…  
are all distinct, then the recurrence takes the form: 

1 1 2 2= ,j j j

j n nx µ ρ µ ρ µ ρ+ + +…  (6) 

where the coefficients 1 2, , , nµ µ µ…  are determined in order to fit the initial 

conditions of the recurrence. We should note that all the roots are real or complex 
conjugate only if LRS is real. If – though – some roots coincide then the recurrence 
reads as: 

1

=1 =0

= ,
nr k

j l

j kl k

k l

j
x

l
µ ρ

−
− 

 
 

∑∑  (7) 

where r  is the number of distinct roots and 
kn  is the multiplicity index of the k -th 

root; 1 2 =rn n n n+ + +⋯ . 

An interesting property of LRS has been recently discovered. It was shown 
that there exists a prime number p   together with the set of integers 1, , dx x…   such 

that no element of the linear recurrence sequence { } 1n n
X x

∞

=
=  is divisible by p  

(Dubickas and Novikas, 2014). In other words, it is possible to construct a LRS not 
containing zeros. Also, for any non-negative integer s  there is a prime number 

3p >  and the set of integers 1, , dx x…  so that every element of the sequence 

{ } 1n n
X x

∞

=
=  modulo p  belongs to the set { } 2 1

1

p s

n
s n

− −

=
+  (Dubickas and Novikas, 

2014). 
LRS applications in pseudorandom number generators 

The underlying algebraic structure of a linear recurrence sequence has been 
known for its successful application in cryptography. Fibonacci numbers were 
employed in the ciphering algorithm in (Gandhi, Sekhar and Srilakshmi, 2011) as 
the coefficients of LRS or order 2. Secrecy is ensured by the key, and the key matrix 
is obtained by using LRS. 

A minimal polynomial of the sequence is its characteristic polynomial of the 
least degree. Minimal polynomials are used in solving cryptography problems 
related to the encryption key security. As an auxiliary result of the so called 
Berlekamp–Massey algorithm, a minimal polynomial of a linear recurrent sequence 
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in a field is produced (Shih et al., 2013). The minimal polynomial of a sequence then 
comes from the Wiedemann’s algorithm applied to assess the immunity to algebraic 
attacks. 

The problem of image encryption and decryption with the objective to protect 
the images from unauthorized viewing is treated in (Aissa, Nadir and Ammar, 
2014). The encryption scheme is constructed by using the stream cipher system 
based on the nonlinear combination generator. The authors proposed a 
pseudorandom number generator whose results are combined with the data of a 
secret image during the process of encryption. The pseudorandom number sequence 
from the proposed generator is a linear recurrence sequence. Extensive research 
proved the scheme to be simple and highly efficient. 

1.2. Hankel Matrices and Their Ranks 

A Hankel matrix is a matrix in which element ija  depends only on the sum of 

i j+ . In other words, it is a square matrix with constant skew diagonals. Such 

matrices are also called persymmetric matrices (Muir, 2003). 
Older literature refers to the determinants of Hankel matrices as 

orthosymmetric determinants (Aitken and Aitken, 1956). 
The definition of the Hankel rank was coined in 2007. It describes the 

algebraic relations among the elements of a sequence. 
Let S  be a sequence of real numbers: 

( )0 1 2:= , , ,S x x x …  (8) 

The Hankel transform of S  yields a sequence of determinants of Hankel 
catalectican matrices: 

( )2 1 , 1
:= det ; = 0,1,2,n i j i j n

d x n+ − ≤ ≤ +
…  (9) 

The H-rank of the sequence S  is equal to m; m∈ℕ  if: 

1 = 0m kd + −  (10) 

for all k ∈ℕ , but 1 0md − ≠  (Ragulskis and Navickas, 2011). The existence of the H-

rank is denoted by =HrS m . 

1.3. Algebraic Decomposition of a Solution of a Discrete Map 

Let us assume that the rank of the sequence S exists: HrS m= ; m < +∞ . Then 
S  is a deterministic algebraic sequence and its elements are expressed in the 
following form (Navickas and Bikulčienė, 2006): 

1

=1 =0

= ; = 0,1,2,
nr k

n l

n kl k

k l

n
x n

l
µ ρ

−
− 

 
 

∑∑ …  (11) 

where the H-eigenvalues of the sequence 
kρ ∈ℂ ; =1,2, ,k r…  can be determined 

from the Hankel characteristic equation 
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0 1

1 2 1

1 2 1

= 0;

1

m

m

m m m

m

x x x

x x x

x x x

ρ ρ

+

− −

⋯

⋯

⋯

⋯

⋯

 (12) 

where the recurrence indexes of these roots 
kn  (

kn ∈ℕ ) satisfy the equality 

1 2 =rn n n m+ + +⋯ . It is clear that 
1

r

k

k

n m
=

=∑ . Coefficients 
klµ ∈ℂ ; =1,2, ,k r… ; 

= 0,1, , 1kl n −…  can be determined from a system of linear algebraic equations 
which can be formed from equalities Eq. (11) assuming the expressions of elements 

1 2
, , ,

mn n nx x x…  of the sequence S  where indexes of these elements satisfy 

inequalities 1 20 mn n n≤ < < < < +∞⋯ . Moreover, such a system of linear algebraic 

equations has one and only one solution. The subsequence ( )0 1 2 2 3 2 2, , , , ,k kx x x x x− −…  

is then called the base fragment of sequence S.  
If all the roots are different, Eq. (11) reduces to: 

0
1

m
n

n k k

k

x µ ρ
=

= ∑ ; 0,1,2,n = … . (13)  

Algebraic progressions generalize arithmetic as well as geometric progressions 
and provide an insight into the dynamical process governing the evolution of the 
discrete sequence.  

It can be noted that a chaotic sequence does not have a rank. Otherwise it 
would be an algebraic progression, and it could be decomposed into an algebraic 
form comprising roots and coefficients according to Eq. (11). The dynamics of the 
sequence would be deterministic, yet this contradicts the definition of a chaotic 
sequence. 

1.4. The Role of H-rank in Nonlinear System Analysis 

Clocking convergence  

Clocking convergence is an important tool for investigating various aspects of 
nonlinear systems, especially chaotic maps. The rate of convergence to the critical 
attractor when an ensemble of initial conditions is uniformly spread over the entire 
phase space may provide some insight into the fractal nature and the scale invariance 
of the dynamical attractor (De Moura, Tirnakli and Lyra, 2000; Tonelli and 
Coraddu, 2006). Numerical convergence of the discrete Logistic map gauged with a 
finite computational accuracy is investigated in (Ragulskis and Navickas, 2011) 
where forward iterations are used to identify self-similar patterns in the region 
before the onset of chaos. 

A computational technique based on the concept of the H-rank is proposed in 
(Ragulskis and Navickas, 2011) for measuring the convergence of iterative chaotic 
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maps. Computation and visualization of H-ranks in the space of a system’s 
parameters and initial conditions provides some insight into the embedded algebraic 
complexity of the nonlinear system and reveals three overlapping manifolds of 
discrete iterative maps: the stable manifold, the unstable manifold and the manifold 
of the non-asymptotic convergence. It is shown in (Ragulskis and Navickas, 2011) 
that the computation of H-ranks can be effectively used to identify and assess the 
sensitivity of nonlinear systems to initial conditions and can be used as a simple and 
effective numerical tool for qualitative investigation of the onset of chaos for 
discrete nonlinear iterative maps. One of the aims of this work is to show the use of 
H-rank as a control tool for a discrete dynamical system. 

The convergence to Arnold tongues is studied by using computational 
techniques based on ranks of Hankel matrices (H-ranks). The ranks of Hankel 
matrices carry important physical information about transient processes taking place 
in discrete nonlinear iterative maps. In this work it will be shown that the 
measurements of the convergence rate to Arnold tongues can reveal important 
physical information on the properties of the iterative system. Moreover, such 
enriched representation of Arnold tongues produces aesthetically beautiful pictures. 

Numerical convergence of the discrete Logistic map gauged with a finite 
computational accuracy is investigated in (Ragulskis and Navickas, 2011) where 
forward iterations are used to identify self-similar patterns in the region before the 
onset to chaos. An alternative technique based on the concept of the H-rank is 
proposed in (Ragulskis and Navickas, 2011) for clocking the convergence of 
iterative chaotic maps. The H-rank also reveals three manifolds of the discrete 
iterative map: the stable manifold, the unstable manifold and the manifold of the 
non-asymptotic convergence. 

Limit cycles in nonlinear systems 

One of the main objectives of this work is to investigate the applicability of the 
concept of H-ranks for the assessment of the convergence processes to stable limit 
cycles. There exists a broad range of analytical and numerical techniques for the 
analysis of the stability of limit cycles. The techniques include the spectrum of 
Lyapunov exponents (Christiansen and Rugh, 1997; Habib and Ryne, 1995), 
averaging methods (Sanders, Verhulst and Murdock, 2007). 

Floquet exponents (Chicone, 1999; Giesl, 2004; Traversa and Bonani, 2012) 
are successfully used for studying various properties of limit cycles. There are a 
range of scientific and engineering applications such as: the investigation of the 
dynamic characteristics of a rolling element bearing independence from the rotor 
system (Srinath, Sarkar and Sekhar, 2014); a numerical method intended to compute 
fundamental matrix solutions of non-autonomous linear differential equations with 
periodic coefficients is introduced in (Castelli and Lessard, 2013). Some problems in 
physics include (Krents, Anchikov, Molevich and Pahomov, 2014; Li, Chong, Yang, 
Kevrekidis and Daraio, 2014). 

Floquet analysis was also used in assessing the reliability of crystal oscillators. 
Reference timing signals in electronic systems often use crystal oscillators. Crystal 
oscillators are sensitive to such deterministic interferences as electromagnetic 
interferences or power supply line fluctuations. As a result, predicting the 
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deterioration of the oscillator response due to deterministic signals has become a 
major concern (Maffezzoni, Zhang and Daniel, 2014). It is also known that high 
quality crystal oscillators exhibit very long transient responses before reaching the 
steady states. Thus simulating such a system may be an extremely time consuming 
process without applying such special techniques as Floquet analysis. 

The knowledge of the stable and unstable manifolds of hyperbolic equilibria 
plays a central role in the understanding of many global, dynamical issues for 
autonomous maps. For a given nonlinear dynamical system, the only general way of 
studying such stable and unstable manifolds is by computing them numerically. 
Consequently, a number of different algorithms have been developed for computing 
the stable and unstable manifolds for autonomous maps (Broer, Osinga and Vegter, 
1997; Dellnitz and Hohmann, 1997; Goodman and Wróbel, 2011; Hobson, 1993; 
Kostelich, Yorke and Zhiping, 1996; Krauskopf and Osinga, 1998; Moore and 
Hubert, 1999; Nusse and Yorke, 1998). 

The onset of chaos 

The onset of chaos is a classical research area exploring different physical, 
mathematical and engineering aspects of nonlinear dynamical systems. The period-
doubling onset of chaos is described by using formal techniques in (Feigenbaum, 
1982). The multifractal scaling structure at the onset of chaos is explored in (Jensen, 
1987). The onset of chaos is explored in various nonlinear systems – in differential 
delay equations (Hale and Sternberg, 1988), in nuclear states of molecules 
(Tennyson and Farantos, 1985; Von Brentano and Zamfir, 1992) or in the Logistic 
map driven by colored noise (Choi and Lee, 1995). A variety of period-doubling 
universality classes in multi-parameter analysis of transition to chaos is explored in 
(Kuznetsov, Kuznetsov and Sataev, 1997). Chaotic attractors generated by iterated 
function systems and the emergence of chaotic behavior is studied in (Bahar, 1997); 
the cobweb model is used to illustrate the instability and the onset of chaos in 
(Chiarella, 1988). A route to ergodicity breakdown and statistical descriptions of 
nonlinear systems at the onset of chaos are investigated in (Coraddu, Lissia and 
Tonelli, 2006; Robledo, 2004). Fibonacci order in the period-doubling cascade to 
chaos and the comparison of recurrence quantification methods for the analysis of 
temporal and spatial chaos is discussed in (Linage, Montoya, Sarmiento, Showalter 
and Parmananda, 2006; Mocenni, Facchini and Vicino, 2011); the transition from 
maps to turbulence is discussed in (Lan, 2010). The applicability of Hamiltonian 
geometrical criterion for the exploration of chaos determined by the dynamical 
curvature of a conformal metric for a nonlinear Hamiltonian system is discussed in 
(Wu, 2009). A computer-algebraic criterion based on the autocorrelation function 
and Laplace-Borel transformation for the onset of chaos in nonlinear dynamical 
systems is proposed in (Ünal, 1989). 

The system identification problem 
Hankel matrices and the system identification problem are closely related. In 

the system identification theory, Hankel matrices are often constructed before the 
implementation of the model itself. One can form a Hankel matrix directly from the 
input-output data. The indirect approach is also possible by, for example, evaluating 
Markov parameters in the first place (Ma, Ahuja and Rowley, 2011). Usually the 
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aim is to construct the model of the lowest dimensionality possible. Here the Hankel 
matrix plays an important role because a state-space model can be obtained from its 
factorization. This can also be done by singular value decomposition (SVD). 

Singular value decomposition of a real matrix H  results in the product 
= ,TH USV  where U  is comprised of ortonormal eigenvectors of THH ; V  

consists of ortonormal eigenvectors of TH H  and S  is a diagonal matrix whose 
elements are sorted square roots of eigenvalues of TH H  (singular values of H ). 

The first so-called state space realization algorithm was proposed in 1965 (Ho 
and Kálmán, 1966). It was an entirely revolutionary method at the time, and it 
incorporated the factorization of a Hankel matrix into two other matrices. It is not 
necessary to fix the dimension of a system before applying the method. The only 
requirement is set that it must be finite. 

As Ho and Kálmán predicted, their method evolved into a number of 
applications in science and engineering (de Jong, 1978; Jafarzadeh, Lascu and 
Fadali, 2012; Lee and Yeom, 2012). 

Minimizing the rank of a matrix 
The matrix rank minimization problem arises whenever the complexity of a 

model is related to the rank of an appropriate matrix. Thus reducing the rank of such 
a matrix is equivalent to the reduction of the relative complexity of the model. The 
rank of a matrix can be minimized by minimizing the norm of that matrix. 
Application of this strategy to the Hankel matrix is proposed in (Fazel, Pong, Sun 
and Tseng, 2013). The methodology is applicable to (but not limited to) matrices 
with a linear structure including Hankel and Toeplitz matrices. The minimization of 
a norm is achieved by employing several first-order methods: alternating direction 
methods of multipliers, proximal point algorithms and gradient projection methods. 

Minimization of the rank of a Hankel matrix can also be widely applied in the 
linear time-invariant (LTI) system theory. This theory originated from applied 
mathematics and features applications in many fields ranging from engineering to 
finance. For example, it has direct applications in such technical areas as NMR 
spectroscopy (Glass and Shrier, 2014), circuits (Baylis and Marks, 2012), signal 
processing (Monti, Meyer, Tschudin and Luise, 2012), etc. An LTI model can be 
fitted to the observed data and produce various optimization problems including 
minimization of the Hankel matrix rank. 

1.5. Short-term Series Forecasting 

MA techniques are widely used in signal smoothing (Manikandan and Soman, 
2012) and time series forecasting applications (Holt, 2004). It is well known that 
MA(1) (MA at =1L , or naïve prediction techniques) are one of the best predictors 
for highly random and complex time series (Sauer, Yorke and Casdagli, 1991). 

Predicting short-time series is quite a challenging task as every proposed 
technique appears to be superior in some respect. It is admitted that a forecasting 
model is worth applying if it is better than the persistence model also known as the 
naïve prediction. In fact, the naïve prediction is an analogue to the moving average 
of the averaging window length equal to 1. The model draws a prediction being 
equal to the present value. For example, the ANN model for predicting the wind 
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speed proposed in (Ma, Hu and Xu, 2013) is less than 10.77% in terms of root mean 
square error compared with the persistence model. Short-term wind speed prediction 
has attracted lots of attention thus recently creating a separate niche for short-time 
series predictions in sustainable engineering (Nan, Li, Qiu, Zhao and Guo, 2013). 
Applications as the hourly scheduling of the generators is important in balancing the 
power production and demand (Dong-xiao, Hui-feng and Desheng, 2012). Apart 
from applications in engineering, scientific research on techniques for short-time 
series forecasting include (Ragulskis, Lukoseviciute, Navickas and Palivonaite, 
2011), (Palivonaite and Ragulskis, 2014) or (Easton, Stephens and Angelova, 2014) 
to mention just a few. An interesting conclusion was drawn in (Chen, 2011) about 
naïve predictions and various combination models in forecasting the tourism 
demand. The naïve method might be the optimal method depending on the type of 
the error estimator considered even despite the fact that the overall performance of 
the naïve method is lower if compared to that of the combination models. 

A time series forecast can also be achieved by reconstructing the underlying 
skeleton sequence. In this work, the H-rank based strategy is employed for the 
reconstruction of the skeleton sequence. Only one value is predicted forward; this 
makes it a short-time forecasting model. Previous findings showed that algebraic 
models could be successfully applied in forecasting (Ragulskis et al., 2011). The 
demand for improved or specialized techniques in the field of time series forecasting 
led to various other approaches such as the use of Hybrid Monte Carlo algorithm 
(Dong-xiao et al., 2012), decomposing time series using wavelets (Jia, Wei, Wang 
and Yang, 2014) or using a linear combination of forecasters (Firmino, de Mattos 
Neto and Ferreira, 2014). 

Data often needs to be preprocessed in order for some forecasting method to 
be efficiently applied. The overview of preprocessing importance for the data of 
track irregularity could be found in (Jia et al., 2014). The time series could also be 
decomposed into a finite number of separate primitives, then each primitive could be 
predicted separately. Such preprocessing might improve the results as in (Wang, Hu, 
Ge, Ren and Zhao, 2014). In this work, the weighted moving average is found in the 
preprocessing stage. The goal is to find weight coefficients leading to the 
decomposition of the series to the skeleton sequence being the lowest order linear 
recurrence sequence. While the skeleton sequence is used for the search of the 
optimal algebraic decomposition, the actual predicted value comes from the 
application of the weighted moving average. The proposed algorithm is compared to 
standard time series models in terms of MAPE. 

1.6. Basic Linear Algebra Subprograms and Linear Algebra PACKage 

It is essential to make the optimal use of computer resources while performing 
a huge amount of computations. 

Basic Linear Algebra Subprograms (BLAS) and Linear Algebra PACKage 
(LAPACK) are a set of tools for vector and matrix operations considered as industry 
standard. Initially implemented in Fortran, BLAS and LAPACK routines have also 
been used in Matlab (Skalicky, Lopez, Lukowiak, Letendre and Gasser, 2013). The 
operations are categorized into three main groups: scalar, vector and vector-vector 
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operations are called Level-1 BLAS routines; Matrix-vector and matrix-matrix 
operations are called Level-2 and Level-3 BLAS operations respectively. For more 
efficient computations, higher level routines are preferred (Gustavson, Waśniewski, 
Dongarra, Herrero and Langou, 2013). LAPACK uses Level 3 BLAS operations in 
order to benefit from the capabilities of modern computers. Some of the most 
important linear algebra algorithms in the scientific and numerical fields 
implemented in LAPACK are: matrix factorizations such as LU (PLU), QR or SVD; 
least-squares solutions of linear systems of equations and eigenvalue problems. The 
algorithms are implemented as block algorithms. Block algorithms are comprised of 
two successive phases: forming of sequence of Gaussian elimination-like operations 
(being very rich in Level 2 BLAS operations) and update of the trailing submatrix 
(leading to Level 3 BLAS operations) (Ltaief, Luszczek and Dongarra, 2012). 
Discussion of block algorithms is available at (Gustavson, Herrero and Morancho, 
2014). 

LAPACK functions have prefixes S, D, C, or Z depending on the selected type 
of arithmetic to be used. The prefixes correspondingly represent single real, double 
real, single complex, or double complex floating point arithmetic. 

Solving linear algebra problems with LAPACK is extremely time efficient 
(Gray, Stewart and Tenesa, 2012; Lin, Gao, Sun, Cheng and Sorensen, 2012; 
Ordonez, Mohanam, Garcia-Alvarado, Tosic and Martinez, 2012; Peña, Núñez and 
Medina, 2014). Some improvements and alternatives to the standard LAPACK 
routines include (Aurentz, Vandebril and Watkins, 2013; Castaldo, Whaley and 
Samuel, 2013; Deadman, Higham and Ralha, 2013). Other discussions on the 
efficiency of the implemented standard functions include (Frison and Jorgensen, 
2013; Gustavson, Waśniewski and Herrero, 2012). 

A large amount of computations forms the need for building more processing 
time-efficient applications. GPU- (Graphics processing unit) based applications have 
been recently attracting lots of attention. One of the most difficult linear algebra 
algorithms to parallelize is the LU factorization. The current standard for an LU 
factorization is the one implemented in LAPACK (Donfack, Tomov and Dongarra, 
2014). It is the function GETRF. A hybrid CPU/GPU computing approach to LU 
factorization efficiently balancing the workload between the CPUs and the GPUs 
was proposed in (Donfack et al., 2014) while another approach is presented in 
(Horton, Tomov and Dongarra, 2011). The algorithm was compared with such state-
of-the-art libraries as MKL (Math Kernel Library for multicore) and MAGMA 
(Matrix Algebra on GPU and Multicore Architectures), and significant performance 
improvements were noted. The approach is also applicable to other linear algebra 
algorithms. 

LAPACK block LU factorization of matrix M  is expressed with the form 
M PLU=  where L  is a unit lower triangular matrix; here U  is the upper triangular 
matrix whereas P  is the permutation matrix. Factorization is achieved by using 
functions DGETF2 or DGETRF (which is the more time-efficient version). The 
algorithm in LAPACK is based on the sequence of row interchanges for Gaussian 
elimination (Kurzak, Luszczek, Faverge and Dongarra, 2013). The formation of 
such a sequence of operations is referred to as panel factorization. Hence, repeated 
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application of the procedure and descending down the diagonal of the matrix 
operations of the form C C A B= − ×  takes place. Here A  is the panel (i.e. a set of 
columns) without the top 

kn  rows, B  is the top 
kn  rows of the trailing submatrix, 

and C  is the trailing submatrix without the top 
kn  rows; k  is the iteration index. 

