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Abstract: The research introduces a unique deep-learning-based technique for remote rehabilitative
analysis of image-captured human movements and postures. We present a ploninomial Pareto-
optimized deep-learning architecture for processing inverse kinematics for sorting out and rear-
ranging human skeleton joints generated by RGB-based two-dimensional (2D) skeleton recognition
algorithms, with the goal of producing a full 3D model as a final result. The suggested method
extracts the entire humanoid character motion curve, which is then connected to a three-dimensional
(3D) mesh for real-time preview. Our method maintains high joint mapping accuracy with smooth
motion frames while ensuring anthropometric regularity, producing a mean average precision (mAP)
of 0.950 for the task of predicting the joint position of a single subject. Furthermore, the suggested
system, trained on the MoVi dataset, enables a seamless evaluation of posture in a 3D environment,
allowing participants to be examined from numerous perspectives using a single recorded camera
feed. The results of evaluation on our own self-collected dataset of human posture videos and
cross-validation on the benchmark MPII and KIMORE datasets are presented.

Keywords: Pareto optimization; 2D to 3D; human posture analysis; remote rehabilitation; telehealth

1. Introduction

Multiple studies have been conducted to investigate the feasibility and effectiveness
of new information-technology tools and their design to facilitate home rehabilitation
after stroke or trauma [1–4], a successful recovery that could potentially lead to a positive
change in attitudes [5]. Researchers have analyzed the outcomes of computer-assisted
therapy [6] or virtual reality (VR) [7,8] in rehabilitation and the effectiveness in the recovery
of upper limb motor functions, maintenance of balance of posture and gait, lower limbs,
posture, and walking [9]. Additionally, researchers have meticulously examined the clinical
effects of tele-rehabilitation, which allows patients to perform therapy with therapists using
telecommunication devices in the home environment and has been extensively used for
motor and cognitive recovery [10]. This was considered to be one of the most effective
approaches to diagnose musculoskeletal issues and rehabilitate patients recovering from
numerous impairments through physical-therapy intervention through exercises in specific
activities. Participating in physiotherapy and rehabilitation programs is often required and
critical in postoperative recovery or in the treatment of a wide range of health problems [11].
However, providing patients with access to a doctor for every rehab session is both impos-
sible and fiscally unjustifiable. As a result, existing health services around the world are
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structured in such a way that a first portion of rehabilitation programs is performed in an
actual hospital under the direct supervision of a clinician, followed by a subsequent portion
in which patients often perform a sequence of exercises given at home [12]. Therefore,
patients have often carried out such exercises at home, without the presence of specialists
or therapists. As a result, patients are unable to receive proper supervision and evaluation
of the required activity. On the contrary, home technologies driven by artificial intelligence
(AI) have the advantage of allowing flexibility in location and time in rehabilitation therapy,
as well as receiving feedback from therapists remotely [13].

Biomechanical analysis of human movements has become an essential tool for funda-
mental research and therapeutic care of orthopedic and neurological problems [14]. Offline
clinical movement analysis has historically been performed by processing collected raw
motion and force data [15]. The laboratory or gait report is then sent to the doctor, who then
determines treatment options, often including time-series data of biomechanical variables
such as joint moments (kinetics) or joint angles (kinematics). In contrast to a standard
report created after post-processing, an automated computer-based biomechanical analysis
would provide new opportunities for the patient and the kinesitherapist to interact in real
time with biomechanical records during patient monitoring or treatment [16].

A meaningful visualization and quantification [17,18] of certain motion factors might
be beneficial to clinicians and physical therapists. In addition, kinematics of movement
provide limited information about the performance of the movement; however, it can serve
as input into numerical biomechanical musculo-skeletal models such as OpenSim [19],
AnyBody [20] or Biomechanics of Bodies [21], which allow calculation of kinetic parameters
of motion, such as muscle forces and joint torques. Doctors would gain new insights into
internal forces and moments, kinematic parameters (ROM, movement speed, acceleration),
motion accuracy, muscle force and strength parameters, changes in vital functions (pulse,
arterial pressure, glucose level, heart rate) and physical load tolerance and recovery indica-
tors would otherwise be essentially unseen [22]. Moreover, such biomechanical data can be
communicated to the patient in real time to help them perform physiotherapy exercises
more adequately than following the verbal or tactile input of a kinesitherapist [23].