Panel factorizations would dominate the execution time of the application compared 
to the execution time of matrix-matrix multiplications. Thus panel factorization 
delivers performance which is inadequate for LU implementation on hybrid 
CPU/GPU systems. Usually, it is preferred in order to minimize the work performed 
by the CPUs in order to prevent GPUs idleness. A fast alternative equivalent to the 
DGETRF function is proposed in (Kurzak et al., 2013). 

It may be noted that decomposing some algorithm into a number of procedures 
may result in faster implementation provided these procedures are performed by 
standard functions. An example of this case is a solution of the system of equations 
of the form Tx b=  where n nT ×∈ℝ  is a symmetric block – a Toeplitz matrix and 

, nx b∈ℝ . The generalized Schur algorithm which is usually used when solving such 
systems may be modified so that to parallelize matrix – matrix multiplications 
(Alonso, Arguelles, Ranilla and Vidal, 2013; Alonso, Argueso, Cortina, Ranilla and 
Vidal, 2013). As a result, the efficiency of BLAS level 3 operations is benefited 
from. 

A number of digital image processing problems such as the estimation of the 
homography between two sets of points on different planes or the linear method to 
calibrate a camera from images of planes could be described as the problem of 
finding the minimal singular value of matrix A  of dimensions m n×  (Gerardo de la 
Fraga, 2015). A new procedure was suggested in (Gerardo de la Fraga, 2015). The 
paper claims that the novel procedure is faster than the traditional function of 
LAPACK when calculating the SVD. However, this approach is only applicable for 
finding no more than one (minimal) singular value. There are many performance 
improvements for SVD, e.g. (Akhtar and Khan, 2013; Foster, Mahadevan and 
Wang, 2012; Gunta, Khan, Saha and Pau, 2013). In this framework, it originally 

takes ( )2O mn  time to compute SVD thus making it a time-costly operation for 

large matrices. 
The most commonly used SVD algorithm on CPU is the QR-iteration (Feng, 

Jin, Zheng and Zhu, 2014). That is why it is natural for this factorization to be so 
frequently discussed. Whenever a particular procedure contains a QR operation it is 
considered as a significant limiter of the performance (Gates, Haidar and Dongarra, 
2015). A comprehensive research of QR factorization procedure, its performance 
and realization in LAPACK could be found in (Van Zee, van de Geijn and Quintana-
Orti, 2013). A recursive approach striving to parallelize QR factorization is proposed 
in (Kaagstrom, Kressner and Shao, 2012). An alternative parallelization strategy is 
discussed in (Kuznetsov, 2013). A specialized QR procedure delivering eigenvalues 
in exact pairs or quadruples is suggested by (Salam and Watkins, 2011). 

In this work, LAPACK is utilized so that to perform huge amounts of 
determinant calculations. Standard function DGETRF is referenced via the dll 
(dynamic link library) in C++ code. Algorithms producing patterns of H-ranks are 
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rich in for loops. This fact prompted us to use C++ for better performance of the 
algorithms. Thus executions of C++ codes were carried out on Linux system as 
Linux is a rather popular choice in the field of science (Stpiczyński, 2015; Xia and 
Xue-dong, 2012). 
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2. COMPUTATION OF H-RANKS AND THEIR PATTERNS 

2.1. Numerical Methods for Computing H-ranks and Their Analysis 

2.1.1. The Algorithm for the Computation of the H-rank 

The H-rank of a sequence is an effective computational tool for the 
investigation of the convergence of nonlinear dynamical systems to critical 
attractors. H-ranks computed for initial solutions in the space of a system’s 
parameters and the initial conditions may reveal important physical information 
about the peculiarities of a system’s behavior (Landauskas and Ragulskis, 2012; 
Ragulskis and Navickas, 2011). 

The concept of the H-rank of a sequence ( ); = 0,1,jp j … ; jp ∈ℝ  has been 

introduced in (Ragulskis and Navickas, 2011). 

Let S be an infinite sequence of real or complex numbers: { } =0
:= r r

S x
+∞

. 

A finite subsequence comprising the initial 2 1k −  elements 

( )0 1 2 2 3 2 2, , , , ,k kx x x x x− −…  can be rearranged into the Hankel matrix ( )k
H : 

( ) [ ]

0 1 1

1 2
2 1 ,

1 2 2

:= =

k

k k

r s r s k

k k k

x x x

x x x
H x

x x x

−

+ − ≤ ≤

− −

 
 
 
 
 
 

⋯

⋯

⋯

⋯

 (14)  

where the superscript k  denotes the order of the Hankel matrix. The Hankel 

transform of the sequence of matrices ( ){ }
=2

k

k
H

+∞
 yields a sequence of determinants 

( )( ){ } ( ){ }
=2=2

det =k k

kk

H d
+∞ +∞

. 

The rank of a discrete sequence is defined in (Ragulskis and Navickas, 2011). 
It is a natural number m  satisfying the following condition (as long as the rank 

exists): ( ) = 0m n
d

+  for all n∈ℕ  if only ( ) 0m
d ≠ . The thesis uses the following 

notation: 

{ } =0
= .r r

HrS Hr x m
+∞

=  (15)  

If it is shown that this kind of number m  does not exist, it is determined that 
sequence S  does not have a rank: :=HrS +∞ . Yet if the rank of a discrete sequence 
does exist, an explicit mathematical model governing the evolution of that sequence 
can be derived. It is defined that ( )0,0,0, = 0Hr … . We should note that 

( )0 , , ,0,0,0, = 1mHr p p m +… …  if only 0mp ≠  for = 0,1,2,m … . 

It should be remarked that a chaotic sequence does not have a rank. Otherwise, 
the dynamics of that sequence would be deterministic because an algebraic model of 



31 
 

this sequence could be derived, which contradicts the definition of a chaotic 
sequence. 

It could be proven that the Hankel rank of a solution of a discrete iterative map 
can only decrease if a part or the whole transient process from the initial condition is 
omitted (Ragulskis and Navickas, 2011). 

2.1.2. Aspects of Floating Point Arithmetic for the Computation of H-ranks 

All real numbers are stored in the computer memory as a closest binary 
number (Kahan, 1996): 

 ( ) ( )= 1 1 2 .
s Exp Biasx Fraction −− ⋅ + ⋅  

A floating point double word length number is comprised from the sign bit, 11 
bits for the Exp part and 52 bits for the fraction (or the mantissa) in 32bit system. 
The Bias is set to 1023; thus the largest power of 2 is 

10 11

=0
2 1023 = 2 1 1023 = 1024i

i
− − −∑  while the smallest power of 2 is 

0 1023 = 1023− − . The fraction part is represented as a binary number. Thus the 
least significant bit equals to 52 162 2.22 10− −≈ ⋅ . It is usually called the machine 

epsilon. In this case the 16th digit of the mantissa of a real number is approximate. 
According to the IEEE Standard for Floating-Point Arithmetic (IEEE 754) 

technical standard, a number in the 32bit word length system can be referred as the 
single, double or quadruple format. The formats have the structure of bits for 
different parts of the binary number as 1-8-23, 1-11-52 and 1-15-112 respectively. 

Let us consider the case of number = 3.5x . The mantissa inevitably starts 
with 1 – hence, 12 = 1.75x −⋅  gives = 1Exp Bias−  and 0.75 as the fraction. 

1 2 30.75 = 1 2 1 2 0 2− − −⋅ + ⋅ + ⋅ +… . The obtained number is positive, so = 0s  and the 
result is the sequence of bits 0110… in the computer memory (double format in a 
32bit system). 

 
Table 1. A number representation in double format 

1 (sign) 2-12 (Exp) 13-64 (Fraction) 
0 1000...0 11000...0 

 
Finding the exponent involves dividing or multiplying by 2 till the number 

gets smaller than 2 but larger than or equal to 1. For example, 

1 22 = 1. < 2n

kx b b b−⋅ … ; it is less than 1 52 521 2 2 = 2 2− − −+ + + −… . The smallest n  

must be found so that to satisfy this inequality and thus to determine the power n . 

2

ln
22 > > = .log

2 2 ln 2
n

x

x x
n⇒  (16)  

A more efficient way to determine the bits of the mantissa is as follows. 0.75 is 
greater than 12−  thus 1 goes to the binary representation; 0.75 0.5 = 0.25− ; 0.25 is 

greater than or equal to 22−  thus 1 is taken again; 0.25 0.25 = 0− ; 0 is smaller than 
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2 k− , > 2k , thus all bits starting at k  are equal to 0. This principle is related to the 
fact that at a particular position the sum of the mantissa (as of a diminishing 
geometrical progression) obtained by removing that bit is always less than that 
particular bit. For example, 1 2  is more than 2 31 2 1 2+ +… . The nearest binary 

representation is used if the mantissa does not have enough bits to exactly represent 
a particular number. 

One more important fact must be mentioned here. Let us consider two floating 
point numbers differing less than the machine epsilon (for example 212−  and 202− ). 
It is, of course, possible to perform the arithmetic operations here. Yet, one must be 
extremely careful while working with the detection of convergence or similar 
problems. The number might converge and become constant (if the machine epsilon 
is fixed as being equivalent to zero) in the computer memory; however, the 
difference between two adjacent numbers might still exist and be less than the 
machine epsilon. Thus there are problems where certain properties of computer 
arithmetic are important. 

2.1.3. Notes on Finding H-rank Using Floating Point Arithmetic 

Let us investigate a sequence of numbers: 2.5; -1; 0.25; -0.06; -0.25; 0.1; 0.25; 
0.1. Let these numbers be the orbit of a particular map of interest. The corresponding 
sequence of Hankel matrices is: 

( ) [ ]1 = 2.5H ; ( )2 2.5 1
=

1 0.25
H

− 
 − 

; ( )3

2.5 1 0.25

= 1 0.25 0.06

0.25 0.06 0.25

H

− 
 − − 
 − − 

;  

( )4

2.5 1 0.25 0.06

1 0.25 0.06 0.25
=

0.25 0.06 0.25 0.1

0.06 0.25 0.1 0.25

H

− − 
 − − − 
 − −
 
− − 

.  

Firstly Matlab was used to find the determinants for each of the matrices 

above. Calculations resulted in: ( )1 = 2.5d ; ( )2 = 0.375d − ; ( )3 = 0.099125d ; 
( )4 = 0.07683046d . Usually such results can be considered of acceptable accuracy 

because here the last digits are much greater than 52 162 2.22 10− −≈ ⋅  which is the 
number represented by the least significant bit in double format. 

The floating point arithmetic was simulated here by writing the C++ code for 
performing “+”; “-“; “*” operations and calculating the determinant of a matrix by 
performing the product of first row elements and corresponding lower order 
determinants. The purpose of this course of actions is to find out where 
computational accuracy is lost and, more importantly, to discover whether that 
correlates to the properties of the map. 

Only for illustrative purposes a custom floating point type is chosen here. 1 bit 
is dedicated to the sign of a number, 5 bits for the exponent and 6 bits for the 
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mantissa. Setting 5 bits for the exponent enables us to use (31 1)/2 152 = 2± − ±  as a 
maximal factor (because 0 1 42 2 2 = 31+ + +… ). Analogously, one can find the limits 
for a mantissa. 

 
Table 2. Multiplication in floating point arithmetic 

2.5 10 * 1. 0 1 0 0 0 0 12⋅  

0.25 10  1. 0 0 0 0 0 0 22−⋅  

0.625 10  1. 0 1 0 0 0 0 12−⋅  
 

The trace of this experiment is as follows. ( )2 = 0.34375d −  is obtained by 
performing 2.5 0.25 ( 1) ( 1)⋅ − − ⋅ − . 

The result is exact and the accuracy is not lost. The ( 1) ( 1)− ⋅ −  is rather trivial 

so the next operation is considered. 
 

Table 3. Addition in floating point arithmetic 
-1 10  + 1 1. 0 0 0 0 0 02⋅  

0.625 10  0. 1 0 1 0 0 0 02⋅  

-0.34375 10  1. 0 1 1 0 0 0 22−⋅  
 
As it is evident, the Matlab result differs more than 0.03  from the one 

obtained. To continue, ( )3
d  is calculated as follows:  

 ( )( )2.5 0.25 0.25 0.06 0.06⋅ ⋅ − − ⋅ −  

 ( ) ( ) ( )( )1 1 0.25 0.06 0.25− − ⋅ − ⋅ − − − ⋅ +  

 ( )0.25 ( 1 0.06 0.25 0.25).+ ⋅ − ⋅ − − ⋅  
Again, some operations do not lose the required accuracy: 
 

Table 4. Multiplication in floating point arithmetic 
0.25 10 * 1. 0 0 0 0 0 0 22−⋅  

0.25 10  1. 0 0 0 0 0 0 22−⋅  

0.625 10  1. 0 0 0 0 0 0 42−⋅  
 
However, some operations result in: 
 

Table 5. Multiplication in floating point arithmetic 
0.06 10 * 1. 1 1 1 0 0 0 52−⋅  

0.06 10  1. 1 1 1 0 0 0 52−⋅  

0.0035095 10  1. 1 1 0 0 1 0 1 92−⋅  
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In this case, the resulting number has a longer mantissa than 6 positions. The 
remaining bit 7 9 162 2 = 2− − −⋅  will not be stored in the resulting number. Depending 
on the hardware used for the calculations, this remaining bit will most probably be 
lost. Such accuracy loss is the price for the length of the mantissa being insufficient. 
Another operation is performed as: 

 
Table 6. Multiplication in floating point arithmetic 

0.25 10 * 1. 0 0 0 0 0 0 22−⋅  

0.06 10  1. 1 1 1 0 0 0 52−⋅  

0.0146484375 10  1. 1 1 1 0 0 0 72−⋅  
 
It is not difficult to notice that in certain cases the two added numbers can 

differ more than the length of a normalized mantissa. By performing addition and 
normalizing the mantissas in the first place one of the operands becomes zero in the 
mantissa. Thus it does not act in the operation, and the result will be the greater 
number of the two. To sum up, the operation in fact lies beyond the machine epsilon 
and is successfully performed. In other words, operations lie in the exponent. 
However, the accuracy of the result is lost. 

It was decided to fix the number of acceptable accuracy losses while 
performing calculations of H-ranks. = ! 2k n  proved to be the most informative and 

universal value obtained experimentally. Here n  is the order of the determinant 
being calculated. Nevertheless, this number is approximately equal to the half of 
arithmetic operations in calculating the determinant by expanding it to the sum of 
the product of one row elements and corresponding lower order determinants. 

Let us suppose that one needs to calculate the determinant by performing the 
actions outlined above. If the determinant of order 2 is calculated as the difference of 
the products of the diagonal elements then there is one subtraction operation. The 
order 3 determinant requires 2 sums of cofactors and 3 1⋅  subtractions inside each of 
them. The order 4 determinant requires 3 4 2+ ⋅  sums and 4 3 1⋅ ⋅  subtractions and so 
on. In this respect, the order n  determinant requires 
( 1) (( 2) ( 1) (( 3) ( 2) 3 1))n n n n n n− + ⋅ − + − ⋅ − + − ⋅ ⋅ ⋅…  sums and ! 2n  subtractions. 

 
Table 7. Summary on the number of operations 

Order n  
Total sums of 

cofactors 

Total 
subtractions 
of products 

Total number 
of +- operations 

!

2

n
 

2 0 1 1 1 
3 3 0 2 = 2⋅ +  3 5 3 
4 4 2 3 = 11⋅ +  4 3 = 12⋅  23 12 
5 5 11 4 = 59⋅ +  5 4 3 = 60⋅ ⋅  119 60 
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As seen from the table, ! 2n  is approximately half of the sum and subtraction 

operations involved in finding the cofactor expansion for a particular determinant. 
The total number of these operations is ! 1n − . 

 

2.1.4. The Computation of Pseudoranks 

In order to determine the rank of the sequence, one needs to find such a matrix 

dimension ( 1m + ) that the determinant of the Hankel matrix is equal to zero. In 
practice it is sufficient to compute determinants up to certain precision ε  like the 
machine epsilon. Calculating a determinant of a square real matrix requires a fair 
amount of computer resources if the dimension of a matrix is large. Moreover, the 
determinant, despite being a conventional notion theoretically, rarely finds a useful 
role in numerical algorithms (Trefethen and Bau III, 1997). 

Plotting patterns of H-ranks requires massive computations of determinants of 
Hankel matrices. Thus instead of using the standard straightforward function det in 
Matlab, here C++ and the LAPACK package are employed to perform the 
computation of the determinants of Hankel matrices. 

LAPACK is installed as a set of DLLs. In order to use the libraries in the C++ 
code, LAPACK must be linked to them. Linking is performed by passing arguments 
to the compiler. Additionally, function headings with word extern must be defined at 
the beginning of the file. The word extern tells the compiler that the corresponding 
functions are defined in another file. The compiler will find that file via #include 
statement and the linked libraries. 

Although LAPACK can be considered as being state-of-the-art in linear 
algebra, it does not feature a standard subroutine for the computation of the 
determinant. Instead, the standard PLU decomposition (function dgetrf()) of a matrix 
into the lower triangular matrix L (having ‘ones’ on the main diagonal), the upper 
triangular matrix U and the permutation matrix P is performed. LAPACK’s function 
dgetrf() produces three matrices: 

21

1 2

1 0 0

1 0

1m m

l
L

l l

 
 
 =
 
 
 

…

…

… … ⋱ …

…

; 

11 12 1

22 20

0 0

m

m

mm

u u u

u u
U

u

 
 
 =
 
 
 

…

…

… … ⋱ …

…

; 

1

2
piv

m

p

p
P

p

 
 
 =
 
 
 

⋮
. (17) 

In fact, L  and U  are stored in one matrix, which is possible due to their 
triangular structure. pivP  elements represent the index of row 

ip  to be interchanged 

with row i . Thus pivP  could be transformed into permutation matrix P  having 

single ‘ones’ in each line. The original matrix H  now is decomposed as H LUP= . 

( )

1

1 1
m

m

ii

i

d LUP L U P U u
=

= = ⋅ ⋅ = ⋅ ⋅ =∏ . (18) 
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The absolute value of the determinant of the original matrix equals to the 
product of elements on the main diagonal of U (Eq. (18)). The number of 
permutations determines the sign of the determinant of the original matrix. But since 
the main interest lies in the absolute value of the determinant only, it suffices to 
compute the product of the diagonal elements of U. An alternative approach could 
be counting the number of non-zero diagonal elements. The computation of 
determinants continues until the absolute value of the product of diagonal elements 
of matrix U is less than ε . In this respect, such computations reveal not the rank but 
rather the pseudorank of a sequence instead. 

It must be noted that the leading dimension is the second dimension in 
LAPACK. Consequently, all matrices must be transposed while defining the initial 
data or analyzing the final results. 

The combination of the speed of C++ in performing loops (opposite to Matlab) 
and the mathematical precision of LAPACK resulted in significantly faster 
formation of images of H-ranks in various phase planes. It can be noted that the final 
visualization is performed by using the functionality of Matlab graphical functions. 

The selection of a particular value of ε  requires additional attention and is 
discussed in the next section. 

2.2. Computational Reconstruction of the Patterns of H-ranks 

2.2.1 Applications of H-ranks for the Circle Map 

Computational techniques based on the ranks of Hankel matrices (H-ranks) are 
used so that to study the convergence to Arnold tongues in the circle map. It appears 
that the process of convergence to the phase-locked mode of the discrete stationary 
attractor is far from being trivial. Figures of pseudoranks of Hankel matrices 
constructed from transient solutions of the circle map carry important physical 
information about complex nonlinear processes and are also beautiful from the 
aesthetic point of view. 

The main objective of this chapter is to show that the concept of the H-rank 
can be effectively used for the investigation of convergence properties of the circle 
map. The insight into the embedded algebraic complexity of the nonlinear system is 
revealed by computing and visualizing H-ranks in the space of a system’s 
parameters and the initial conditions. It is shown in (Ragulskis and Navickas, 2011) 
that the computation of Hankel ranks can be successfully used in order to identify 
and assess the sensitivity of nonlinear systems to initial conditions and can be used 
as a simple and effective numerical tool for qualitative investigation of the onset of 
chaos for discrete nonlinear iterative maps. 

The discrete iterative circle map is used here to illustrate the process of 
convergence to stationary states. The circle map is a paradigmatic model of a 
nonlinear iterative dynamical system used for the study of the dynamical behavior of 
a beating heart (Glass, Guevara, Shrier and Perez, 1983). It is shown here that the 
study of the convergence rate to a periodic orbit of the circle map can produce 
beautiful and appealing patterns. Moreover, these graphical pictures contain 
important information on the stability of the periodic orbits of the circle map. This 
information could be useful whenever the manipulation or control of quasiperiodic 
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nonlinear systems could be considered (Landauskas, Ragulskienė and Ragulskis, 
2012; Landauskas and Ragulskis, 2013). 

The main purpose of this section is to investigate the properties of the H-rank 
of a solution of a discrete iterative map when transient processes are omitted and the 
system approaches a periodic or a quasiperiodic orbit. 

  
(a) (b) 

Fig. 3. The bifurcation diagram for the circle map at = 2K π . The first 10000 orbit points 

are omitted 

The circle map ( )1 =n nfθ θ+  defined previously as Eq. (1) is used in this 

section. Fig. 3 shows the bifurcation diagram for the circle map. The symmetry of 
the bifurcation diagram can suggest that we should perform a research into the 
subset of the domain of Ω . However, this may not apply to the transients – and it is 
important when clocking convergence. 

 

Fig. 4. Pseudoranks of the circle map. Part (a) was constructed while omitting transient 
processes, and the initial phase was set at 0 = 0.5θ ; part (b) was constructed without 

omitting transient processes 

The H-rank as the computational tool for the reconstruction of Arnold tongues 
will be used here. At first, H-ranks in the region 0 1≤ Ω ≤  and 0 K π≤ ≤  are 
computed. For each and every pair of Ω  and K , the iterative process is started and 

the sequence { }jθ ; = 0,1,j … ; is constructed; the initial condition 0θ  is set at the 

level of 0.5. Then the H-rank of the obtained sequence is calculated. As shown in 
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(Ragulskis and Navickas, 2011), the H-rank of a chaotic sequence does not exist 
(then we consider H-rank as equalling infinity). Therefore, the upper limit for the H-

rank = 40m  is set. If the sequence of determinants does not vanish until = 40m , 

the process is terminated assuming that { } =jHr p m ; = 0,1,j … . The obtained 

results are shown in Fig. 4(b). 