Full-body pose and motion analysis has become a part of many modern medical
solutions, especially in digitized home rehabilitation and telerehabilitation scenarios [24,25].
These often target gait detection and motion estimation [26], as well as physical train-
ing monitoring [27]. Limb analysis [28] has also become a common feature [29], leading
to custom applications for feedback training employing specific variables, such as a sin-
gle joint moment or angle. To make such computation possible, approximations that
ignore certain mechanical factors, such as inertial components in equations of motion,
are frequently utilized, often applying some deep-learning model for compensation. Ap-
plications range from computer-vision-based cerebral infarction rehabilitation [30], head
neck rehabilitation [31], spinal-cord injury [32], stroke rehabilitation [33], avoidance or
alleviation of fracture pains [34], port medicine [35] to robotic-induced systems, where
skeleton tracking-based posture assessment can be used for real-time monitoring of up-
per limb rehabilitation [36]. Naturally, such techniques also apply to a number of other
related real-world applications [37], ranging from augmented reality [38] to bad-posture
detection [39,40], sitting-posture sensing [41], occluded-pose reconstruction [42] and other
modern health-related applications.

It is evident that computer-vision research has produced a wide range of marker-based
and markerless technologies in recent years, with the potential to be utilized in a wide
range of disciplines and settings. The following issues, however, must still be addressed:

• Requirements for a markerless motion-data acquisition systems remain reliant on
the research field and the unique physical-acquisition settings, and so differ between
disciplines [43].

• Human motion analysis systems should be very precise to detect minute changes in
motion in sports biomechanics and physical rehabilitation tasks, as well as adaptable,
noninvasive, and free of constraints [44]. It should be emphasized that resolution
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(both spatially and temporally) has the same effect on markerless systems as it does
on marker-based systems [45].

• One must also acknowledge that the bulk of the data recorded will be significantly
bigger, and so, the markerless systems may need to forego accuracy in order to
construct a deployable, rapid system, which may pose difficulty when performing a
proper medical analysis. Machine learning for this type of system will almost certainly
entail the procurement of a costly graphical processing unit (GPU)-oriented frame
processing machine in order to handle vast volumes of video data accurately and
efficiently, thus stopping the actual deployment [46].

The main novelty of this paper is a novel deep-learning-based technique for remote
rehabilitative analysis of image-captured human movements and postures. We present
a proprietary plonynomial Pareto-optimized deep-learning architecture for processing
inverse kinematics for sorting out and rearranging human skeleton joints generated by
RGB (red, green, blue) image-based two-dimensional (2D) skeleton recognition algorithms,
such as blazepose [47], with the goal of producing a full 3D model as a final result. Our
model differs from other implementations in its activity-independent architecture while still ensuring
anthropometric regularity and retaining high joint mapping accuracy with smooth motion frames.
The proposed approach allows to extract the entire humanoid character motion curve,
which can then be bound to a 3D mesh for preview in near real time. In addition, because
the entire video feed is treated as a single entity instead of processing on a frame-by-
frame basis, this allows for smooth interpolation between poses, where the interpolation
accuracy can be managed by the video-feed sampling rate. The sampling rate can be
lowered for faster video preprocessing in exchange for accuracy and vice versa, allowing
all calculations to be performed on CPU-based processing systems, rather than expensive
GPU farm equipment.

The paper is organized as follows. Section two provides an overview of the state of the
art; section three focuses on methods and materials, offering a background for this research,
the developed kinematic model of a human skeleton, the advanced joint-topology detection
backbone network, and the Pareto optimized deep-learning architecture for inverse kine-
matic processing, in addition to computer vision processing back-end development. The
paper then continues by describing the materials utilized in this assessment, the experimen-
tal setup, limitations and examples, metrics employed, and outcomes on both proprietary
and benchmark MPII datasets. Following that, a robustness assessment on the KIMORE
dataset is provided, and the result section concludes with an evaluation of user experience
with such a system. Following that, the paper provides discussion and conclusions.