  
(a) (b) 

Fig. 5. Maps of pseudoranks in the zoomed area of the widest Arnold tongue for various 

parameter values ( 0.4 0.6≤ Ω ≤ , 00.35 0.65θ≤ ≤  and = 0.5K π ) at (a): 16= 2.22 10ε −⋅ ; 

(b): 50= 10ε − ; 40m =  

The more elements of the sequence ( ); = 0,1,j jθ …  are considered (leading to 

possible higher H-ranks of the sequence), the more the resulting picture is alike to 
the well-known shape of Arnold tongues in the circle map (Schilder and Peckham, 
2007). 

Previously discussed aspects of computer arithmetic in the performed 
computations could be noticed when comparing Fig. 5(a) and (b). The floating point 
standard was explored in order to explain the fact of successful calculations down 
below the limit of the machine epsilon, and Fig. 5(b) is a clear proof of that. By 
decreasing the value of ε , some values of H-ranks increase. This results in higher 

order determinants being considered in the Hankel transform. The H-ranks in 

between those obtained by using machine epsilon (Fig. 5(a)) and m  suggest that one 
will get interpretable results by using ε  smaller than the machine epsilon. 

The pattern from Fig. 5(a) is used here in order to demonstrate the use of the 
LAPACK package in computations. The dimensions of the pattern are fixed to 
800 800× . 

 
Table 8. A comparison of the speed of computation for patterns of H-ranks 

Software Platform 
Approximate relative 

time, % 
C++ with LAPACK Linux Arch on VirtualBox 7 

Matlab Windows 8.1 100 
Matlab (parfor, 2 workers) Windows 8.1 28 
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Matlab (parfor, 3 workers) Windows 8.1 36 
Matlab (parfor, 4 workers) Windows 8.1 41 
 
Table 8 summarizes the experiment of computing a large number of patterns 

of H-ranks for the circle map. The employed computer had a 2.1 GHz Intel i7 
processor with 4 cores and 8 GB of random access memory. The results actually 
speak for themselves by showing the C++ and the LAPACK approach as being the 
fastest. Matlab’s parallel loop parfor decreases in terms of performance if the 
number of workers is increased. This is due to the complexity of the algorithm and 
the resulting communication between the threads. The LAPACK approach was also 
compiled on the Windows platform but that did not outperform the Linux approach. 

2.2.2. Selecting the Optimal Value of ε  for Patterns of H-ranks 

As mentioned previously, the structure of Arnold tongues in the circle map is 
well-known. The computation of pseudoranks for different initial conditions (
0 1≤ Ω ≤ , 0 K π≤ ≤  and 0 = 0.5θ ) is performed for a variety of ε . The obtained 
results are illustrated in Fig. 6. The evolution of more interesting patterns of 
pseudoranks can be observed as the value of ε  decreases (we should note that the 
maximum rank in colorbars is detected automatically and depends on ε ). 

   
(a) (b) (c) 

   
(d) (e) (f) 

Fig. 6. Maps of pseudoranks for a variety of parameter values ( 0 1≤ Ω ≤ , 0 K π≤ ≤  and 

0 = 0.5θ ) at (a): 1= 10ε − ; (b): 2= 10ε − ; (c): 4= 10ε − ; (d): 8= 10ε − ; (e): 12= 10ε − ; (f): 
20= 10ε −  

The naked eye cannot see principal differences between Fig. 6(e) and Fig. 6(f). 
At this point, one can only fix the value of ε  and use it for the construction of maps 
of pseudoranks. An analogous selection could be made by using, for example, the 
phase plane 0 0.4≤ Ω ≤ , 00 0.4θ≤ ≤  and = 2K π  (Fig. 7). It depends on which 
parameters the H-ranks need to be computed in that respect. 
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(a) (b) (c) 

   
(d) (e) (f) 

Fig. 7. Maps of pseudoranks for a variety of initial conditions ( 0 0.4≤ Ω ≤ , 00 0.4θ≤ ≤  and 

= 2K π ) at (a): 2= 10ε − ; (b): 5= 10ε − ; (c): 10= 10ε − ; (d): 16= 10ε − ; (e): 25= 10ε − ; (f): 
50= 10ε −  

 

  
(a) (b) 

Fig. 8. The relationship between the absolute root mean square difference E  and the ε  
value at = 30m . The calculations were performed by using parameter plane KΩ −  of 

dimensions [0;1] [0; ]π×  (a) (here, the solid line represents the variation of E at 0 = 0.25θ ; 

the dash line shows values at 0 = 0.5θ ; the dott-and-dash line presents results at 0 = 0.75θ ) 

and 0θΩ −  of dimensions [0;1] [0;1]×  (b) (the solid line represents the variation of E at 

= 0.25K π ; the dash line shows the variation at = 0.5K π ; the dot-and-dash line depicts the 
results at = 0.75K π ) 
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(a) (b) 

Fig. 9. The relationship between the absolute root mean square difference E  and the ε  
value at = 30m . The calculations were performed by using the parameter plane KΩ −  of 
dimensions [0;0.4] [0;0.5 ]π×  (a) (the solid line represents the variation of E at 0 = 0.25θ ; 

the dash line represents the level 0 = 0.5θ ; the dot-and-dash line describes 0 = 0.75θ ) and 

0θΩ −  of dimensions [0;0.4] [0;0.4]×  (b) (the solid line represents the variation of E at 

= 0.25K π ; the dash line represents the level = 0.5K π ; the dot-and-dash line describes 
= 0.75K π ) 

Any particular selection of the value for ε  must be valid. In order to achieve 
this, the graph representing the absolute root mean square difference E between 
consecutive maps of pseudoranks in Fig. 6 is constructed. Let us denote ( )1 ,Hr i j  

the value of the pseudorank at the i -th row and the j -th column of the map of 

pseudoranks computed at 1ε  (analogously, ( )2 ,Hr i j  is the pseudorank at 2ε ). Then, 

difference E is defined as Eq. (19). 

( ) ( ) ( )( )2

2 1 2
=1 =1

1
= , ,

n m

i j

E Hr i j Hr i j
mn

ε −∑∑ ; (19) 

where m  is the number of rows and n  is the number of columns in maps of 

pseudoranks. Relationship ( )E ε  is shown in Fig. 8. It can be clearly seen that maps 

of pseudoranks do not change considerably beyond 25= 10ε −  and that the limit of 
accuracy of double floating point arithmetic is reached. 

The graph representing E between consecutive maps of pseudoranks on the 
subset of the parameter plane KΩ −  at [0;0.4] [0;0.5 ]π×  (Fig. 6) was also 
constructed. In this case, the detail of the parameter plane improves more after the 
limit of accuracy of double floating point arithmetic. 

2.3. Conclusions 

The floating point arithmetic of computation of a determinant was explored in 
this chapter.The obtained results provided explanatory insight into the fact that H-
rank computations are performed successfully below the limit of accuracy of double 
floating point arithmetic. This not-so-trivial fact was demonstrated by performing 
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numerical experiments. It was shown that choosing the error value as approximately 
equal to the machine epsilon is optimal in terms of the visual quality of the patterns 
of H-ranks for the circle map. The optimal error value for other nonlinear systems 
might be different and should be determined separately. 

The method discussed in this section consists of two steps and can be used for 
visualizing Arnold tongues themselves. Firstly, the system is iterated for a 
predetermined number of steps from the initial conditions. Then one does not need 
to search for the effect of the phase locking. Then, simple computation of the H-rank 
of the stationary signal is performed and Arnold tongues occur in the patterns of 
pseudoranks. Thus the quality of phase diagrams is crucial whenever the 
manipulation or control of quasiperiodic nonlinear systems is considered. 

A much more interesting question arises concerning the convergence 
properties of the circle map to Arnold tongues. It has been shown previously that 
pseudoranks of transient processes may reveal important physical information about 
the properties of a discrete system. For example, it has been shown in (Boyland, 
1986) that one can observe the stable, the unstable manifold and the manifold of 
nonasymptotic convergence in the plotted phase diagrams of the Logistic map. In 
this section, the H-rank of the transient processes of the circle map was used for the 
visualization of the rate of convergence to the Arnold tongues. The optimal selection 
of ε  value was considered. 
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3. MANIFOLDS OF CONVERGENCE AND THEIR APPLICABILITY FOR 

THE CONTROL OF NONLINEAR SYSTEMS 

The algorithm for the computation of the H-rank of a sequence and its 
properties was investigated in previous sections. In order to achieve its objectives, 
the present chapter is organized as follows. Section 3.1 deals with the most general 
issues of the Chapter. The concept of the manifold of non-asymptotic convergence is 
introduced in Section 3.2. Computational aspects of the patterns of H-ranks near the 
manifold of non-asymptotic convergence are discussed in Section 3.3. Then, pseudo 
manifolds in the bouncer system and manifolds of convergence in a stroboscopic 
representation of a nonlinear mathematical pendulum’s solution are investigated. 
The obtained pseudo manifolds were later used for controlling unstable periodic 
orbits and clocking convergence to a limit cycle. Methods for the control of discrete 
as well as continuous dynamical systems are discussed in Sections 3.7 and 3.8. 
Concluding remarks are outlined in the last section. 

3.1. Stable Manifolds, Unstable Manifolds and Manifolds of Non-asymptotic 

Convergence 

Let us consider a discrete iterative system. The manifold of non-asymptotic 
convergence is defined as a set of initial conditions leading to a periodic regime in a 
finite number of forward iterations. We should note that the entire set of initial 
conditions can be classified into the subset of initial conditions converging 
asymptotically to a stable periodic attractor (if only such an attractor exists) and into 
the subset of initial conditions converging non-asymptotically to a periodic regime 
(either stable or unstable) (Ragulskis and Navickas, 2011). One of the primary 
objectives of this chapter is to explore whether the manifold of non-asymptotic 
convergence does exist in the stroboscopic representation of the model of a 
periodically driven pendulum. 

Convergence to a stable limit cycle of a periodically driven nonlinear 
pendulum is analyzed in this chapter. The concept of the H-rank of a scalar sequence 
is used for the assessment of transient processes of the system. The circle map is 
used to illustrate the complex structure of the manifold of non-asymptotic 
convergence to a fixed point. The pattern of H-ranks in the space of a system’s 
parameters and initial conditions is used for the demonstration that the manifold of 
non-asymptotic convergence exists in the stroboscopic representation of the transient 
data of the periodically driven nonlinear pendulum. This manifold is used for the 
construction of a simple method based on a short external impulse for the control of 
transient processes when the transition time to stable limit cycles must be 
minimized. 

The Hankel rank (H-rank) of a scalar sequence reveals the complexity of the 
algebraic model describing the evolution of that sequence. The H-rank has been 
successfully used for the identification of manifolds of non-asymptotic convergence 
and for qualitative investigation of the onset of chaos for discrete nonlinear iterative 
maps. 
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3.2. The Manifold of Non-asymptotic Convergence and the H-rank 

As mentioned previously, the main objective of this chapter is to show that the 
manifold of non-asymptotic convergence exists in the stroboscopic representation of 
the transient data of the periodically driven nonlinear pendulum. But before 
continuing with the model of the nonlinear pendulum, the functionality of the H-
rank technique on the iterative circle map ( )1 =n nfθ θ+  is demonstrated (see Eq. 

(1)). Initially, the circle map will be investigated here when Ω  is set at 0.15. 
Let us investigate the stable period-1 regime: 

( )* = * ;fθ θ  (20) 

where *θ  is the stable period-1 phase at = 0.15Ω  and = 1K  (the stable period-1 
regime exists in this case). The convergence to the stable period-1 regime can be 
asymptotic ( = *n

n
limθ θ
→∞

) or non-asymptotic (when a finite number of forward 

iterations brings the system into the stable period-1 regime (Bresten and Jung, 
2009)). The non-asymptotic convergence to the stable period-1 regime can be 
explored by solving the inverse relationship 

( )1
1= ;n nfθ θ−

+  (21) 

assuming that 1 = *nθ θ+ . We should note that Eq. (21) can be iterated backwards for 

any number of steps. Iterative nonlinear root finding algorithms (the bisection 
method and Matlab software) are exploited for solving Eq. (21) since it is a 
transcendental equation. One backward step yields the value of 

nθ  bounded in the 

interval: 

* ; * .
2 2n

K K
θ θ θ

π π
 ∈ −Ω − −Ω +  

 (22) 

If Eq. (21) has the only solution = *nθ θ  then the manifold of the non-
asymptotic convergence is an empty set. Such a situation is illustrated in Fig. 10 
where Fig. 10(a) shows one backward iteration from = 0n  to = 1n − . The root 
finding process of Eq. (21) is illustrated in Fig. 10(b) – there other roots do not exist 
except for *θ  at = 0.15Ω  and = 1K . 

The situation becomes much more complex at = 0.15Ω  and = 1.25K  (Fig. 
10(c)). It can be seen that Eq. (21) produces 3 roots; we should note that the root 
finding process is illustrated only for = 1n −  in Fig. 10(d). One root corresponds to 
the stable period-1 regime (the black line connecting the step number 1−  with the 
step number 0 in Fig. 10(c)). Another two roots represent such values of 1θ−  which 

evolve into 0 = *θ θ  in one forward step (the gray lines in Fig. 10(c)). It is of interest 
to note that the continuation of backward iterations produces new roots grouped into 
two branches which tend to converge as the number of backward iterations 
increases. Thus the manifold of non-asymptotic convergence is an infinite countable 
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set of discreet initial conditions which lead to the stable period-1 regime in a finite 
number of forward iterations. 

The root finding process becomes even more complex at = 0.15Ω  and 
= 2.5K  (Fig. 10(e)). Let us note that the middle root at = 1n −  generates three roots 

at = 2n − . Such a situation occurs only once; four different branches of backward 
roots tend to converge as backward iterations are continued. Finally, the situation 
becomes very complicated at = 0.15Ω  and = 3K  (Fig. 10(g)). Triples of backward 
roots are generated in an almost unpredictable manner as backward iterations are 
continued. 

    
(a) (c) (e) (g) 

    
(b) (d) (f) (h) 

Fig. 10. The construction of the manifold of non-asymptotic convergence to the stable 
period-1 regime. There are no other initial conditions except for the fixed point itself leading 
to the period-1 regime in a finite number of forward steps at = 0.15Ω  and = 1K  (part (a)). 

Parts (c), (e) and (g) show the manifold at = 0.15Ω , = 1.25K , = 2.5K  and = 3K  
respectively. Parts (b), (d), (f) and (h) illustrate the root finding process: horizontal lines 

represent 0 = *θ θ ; curved lines stand for ( )1f θ−  

Let us consider once more the circle map when Ω  is set at 0.15 and K  varies 
in the interval [ ]0;π  (Fig. 11(a)). A considerable number of iterates ( = 4000k ) is 

omitted until initial transients terminate for every discrete value of K . The rational 
number = 0.15Ω  yields a periodic regime at = 0K . Yet the system experiences 
complex quasi-periodic transitions at increasing values of K  until it falls into a 
stable period-1 mode (at K  around 1). The further increase of K  results into a 
cascade of period doubling bifurcations leading into the onset of chaos (Fig. 11(a)). 

The manifold of the non-asymptotic convergence is visualized in Fig. 11(b). 
The thick solid red line denotes the stable period-1 regime. The thick dashed red line 
represents the unstable period-1 regime which occurs after the first period-doubling 
bifurcation (Fig. 11(a)). All solid black lines represent the manifold of the non-
asymptotic convergence to the period-1 regime (either stable or unstable). The 
thickest solid black lines (the width is set at 6 pixels) illustrate the initial conditions 
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resulting in the period-1 regime in one forward step. 5 pixel-wide solid black lines 
illustrate the initial conditions resulting in the period-1 regime in two forward steps; 
4 pixel-wide lines lead to three forward steps and so on. As mentioned previously, 
the interval of the initial conditions [ ]0 0;1θ ∈  (at fixed Ω  and K ) can be classified 

into two sets: the infinite uncountable set of initial conditions converging 
asymptotically to *θ  as n  tends to infinity and the infinite countable set of initial 
conditions resulting into *θ  in a finite number of forward steps (if only the stable 
period-1 regime exists). Fig. 11(b) is a clear illustration of such a classification. 

 

Fig. 11. The bifurcation diagram of the circle map is shown in part (a) at = 0.15Ω . The 
manifold of non-asymptotic convergence to the period-1 regime is illustrated in part (b). The 

thickness of black solid lines in (b) illustrates the number of forward iterations required to 
reach the period-1 regime; the red solid line stands for the stable period-1 regime; the red 

dashed line stands for the unstable period-1 regime which occurs after the first period-
doubling bifurcation. The map of pseudoranks is shown in (c). All computations are 

performed at = 0.15Ω  
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It has been shown in (Ragulskis and Navickas, 2011) that the H-rank can be 
used as an effective computational tool for the construction of the intertwined 
pattern of the stable and the unstable manifold as well as the manifold of the non-
asymptotic convergence. Computational experiments for the circle map are 
performed, and H-ranks in the region 00 1θ≤ ≤  and 0 K π≤ ≤  are computed at 

fixed = 0.15Ω . For every pair of 0θ  and K , the sequence ( ); = 0,1,j jθ …  is 

constructed and the H-rank of that sequence is derived. The results are shown in Fig. 
11(c). The manifold of the non-asymptotic convergence to the period-1 regime can 
be clearly seen in Fig. 11(c) (the transient process is short due to the non-asymptotic 
convergence to the stable period-1 regime and thus the H-rank is low there). 

The manifold of non-asymptotic convergence for the circle map (Fig. 11(c)) is 
constructed by using the computational technique based on H-ranks. One could raise 
a question whether the manifold of non-asymptotic convergence could be 
constructed by performing a straightforward calculation of the number of steps of 
convergence to the stationary state instead. 

In general, the applicability of the H-rank technique has a number of important 
advantages if compared to the calculation of the number of steps. First of all, one 
does not have to consider the type of the stable attractor when applying the H-rank 
technique. We should note that Fig. 11(b) is constructed by counting backward steps 
from the period-1 regime as the construction of the manifold of non-asymptotic 
convergence to the period-2 stable regime would be much more complex. Yet the H-
rank technique measures the complexity of transient processes; the manifold of non-
asymptotic convergence is constructed simultaneously for all the existing attractors. 

Secondly, the H-rank technique automatically reveals the manifold of non-
asymptotic convergence to unstable periodic regimes (if only they do exist). For 
example, a transient process can converge non-asymptotically to the unstable period-
1 regime at 2.5K =   (Fig. 11(c)). Backward iterations from the unstable period-1 
regime allow the construction of the manifold of non-asymptotic convergence to the 
unstable fixed point (Fig. 11(b)). However, the identification of such non-asymptotic 
convergence would be complicated if the counting of forward steps would be used 
simply because a stable period-2 regime and the unstable period-1 fixed point 
coexist at K = 2.5. 

Finally, the H-rank technique allows identifying zones of regularity 
surrounded by complex chaotic processes in the parameter plane (at 0.88K =   and 

2.84K =   in Fig. 11(c)). Such identification would be nearly impossible when using 
straightforward calculation of the number of steps of convergence to a stationary 
state because the type of the attractor is not known at the beginning of the 
computational experiment. 

3.3. The Quality of H-ranks Near the Manifolds of Convergence 

A comparison between Fig. 8 and Fig. 9 shows that the distribution of 
accuracy of computations may not be uniform over the parameter plane. One of the 
essential elements of a particular parameter plane is the stable and unstable 
manifolds. Vicinities of these manifolds contain orbits of different dynamical 
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qualities. These differences can also be explained as differences in terms of 
complexity which in turn has an effect on the accuracy of the computations. 

Such a heuristic argument is explored further by constructing the manifolds of 
convergence for the circle map and comparing them to the plots of accuracy loss 
detection of pseudorank calculations. Accuracy loss is considered here as the 
arithmetic operation “+” (or “-”) as long as it implies the relation a b a+ = ; 0a ≠ , 

0b ≠ . As discussed before, this happens when a  and b  differ more than the length 
of a mantissa. Finding the operations where operands differ more than 2 or 3 lengths 
of a mantissa also proved to be an informative measure regarding the accuracy loss. 

  
(a) (b) 

Fig. 12. (a) The stable (solid line) and the unstable (dashed line) manifolds for the circle map 
at = 2K π . (b) The manifold of non-asymptotic convergence to the period-1 regime at 

= 2K π . The thickness of black solid lines in (b) illustrates the number of forward 

iterations required to reach the period-1 regime; the gray solid line stands for period-1 

regimes  

In order to construct stable and unstable manifolds, one needs to find the fixed 
points of the map. By solving ( ) =f θ θ , the fixed points 

1 2
= ( 1)

2
k arcsin k

K

π
θ π

π
Ω − + 

 
, k ∈ℤ  are obtained. Previous computations were 

performed on the domain [0;1] [0;1]×  (or a subset of it) on the plane KΩ − . Thus 

= 0k  is fixed; hence we get the following equations for stable and unstable 
manifolds: 

1 2
,

2
=

1 2
.

2

arcsin
K

arcsin
K

π
π

θ
π

π
π

Ω

 Ω  −   

 (23) 

Fig. 12 represents a comparison of constructed manifolds to the manifold of 
non-asymptotic convergence. The plot of accuracy loss detection in Fig. 13(b) 
shows the minimal order of the determinant calculated with at least ! 2n  accuracy 

losses in arithmetic operations. If the manifold of non-asymptotic convergence is 
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compared to the plot of accuracy losses (Fig. 13(b)), some interesting similarities 
may be seen. 

   
(a) (b) 

Fig. 13. The comparison of the manifold of non-asymptotic convergence (to the period-1 

regime) with the plot of accuracy loss detection ( 16= 10ε − , = 2K π , = ! 2k n ) 

A part of the manifold corresponds to the initial conditions leading to fewer 
accuracy losses mentioned above. This fact suggests that one must pay more 
attention to the various manifolds whenever the quality and detail of the parameter 
planes is considered. The other areas of the parameter plane correspond to the 
majority of accuracy losses. A logical explanation for this result might be the 
heuristic argument mentioned before. An orbit which is relatively far from the 
manifold of convergence tends to act more chaotically which in turn leads to higher 
order determinants being considered. 

3.4.  Non-asymptotic Convergence and the Logistic Map 

3.4.1. Classification of Manifolds for the Logistic Map 

A well-known one-dimensional Logistic map is defined by: 

( )1 = 1k k kx rx x+ − ; = 0,1,2,k … ; (24)  

where 0 4r≤ ≤  and 00 1x≤ ≤ ; otherwise 
kx  would be unbounded. 

In order to construct the manifold of the non-asymptotic convergence for the 
Logistic map one needs to perform the following procedure. Taking into 
consideration the value of r , a corresponding stable fixed point 1* 1x r−= −  is found 

at first. Then two points ( )1,2
1x−  are computed according to Eq. (25) by considering 

( ) ( )( )1,2 1,2
1 1* 1x r x x− −= ⋅ − . When redefining ( )1,2

1 1:nx x+ −= , a set of successive points is 

computed. The process is continued recursively. Thus *ix , 1, 2,i = − − …  are initial 

conditions leading to the stable fixed point *x  in exactly i  iterations. 

( )
2

1,2
1

4 *
.

2

r r rx
x

r
−

± −
=  (25) 
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(a) (b) (c) 

Fig. 14. Backward iterative steps for the Logistic map. Part (a) shows iterations originating at 
the fixed point 0x  when 1.5r = ; part (b) represents 2.5r = . The same set of points is shown 

in a single line at a particular r  value in part (c); the weight of a point decreases with each 
backward iteration 

Fig. 14 shows the iterative process discussed above. Fig. 14 (c) summarizes 
Fig. 14(a) and (b) by plotting every point in a single line in respect of r . 

 

Fig. 15. The manifold of non-asymptotic convergence for the Logistic map. The thickness of 
lines is inversely proportional to the number of steps required to reach a fixed point 

Considering the continuous variation of parameter r , the structure depicted in 
Fig. 15 represents the manifold of the non-asymptotic convergence for the Logistic 
map. The manifold is obtained by considering a continuous set of values for 
parameter r  in an analogy to Fig. 14(b). 

Stable and unstable manifolds cannot be found directly for nonlinear maps. An 
approximation could be found when using a computer. 

3.4.2. Non-asymptotic Convergence in the Logistic Map 

Let us consider a stable period-2 orbit at = 3.2r  for the Logistic map. We 
should note that the Logistic map is a non-invertible map. 
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Fig. 16. Three different types of transient processes for the non-invertible Logistic map 

( )1 = 1n n nx rx x+ − . Parts (a) and (b) illustrate non-asymptotic convergence to the unstable 

period-1 repeller (the initial condition is located at the center of the second upper tulip in the 
pattern of H-ranks). Parts (c) and (d) illustrate non-asymptotic convergence to the stable 

period-2 attractor in two forward steps; parts (e) and (f) illustrate asymptotic convergence to 
the stable period-2 attractor. Parameter r  is fixed at 3.3 in all computational experiments 

All initial conditions can be classified into 3 distinct sets: the infinite 
uncountable set of initial conditions leading to the asymptotic convergence to the 
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period-2 attractor; the infinite countable set of initial conditions leading to the non-
asymptotic convergence to the period-2 attractor and the infinite countable set of 
initial conditions leading to the non-asymptotic convergence to the unstable period-1 
repeller. All three different types of convergence are illustrated in Fig. 16. 

3.5. Pseudo Manifolds in the Space of System Parameters 

3.5.1. A pseudo-stable Structure in a Completely Invertible Bouncer System 

It was shown that a pseudo-stable structure of non-asymptotic convergence 
may exist in a completely invertible bouncing ball model. Visualization of the 
pattern of H-ranks helps to identify this structure. It appears that this structure is 
similar to the stable manifold of non-invertible nonlinear maps governing the non-
asymptotic convergence to unstable periodic orbits. Yet this convergence to the 
unstable repeller of the bouncing ball problem is only temporary since non-
asymptotic convergence cannot exist in completely invertible maps. This nonlinear 
effect is exploited for temporary stabilization of unstable periodic orbits in 
completely reversible nonlinear maps. 

As mentioned before, Eq. (3) can be used as an approximation of the bouncing 
ball model – one may check (Joseph et al., 2012) for details. Nevertheless, here the 
bouncing ball model from (Luo and Guo, 2013) is taken, and Eq. (3) is derived. On 
the other hand, the investigated model (Eq. (3)) is a completely invertible discrete 
dynamical system. The initial conditions do specify the unique evolution of the 
system in the positive and in the negative direction (this is not true , for example, for 
the Logistic map considered in (Luo and Guo, 2013)). One of the main objectives of 
our approach is to propose an alternative approach based on the patterns of H-ranks. 
As mentioned previously, patterns of H-ranks had been used for noninvertible 
systems – now the efficiency of this approach for completely invertible systems is 
bound to be demonstrated. 

Let us suppose that a ball of mass m  is falling onto an oscillating table. The 

oscillations of the table follow the equation ( ) ( )( )= 1 sinm t A tω+ , 0A ≥ ; t  here 

denotes time. Here, 1 is added in order to keep the amplitude always positive. Let us 
denote the moment of time the ball hits the table for the k -th time as 

kt . Let ( )ku t  

be the velocity of the ball right before the impact and ( )kv t  represent the velocity of 

the ball right after the impact. 
If impacts are inelastic then ( ) ( )=k kv t u tα− ; α  is the coefficient of 

restitution. Let the velocities in respect of the table be noted with the bar as, for 

example, ( )kv t . It follows that: 

( ) ( )= ,k kv t u tα−  (26) 
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( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

= ; = ;

= ; = .

k k k k k k

k k k k k k

v t v t m t v t v t m t

u t u t m t u t u t m t

 ′ ′+ − 
⇒ 

′ ′+ −  
 (27) 

Combining equations (26) and (27) results in: 

 ( ) ( ) ( ) ( ) ( ) ( )( )= = = .k k k k k kv t m t v t u t u t m tα α′ ′− − − −  (28) 

 

 ( ) ( ) ( ) ( )( )= .k k k kv t m t u t m tα′ ′− − −  (29) 

Thus the impact relation is derived: 

 ( ) ( ) ( ) ( )= 1k k kv t m t u tα α′+ − , (30) 

as ( ) ( )0= cosm t A tω ω θ′ + , and the explicit impact map is: 

 ( ) ( ) ( ) ( ) ( )( )1 1 0 1= 1 cos .k k k k kv t A t v t g t tα ω ω θ α+ + ++ + − − ⋅ −  (31) 

In order to find the value of 1kθ + , one needs to apply numerical algorithms. It 

is important to note that the velocity of the table is assumed to be not affected by the 
impacts. 

Let us suppose that the ball travels a much further distance between the 
impacts compared to the distance covered by the oscillations of the table. Then 

( ) ( )1

2
k k

k

g t t
v t

+⋅ −
≈  and 

 
( )

1

2
= .k

k k

v t
t t

g
+ −  (32) 

The velocity of the approaching ball reverses after the impact and by following 
the same idea it could be approximated as 

 ( ) ( )1 .k ku t v t+ ≈ −  (33) 

 (30), (32) and (33) combine to the nonlinear map: 

 

( )

( ) ( ) ( ) ( )

1

1

2
= ,

2
= 1 .

k

k k

k

k k k

v t
t t

g

v t
v t v t m t

g
α α

+

+


+




  ′+ + +   

 (34) 

These equations can be non-dimensionalized by defining non-dimensional 
time =k ktϕ ω , non-dimensional velocity ( )= 2k kv v t gω , force amplitude 
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( )2= 2 1 gγ ω α β+  and ( ) ( )0= cosk km t tβω ω θ′ − + . ( )m t  is thus defined as 

mentioned before but with A:= β− . Then =k
kt

ϕ
ω

, ( ) =
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ω
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2
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After redefining :=k kϕ ϕ ω  and :=k kv v ω , Eq. (35) evolves into 

 
( )

1

1

= ,

= cos .
k k k

k k k k

v

v v v

ϕ ϕ

α γ ϕ
+

+

+


− +
 (36) 

which is the model (Eq. (3)) used in this work. The presented techniques can be 
applied for any mapping in invertible dynamical systems. 

Unstable periodic orbits in nonlinear maps can be identified by clocking the 
convergence processes. A pattern of H-ranks (which does help to clock the 
convergence) is a particularly useful tool for the visualization of these unstable 
orbits and their manifolds in non-invertible nonlinear maps (Landauskas and 
Ragulskis, 2012). However, non-asymptotic convergence to an unstable orbit cannot 
exist in a completely invertible map (this statement can be easily proven by the 
contradiction). Nevertheless, a “shadow” of a previously stable orbit (after a period 
doubling bifurcation) will still temporarily attract transient processes from some 
initial conditions in a completely invertible bouncing ball model. The question how 
to identify these “shadows” for an unstable orbit for a completely invertible map 
remains open. 

In order to assess the convergence rate to stable periodic orbits of the bouncer 
model, computational tools based on H-ranks (Landauskas and Ragulskis, 2012) are 
used. The resulting patterns of H-ranks reveal interesting structures in the phase 
space of initial conditions. The fact that the “shadows” of unstable orbits can be 
interpreted in these patterns of H-ranks is not unexpected. The topological structure 
of these “shadows” is much more interesting as it appears to be strikingly similar to 
the stable manifold of a non-invertible one-dimensional Logistic map and thus 
suggests the existence of the non-asymptotic temporary convergence to the unstable 
repeller. The main objective of this chapter is to demonstrate the existence of this 
non-asymptotic convergence and its ability to stabilize unstable periodic orbits of 
discrete completely invertible dynamical systems during finite transient processes. 

Period-1 fixed points of the bouncer model can be easily determined by 
substituting 1 =n nx x+  and 1 =n ny y+  into Eq. (3). There exist two different fixed 

points: ( )1 = 2 2x kπ π+ ; ( )1 = 0y  and ( )2 = 2 2x kπ π− + ; ( )2 = 0y ; k ∈ℤ . 
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The stability of the fixed points can be determined by evaluating the 
eigenvalues of the Jacobian matrix 

BJ : 

( ) ( )

( ) ( )

, ,

.
, ,

B n n B n n

n n

B

B n n B n n

n n

F x y F x y

x y
J

G x y G x y

x y

 ∂ ∂ 
 ∂ ∂ =
 ∂ ∂
 

∂ ∂  

 (37) 

 

( ) ( )( )1,2 , =k k
x yλ  

( ) ( ) ( ) ( ) ( )2 2 21 sin 1 2 1 sin sin

2

k k k
x x xα β α α β β+ − ± − − + +

= ; =1,2.k  

(38) 

Eq. (38) shows the eigenvalues of matrix BJ . 

 

Fig. 17. The eigenvalues of the Jacobian matrix for ( ) ( )( )1 1,x y  (part (a)) 

and ( ) ( )( )2 2,x y  (part (b)) 

Now = 0.1α  is fixed, and the variation of eigenvalues in respect to β  is 

explored: 

( ) ( )( ) ( ) 2
1 1

1,2

1.1 0.81 2.2
, = ,

2
x y

β β β
λ

− ± − +
 

( ) ( )( ) ( ) 2
2 2

1,2

1.1 0.81 2.2
, = .

2
x y

β β β
λ

+ ± + +
 

(39) 
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Fig. 18. The bifurcation diagram for the bouncer model; = 0.1α  

The values of ( ) ( )( )1,2 ,k k
x yλ ; =1,2k  are plotted in Fig. 17. It can be seen that 

the fixed point ( ) ( )( )1 1,x y  is stable in the interval 0 < < 2.200β  (both absolute 

values of its eigenvalues are lower than 1) and its stability is lost as β  exceeds 
2.200 (Fig. 17(a)). This fact can be observed in the bifurcation diagram (Fig. 18) 
where the first period doubling bifurcation occurs at 2.200β = . 

3.5.2. Patterns of H-ranks for the Bouncer Model 

Patterns of H-ranks for the bouncer model produced at different values of the 
parameter β  are illustrated in Fig. 19. Every point in the phase space ( )0 0;x y  

corresponds to a separate transient process starting from the initial conditions 

( )0 0;x y . The color of a point is assigned in accordance to the H-rank of a transient 

process starting from this point. Yet H-ranks can be computed for scalar time series 
only (Ragulskis and Navickas, 2011). Therefore, 

( )2 2 2 2 2 2
0 0 1 1 2 2, , ,Hr x y x y x y+ + + …  is computed for a particular trajectory in the 

two-dimensional phase plane. Such an approach ensures the consistency of results 
and eliminates the possibility for the recovery of low H-ranks for such transient 
processes where one coordinate is frozen while the other performs wild oscillations. 

The computation of the H-rank of a transient process for a predefined set of 
system parameters and initial conditions can be described by the following 

algorithm. Step 0: We set the maximum dimension m  of the square Hankel matrix; 
we set > 0ε . Step 1: We compute the Hankel transform of the transient process up 

to =k m  resulting in a sequence of determinants { } =2

m

k k
d . Step 2: we find such 
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2 s m≤ ≤  that { }
1

<
m

k k s
d ε

≥ +
; we assign the H-rank of the sequence to s . If 

m
d ε≥  

then we assume that the H-rank is greater than or equal to m . 

 

Fig. 19. Patterns of H-ranks computed for the bouncing ball model at a variety of values 
of β : (a): = 1β ; (b): = 1.5β ; (c): = 2β ; (d): = 2.5β . Parameter α  is fixed at 0.1; all 

the computations are performed in the region ( 02 2xπ π− ≤ ≤  and 02 2yπ π− ≤ ≤ ) 

Several characteristic features can be singled out in all patterns of H-ranks 
illustrated in Fig. 19. All the patterns of H-ranks are periodic in respect to 0x  due to 

the periodical structure of the model in respect of x . Stable period-1 attractors are 
clearly visible at 0 = 2 2x kπ π+ ; 0 = 0y ; k ∈ℕ  in Fig. 19(a), (b) and (c) (period-1 
orbit is unstable in Fig. 19(d)). Also, it can be noted that the boundary lines 
separating periodic bands of patterns run through unstable period-1 fixed points 

0 = 2 2x kπ π− + ; 0 = 0y ; k ∈ℕ  in all the figures including Fig. 19(d). 
Visualizing the pattern of H-ranks in one single periodic band would be 

advantageous. Straightforward shear mapping could be used for such 
visualization(s). Unfortunately, the slope of lines separating adjacent bands is 
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different for different β  (Fig. 19). Numerical techniques for the approximation of 

the slope of separatrices (at the fixed level of = 0.1α ) were used: 

( )= 2 ; .
2

y S x k k
π

β π − ⋅ + + ∈ 
 

ℕ  (40) 

Numerical values of parameter ( )S β  are reconstructed from the results of 

numerical experiments: ( )1 = 0.9529S − ; ( )1.5 = 0.9615S − ; ( )2 = 0.9674S − ; 

( )2.5 = 0.9735S − ; thus 

( ) = 0.01354 0.94013S β β− ⋅ − . (41) 

The least square linear regression yields the approximation depicted in Fig. 20 
and is expressed as Eq. (41). 

 

Fig. 20. Numerical reconstruction of the slope of separatrices ( )S β . The circles denote 

numerically reconstructed values of the slope at 1β = ; 1.5; 2 and 2.5; the solid line 

represents the least squares linear approximation of ( )S β  

Now, the plain shear mapping reads: 

( )
:= ;

:= .

y
x x

S

y y

β
 +




 (42) 

This mapping is used to visualize only one band between two adjacent 
separatrices; both separatrices are represented as vertical border lines on the left and 
the right side of the mapped image of H-ranks (Fig. 21). We should note that all the 
mapped coordinates at 0 = 0y  correspond to the original coordinate system as stable 

fixed points are located at 0 = 2x π ; 0 = 0y  in Fig. 21(a), (b) and (c). Two period-2 
fixed points are clearly visible in Fig. 21(d) (they are located in the centers of 
regions represented by the lowest H-rank). Let us note that period-2 fixed points are 
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separated by a new separatrix; this separatrix does cross the previously stable 
period-1 point at 0 = 2x π ; 0 = 0y  (Fig. 21(d)). 

 

Fig. 21. Patterns of H-ranks in a periodic sheared band computed at a variety of values of β
: (a): = 1β ; (b): = 1.5β ; (c): = 2β ; (d): = 2.5β . Parameter α  is fixed at 0.1 

Snapshots of patterns of H-ranks in Fig. 19 and Fig. 21 are illustrated with four 
discrete values of parameter β . Continuous variation of parameter β  would help to 
reveal the evolution of these patterns of H-ranks. In order to simplify the graphical 
data representation, every pattern in Fig. 21 is cut in the vertical and the horizontal 
direction through the point ( )0 0= 2; = 0x yπ . The resulting graphs (as β  varies 

continuously from 0 to 4) are shown in Fig. 22(b) (the vertical cut) and Fig. 22(a) 
(the horizontal cut). 

The pattern of H-ranks in Fig. 22(b) reveals the period doubling bifurcation 
occurring at β  = 2.200. The fixed point ( )0 0= 2; = 0x yπ  becomes unstable after 

the first period doubling bifurcation; a characteristic supercritical pitchfork shape 
can be observed in Fig. 22(b) after the bifurcation point. Let us note that the outer 
pitchfork fingers do not represent the stable period-2 solution in Fig. 22(b) – the 
vertical cutting line does not intersect the stable period-2 attractor (Fig. 21(d)). 
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Fig. 22. The evolution of the pattern of H-ranks for the continuous variation of β  in 

horizontal (a) and vertical (b) sections of sheared bands of H-ranks; parameter α  is fixed at 
0.1 

The unstable finger of the pitchfork is surrounded by a region of high H-ranks 
after the period doubling bifurcation (Fig. 22(b)). This represents the transient 
behavior of solutions with initial conditions in the vicinity of the unstable period-1 
fixed point. The system would be repelled to the stable period-2 attractor at 2.5β = . 

Yet this repelling process is slow if initial conditions are very close to the unstable 
period-1 fixed point (as the “shadow” of the previously stable attractor is still there 
(Hilborn, 2000)). The pattern of H-ranks surrounding the unstable period-1 repeller 
forms the shape of a tulip. Such an ornament represents the fact that the algebraic 
complexity of the transient process from the initial conditions near the repeller is 
high – the system starts slowly moving away from the unstable period-1 attractor 
and subsequently converges (after a rather long transient time) to the stable period-2 
attractor. 
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3.6.  Non-asymptotic Temporary Convergence 

Let us consider the evolution of the pattern in H-ranks in vertical sections (Fig. 
22(a)). The supercritical pitchfork of the period doubling bifurcation is also visible 
at β  = 2.200. Yet we can observe a rather interesting structure of patterns in the 
region after the first period doubling bifurcation. Such structures in the pattern of H-
ranks require further attention. 

3.6.1.  The Stable Manifold of the Bouncer Model 

The Dynamics (Nusse and Yorke, 1998) software is employed here for the 
construction of the stable and unstable manifolds of the bouncer model. The stable 
and the unstable manifolds of the bouncer model are illustrated in Fig. 23 at = 0.1α  
and = 2.5β . 

 

Fig. 23. The stable (a) and the unstable (b) manifolds of the bouncer model at = 0.1α  and 
= 2.5β . The saddle points are shown as empty circles; the stable period-2 points are shown 

as black disks; “shadows” of previously stable period-1 points are shown as black dots and 
are located between each pair of black disks. The unstable manifold goes through all the 

equilibrium points (both stable and unstable) 

  

3.6.2. The Pseudo-stable Structure of the Bouncer Model 

Let us consider the pattern of H-ranks constructed for the continuous variation 
of β  in horizontal sections (Fig. 22(b)). A vertical band of H-ranks around 2.5β =  

is illustrated in Fig. 24(a). Let us denote the region of higher H-ranks wrapped 
around the central line 0 = 2x π  as the central tulip. Regions of higher H-ranks 
above and below the central line are denoted as the first upper and the first lower 
tulip accordingly (marker 2 is located near the first upper tulip in Fig. 24(a)). 
Analogously, tulips located further away from the central line are given higher 
numbers (marker 1 is located at the center of the second upper tulip in Fig. 24(a)). 
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Fig. 24. The evolution of a transient process starting from the initial conditions coinciding 
with the center of the second upper tulip in the pattern of H-ranks. Part (a) shows a vertical 

band of the pattern of H-ranks in Fig. 3.4(b) around 2.5β = ; part (b) illustrates the evolution 

of 
k

x ; part (c) represents the evolution of 
k

y  ( k  is the step number). Initial conditions are 

marked by symbol 1 in parts (a), (b) and (c). 4 consecutive steps are illustrated in part (a); 44 
forward steps are illustrated in parts (b) and (c). Initial conditions located not in the center of 
a tulip result in fast convergence to the stable period-2 attractor (parts (d) and (f)). Parameter 

α  is fixed at 0.1; β  here is 0.25 

It can be observed that the initial conditions corresponding to the centers of 
tulips result in transient processes approaching the unstable period-1 regime and 
consequently converging to the stable period-2 regime (Fig. 24). Initial conditions 
for the computation experiment illustrated in Fig. 24 (a) are as follows: 1 = 4.4082x ; 

1 = 0y . We should note that 1y  must be equal to zero because the horizontal section 
through the pattern of H-ranks in Fig. 22(b) is performed through the point 

( )0 0= 2; = 0x yπ . Four consecutive steps of the transient process are illustrated in 

Fig. 24(a) but only x -coordinates are shown here. For example, the coordinates of 
the second point are 2 = 3.6392x ; 2 = 0.7489y − . Therefore, the coincidence of the 
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second point with the center of the first upper tulip in Fig. 24(a) is completely 
accidental. The transient process starting from the center of the first upper tulip 
would be different from the process illustrated in Fig. 24 (though it would also 
approach the unstable period-1 regime and then converge to the stable period-2 
regime). 

The evolution of kx  and ky  is illustrated in Fig. 24(b) and (c). The transient 

process approaches the unstable period-1 fixed point ( )0 0= 2; = 0x yπ  but never 

reaches it. Empty circles at k = 6  in Fig. 24(b) and (c) denote the sixth iteration 
when the system is located at the closest to this fixed point: 

( )2 2 8
6 62 = 6.8454 10 .x yπ −− + ⋅  (43) 

As mentioned previously, such temporary convergence to a “shadow” of a 
previously stable fixed point is not a new phenomenon. However, the basin of 
attraction of this “shadow” is rather unexpected. A schematic diagram drawn on top 
of Fig. 22(a) illustrates the complexity of this region (Fig. 25). 