2. State-of-the-Art Review

State-of-the-art pose assessment applications now drive towards a 3D space, which
provides quite an interesting research context. A human person can easily “reconstruct”
a 3D shape from a 2D-only image. However, this poses a problem to “classic” or deep-
learning processors, as the algorithm has to fit joints to a 3D skeleton [48]. Kinematic
features of full 3D human pose representations are high-dimensional and difficult to
estimate directly. The more poses a model aims to support, the higher the complexity
increase in the distribution of poses, and the higher the dimensionality of the model [49].
Dynamics of motion is another problem often resulting in misalignment of the estimated
mesh [50]. This overview offers insights into research on pure 2D image-based conversion,
intentionally omitting depth-based approaches [51], as this was not the objective of this
study and leads to the limitation of dedicated depth sensors.

Human pose estimation itself can be defined as targeting an estimation of the position
and/or spatial location of body key points in an image frame [52]. The result is often a
pose composed of joints, depicting the structure of a human body [53]. Traditional (classic)
methods often include the pictorial structure model targeting the analysis of a kinematic
tree to find the main joints of a human body [54], using the histogram of the orientation
gradient (HOG), the hue, saturation, and value (HSV) color model, and other methods
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to acquire information about shape, color, and other parameters, which are later used to
infer the human pose. Such simple but low-performing models are now replaced with
those based on deep-learning approaches with the advantage of good robustness and the
capability to learn pose characteristics from global space [55]. Still, no matter whether a
classic or modern approach, the process of estimating human poses is similar, as first the
algorithm must localize the joints of the human body and then group this information into
a representation of a pose [56].

One of the most popular approaches is pose machines, which provide sequential
prediction methods for learning spatial models [57]. Many convolutional neural network
(CNN) approaches were modified to support more dimensions of skeleton keypoint match-
ing [58] and then improved, for example, by applying spatial-temporal graph convolutional
networks [59] to learn both spatial and temporal patterns from 2D images. Another ap-
proach [60] suggested using probabilistic knowledge of plausible 3D keypoint positions
to fine-tune the search to estimate a 3D human pose with a multi-stage CNN architecture.
Zou et al. described a graph convolutional network (GCN) that works on regression tasks
on graph-structured data, which can improve performance with negligible overhead [61].
Pavvlo et al. [62] suggested using dilated temporal convolutions on 2D keypoints in com-
bination with backprojection for training to use unlabeled video data. Moon et al. [63]
showed that a 3D CNN could be used for voxel-to-voxel-like mapping and prediction to
solve depth problems, using a 3D voxelized grid for estimation of per-voxel likelihoods for
each joint. Gonzales et al. suggested that using depth data to obtain 3D lifted points from
2D information can provide a rough estimate of the true 3D human pose, by separating
the 2D pose estimation from the 3D pose refinement [64]. Volumetric representations
might work well to achieve good pixel-level localization accuracy, but unfortunately often
lead to unrealistic body structures as a result. This can be solved by linking body mesh
estimation and 3D keypoint estimation [65]. Most of the above CNNs rely mostly on
scale-invariant, translation-invariant, or rotation-invariant operations, such as max-pooling,
and have a problem with viewpoint generalization, which can be solved by autoencoder
architectures [66]. A combination of GCNs and temporal convolutional networks (TCNs)
can be used to estimate multi-person camera-centric 3D poses that do not need to know the
camera parameters [67]. As another alternative to CNN, Gartner et al. propose the use of a
deep-reinforcement-learning architecture capable of estimating appropriate views in space
and time to help with final frame pose estimation [68].