 

Fig. 25. Schematic diagram illustrating the skeleton-type structure of the pattern of H-ranks. 
Thick solid lines correspond to stable period-1 and period-2 regimes; the central thick dotted 

line corresponds to the unstable period-1 regime. All other thick dotted lines belong to the 
pseudo-stable structure of the unstable period-1 regime 

The thick solid line in the region 0 2.200β< <  represents the stable period-1 

attractor. The period doubling bifurcation occurs at 2.200β = ; a stable period-2 

regime exists at 2.200 3.736β< <  (the second period doubling bifurcation is not 
visualized). The “shadow” of the previously stable period-1 regime is shown as a 
thick dotted line at 0 = 2x π . Thick dashed lines before the first period doubling 

bifurcation correspond to such initial conditions which yield fast convergence to the 
stable period-1 regime. Analogously, thick dashed lines after the first period 
doubling bifurcation correspond to such initial conditions which yield fast 
convergence to the stable perdiod-2 orbit. Finally, thick dotted lines running through 
the centers of the top and the bottom tulips correspond to such initial conditions 
which yield fast (though temporary) convergence to the unstable period-1 regime. 
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It is well known that the bouncer model is a completely invertible discrete 
nonlinear map; a backward step can be expressed from Eq. (3): 

( )1

1 1

1
= cos ,

= .

n n n

n n n

y y x

x x y

β
α−

− −

 −

 −

 (44) 

In other words, a unique backward trajectory can be constructed for every 
initial condition of the bouncer model. That is contrary to discrete non-invertible 
maps where the process of the convergence to a stable attractor of a nonlinear 
discrete map can be classified into the asymptotic convergence and the non-
asymptotic convergence. An infinite number of forward steps is required for the 
system to reach the stable attractor if it converges asymptotically. On the opposite, a 
finite number of forward steps is required to reach the stable attractor if the system 
converges non-asymptotically. Such different types of convergence to stable 
attractors of the non-invertible Logistic map are well known; some computational 
aspects for the identification of the type of the convergence are discussed in 
(Ragulskis and Navickas, 2011). 

Yet the non-asymptotic convergence cannot exist in the bouncer model. This 
statement can be proven by contradiction. Let us denote the coordinates of the 

period- p  orbit as ( ) ( ) ( ){ }1 1 2 2ˆ ˆ ˆ ˆ ˆ ˆ; , ; , , ;p px y x y x y…  . Let us assume that the set of 

initial conditions which yield the convergence to this periodic orbit in a finite 
number of forward iterations is not an empty set. Then there exists at least one point 

( )0 0ˆ ˆ;x y  which does not belong to the periodic orbit and is mapped into a point 

( )ˆ ˆ;k kx y ; 1 k p≤ ≤  in one forward iteration (otherwise, non-asymptotic convergence 

would be not possible). But then the point ( )ˆ ˆ;k kx y  is a branching point – it can be 

mapped either into the previous point of the orbit ( )1 1ˆ ˆ;k kx y− − , or into ( )0 0ˆ ˆ;x y  in one 

backward iteration. It contradicts the fact that the bouncer model is a completely 
invertible discrete map. 

However, the topological structures of patterns of H-ranks in Fig. 25 and 16 
are strikingly similar. As discussed previously, non-asymptotic convergence to 
stable or unstable attractors is impossible for completely invertible maps. Therefore, 
initial conditions coinciding with the centers of tulips in the pattern of H-ranks for 
the bouncer model do not result in non-asymptotic convergence to the unstable 
period-1 attractor in Fig. 25 (contrary to the non-invertible Logistic map in Fig. 16). 
The system is just temporarily attracted to the vicinity of the unstable attractor (Fig. 
25). Therefore the topological structure highlighted in Fig. 25 cannot be identified 
by Dynamics. Still, this structure does attract (although temporarily) the system to 
the unstable attractor. Moreover, this attraction reminds of non-asymptotic 
convergence as the system approaches the unstable attractor in a finite number of 
forward iterations. Thus the presently discussed topological structure is denoted as 
the pseudo-stable structure of the unstable orbit. 
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3.7. Controlling of Discrete Dynamical Systems 

The main purpose of this section is to show the use of H-rank as a control tool 
for a discrete dynamical system. Firstly, the previously obtained pseudo-stable 
structure of the bouncer model will be employed for the stabilization of the unstable 
period-1 attractor. Next, the discrete iterative circle map will be used in order to 
illustrate the process of convergence to stationary states. It is shown here that the 
study of the convergence rate to a periodic orbit of a single circle map can produce 
patterns containing important information on the stability of periodic orbits of the 
circle map. This information could be useful whenever the manipulation or control 
of quasiperiodic nonlinear systems should be considered. 

3.7.1.  Temporary Stabilization of the Unstable Period-1 Attractor 

The ability of the bouncer model to attract transient processes into the vicinity 
of the unstable attractor can be successfully exploited for the temporary stabilization 
of unstable orbits. A continuous feedback control loop is not necessary in such a 
case as one can exploit the small external pulse which could relocate the system onto 
a branch of the pseudo-stable structure. 

Such a control strategy is illustrated in Fig. 26 and 27. A single impulse 
relocates the system onto a nearest point lying on the pseudo-stable structure. The 
system then converges non-asymptotically to the vicinity of the period-1 repeller and 
stays there for a considerable number of forward iterations. 

The presented technique for the temporary stabilization of unstable orbits 
comprises the following steps: 

1. We have to compute the pattern of H-ranks for the completely invertible 
discrete map. 

2. We need to identify the structure of non-asymptotic pseudo-convergence to 
the unstable orbit in the pattern of H-ranks. Let us note that non-asymptotic 
convergence is not possible in a completely invertible discrete map; negative 
mapping cannot reveal this structure. 

3. We use a control impulse so that to reset the system from its current point to 
the closest branch of this structure of non-asymptotic pseudo-convergence. 

4. We then allow the system to converge (non-asymptotically) to the 
infinitesimal surrounding of the unstable orbit. Such a process of convergence is 
referred to as temporary convergence because the system cannot converge exactly to 
this unstable orbit – otherwise this system would not be invertible. 

5. The unstable orbit is a repeller – finally the system will diverge from the 
infinitesimal surrounding of the unstable orbit. Yet the system will stay in the 
surrounding of this unstable orbit for a period of time before it converges 
(asymptotically) to a different stable attractor. 
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Fig. 26. The control strategy illustrated at = 0.1α  and = 2.5β  (the grayscale pattern of H-

ranks is only shown in the background for clarity). Thin black arrows illustrate the evolution 
of the system without any control applied – the system approaches the stable period-2 regime 

(illustrated by two thick black dots) in parts (a), (b) and (c). The thick arrow in part (d) 
illustrates the control impulse which relocates the system onto a point on the pseudo-stable 
structure. The system converges to the period-1 regime in a finite number of steps as shown 

in parts (e) and (f) (no control is further required) 
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(a) (b) 

Fig. 27. Control strategy illustration for the bouncer model – the evolution of 
k

x  and 
k

y  is 

shown in parts (a) and (b). Thin dashed lines stand for the stable period-2 attractor; thick 
dashed lines show the acceptable range for the deflection from the unstable period-1 repeller. 

Thick arrows denote the relocation of the system by a control pulse 

The whole process is called non-asymptotic temporary convergence to 
unstable orbits in the completely invertible discrete dynamical system. 

3.7.2. The Sensitivity of the Temporary Stabilization Technique to External 

Noise 

The experimental bouncing ball problem is an analog system – and 
computational simulation of this system does introduce numerical noise. The system 
is not only simulated. H-ranks of transient solutions are computed; however, this 
process introduces additional computational errors. That raises the question about 
the robustness of the proposed temporary stabilization technique to external noise. 
Such analysis is also important from the point of view of practical applicability of 
this technique to an experimental analog system which would be exposed to 
inevitable external noise. 

Thus the perturbed system is defined by Eq. (45). 

 
( )

1

1

= ;

= cos ;
n n n n

n n n n

x x y b

y y x y

ξ
α β

+

+

+ +
 + +

 (45) 

where nξ  is the Gaussian white noise with zero mean and a standard deviation equal 

to one; b  is the noise intensity. The time interval between the collisions is 
perturbed; the velocity is perturbed automatically for every subsequent collision. 

Three computational experiments are performed at = 0.0001b ; = 0.001b  and 
= 0.01b  (Fig. 28); 50 experiments are repeated from the same initial conditions as 

used in Fig. 4.2 parts (b) and (c). Black dots in Fig. 28 correspond to unperturbed 
transient solutions (identical to ones illustrated in Fig. 27 parts (b) and (c)); gray 
dots correspond to 50 perturbed transients. 

It is clear that small external noise does not damage the temporary stabilization 
of the unstable orbit – though the resulting time interval when the transient solution 
stays in the surrounding of the unstable period-1 repeller is on average shorter if 
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compared to the unperturbed case. By the way, there exist some particular transient 
solutions (Fig. 28) which stay longer in the surrounding of the repeller compared to 
the unperturbed system. That is an interesting phenomenon which could be 
explained by the fact that noise may change the stability of nonlinear systems (Hutt, 
2008). In other words, proper manipulation with particular realizations of the 
Gaussian noise may enable the design of efficient control strategies of unstable 
orbits. 

 

 

 

Fig. 28. The evolution of transient processes perturbed by the Gaussian noise at: = 0.0001b  
(parts (a) and (b)); = 0.001b  (parts (c) and (d)); = 0.01b  (parts (e) and (f)). 50 perturbed 

transients are plotted as arrays of gray dots; the unperturbed transient is plotted as a sequence 
of black dots 
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3.7.3. Controlling of Period-2 Unstable Orbits in a Bouncer System 

In this chapter, the unstable period-2 orbit of a bouncer system is explored. 
The use of techniques based on the patterns of H-ranks is employed in order to keep 
these orbits temporarily stable, i.e. to keep the iterative process bounded in a certain 
location. The results exhibit some important facts to be considered whenever 
controlling dynamical systems. 

  
(a) (b) 

Fig. 29. Bifurcation diagrams of the bouncer system. (a) – diagram for variable x; (b) – 
diagram for variable y 

 

  
(a) (b) 

  
(c) (d) 

Fig. 30. Patterns of H-ranks. Part (a) corresponds to the upper part of the bifurcation diagram 
in Fig. 29(a); (b) corresponds to the upper part of Fig. 29(b); (c) corresponds to the lower part 

of Fig. 29(a); (d) corresponds to the lower part of Fig. 29(b) 

However, whenever working with a dynamical system of more complex 
behavior, the proper interpretation of the pattern of H-ranks must be evaluated 
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beforehand. Thus this section takes it one step further by exploring a higher period 
orbit of the bouncer system. 

It must be noted that the attractor of a bouncer system is not always unique. 
The bifurcation diagram in Fig. 29 is obtained by starting calculations from the same 
initial condition. At different β  values, orbits may converge to different attractors; 
thus the bifurcation diagram results in getting sliced. 

The focus here is on a non-feedback control method, the phase control method 
which has been hardly explored and applied to discrete dynamical systems. In the 
framework of this method, the phase of the applied perturbation is used in order to 
change the dynamical system behavior. Moreover, experimental implementation of 
this non-feedback method is relatively easy. 

Let us consider a period-4 stable orbit for the bouncer system at 3.79β = . 
There exists a corresponding period-2 unstable orbit as the shadow of the previous 
stable period-2 orbit. The pattern of H-ranks in the vicinity of 3.79β =  is quite 

irregular (Fig. 30) and does not have any “tulip-shaped” areas the way the vicinity 
area of 2.5β =  does (Landauskas and Ragulskis, 2014). Thus here the unstable 

period-2 orbit is temporarily stabilized at 3.79β =  by employing H-rank based 

techniques used in (Landauskas and Ragulskis, 2014). 

  
(a) (b) 

Fig. 31. The control of the unstable period-2 orbit for the bouncer model 

The iterative process starts from 0 2.79x =  and 0 3.21y = − . Fig. 31 depicts the 

evolution of the system. After 27 iterations, 27x  resides outside the predefined strip 
of desirable values shown in gray color. 

In Fig. 32 (a), the pattern of H-ranks in the vicinity of ( )27 27,x y  is shown. The 

valley of low ranks results in the evolution of iterative process to be relatively near 
the period-2 unstable point in one iteration. In order to exert minimal control over 
the system, the nearest point in the valley is chosen. It is clearly seen in Fig. 31 that 
the orbit temporarily stays in the nearest vicinity of the period-2 unstable point. 
After another 26 iterations, control is applied again. 

A very important observation should be made here. As mentioned before, the 
attractor of the bouncer model is not unique at 3.79β = . Fig. 32 (b) depicts the 
basin of attraction for the discussed system, and it could be seen that every initial 
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condition from part (a) evolves to the same attractor. Still, one can fall into the 
situation when a control impulse would tend to another attractor. The current 
example highlights the necessity to take into account the uniquiness of attractors as 
well while applying H-rank based control strategies. 

  
(a) (b) 

Fig. 32. The control of the unstable period-2 orbit; (a) – numerals represent the number of the 
control step, the empty circle is the point before the control impulse while the full circle 

represents the point after the control impulse; (b) – basins of attraction for the bouncer model; 
the rectangle shows the area relative to part (a) 

We should note that while the biggest valley of low H-ranks in Fig. 32 (a) 
tends the orbit to the period-2 unstable point in one iteration, the other valeys do not 
behave like that. The orbit is placed closer to the stable period-4 regime then. This 
behavior is completely different from the one considered in the previous chapter 
while controlling the unstable period-1 attractor and was quite unexpected. 

  
(a) (b) 

Fig. 33. The control strategy illustrated for the bouncer model – the evolution of kx  and ky  is 

shown in parts (a) and (b). Thin dashed lines stand for the stable period-2 attractor; thick 
dashed lines show the acceptable range for the deflection from the unstable period-1 repeller. 

Thick arrows denote the relocation of the system by a control pulse. Lighter dots mark the 
orbit obtained when utilizing the Gaussian noise at 0.001b =  

The next section shows that the control quality is successfully improved by 
incorporating the Gaussian noise. 



72 
 

3.7.4. Improvement of the Control Strategy by Utilizing the Gaussian Noise 

It was observed above that it is possible to efficiently control unstable orbits 
by properly utilizing the appropriate interpretation of the pattern of H-ranks and 
particular realizations of the Gaussian noise (Landauskas and Ragulskis, 2014). 
Additive noise itself can be considered as a control tool (Hutt, 2008). The presence 
of the noise enables us to adjust the control impulse thus boosting its efficiency. 
This also applies whenever the pattern of H-ranks is employed. 

Fig. 33 illustrates the improvement of the control strategy presented in the 
previous section. As above, one needs to determine the right control impulse for the 
system by examining the corresponding pattern of H-ranks. Then, perturbation of 
the pair of new initial conditions ( )*, *x y  for the control pulse with noise (Eq. (45)) 

will lead to several possible scenarios of system dynamics. The orbit will be 
contained in the surroundings of the unstable period-1 repeller longer if one chooses 
the scenario with the lowest H-rank. This type of technique ensures the 
minimization of the algebraic complexity of the orbit. 

It is important to employ the noise of low intensity as otherwise a different 
attractor may be reached. In a sense, the described technique is similar to evaluating 
a strip of patterns of H-ranks. The shape of the Gaussian distribution leads to most 
scenarios being condensed around ( )*, *x y . 

  
(a) (b) 

Fig. 34. Control of the unstable period-2 orbit for the bouncer model. Lighter dots are for the 
orbit obtained when utilizing the Gaussian noise with 0.01b =  

The unstable period-2 orbit is also demonstrated to be more effectively 
controlled by perturbing initial conditions ( )*, *x y  for the control pulse with the 

Gaussian noise. Numerical experiments showed that, although being of a higher 
order, the fixed point is stabilized more efficiently by utilizing less deviated 
Gaussian noise. 

3.7.5. H-pseudoranks as a Tool for Controlling the Circle Map 

Here, the H-rank will be used as a computational tool for the reconstruction of 
Arnold tongues. H-ranks are computed in the region 0 1≤ Ω ≤  and 0 K π≤ ≤ . For 
every pair of Ω  and K , the iterative process is started, = 4000k  forward iterations 
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are omitted (all transients cease down during that period of time), the sequence 

( ); = 0,1,j k jθ + …  is constructed, and the H-rank of that sequence is computed. As 

shown in (Ragulskis and Navickas, 2011), the H-rank of a chaotic sequence does not 

exist (it tends to infinity then). Therefore, the upper limit for the H-rank = 15m  is 
set. If the sequence of determinants does not vanish until = 15m , the process is 

terminated assuming that ( ); = 0,1, =j kHr p j m+ … . The obtained results are shown 

in Fig. 35(a). The zones where the phase locking occurs are clearly separated by red 
insets; the produced picture reveals the well-known shape of Arnold tongues in the 
circle map (Schilder and Peckham, 2007). 

 

Fig. 35. Pseudoranks of the circle map. Part (a) was constructed by omitting transient 
processes whereas the initial phase was set at 0 = 0.5θ ; parts (b) and (c) were constructed 

without omitting transient processes 

The computational experiment is repeated but this time without omitting 
transient processes ( = 0k ). The initial condition 0θ  is set at 0.5; the results show 
that the H-rank of the process involving transient processes is higher if compared to 
the H-rank of the same process but with transient processes getting omitted (Fig. 

35(b)). The higher value of the upper bound ( = 25m ) helps to visualize complex 
transient processes in the regions where phase locking occurs (Fig. 35(c)). The 
interesting pattern in the blue-colored zones (corresponding to phase-locked regions 
in the KΩ −  plane) is rather unexpected and requires additional attention. 

It is natural to expect that the initial condition 0 = * = 0.135θ θ  should yield a 

minimal rank at = 0.15Ω  and = 0.4K π . The computational experiment is repeated 
by constructing a map of pseudoranks when the initial phase is set at 0 = 0.135θ  
which also proved to be a clear illustration of the complex dynamic behavior of the 
circle map. The convergence process to the phase-locked behavior (Arnold tongues) 
is far from trivial, and one does need to pay careful attention to a number of 
circumstances whenever the generation or control of phase-locked regimes in 
discrete iterative maps is considered. 

Even though theoretically one needs to find such a matrix dimension that the 
determinant of the Hankel matrix is equal to zero, in practice it suffices to compute 
determinants up to specific precision, like the machine epsilon. Thus the 
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computation of determinants is continued until ( ) <m
H ε . In this respect, the 

computations reveal not the rank but the pseudorank of a sequence instead. An 
analogy could be drawn with the pseudospectrum of a linear operator (Trefethen, 
1997). 

The selection of a particular value of ε  requires additional attention. The 
structure of Arnold tongues in the circle map is well-known. Thus Fig. 35(a) is 
selected, parameter K  ( = 0.4K π ) is fixed and a cut through the map of 
pseudoranks by varying parameter Ω  is made. Moreover, the computation of 
pseudoranks for a variety of initial conditions ( 00 1θ≤ ≤ ) for different ε  is 

performed. The value 30= 10ε −  is fixed and used for the computation of 
pseudoranks (all previous figures of pseudoranks were constructed by using this 
particular value of ε ). 

 

Fig. 36. The adjusting of *Ω . The black dots show the lowest ranks at = 2K , the white 
dots show the highest ranks at the same K  

Let us consider that the system is in the regime where = 0.35Ω , = 2K  and 

0 = 0.135θ . Then we say that the map converges to a particular fixed point. While 
being able to control parameter Ω  one might want the system to fall into the stable 
period-1 regime and the transient process to be as long as possible. 

Now from the condition ( ) ( )1 =n nf fθ θ+  it follows that ( )= 2
2 n

K
sin πθ

π
Ω . 

This holds true if * 2K πΩ ≤ . Otherwise the map does not converge to a stable 



75 
 

point. In this particular case the stable period-1 regime exists if * 1 πΩ ≤ . By 

replacing the particular Ω  with ( )* = 2
2 n

K
sin πθ

π
Ω  the system suddenly falls in the 

stable mode. But in this case the duration of the transient process is equal to zero. 
Thus another * 0.1Ω ≤  must be considered, and this is the value which represents the 
highest rank of the sequence in the phase plane KΩ − . 

The conducted numerical experiments enable us to take control of the 
particular system defined by a circle map. Fig. 36 illustrates the algorithm of 
establishing the control function ( )0g θ . The value of this function is the value of 

*Ω  one needs to set Ω  at step n  (or moment n ) in order to drive the system to the 
period-1 stable regime. The argument of the function is equal to nθ . Thus mθ , 

0>m n n+  becomes equal after a transient process – as that was the objective. Here 

0n  is the number of steps this transient process takes. Due to the above mentioned 
technique, the duration of the transient process is maximized. 

Let us consider a situation when the circle map is operating in a chaotic regime 
and one needs to bring it to the phase-locked regime (we assume that there is a 
possibility to control one or both parameters of the circle map). One may jump from 
the chaotic region into the phase-locked region on the parameter plane of the circle 
map in one forward iteration. Yet the convergence to the actual phase-locked regime 
depends on the instantaneous phase of the system right after the jump. One can 
determine the phase of the circle map immediately before the jump and adjust the 
parameters of the map in such a way that the system is placed onto the manifold of 
non-asymptotic convergence immediately after the adjustment of the parameters has 
been performed. Such a control method would ensure that the system will start 
operating in the phase-locked mode immediately after the correction of the system’s 
parameters. Otherwise (if the distribution of manifolds on Arnold tongues is 
unknown), a long transient process could be required until the system starts 
operating in the phase-locked mode. 

It must be noted that changing Ω  in a particular circle map affects its 
behavior. That is, the fixed point changes. Or, in other words: the system is modified 
to slowly converge to another stable state. It is reasonable to perform the above 
mentioned correction of Ω  after detecting that the system has become stationary. 
Otherwise, the correction might result in a shorter transient process than that of the 
original system. Furthermore, such a control technique enables us to keep the system 
running. If one finds the ( )* 2K πΩ ≥  with the highest rank, the system might be 

revived once and for all because there might be no fixed point. 

3.8. Controlling of Continuous Dynamical Systems 

3.8.1. Clocking Convergence to a Limit Cycle 

A periodically driven pendulum will be used to explore the applicability of the 
H-rank for the investigation of non-asymptotic convergence to the dynamical 
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attractor. The model was previously defined with Eq. (2). Values = 2.048f  and 

= 2 3ω  will be fixed in all further computations. 
We note that the bifurcation diagram in Fig. 2 is constructed from steady-state 

solutions (a considerable number of initial iterates are omitted in order to exclude 
the transient behavior of the system). To the contrary, the investigation of the 
convergence processes requires data on the transient behavior of the system. 
Therefore the computation of H-ranks for solutions of the periodically driven 
pendulum must be performed without omitting transient processes. 