Considering the nature of the approach, conversion from 2D to 3D space leads to
numerous artifacts in the results, as well as to limitations in the input data. The occlusion
was partially solved by applying a Fisher hierarchical matrix distribution to the relative
3D joint rotation matrices of key points and a Gaussian distribution to the body shape
parameters [69]. Cheng et al. [70] also suggested employing the estimated 2D confidence
heat maps of joints, together with an optical-flow consistency constraint, then filtering
out unreliable estimations of occluded joints. As an alternative to CNN-related problems
of depth ambiguity and self-occlusion, Li et al. [71] suggest using a multihypothesis
transformer architecture to learn spatiotemporal representations of multiple plausible
poses. Ma et al. [72] offer applying transformer-based architectures to solve the problem
of occlusions and oblique viewing angles by integrating information from different views.
Loss in keypoint information or even segmentation is another big issue, especially when
trying to reconstruct clothed figurines, as was shown by Dwiveli et al., who used higher
level semantic knowledge about clothing to distinctly penalize the clothed and unclothed
image regions [73]. Out-of-domain human pose estimation was performed using the
Bilevel Online Adaptation algorithm, which uses temporal constraints to compensate for the
unavailable notation, and bilevel optimization procedures to solve the mesh generation [74].

3. Methods and Materials

The purpose of this section is to outline our methodology for the assessment of human
posture. Our technique replicates human skeletal postures, deforms surface geometry, and
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is independent of camera poses at each time step of the depth video. For this objective,
an original kinematic model matching to the skeleton-posture data gathered from test
individuals utilizing a set of reference systems with a simple link, limiting the degrees of
freedom, was required. A joint topology analysis network was created to read and process
data for this model, with the purpose of involving a total of 33 human-body keypoints as a
superset skeleton topology, allowing for more accurate posture identification. The Pareto
optimized deep-learning architecture was introduced to speed up the technique while
maintaining good precision for practical assessment. Finally, the methodology concludes
with a system-level description of the backbone that we utilised in our approach.

3.1. Background

Multiple computer-vision problems can be considered and analyzed as convex opti-
mization, which can be addressed by mathematical calculation of the global optimum of a
3D model [75]. However, many of these problems can be non-convex and poorly solved.
As a consequence, there may be many optima for which the solution is missing, ambiguous,
or unstable, especially under realistic conditions with noisy or corrupted data. In terms of
non-expressivity, e.g., computer-vision segmentation can be represented as an energy opti-
mization problem [76], which could then be applied to define an energy function for pixel
labels, and the best solution can be found by minimizing the energy [77]. When the given
energy function is complicated, finding the energy minimum value precisely is NP-hard,
and convex solvers are not able to efficiently check a very large number of local optima
without additional constraints. As for the ill-posed problem, many problems require opti-
mization of the parameters of a given numerical model in order to reconstruct observations.
Specifically, in computer skeleton tracking problems, different hyper-parameters have to be
fine-tuned in order to model “human likeness” [78]. Considering the quantity and quality
of available training instances, discovering a parameter setting that can reconstruct the
training labels can be nearly impossible.

Our method reproduces the poses of the human skeleton, deforms the surface geom-
etry, and is independent of the camera poses at each time step of the depth video. The
skeletal arrangements and camera poses are discovered by solving a joint energy mini-
mization problem that optimizes the matching of RGBZ camera (which acquires both color
(RGB) and time-of-flight (ToF) range (Z)) data and the matching of human shape tem-
plates to the depth data. The energy function combines geometric matching, indirect scene
segmentation, and matching using image features, which has an impact on performance.
An extremely large data stream consisting of geometric matching and the integration of
human-position and camera-position estimation allows for reliable capture of the results,
even though the tested AI methods were trained with data from only two depth sensors.
Unlike previous activity capture methods, the algorithm we investigated in this iteration
performs well in processing common unsupervised indoor scenes, where a potential patient
performs rehabilitation exercises by filming himself with a mobile phone (selfie mode).