Let us consider a discrete partial solution computed by using a constant-step 
time-forward marching integrator: 

( ) ( ) ( )
2

0 0 02
= ; = ; = ;k k k

dx d x
x t kh x t kh x t kh x

dt dt
+ + +ɺ ɺɺ  (46)  

where = 0,1,2,k …  and h is the integration step in time. Straightforward 
computation of the H-rank for the partial solution could be performed in several 
alternative ways: ( )0 1 2, , ,Hr x x x … ; ( )0 1 2, , ,Hr x x xɺ ɺ ɺ … ; ( )0 1 2, , ,Hr x x xɺɺ ɺɺ ɺɺ …  or 

( )2 2 2 2 2 2 2 2 2
0 0 0 1 1 1 2 2 2, , ,Hr x x x x x x x x x+ + + + + +ɺ ɺɺ ɺ ɺɺ ɺ ɺɺ … . (47)  

Unfortunately, neither of these strategies yields interpretable results – the step 
of integration is too small to build a representative sequence from a short time series. 

 

Fig. 37. The pattern of H-ranks for the system ( )sin = 2.048cos 2 3x bx x t+ +ɺɺ ɺ ; ( )0 = 0x  is 

fixed for all initial conditions. H-ranks are computed for sequences of Poincaré section 
points 

The alternative strategy for building a representative pattern of H-ranks could 
be based on Poincaré sections when the H-rank is computed from the sequence of 
consecutive coordinates of points in the section plane (Fig. 37). Such computation of 
H-ranks for partial solutions reveals the intrinsic structure of intertwined manifolds 
but the image is distorted due to inaccuracies in the determination of the point of 
intersection between the trajectory and the section plane (Fig. 37). 
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Strobing at the drive frequency helps to overcome the above mentioned 
drawbacks whereas the reproduced pattern of H-ranks reveals a clear structure of 
intertwined manifolds (Fig. 38). It must be noted that the whole number of time 
steps must fit into the stroboscopic period – otherwise the resulting pattern would be 
unclear due to reasons similar to the ones described above. Moreover, the numerical 
integrator must employ a constant step time forward marching technique since 
variable time step methods cannot be used for the construction of patterns of H-
ranks. Newmark constant step constant average acceleration method (Newmark, 
1959) is thus employed; the time step is set at ( )= 2 500h π ω . Thus every 500th step 

is used to construct the sequence and to calculate the H-rank as described with Eq. 
(2). 

 

Fig. 38. The pattern of H-ranks for system ( )sin = 2.048cos 2 3x bx x t+ +ɺɺ ɺ ; (0) = 0x  is fixed 

for all the initial conditions. H-ranks are computed for the sequences of the stroboscopic 
representation of the transient processes 

The fact that the rate of convergence to the limit cycle type attractor (at fixed 
parameters of the system) depends on the initial conditions is not unexpected. The 
fact that the convergence to the stable limit cycle can be faster from a point located 
further away than from another point located closer to the limit cycle does not 
astonish us, either. Yet the pattern of H-ranks reveals a clear structure of intertwined 
manifolds (let us compare Fig. 38 to Fig. 10(c) and to the pattern of H-ranks 
constructed for the Logistic map in (Ragulskis and Navickas, 2011)). The deepest 
trench (i.e. the lowest H-rank in Fig. 38) corresponds to the initial condition near the 
trajectory of the limit cycle. However, a number of “shadow” trenches are visible at 
other values of 0xɺ  in Fig. 38. We should note that the pattern of H-ranks is 
computed for the strobed data. Nevertheless, Fig. 38 still suggests that there exists a 
manifold of nonasymptotic convergence to the stable limit cycle in the stroboscopic 
representation of the transient data. 
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Fig. 39. The pattern of H-ranks for the system ( )sin = 2.048cos 2 3x bx x t+ +ɺɺ ɺ ; (0) = 0xɺ  

is fixed for all the initial conditions. H-ranks are computed for the sequences of the 
stroboscopic representation of the transient processes 

 

 

Fig. 40. Asymptotic versus non-asymptotic convergence to the stable limit cycle in the 
stroboscopic representation of the transient data of the system

( )sin = 2.048cos 2 3x bx x t+ +ɺɺ ɺ . Part (a) shows the evolution of the partial solution in 3D; 

(b) illustrates the projection of the transient process on the phase plane x x− ɺ ; (c) shows the 
consecutive sequence of strobing points starting from 0 = 0t ; 0 = 4.66x  and 0 = 0xɺ . Parts 

(d), (e) and (f) illustrate the transient process starting from 0 = 0t ; 0 = 4.059x ; 0 = 0xɺ  

The interpretation of the pattern of H-ranks in Fig. 38 and Fig. 39 can be 
illustrated by the following computational example. Let us consider a period-1 limit 
cycle at b = 1.04. The initial conditions 0 = 0t ; 0 = 371 250 4.660x π ≈  and 0 = 0xɺ  
correspond to a point in the light blue region in the pattern of H-ranks in Fig. 39. 
Transient processes are illustrated in Fig. 40 (black dots denote strobing moments); 
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part (a) shows the evolution of the process in the 3D coordinate system; part (b) 
illustrates the projection of the transient process on the plane x – xɺ ; part (c) shows a 
consecutive sequence of strobing points (adjacent strobing points are interconnected 
for clarity only). It is clear that the transient trajectory converges asymptotically to 
the stable period-1 limit cycle. 

The situation becomes different at 0 = 0t ; 0 = 323 250 4.059x π ≈  and 0 = 0xɺ  
(Fig. 40). These initial conditions correspond to the point in the deepest trench of the 
pattern of H-ranks in Fig. 39. The transient process comprises three distinct loops; 
the system is locked into the period-1 attractor afterwards. Such transient dynamics 
can be explained by the nonasymptotic convergence to the period-1 limit cycle in the 
stroboscopic representation of the transient data. 

3.8.2. Control of Transient Processes 

The existence of such special transient processes which yield fast 
nonasymptotic transitions to limit cycles enables the construction of effective 
control methods when the transition time must be minimized. It was shown in 
(Ragulskis and Navickas, 2011) that the entire set of initial conditions can be 
classified into the infinite uncountable set of initial conditions yielding asymptotic 
convergence to the stable fixed point and the infinite countable set of initial 
conditions yielding nonasymptotic convergence to the same fixed point. Thus a 
random selection of initial conditions most probably leads the transient process to 
asymptotic convergence to the stable fixed point. Prior knowledge about the shape 
and the structure of the manifold of nonasymptotic convergence (as illustrated for 
the circle map, for example) is required in order to select the corresponding initial 
conditions. 

 

Fig. 41. The pattern of H-ranks for the system ( )sin = 2.048cos 2 3x bx x t+ +ɺɺ ɺ  on the phase 

plane 0 0x x− ɺ . The square marker denotes the position of the system before the impulse; the 

triangle marker shows the position of the system after the impulse 

At this point it must be observed that the convergence to a stable limit cycle 
(in the strobed data) is considered now instead of the convergence to a fixed point. 
Let us consider a situation in which the evolution of the system starts from the initial 
conditions resulting in asymptotic convergence to a period-1 limit cycle ( = 1.04b ; 
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all other parameters of the system are fixed throughout the computational 
experiment). Fig. 38 and Fig. 39 represent patterns of H-ranks when one initial 
condition ( 0x  or 0xɺ ) is set at zero at 0 = 0t . These patterns would be different for 

other values of 0t  but they are exactly the same for 0 = 2t kπ ω ; k ∈ℤ  due to the 

periodicity of the forcing term. Thus patterns of H-ranks constructed for 0 = 0t  

could be used for the control of transient processes at any time moment = 2t kπ ω ; 

k ∈ℤ . Unfortunately, it is unrealistic to expect that one of the system variables (

( )x t  or ( )x tɺ ) will become equal to zero at one of the strobing moments. A plot of 

H-ranks in respect of initial conditions 0x  or 0xɺ  (Fig. 41) helps to resolve the above 
mentioned limitation. 

 

Fig. 42. The control of the transient process based on a single external impulse. The 

evolution of ( )sin = 2.048cos 2 3x bx x t+ +ɺɺ ɺ  starting from 0 = 2.5x  and 0 = 0xɺ  is shown in 

part (a). Part (b) shows the zoomed region of (a). The square marker denotes the position of 
the system before the impulse; the triangle marker shows the position of the system after the 
impulse in part (c) (part (d) shows the zoomed region of (c)); the trajectory after the impulse 

is shown in gray 

Let us assume that the transient process starts from initial conditions 0 = 2.5x ; 

0 = 0xɺ  (Fig. 42(a)); the system converges asymptotically to the period-1 limit cycle; 
a zoomed region in Fig. 42(b) illustrates the process of asymptotic convergence to 
the stable attractor. Fig. 42(c) demonstrates the control technique based on a single 
control impulse (all system parameters including the initial conditions are kept 
unchanged). The initial transient process (the black solid line in Fig. 42(c)) is 
continued for two stroboscopic cycles. The system is then perturbed by an 
instantaneous impulse which changes the velocity whereas the displacement remains 
unchanged. The position of the system before the impulse is denoted by a square 
while the position after the impulse is shown with a triangle in Fig. 42(c) and in Fig. 
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41. The magnitude of x before the impulse is marked with a thick black horizontal 
line in Fig. 41; the triangle is placed in the nearest trench in the pattern of H-ranks in 
Fig. 41. 

3.9. Conclusions 

The convergence to Arnold tongues was studied in the present chapter. The 
existence of phase-locked regions in the circle map is a well-known and explored 
topic in the area of discrete nonlinear iterative maps. Yet it appears that the process 
of convergence to Arnold tongues is far from being trivial. Such complexity of 
transient processes constitutes an important feature for the applicability of control 
techniques pertinent to the circle map. 

Pictures representing the manifold of non-asymptotic convergence carry not 
only important physical information but are also aesthetically beautiful. 

Non-asymptotic convergence to unstable periodic orbits in non-invertible 
nonlinear maps is a well-known effect in nonlinear dynamics. However, non-
asymptotic convergence is not possible in completely invertible nonlinear maps 
(otherwise these maps cannot be invertible by default). This chapter presents 
computational proof of the fact that a pseudo-stable structure of non-asymptotic 
convergence to an unstable orbit may exist in a completely invertible discrete 
dynamical system. 

A new computational framework for the identification of this pseudo-stable 
structure attracting to the unstable period-1 repeller in the bouncer model was 
presented in this chapter. The same framework is easily extendable whenever other 
completely invertible maps and more complex unstable periodic orbits are 
concerned. 

The attraction of this pseudo-stable structure resembles non-asymptotic 
convergence to unstable periodic orbits in non-invertible nonlinear maps. Still, this 
attraction is only temporary since non-asymptotic convergence cannot exist in 
completely invertible maps. It was demonstrated that this pseudo-stable structure can 
be effectively exploited for temporary stabilization of unstable periodic orbits. 

Patterns of H-ranks represented different dynamics of the system in respect of 
different period  orbits. Our analysis also suggested that we should be more cautious 
regarding the uniquiness of attractors while controlling a particular dynamical 
system with H-rank based techniques. 

The robustness of the proposed technique for temporary stabilization of 
unstable periodic orbits in completely invertible maps to external noise was shown. 
It appears that particular realizations of the Gaussian noise may extend the time 
interval when transient solutions stay in the surrounding of the unstable periodic 
orbit. This phenomenon could be explained by the fact that noise may change the 
stability of nonlinear systems (Hutt, 2008). In other words, the design of efficient 
control strategies based on external noise is possible. 

It was demonstrated that the manifold of non-asymptotic convergence to a 
stable limit cycle exists in the stroboscopic representation of the transient data of the 
periodically driven nonlinear pendulum. Even though the stable period-1 limit cycle 
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was used for that purpose, a similar phenomenon can be observed for stable limit 
cycles with higher periodicities. 

Periodically driven nonlinear pendulum was used as a nonlinear model 
generating a stable periodic limit cycle. Similar effects could be observed in other 
nonlinear models of stable limit cycles. 
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4. H-RANKS FOR TIME SERIES ANALYSIS 

4.1. Onset of Chaos in the Dynamical System 

In this chapter, an algebraic approach based on the rank of a sequence is 
proposed for the exploration of the onset of chaos in discrete nonlinear dynamical 
systems. The rank of the partial solution is identified and a special technique based 
on Hankel matrices is used to decompose the solution into algebraic primitives 
comprising roots of the modified characteristic equation. The distribution of roots 
describes the dynamical complexity of a solution and is used to explore the 
properties of the nonlinear system and the onset of chaos. 

The object of this chapter is the exploration of the onset of chaos also by using 
a computer-algebraic technique. However, the main difference of this approach is 
that Hankel matrix-based techniques are used instead. The concept of H-rank and its 
applicability for mapping manifolds and the exploration of the system’s sensitivity 
to the initial conditions is introduced in (Ragulskis and Navickas, 2011). 

This chapter presents an adaptation of the H-rank technique for the 
investigation of the complexity of transient processes occurring in a discrete 
nonlinear dynamical system as it approaches the chaotic state. Algebraic 
decomposition of a discrete sequence is introduced in Section 4.1.1; numerical 
experiments with the Logistic map are performed in Section 4.1.2; a numerical 
experiment with real-world time series is presented in Section 4.1.3. 

4.1.1. Algebraic Decomposition of a Solution of a Discrete Map 

Let us consider a periodic sequence ( )1,0,4,1,0,4,S = … . It is clear that 

3HrS =  because ( )3 0d ≠  but ( )4

1 0 4 1

0 4 1 0
0

4 1 0 4

1 0 4 1

d = =  and ( )4 0n
d

+ =  for all n∈ℕ . 

The characteristic algebraic equation 

( )3

2 3

1 0 4 1

0 4 1 0
65 1 0

4 1 0 4

1

ρ

ρ ρ ρ

= − =  (48) 

yields roots 1 1ρ = ; 2

1 3

2 2
iρ = − + ; 3

1 3

2 2
iρ = − − . All the roots are different, thus 

the linear algebraic system for the identification of coefficients { }3

0 1k k
µ

=
 takes the 

following form: 
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10

1 2 3 20
2 2 2
1 2 3 30

1 1 1 1

0

4

µ
ρ ρ ρ µ

ρ ρ ρ µ

     
     =     
          

. (49) 

Solutions read as: 10

5

3
µ = ; 20

1 2

3 3
iµ = − + ; 30

1 2

3 3
iµ = − − . Finally, 

elements of the sequence can be expressed as: 

5 1 2 1 3 1 2 1 3

3 3 2 2 3 2 23 3

n n

nx i i i i
      

= + − + − + + − − − −               
; 

0,1,2,n = …  

(50) 

It can be noted that this is not an approximation of elements of the sequence; 
this expression is actually exact. 

Lemma 1. Let us consider ( )0 1, ,Hr x x m= < +∞…  and 0 1, ,x x ∈… ℝ . Then 

roots kρ  and coefficients klµ  of the algebraic decomposition of the sequence 

{ } 0n n
x

+∞

=
 are real or complex conjugate (Ragulskis, Navickas, Palivonaite and 

Landauskas, 2012). 
The proof is as follows: 

The algebraic decomposition of sequence { } 0n n
x

+∞

=
 is defined by Eq. (11) with 

, 1 0
kk nµ − ≠  and 1 2 kn n n m+ + + =⋯ ; 1, , ,kn n m∈… ℕ . The equality 

1

1 0

Im 0
knr

n l

kl k

k l

n

l
µ ρ

−
−

= =

  
=  

  
∑∑  holds because 0 1, ,x x ∈… ℝ . On the other hand, 

1

1 0

Im 0
knr

n l

kl k

k l

n

l
µ ρ

−
−

= =

  
  =    
∑∑  holds too (the top line denotes the complex conjugate). 

But ( )
1 1

1 0 1 0

k kn nr r n l
n l

kl k kl k

k l k l

n n

l l
µ ρ µ ρ

− − −
−

= = = =

   
=   

   
∑∑ ∑∑  because 

n

l

 
∈ 

 
ℝ . But then 

( )
1 1

1 0 1 0

Im Im 0
k kn nr r n l

n l

kl k kl k

k l k l

n n

l l
µ ρ µ ρ

− − −
−

= = = =

      
= =      

      
∑∑ ∑∑ ; 0n∈ℤ . The last equality 

holds if one and only one of the following conditions holds true: 
(i) ,kl kµ ρ ∈ℝ ; 

(ii) ,kl kµ ρ ∈ℤ  and there exists such k̂  that ˆ kk
ρ ρ=  and ˆ klkl

µ µ=  for all 

( )ˆ0,1, , 1
k

l n= −… ; ˆ1 ,k k r≤ ≤ ; ˆk k≠ . 

End of Proof. 
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Lemma 2. Let us consider that{ } 0n n
x

+∞

=
 is a real periodic sequence. Then it is 

necessary and sufficient that all the following statements hold true (Ragulskis et al., 
2012): 

(i) A real periodic sequence has a rank; { } 0n n
Hr x m

+∞

=
= . 

(ii) All the roots of the algebraic decomposition of the sequence are different; 

k lρ ρ≠ ; k l≠ ; 1 ,k l m≤ ≤ . 

(iii) Modulus of all the roots are equal to 1; 1kρ = ; 1,2, ,k m= … . 

(iv) All ratios 
( )arg

2
kρ

π
; 1,2, ,k m= …  are rational numbers.  

The proof is as follows: 

(i) Since the sequence { } 0n n
x

+∞

=
 is periodic, there exists such p∈ℕ  that 

n p nx x+ =  for all 0n∈ℤ . Then Hankel matrices ( )p k
H

+ ; k ∈ℕ  contain at least two 

identical rows and therefore ( )det 0p k
H

+ =  for all k ∈ℕ . Thus m p∃ ≤ , and this m  

equals { } 0n n
Hr x

+∞

=
. 

(ii) { } 0n n
x

+∞

=
 is a periodic sequence and it can be extended into periodic 

sequence { }n n
x

+∞

=−∞
. Moreover, there exists such 0 M< < +∞  that nx M<  for all 

n∈ℤ  because { }n n
x

+∞

=−∞
 is a periodic sequence. Let us assume that 

{ } 0n n
Hr x m p

+∞

=
= ≤  and that there exist two equal roots: 1m mρ ρ− =  but all other 

roots are different. Then, according to Eq. (11): 

( )

1
1

0 11 ,1
1

m
n n

n k k mm
k

x nµ ρ µ ρ
−

−
−−

=

= +∑ ; n∈ℤ ; ( )1 ,1 0
m

µ − ≠ . (51)  

But then there exists such 0 0n ≥  that nx M≥  for all 0n n≥ , which 

contradicts the requirement that { } 0n n
x

+∞

=
 is a periodic sequence. Analogous 

contradictions occur when the number of equal roots is higher. 
(iii) The proof is analogous to the proof of (ii). Let us assume that 1kρ > ; 

1 k m≤ ≤ . Then there exists such 0 0n ≥  that nx M≥  for all 0n n≥ . Now, let us 

assume that 0 1kρ< < ; 1 k m≤ ≤ . Then there exists such 0 0n ≥  that nx M≥  for 

all 0n n≤ − . 
(iv) Lemma 1 and statements (i), (ii) and (iii) yield: 

( )0
1

exp
m

n k k

k

x inµ φ
=

= ∑ ; n∈ℤ ; (52)  
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where 2 1i = − ; ( )argk kφ ρ= ; kπ φ π− ≤ < . The sequence { } 0n n
x

+∞

=
 is periodic if and 

only if 
2

kφ
π

 is a rational number for all 1,2,k m= … . Then, Eq. (52) reads: 

0
1

exp 2
m

k
n k

k k

a
x i n

b
µ π

=

 
=  

 
∑ ; n∈ℤ ;  (53)  

where ka ∈ℤ ; kb ∈ℕ  for all 1,2,k m= … . Let p be the least common multiple of 

1 2, , , mb b b… ; p∈ℕ . Thus p is the period of the sequence n p nx x+ = ; n∈ℤ . Then, 

exp 2 1k

k

a
i p

b
π

 
= 

 
 for all 1,2,k m= … . 

End of Proof. 

4.1.2. Numerical Experiments with the Logistic Map 

Logistic map is a paradigmatic model used to illustrate the evolution of a 
simple nonlinear system to chaos (Strogatz, 2014). As mentioned before, the discrete 
dynamical map ( )1 1n n nx r x x+ = ⋅ −  comprises one control parameter r ; the interval 

0 4r≤ ≤  will be investigated here below. 
The algorithm used for the computation of the rank of sequence S constructed 

as an iterative solution of the Logistic map starting from the initial condition 0x  and 

at a fixed value of the parameter a is rather straightforward (Ragulskis and 

Navickas, 2011). A sequence of matrices ( )m
H ; 2,3,m = …  is formed. 

Theoretically, this process should be continued until such m when ( )( )det 0m k
H

+ =  

for all 1,2,k = … . Unfortunately, as shown before, the rank of a chaotic time series 
does not exist. Therefore the sequence of Hankel matrices is limited by setting the 
upper bound for m. The process is terminated if the sequence of the determinants 
does not vanish until m has reached the predefined upper bound m .  

As well as in the previous chapters, the computation of determinants is 

executed until ( )( )det m
H ε< . Such computations reveal not the rank but rather the 

pseudorank of a sequence. It must be noted that the upper bound of the rank and the 
machine epsilon must be preselected individually for each specific discrete iterative 
map. One of the objectives of this chapter is to present an adaptive strategy for the 
selection of the optimal rank and one more strategy for an/the optimal value of ε (an 
alternative for the approach presented in chapter 2) for any concrete sequence S. 

First of all, it is demonstrated that a higher value of ε may be better (a precise 
criterion for the comparison is defined) than a lower value of ε (but still higher than 
the machine epsilon). Let us construct an iterative sequence of the Logistic map (Eq. 
(13)) at 3.59a =  starting from 0 0.5x = . Initially, let us fix 1010ε −=  and 50m = . A 

sequence of Hankel matrices ( ){ }k
H  is constructed and a sequence of determinants 
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( ){ }k
d ; 2,3,k = …  is computed until ( ) 1010k

d
−<  or 50k ≥ . It appears that 

( )16 1010d
−< . The characteristic algebraic equation then yields 16 roots; all the roots 

are shown in Fig. 43(a) (it can be noted that all the roots are different). A unit radius 
circle in the complex plane is drawn in Fig. 43(a), which helps to interpret the 
modulus of each root. 

 

Fig. 43. Algebraic decomposition of transient processes of the Logistic map at 3.59a =  and 

0 0.5x =  at 1010ε −=  (a, b); at 1910ε −=  (c, d) and at 3010ε −=  (e, f). The distribution of 

roots is shown in (a), (c) and (e); transient processes (thick gray solid lines), base fragments 
(thick black solid lines) and extrapolated sequences (thin black solid lines) are shown in (b) (

16HrS = ); (d) ( 28HrS = ) and (f) ( 41HrS = ) 

The base fragment of the sequence is thus ( )0 1 2 29 30, , , , ,x x x x x… . This 

fragment is plotted by using a thick black solid line in Fig. 43(b). The following Eq. 
(11) is employed to extrapolate the sequence for 100 steps into the future. The 
iterated sequence of the Logistic map is plotted by using a thin black solid line and 
the extrapolated sequence – a thin black solid line in Fig. 43(b). It can thus be 
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observed that the extrapolated sequence follows the evolution of the Logistic map 
quite well for about 20 steps, but errors start accumulating later.  

Analogous numerical experiments are repeated for 1910ε −=  (Fig. 43(c), (d)) 
and 3010ε −=  (Fig. 43(e), (f)). In order to assess differences between iterated and 
extrapolated sequences, the measure of the extrapolation errors E – which is a 
standard RMSE (root mean square error) – is introduced: 

( )
2 98

2

2 1

1

100

m

n n

n m

E x x
+

= −

= −∑ ɶ   (54)  

where nxɶ  denotes elements of the extrapolated sequence. It can be noted that nxɶ  

would be equal to nx  for all 2 1n m≥ −  if ε were equal to 0. 

Fig. 44. The minimization of extrapolation errors for the Logistic map at 3.59r =  and 

0 0.5x = . Computations are performed for 10 kε −= ; 1,2, ,40k = …  (a); extrapolation errors 

are shown in (b); ranks are demonstrated in (c). Minimal extrapolation errors are achieved at 
19k =  and are denoted by circles 

It is clear that extrapolation error E depends on ε (Fig. 43). Therefore it is 
important to identify such ε which would result in the minimal E. The process of 
minimization of extrapolation errors at 3.59r =  and 0 0.5x =  is illustrated in Fig. 

44. Computations for 10 kε −= ; 1,2, ,40k = …  are performed (Fig. 44(a)). 
Extrapolation errors and ranks at different ε are shown in Fig. 44(b) and (c). The 
minimal value of extrapolation errors is achieved at 19k =  and is denoted by circles 
in Fig. 44(a), (b) and (c). It can be noted that all further computations are performed 
by using the above described technique for the adaptive selection of the optimal 
value of ε for each and every particular iterative sequence. 

First, the effect of the initial condition on the algebraic decomposition of the 
solution of the Logistic map is demonstrated in Fig. 45. The value of the parameter 

3.55r =  is selected; this results in a period-4 attractor after transient processes have 
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ceased down. Three different initial conditions are selected: 0 0.01x =  (Fig. 45(a), 

(b));  0 0.25x =  (Fig. 45(c), (d)) and 0 0.5x =  (Fig. 45(e), (f)). The distribution of 
roots is shown in Fig. 45(a), (c) and (e); transient processes are shown in Fig. 45(b), 
(d) and (f). It can be noted that extrapolations of iterative processes are so good that 
no visual differences can be observed between the solution and the extrapolated 
sequence after 100 steps. 

 

Fig. 45. Algebraic decomposition of transient processes of the Logistic map at 3.55r =  and 

0 0.01x =  (a, b); 0 0.25x =  (c, d) and 0 0.5x =  (e, f). The distribution of roots is shown in 

(a), (c) and (e); transient processes (thick gray solid lines), base fragments (thick black solid 
lines) and extrapolated sequences (thin black lines coinciding with thin black lines) are 

shown in (b) ( 17HrS = ; 3610ε −= ); (d) ( 24HrS = ; 3610ε −= ) and (f) ( 17HrS = ;
3610ε −=  ) 

2-dimensional plots of the rank as a function of the parameter a and the initial 
condition 0x  are used in (Ragulskis and Navickas, 2011) in order to reveal the 
intertwined structure of the stable and the unstable manifold and the manifold of 
non-asymptotic convergence of the Logistic map. Since the primary object of the 



90 
 

section is to explore the onset of chaos by using algebraic techniques, the same 
initial condition 0 0.5x =  is fixed for all the values of parameter r . 

 

Fig. 46. Algebraic decomposition of iterated sequences produced by the Logistic map at 
3.55r =  and 0 0.5x =  as the 5 initial steps are omitted (a, b) and the first 500 steps are 

omitted (c, d). The distribution of roots is shown in (a) and (c); transient processes (thick 
gray solid lines), base fragments (thick black solid lines) and extrapolated sequences (thin 

black lines coinciding with thin black lines) are shown in (b) ( 16HrS = ; 3610ε −= ) and (d) (

8HrS = ; 3610ε −= ) 

 

 

Fig. 47. The distribution of roots of the characteristic algebraic equation for the Logistic map 
in the range 0 3.6r< <  

Before continuing with the variation of r , the effect of transient processes to 
the algebraic decomposition of the solution is investigated (Fig. 46). The value of 
parameter r  is still the same as in the previous experiment; 0 0.5x = . But now the 
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first 5 steps are omitted (Fig 46(a), (b)) and then the initial 500 steps (Fig. 46(c), (d)) 
of the iterative process are also skipped. The algebraic complexity of the analyzed 
iterative sequences becomes simpler when initial transient processes are omitted (let 
us compare this to Fig. 45(e), (f)). Lemma 2 is well illustrated with Fig. 45(e), (a), 
(c). Roots with the modulus lower that 1 become zero when transient processes are 
not considered. The periodic attractor (the length of the period is 8 iterates) is 
represented by 8 different roots located on the unit radius circle on the complex 
plane; all the roots are real or complex conjugate. The ratios ( )arg 2kρ π ; 

1,2, ,8k = …  read: 0; 
1

8
; 

1

4
; 

3

8
; 

1

2
; 

3

8
− ; 

1

4
−  and 

1

8
− ; the least common multiple 

of denominators is 8p = , which corresponds to the length of the period. 

 

Fig. 48. The variation of the rank of the algebraic representation of the solution of the 
Logistic map (a) and extrapolation errors (b) in the range 0 3.6r< <  

Nevertheless, the onset of chaos is explored here by not omitting transient 
processes because, first of all, it is quite complicated to identify at which concrete 
step a transient process ceases down, and, secondly, the length of transient processes 
varies with r . Since the object of the investigation is an algebraic approach towards 
the onset of chaos, the iterative process of the Logistic map at different values of r  (
0 3.6a< < ) starts, the optimal algebraic representation of every iterative process is 
computed, and the roots in the complex plane are plotted for every discrete value of 
r . The computational experiments are limited at 3.6r =  because the Logistic map 
approaches the chaotic regime where the algebraic representation cannot be useful 
any more (a chaotic sequence does not have a rank). The produced 3D image is 
shown in Fig. 47 (each dot here represents a single root of the characteristic 
algebraic equation). 

The evolution of the rank of the algebraic representation of the solution and 
extrapolation errors is shown in Fig. 48. It is interesting to note that the rank of the 
solution abruptly jumps over the computational limit (Fig. 48(a)) as the solution 
becomes chaotic. Extrapolation errors also grow because an algebraic progression 
cannot represent a chaotic solution (Fig. 48(b)). 
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Fig. 49. The distribution of roots of the characteristic algebraic equation for the Logistic map 
in the range 3.3 3.6r< <  

In order to visualize the onset of chaos in more detail, computational 
experiments are repeated and zoom the image of the distribution of roots in the 
range 3.3 3.6r< <  (Fig. 49). One can observe intricate transitions of roots in the 
complex space until the regular structure of the distribution of roots is lost when the 
parameter r  approaches 3.6. As mentioned previously, Fig. 49 is produced by 
stepwise incrementing of parameter r . 

 

Fig. 50. The variation of the rank of the algebraic representation of the solution of the 
Logistic map (a) and extrapolation errors (b) in the range 3.3 3.6r< <  

It is of interest to note that the correlation between the distribution of roots at 
two consequent discrete values of parameter r  is high until the Logistic map 
approaches the zone of chaotic solutions. There is no observable correlation left 
between the roots of algebraic representations of solutions at the consequent discrete 
value of parameter r  as the system approaches the chaotic attractor; the variation of 
the rank and extrapolation errors become unpredictable there as well (Fig. 50). 
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4.1.3. Numerical Experiments with Real-world Time Series 

So far algebraic techniques for the exploration of the onset of chaos in discrete 
iterative systems have been explored here. The applicability of the presented 
algebraic technique for real-world time series will be demonstrated in this section. 
The ability to reconstruct the approximating algebraic model of the time series 
(especially if this series is chaotic and/or contaminated with inevitable noise) would 
enable the algebraic extrapolation of the time series into the future. The concept of 
skeleton algebraic sequences is dealt with in (Ragulskis et al., 2011) for the 
prediction of complex real-world time series. Direct adaptive decomposition of the 
real-world time series into algebraic primitives (by using the algorithm presented in 
Section 3) would offer an alternative approach for the construction of an adaptive 
prediction algorithm. 

Two standard real-world time series were selected for computational 
experiments: (1) the normalized monthly mean temperatures in southwestern 
mountain region over a time period starting in the year 1932 (Hyndman) and (2) an 
excerpt from normalized daily net retail sales (Hyndman). Fig. 51(b) shows the best 
extrapolation (in terms of RMSE) of the normalized monthly mean temperatures in 
the southwestern mountain region for 100 steps into the future; the distribution of 
the roots is shown in Fig. 51(a). The best algebraic approximation is reached at 

1210ε −=  and 21HrS = ; this results in the extrapolation error 0.245E = . 

  
Fig. 51. Algebraic extrapolation of real-world time series: the normalized monthly mean 
temperatures in the southwestern mountain region over a time period starting in the year 

1932 (a, b) and an excerpt from normalized daily net retail sales (c, d). The distribution of 
the roots is shown in (a) and (c); transient processes (thick gray solid lines), base fragments 

(thick black solid lines) and extrapolated sequences (thin black lines) are shown in (b) (

21HrS = ; 1210ε −= ) and (d) ( 8HrS = ; 410ε −= ) 
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Fig. 51(d) shows the best algebraic extrapolation of the excerpt from 
normalized daily net retail sales. We should note that this time series is short and 
that there is not enough data to compute the error of extrapolation for 100 steps into 
the future. The best approximation is reached at 410ε −=  and 8HrS =  which results 
in the extrapolation error 0.112E = . 

4.2. The Reconstruction of Skeleton Sequences Based on the H-rank 

The algorithm for the reconstruction of the model of LRS from a sequence 

{ }
=0j j

x
+∞

 is more complex if the order of LRS is not known beforehand. Hankel 

transform of { }
=0j j

x
+∞

 yields the sequence { }
=0j j

h
+∞

 where = detj jh H  and 

( ) ( )2 1 , 1
=j k l k l j

H x + − ≤ ≤ +
 is a Hankel catalecticant matrix (matrix dimensions are 

( ) ( )1 1j j+ × + ). If there exists such 1n ≥  that 0nh ≠  but = 0kh  for all 1k n≥ + , 

then { }
=0j j

x
+∞

 is LRS, its order is n  , and auxiliary equation 2 now reads: 

0 1

1 2 1

1 2 1

= 0

1

n

n

n n n

n

x x x

x x x

x x x

ρ ρ

+

− −

⋯

⋯

⋯ ⋯ ⋯ ⋯

⋯

⋯

. (55) 

As mentioned previously, only the case when roots of (55) are all distinct is 
considered here. Then the recurrence is uniquely described by (6). 

Example 1. Let us consider a period-4 sequence { }1,0, 1,0,1,− …  (we should 

note that periodic sequences comprise only a small fraction of the set of all possible 

LRS). It is clear that the order of this sequence is 2 because 

1 0 1

0 1 0

1 0 1

−

−

−

 and all 

higher determinants are equal to 0. Then, the auxiliary equation reads: 

( )2

2

1 0 1

0 1 0 = 1 = 0.

1

ρ

ρ ρ

−

− − +  (56) 

Two distinct roots read: 1 = iρ ; 2 = iρ −  . Coefficients kµ  are determined 
from: 

1
1 2

1 2 2

1 1 1 1 1
= ; = ; = .

0 2 2

µ
µ µ

ρ ρ µ
     

⋅     
    

 (57) 
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Thus, finally, 

( )1 1
= ; = 0,1,2, .

2 2

jj

jx i i j+ − …  (58) 

Let us use this period-3 sequence and construct the following Hankel matrix: 

4

1 0 1 0 1

0 1 0 1 0

= 1 0 1 0 1

0 1 0 1 0

1 0 1 0 1

H

− 
 − 
 − −
 

− 
 − 

 (59) 

SVD of 4H  results in identical matrices U  and V  because 4 4 4 4=T TH H H H . 

The equality 4 4 = 0TH H Iλ−  yields the eigenvalues of 4 4
TH H : 

( )3 2
4 4

3 0 3 0 3

0 2 0 2 0

= = 13 36 = 0;3 0 3 0 3

0 2 0 2 0

3 0 3 0 3

TH H I

λ
λ

λ λ λ λλ
λ

λ

− −

− −

− − −− − −

− −

− −

1 = 9λ , 2 = 4λ  and 3,4,5 = 0λ . 

(60) 

Lemma 3. Let { }
=0j j

x
+∞

 be an LRS and its order be n . Let jH  be a ( )1j +  

order Hankel matrix of { }
=0j j

x
+∞

. Then the number of singular values of jH  not equal 

to zero is not higher than n . 
The proof is as follows. Without the loss of generality let us assume a non-

increasing order of the absolute values of the eigenvalues of jH : 

1 2 1jλ λ λ +≥ ≥ ≥… . 

We should note that = T

j jH H ; thus singular values kσ  are the square roots of 

eigenvalues of 2
jH  which are equal to 2

kλ , =1, ,k l…  where l  is the number of 

distinct eigenvalues (Starzak, 2013). Then =k kσ λ , = 1, , 1k j +…  since the 

singular values are computed without taking multiplicity into account. 

Let us consider 1j n≤ − . The order of { }
=0j j

x
+∞

 is n . Thus det( ) 0jH ≠ ; 

1 2 1 0jλ λ λ + ≠…  , and the number of zero singular values is 0. 
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Now, let us suppose that > 1j n − . The nullity of jH  reads: 

( ) ( )= 1 = 1j jnul H j rank H j n+ − + − . The multiplicity of the zero eigenvalue of a 

matrix is equal to its nullity; thus 1, , 0nσ σ ≠… ; 1 1, , = 0n jσ σ+ +… . 

End of Proof. 
Lemma 3 implies that SVD of the Hankel matrix of a sequence can be used as 

an effective computational tool for the determination of its order – if only this 
sequence is a LRS. However, every real-world time series is contaminated with 
inevitable noise. Thus the order of a real-world time series is infinite as even the 
evolution of the underlying model is governed by a LRS. 

Let us assume that { }
=0j j

x
+∞

 is an order n  LRS and { }
=0j j

ε
+∞

 is a discrete random 

variable. Then sequence { }
=0j j j

x ε
+∞

+  is not a LRS – however small the additive 

noise is (otherwise { }
=0j j

ε
+∞

 would be a LRS – which contradicts the definition of a 

random variable). In other words, the computational procedure described in Lemma 
1 is not applicable for the detection of the order of LRS – if only the investigated 
sequence is a real-world time series. Another approach is required for real-world 
time series. 

Properties and computational aspects of the pseudospectrum of a square matrix 
are discussed in detail in (Wright and Trefethen, 2002). Similar reasoning in respect 
of the pseudo-order of LRS could help to understand the effects introduced by the 
additive noise. 

The spectrum of a square matrix A  denoted as ( )AΛ  is the set of z ∈ℂ  

where the resolvent ( ) 1
zI A

−
−  does not exist or is unbounded (Trefethen, 1999) 

where I  is the identity matrix. The ε -pseudospectrum of A  is the set 

( ) ( ){ }= : for some with <A z z A E E Eε εΛ ∈ ∈Λ +ℂ  (61) 

for each > 0ε . As an analogy to the classical definition of the spectrum of a square 
matrix, the H-spectrum of the LRS as the set of roots of auxiliary equation (55) is 
defined: 

( ) { }0 1 2 1 =1
, , , = .

n

n k k
P x x x ρ−…  (62) 

Then the ε -H-spectrum of a square Hankel matrix is defined as: 

( ) ( )0 1 2 1 0 0 1 1 2 1 2 1, , , = , , ,n n nP x x x P x x xε ε ε ε− − −+ + +… …  (63) 

for some 0 1 2 1, , , nε ε ε − ∈… ℝ  so that 0 1 2 1 2nε ε ε ε− ≤… . 

Such a definition of the ε -H-spectrum does enable computational 
investigation of the effects introduced by the additive noise. In other words, such an 
approach helps us investigate such real-world time series where an underlying LRS 
is contaminated with noise. 
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We should note that the coefficients of auxiliary equation (55) are computed as 
cofactors in respect to the last line of determinant (55). But, 

( ) ( ) ( ) ( ) ( )1 2det = det det .A E A A tr A E Oε ε ε−+ + ⋅ +  (64) 

In other words, the ε -H-spectrum converges continuously to the H-spectrum 
as 0ε →  if only A  is not singular (which is true if the size of the Hankel matrix 
does correspond to the order of the LRS). Also, all the roots of the perturbed 
sequence are either real numbers or complex conjugate numbers because the 
perturbation does not damage the symmetricity of the matrix. 

 

Fig. 52. The continuous convergence of ε -H-spectrum to the H-spectrum as 0ε → . The 
distribution of roots of the auxiliary equation for the perturbed sequence in Example 2 is 

illustrated in part (a). The continuous convergence of SVD Eigenvalues 
k

σ ; 0, 4k =  of the 

perturbed matrix 4H  is illustrated in parts (b-f) 

Example 2. Let us consider the same sequence from Example 1 – but perturb it 
by adding the external noise. Let us assume that = 0.1ε . We should note that 4 
elements of the sequence are required for auxiliary equation (55). Let us assume that 

0 = 0.1εɶ ; 1 = 0.5ε −ɶ ; 2 = 0.3εɶ  and 3 = 0.2ε −ɶ  (it would be convenient to generate kεɶ  

as random numbers distributed uniformly over the interval ( )1,1− ). However, 

0 1 2 3 2
= 0.6245 0.1n ε ε ε ε ≈ ≠ɶ ɶ ɶ ɶɶ . Here 

2
⋅  is 2l -norm. The perturbation takes the 

form: 

= ; = 0,3.k
k k

n

ε
ε ε ⋅

ɶ

ɶ
 (65) 
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Note that now 0 1 2 3 2
=ε ε ε ε ε . The perturbed auxiliary equation reads: 

2

2

1.0160 0.0801 0.9520

0.0801 0.9520 0.0320 = 0.9736 0.1088 0.9037 = 0.

1

ρ ρ

ρ ρ

− −

− − − − + −  (66) 

Finally, ( ) { }0.1 0 1 2 1, , , = 0.0559 0.9618nP x x x i− ±… . Repeating this 

computational experiment many times helps to plot “clouds” of roots of perturbed 
auxiliary equations (Fig. 52a). Computational experiments illustrate the continuous 
convergence of the ε -H-spectrum to the H-spectrum as 0ε → . 

Similar computational experiments can be performed for the eigenvalues of 

4 4
TH H . We should note that the length of the perturbation vector is 9 ( 4H  is a 

square Hankel matrix of order 5). The perturbation does not damage the 
symmetricity of the matrix; the matrix remains catalecticant. SVD of 4H  produces 5 
eigenvalues – all of them are shown in Fig. 52b, 52c, 52d, 52e and 52f accordingly. 
As an opposition to the previous experiment with the auxiliary equation, a single 
perturbation is performed for each and every discrete value of ε . It can be seen that 
SVD eigenvalues of the perturbed matrix do converge continuously to eigenvalues 
of 4H  as 0ε → . Moreover, SVD of the Hankel matrix of a perturbed sequence can 
still be used as an effective computational tool for the determination of the order of 
the non-perturbed sequence – one just needs to set up the error level and count how 
many eigenvalues are higher than this error level. The techniques for the selection of 
this error level are discussed in the subsequent sections. 

4.2.1. Weighted Moving Average and the Order of LRS 

The classical moving average (MA) method transforms the original sequence 

{ }
=0j j

x
+∞

 into sequence 

{ }
1

=0
=0 =0

1
=

L

j s jj
s j

y x
L

+∞−+∞

+

 
 
 

∑  (67) 

where L  is the width of the observation window. 
The weighted moving average method WMA( L ) differs from MA( L ) in the 

sense that the weight coefficients sw  are not equal: 

{ }
1

=0
=0 =0

=
L

j L s s jj
s j

y w x

+∞−+∞

− +

 
 
 
∑ . (68) 

The most popular WMA(L) is the exponential MA method. In the simplest 
form it is described by the recurrent relation: 

( ) 1= 1 ; = 2,3, ,j j jy x y jα α −+ − …  (69) 
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where ( )0;1α ∈  is a smoothing factor. Anterior samples exhibit lower significance 

in this model but are obligatory for the reconstruction of the original signal as 
opposed to MA. 

Let us consider that { }
=0j j

x
+∞

 is a LRS. It is clear that WMA( L ) does transform 

a LRS into a LRS. Equations (7) and (67) yield: 

1 11

0 1 0 1 0

=
k kn nL r m

s j l t j

j L s kl k kt k

s k l k t

s j
y w j

l
µ ρ µ ρ

− −−
+ −

−
= = = = =

+ 
= 

 
∑ ∑∑ ∑∑ ɶ  (70) 

In general, the order of { }
= 1j j L

y
+∞

−
 can be higher than the order of { }

=0j j
x

+∞
. But 

it may happen that a particular combination of weight coefficients kw  and roots kρ  

may result in such situations when some of the expressions krµɶ  which also depend 

on the coefficients sw  become equal to zero. In such cases, the order of the 

transformed LRS can become lower than the order of the original sequence. 
Example 3. Let us consider a sequence of period-6. Let this sequence be 

described by the roots of the characteristic equation 
( )1

3=
k i

k e
π

ρ
−

, =1,6k . 
One must choose µ  values in the way that makes jy , = 1,2,j … be real 

numbers. Thus let us consider: 

1 2 3= 0.5, = 0.2 0.1 , = 0.3 0.2 ,i iµ µ µ− + +  

4 5 6= 0.3, = 0.3 0.2 , = 0.2 0.1 .i iµ µ µ− − − −  
(71) 

The defined variables result in a period-6 sequence with the initial members: 

0.4, 0.3 0.3 3, 0.1 0.1 3,− +  

1.8, 0.1 0.1 3, 0.3 0.3 3,− + …  
(72) 

Let us consider = 6L  and 
1

=
6iw , =1, 1i L − . It is natural that filtering the 

sequence yields a new constant sequence 
1 1 1

, ,
2 2 2

… . 

But let us suppose that = 4L  and { } { }3

=0
= 0.1;0.4;0.4;0.1i i

w . Now, the 

resulting new sequence is of period-6 but it still possesses 2 elements which are the 
same: 

0.38 0.08 3, 0.8, 0.8,−  

0.38 0.08 3, 0.32 0.08 3, 0.32 0.08 3,+ + − …  
(73) 



100 
 

The roots of the characteristic equation of the new sequence comprise kρ , 

=1,6k  except that now there is no 4ρ . 

4.2.2. WMA and Real-world Time Series 

As discussed previously, the order of a real-world time series is infinite. But it 
has also been shown that SVD can be used for the identification of the order of a 
LRS contaminated by additive noise – if only this LRS does exist. 

The optimization problem for short time series prediction is constructed in the 
following section. 

4.2.3. Preprocessing 

Given time series { }
=0

n

j j
x  (this time series is not necessarily a LRS), let us set 

the order of the Hankel matrix m  and the error level at > 0ε . Let us set the width 

of the observation window L  and perform MA: { } = 1= 1
= 1

1
=

n
n j

j ss j Lj L
j L

y x
L − +−

−

 
 
 

∑ . 

We thus construct the catalecticant Hankel matrix from { }
= 1

n

j j L
y

−
 (starting from 1Ly −

). Then we perform SVD of the Hankel matrix; SVD eigenvalues are denoted as 

{ }2

=1

m

k k
σ . We compute the number of SVD eigenvalues greater than ε : 

=1
=

m

kk
Nε δ∑

, where 
2

2

1
=

0 <
k

k

k

if

if

σ ε
δ

σ ε

 ≥



. We store MA weight coefficients 
=1

1
L

jL

 
 
 

 and Nε  as the 

current best result. 

4.2.4. The Optimization Strategy 

The goal of the optimization procedure is to find such weight coefficients 

{ }
=1

L

j j
w  that the order of the WMA is the lowest possible: 

{ }, ,1

min
w wL

Nε
…

. Such an 

optimization problem has a trivial solution: 1 = = = 0Lw w⋯ . Additional constraints 
for the weight coefficients are required to make this a well-posed optimization 
problem. Natural requirements are set as follows: 

=1

= 1
L

j

j

w∑ ; > 0jw  for all j . (74) 

We should note that MA weight coefficients belong to the feasible set of the 
constrained optimization problem. 

We find such weight coefficients of WMA which result in the minimum order 

of the LRS. Then we generate a vector of weight coefficients { }
=1

L

j j
w  satisfying 

constraints (74) and perform WMA: { } { }1

=0=0 =0
=

L

j L s s jsj j

y w x
+∞+∞ −

− +∑ . We compute the 



101 
 

number of SVD eigenvalues of the Hankel matrix of the WMA sequence greater 
than ε  : Nε . If the value of Nε  is lower than the best stored value, we save the 

current vector of weight coefficients { }
=1

L

j j
w  and Nε  as the best current arguments 

and the best current value of the target function. Otherwise, we execute the same 
iteration again. 

The strategy for the generation of a sequence of weight coefficients { }
=1

L

j j
w  is 

an intrinsic feature of the optimization algorithm – a wise selection of this strategy 
may guarantee an effective computational solution of the optimization problem (we 
should note that the defined target function maps nℝ  onto 0ℕ ). However, neither 
deterministic strategies nor evolutionary approaches based on particle swarm 
optimization (PSO) or genetic algorithms (GA) can produce satisfactory results. 
This may be explained by the topology of the target function (a simple two-
dimensional computational experiment at 2L =  is used for clarity). 

Let us consider the chaotic Logistic map (Eq. (24)) at = 4r  and start from the 
initial condition 0 0.44x = . Initially, constraints (74) are released, and it is only 

required that 0 1jw≤ ≤ ; = 1,2j . Nε  is computed at the grid-points throughout the 

whole domain – the results are illustrated in Fig. 52a. It is clear that the global 
minimum is reached at 1 2= = 0w w . 

  
(a) (b) 

Fig. 53. The geometrical shape of the target function Nε  in respect to weight coefficients 1w  

and 2w . The constraint 1 2 1w w+ =  is released in part (a) and is in force (according to Eq. 

(75) in part (b) 

We should note that the constraint 1 2 = 1w w+  yields a feasible set which is 
geometrically represented as a line interval in the domain of Fig. 53a; the problem 
becomes a single variable optimization problem. In general, constraints (68) reduce 
the dimension of the optimization problem by one. However, the generation of a 
vector of the weight coefficients which does belong to the feasible set is not so 
straightforward if the dimension of the problem is higher than 2. For example, one 
could generate random values of 1w  and 2w  distributed uniformly in the interval 
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[0,1] – but 3 1 2= 1w w w− −  does not always yield a feasible point in case of = 3L  

(let us consider a situation when 1 = 0.9w  and 2 = 0.9w ). 
Therefore, the generation of numerical values of the weight coefficients 

{ }
=1

L

j j
w  is executed according to the following algorithm. First of all, a pre-selected 

search strategy algorithm is allowed to generate numbers { }
=1

L

j j
e  with the only 

limitation 0 1je≤ ≤ ; = 1, ,j L… . Then, the weight coefficients are computed as 

follows: 

=1

= ; = 1, , .j

j L

k

k

e
w j L

e∑
…  

(75) 

Vector { }2

=1j j
e  is allowed to span over the entire domain [ ] [ ]0,1 0,1×  in 

Fig. 53b. The resulting distribution of Nε  (Fig. 53b) clearly shows that the 
discontinuous surface of the values of the target function comprises relatively wide 
and flat zones (which is predetermined by the mapping 0

n →ℝ ℕ ). In other words, 

anti-gradient decent methods and even PSO or GA methods would fail to generate a 
sequence of points converging to a local minimum. Therefore, random Monte Carlo 
(MC) search strategy is selected for all further computational experiments. 

4.2.5. Computational Experiments 

  
(a) (b) 

Fig. 54. A near optimal set of weight coefficients for the Gaussian noise; the width of the 
observation window is 10. 1000 MC trials are illustrated in part (a); the thick solid horizontal 
line denotes the result for the classical MA; the black dot shows the best result produced by 
random search. Part (b) illustrates the weight coefficients for the best result depicted as the 

black dot in part (a). Index i  denotes an MC trial number; j  is the weight coefficient index 

Let us consider a random Gaussian noise time series with the zero mean and 
the standard deviation equal to 1. Let us take = 10L  and = 0.1ε . It is well-known 
that it is impossible to find the optimal embedding time delay vector for a random 
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noise sequence (Sauer et al., 1991) – it is hard to expect that WMA would produce 
better results compared to MA. As mentioned previously, MC techniques will be 
used for the generation of a vector of random weight coefficients according to (69). 
But, first of all, the pre-processing (MA) produces = 89Nε  (this result is shown as a 
thin solid horizontal line in Fig. 54a). One thousand MC iterations are executed; the 
value of Nε  in each trial is visualized as an empty circle in Fig. 54a along the 
horizontal axis. It appears that 1000 MC trials cannot generate weight coefficients 
which would result in a lower value of Nε  than produced by MA. The weight 

coefficients resulting in the best Nε  are shown in Fig. 54b. 

  
(a) (b) 

Fig. 55. A near-optimal set of weight coefficients for the synthetic time series contaminated 
with noise; the width of the observation window is 10. 1000 MC trials are illustrated in part 

(a); the thick solid horizontal line denotes the result for the classical MA; the black dot 
shows the best result produced by random search. Part (b) illustrates the weight coefficients 

for the best result depicted as the black dot in part (a) 

Next, computational experiments with a synthetic sequence 

( )= sin 10 0.01j jx j rand+ ⋅ ; = 0,1,j …  are continued. Here jrand  is a discrete 

normal Gaussian random variable ( )0,1N  generated at the j -th step. Now, MA 

produces = 43Nε . However, 1000 MC iterations manage to produce such weight 

coefficients which do result in a lower value of Nε  compared to MA (Fig. 55a). The 
best set of weight coefficients is illustrated in Fig. 55b. 

4.3. Time Series Forecasting Based on the Algebraic WMA 

4.3.1. The Forecasting Algorithm 

As mentioned previously, MA techniques are often used as simple but 
effective time series forecasting tools. The ability to identify underlying algebraic 
relationships by varying the weight coefficients of WMA suggests an alternative 
approach for the time series prediction. The schematic diagram for such a WMA 
prediction technique is illustrated in Fig. 55. 
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Let 0x  be the value of the original sequence at the present time moment; the 

present and past values of the sequence are used to forecast 1x . The algorithm 
described in Section 4 is used to identify a set of near-optimal weight coefficients 

{ }
=1

L

j j
w ; the weighted average 

1

1 =0
=

L

L s ss
y w x

−

− −∑  is used as a direct estimate of 1x . 

We should note that the WMA forecasting becomes MA forecasting if only it 
appears that it is impossible to find a better set of weight coefficients than the MA 

coefficients (the preprocessing step in Section 4.1): 
1

1 =0

1
=

L

ss
y x

L

−

−∑ . 

  
Fig. 56. The schematic diagram of AWMA prediction 

The selection of parameter ε  is considered in Section 4 – but the selection of 
the width of the observation window L  has not been discussed yet. In fact, the 
strategy for the selection of L  is straightforward. First of all, one needs to determine 
the optimal width of the observation window for MA prediction; the optimality 
criterion is the RMSE of MA prediction. Then, at each time step one should try to 
find such a set of weight coefficients which would result in a lower value of Nε  
compared to the one produced by MA. One-step-forward WMA prediction is 
executed if the search was successful; the ordinary MA prediction is performed 
otherwise. 

4.3.2. Computational Experiments 

Quarterly percentage increase in the estimated resident population of Australia 
from September 1971 to June 1993 (also named as erppc) was chosen for 
computational experiments (the dataset is available online at the Time Series Data 
Library (Hyndman)). 
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Table 9. RMSE as a function of the observation window for MA prediction 
L 2 3 4 5 6 7 8 9 

RMSE 0.0749 0.0707 0.0689 0.0697 0.0709 0.0727 0.0739 0.0752 
 
Table 9 shows RMSE for MA prediction at different values of the length of the 

observation window. The prediction was the most accurate with = 4L . 

 

Fig. 57. The application of AWMA to erppc series in comparison to the standard moving 
average and ARIMA(1, 1, 2) at 4L = ; 0.04ε = . The original data is plotted as the dotted 
line; MA(4) prediction is represented as the thin solid line; ARIMA(1, 1, 2) is shown with 

dots; AWMA is presented as the thick solid line 

 

  
(a) (b) 

Fig. 58. A near-optimal set of weight coefficients for erppc at the first prediction step; 4L =
. 400 MC trials are illustrated in part (a); the thick solid horizontal line denotes the result for 

the classical MA; the black dot shows the best result produced by random search. Part (b) 
illustrates the weight coefficients for the best result depicted as the black dot in part (a) 

We should note that there exists a set of vectors of weight coefficients { }
=1

L

j j
w   

at the same optimal value of L . In order to minimize the prediction error as well as 
to minimize the algebraic complexity of the underlying skeleton sequence, one must 

fix a vector { }
=1

L

j j
w  leading to the minimal prediction error. Not considering this 
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step reduces the algebraic complexity of the underlying skeleton sequence but does 
not guarantee the best prediction error. 

AWMA results for the erppc series are shown in Fig. 57. Each prediction was 
generated by simulating 10000 sets of the weight coefficients for WMA and then 
minimizing the ranks of the underlying skeleton sequences. A near-optimal set of 
weight coefficients for erppc at the first prediction step is depicted in Fig. 58. 

Results were compared to ( )MA 4  and ( )ARIMA , ,p d q . By testing various 

parameter values, the optimal time series model ( )ARIMA 1,1,2  was obtained. The 

model resulted in MAPE of 0.1770. Prediction errors for MA and AMWA are 
0.1774 and 0.1678 respectively. It should be noted that AWMA also outperforms the 
naïve prediction for this particular example. Here MAPE is provided instead of 
RMSE in order to better illustrate the relative differences between different error 
values. 

4.4. Applications of H-ranks in Real World Magnetometer Data 

Application of the algebraic decomposition of a sequence for real world data 
could be used with aims other than prediction of the time series. Algebraic 
decomposition and extrapolation of magnetic field intensity is discussed below. This 
solution could be employed for the reconstruction of short term signal losses as it 
preserves the underlying algebraic structure of the data. 

4.4.1. Magnetometer Data Formats of the Intensity of a Magnetic Field 

The data considered in this chapter is obtained from the magnetometer 
installed on the territory of the LUHS Institute of Animal Science in Baisogala 
(Lithuania). Table 10 shows the structure of the data which is being hourly recorded 
into a binary file in the form of a table. 

 
Table 10. The data structure of magnetometer recordings 

No. 
Magnetic field intensity 

Timestamp Temp., C N/S 
direction 

E/W 
direction 

Vertical 
direction 

Satellite 
data 

1 -134430 -83725 - -271 1337915034 20 
2 -12863 38269 - -278 1337915034 21 
... ... ... ... ... ... ... 

 
The intensity of a local magnetic field is registered at a sampling rate of 

130Hz. It should be mentioned that the current time value is stored as the whole 
number of seconds having elapsed since a particular moment of time in the past (it 
depends on the operating system) in a computer. As a result, each 130 timestamps 
are recorded as the same number representing a particular second. Thus the first step 
in processing the magnetometer data is to interpolate these values in order to obtain 
meaningful timestamps. This procedure is also necessary if synchronization with 
other signals is considered. 
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Fig. 59. Software created for extracting the magnetic field data, calculating the spectrograms, 
the power of a signal and for filtering the signal of the magnetic field intensity 

The huge amount of raw data leads to the necessity of creating the software in 
order to process it. Matlab and its graphical user interface tool (guide) was used for 
this purpose. The main interface of the developed software is shown in Fig. 59. 

4.4.2. Algebraic Reconstruction of the Magnetic Field Intensity Based on H-

ranks 

  
(a) (b) 

Fig. 60. Spectrograms for the time period of 1h on 21st of December 2014. (a) frequencies in 

[ ]0;65 , (b) frequencies in [ ]0,1;0,5  

By default Matlab’s function spectrogram finds power spectral density in the 
frequency range 0 to the half of the sampling rate. Thus the frequency scale has the 
upper limit of 65 Hz provided the data sampling rate is 130 Hz. Fig. 60 depicts the 
spectrogram for a time period of 1h on the 21st of December, 2014. A noticeable 
peak at 50 Hz is due to the frequency of the Lithuanian power grid. The first of the 
Schumann resonances appear as peaks at frequencies around 7.83, 14.3 and 20.8 Hz. 
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Fig. 61. Variation of the magnetic field and its power (classical squared RMS approach) for 
the time period of 1h on the 21st of December, 2014 

Project partners from LSMU suggested the frequency intervals [ ]0;0,1 , 

[ ]0,1;0,5 , [ ]0,5;1 , [ ]1;7  and [ ]7;50  to be considered according to the nature of 

particular human physiological processes. 3rd order Butterworth filter was used to 
analyze the signals. 

All the data from the magnetometer located in Lithuania was analyzed during 
the research. Spectrograms were formed considering various resolutions in both time 
and frequency axes. The results are very similar in northerly-southerly and easterly-
westernly directions. A historical data overview in the form of spectrograms and 
power charts was uploaded to www.healthmath.lt where project members can 
analyze them at any time. 

 

Fig. 62. The title page of www.healthmath.lt 
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Matlab’s function spectrogram can calculate a spectrogram in a predefined 
interval of frequencies. It is achieved by passing the endpoints of the intervals to one 
of the parameters. The calculation time is considerably longer compared to the 
default frequency range. On the contrary, if one needs to evaluate the interval 

[ ]0;0,1 , the results may be obtained faster by passing the endpoints of the interval. 

This is due to the fact that otherwise the interval must be highly discretized in order 
to get sufficient data from the cropped spectrogram. For such wider intervals as 

[ ]7;50 , it is more efficient to firstly calculate the default spectrogram and then crop 

it to the interval. The software allows the user to choose one of the two methods 
described above. 

The domain name www.healthmath.lt was purchased while working on the 
project. Also a website was created (Fig. 62). It acts as a platform for sharing 
magnetometer data and research information among the partners of the project. 
Historical data and special software are available there under a password. Additional 
cloud storages are used because the data of the year 2014 alone takes about 19 GB. 
The data is in zipped mat files in order to be ready for use with the developed 
software. Each file contains magnetic field intensities over a one-hour period. The 
software also features a batch conversion feature for dealing with the original zipped 
binary files which are initially recorded by the magnetometer. 

 

Fig. 63. The process of finding the optimal rank of the series representing the magnetic field 
intensity. Part (a) shows the variation of the value for machine epsilon. The corresponding 

RMSE between the real signal and the extrapolated result as well as the resulting H-rank are 
shown respectively in (b) and (c) 

The magnetometer data of a 1-hour period starting from 12:00:02 recorded on 
January 01, 2016, is considered in order to illustrate the practical application of the 
algebraic reconstruction of a real world sequence. 
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(a)     (b)   

Fig. 64. Algebraic extrapolation of the magnetic field intensity. The distribution of roots is 
shown in (a); transient processes (thin gray solid lines), base fragments (thick black solid 

lines) and extrapolated sequences (thin black lines) are shown in (b) 

The optimal H-rank for the series is 15 (Fig. 63(a)); the corresponding value 
for machine epsilon is 1510−

, and the best RMSE result was 0.0585 . 

The obtained optimal H-rank value was used to extrapolate the magnetic field 
intensity (Fig. 64). The data series must be normalized before the procedure. 
Otherwise, the results would be inadequate due to the buildup of computation errors. 

By performing a number of computational experiments it was noted that the 
quality of the extrapolation for the magnetic field intensity is comparably higher 
than the one for discrete nonlinear maps. Fig. 65 shows that an extrapolated 
sequence still follows the pattern of the original time series after 500 iterations. We 
should note that 130 iterations correspond to a time period of 1 second. 

 

Fig. 65. Algebraic extrapolation of the magnetic field intensity. Transient processes are 
plotted as thin gray solid lines while extrapolated sequences are shown as the thin black lines 

4.5. Conclusions 

The algebraic technique based on Hankel matrices and the rank of a partial 
solution is proposed for the investigation of the onset of chaos in discrete nonlinear 
dynamical systems. The distribution of roots of the modified characteristic equation 
describes a measure of the complexity of the solution and is used for the 
characterization of the system’s dynamics. The developed technique is applicable for 
steady-state attractors as well as for transient solutions. 
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The evolution of the distribution of roots as the system approaches to the 
chaotic regime reveals interesting properties of the system’s dynamics. The inability 
of a deterministic algebraic technique to decompose a chaotic solution is represented 
by a computational blow-up of the rank and the stochastic distribution of 
characteristic roots on the complex plane. Such amplification of the algebraic 
complexity at the onset of chaos seems to be a universal feature of chaotic nonlinear 
systems and is demonstrated for a discrete dynamical system: the Logistic map. 

An effective time series forecasting technique based on algebraic weighted 
moving average is proposed in this chapter. The weight coefficients are selected in 
such a way that the algebraic complexity of the resulting averaged time series is 
minimal. The complex optimization problem is solved by employing the random 
MC search strategy. The functionality and feasibility of the proposed short-time 
series forecasting technique is demonstrated by computational experiments with the 
real world time series. 

The size of the algebraic model is automatically selected by minimizing the 
prediction errors produced by the classical MA for different observation windows. 
An alternative (but a much more time consuming one) approach would be to vary 
the observation window of the algebraic model independently of the MA results. 
Such an approach would probably result in even more precise predictions. 

The algebraic decomposition of a sequence was applied for the real world 
magnetometer data. Despite the magnetic field intensity being a real world sequence 
(which does not have a rank), the decomposition yielded interpretable results. The 
extrapolated sequence follows the pattern of the original data series for more than 
500 forward iterations. The practical significance of this result could be the 
possibility to use algebraic techniques in reconstructing short term signal losses. 
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FINAL CONCLUSIONS 

1. It is demonstrated that H-rank computations produce interpretable results for 
error values smaller than the machine epsilon. A computational framework is 
developed for efficient construction of patterns of H-ranks for nonlinear 
dynamical systems. 

 
2. It is shown that patterns of H-ranks can be used for the identification of the 

manifolds of non-asymptotic convergence in nonlinear dynamical systems. 
 

3. The information provided by the patterns of H-ranks is proved to be useful for 
the manipulation or control of nonlinear dynamical systems. Patterns of H-ranks 
are used to identify pseudo stable structures of completely invertible dynamical 
systems. Manifolds in patterns of H-ranks enable to construct new control 
algorithms for transient processes in nonlinear systems. 

 
4. The algebraic technique based on Hankel matrices is proposed for the 

investigation of the onset of chaos in discrete nonlinear dynamical systems. The 
distribution of roots of the modified characteristic equation describes a measure 
of the complexity of the solution and in turn characterizes the system’s 
dynamics. 

 
5. The proposed short-time series forecasting technique proved to be better in 

terms of MAPE of the prediction compared to the classical moving average 
forecasting technique. The proposed technique is based on the concept of the 
pseudorank of a predicted time series. 

 
6. H-ranks are used for the algebraic analysis of the real world magnetometer data 

and the reconstruction of short term signal losses. 
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