3.2. Kinematic Model of Human Skeleton

Formally, the human skeleton kinematic model can be defined using Denavit–Hartenberg
(DH) parameters [79] by η(LH, JH), where LH and JH correspond to the sets of skeleton links
and joints. The kinematic model corresponds to the skeletal pose data obtained from test
subjects using a set of reference systems with a simple connection, limiting the degrees of
freedom (DOF) of a 3-D space to four fundamental transformations. A direct kinematic model
for a discrete series of joints may be found using this technique. The approach establishes
various reference systems, one for the skeleton’s basis and one for each of the joint linkages.
The geometric transform between consecutive reference systems is achieved by combining
four movements: translation a along the x-axis, translation d along the z-axis, rotation α
around the x-axis, and rotation θ around the z-axis. In the case of a rotational joint, the
variable influenced by the joint would be θ or d in the case of a translational joint.

For each skeleton joint, a transformation matrix can be defined as follows:
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k−1Ak = Rotz(θk)T(0, 0, dk)T(ak, 0, 0)Rotx(αk)

=


cos θk − cos αk sin θk sin(αk) sin θk ak cos θk
sin θk cos αk cos θk − sin αk cos θk ak sin θk

0 sin αk cos αk dk
0 0 0 1


By multiplying the matrices for each skeleton joint successively, the coordinates of the

endpoints can be achieved as follows.

BA0 = T(0, 0, l/2)Roty(−π/2)

0A1 = Rotz(q1)T(0, 0, 0)T(0, 0, 0)Rotx(−π/2)
1A2 = Rotz(q2)T(0, 0, l)T(0, 0, 0)Rotx(π/2)

2A3 = Rotz(q3)T(0, 0, 0)T(0, 0, 0)Rotx(−π/2)
3A4 = Rotz(q4)T(0, 0, l)T(0, 0, 0)Rotx(0)

BA4 =B A0 ·0 A1 ·1 A2 ·2 A3 ·3 A4

The human body is divided into 13 rigid segments: head, forearms, upper arms,
torso, pelvic segment, thighs, shanks, and feet. In addition, 1-DOF hinge joints depict
the ankles, knees, and elbows. The 3-DOF spherical joints depict the hips, shoulders, and
joints that connect the pelvic segment to the torso and the torso to the head, respectively.
The pelvic section, which can move freely in space and, hence, has six DOF, serves as the
mechanism’s foundation. The kinematic model comprises a total of 24 articulated rotational
DOF, including the 3 rotational DOF and 3 translational DOF of the pelvic segment, which
determine the body’s location and orientation in relation to the reference coordinate system.

The human arm may be described as a rigid kinematic chain with three joints (shoul-
der, elbow, and wrist) and seven joints (q1, q2, q3, q4, q5, q6, q7). The positions (d1, d3, d5, d7)
represent the lengths of the links that connect the torso, shoulder, elbow, wrist, and hand.
The mobility of the upper arm is determined by the structure of the shoulder, which consists
of three joints (q1, q2, q3), where q1 controls its forward and backward motion, q2 controls
its downward and upward motion, and q3 controls its rotation. The extension and flexion
of the forearm are determined by the anatomy of the elbow, which has one joint q4. The
structure of the wrist with three joints (q5, q6, q7) regulates the mobility of the hand, where
q5 represents the rotation of the forearm, q6 represents the extension and flexion of the
hand, and q7 represents the rotation of the hand.

The geometric structure of the arm is used to determine the joint angles and swivel
angles of the human arm according to [80]. Suppose that SL and SR are the left and right
shoulders, M is the midline of the shoulders, T is the torso position, E is the elbow, W is
the right wrist, and H is the right hand. θj is the angle of joint qj, j = 1, 2, . . . , 7. ψ is the
swivel angle between the reference plane and the arm plane.

The geometry relation is used to compute the corresponding joint angles. The angle
between the reference plane and the arm plane is determined by θ1. θ2 calculates the angle
between the vector SRE and SRT, θ3 denotes the rotation angle of the upper arm, and θ4
calculates the angle between the link SRE and EW. θ5 is the rotation angle of the lower arm,
and θ6 is the angle between EW and WH. To simplify, we select θ7 = 0, d7 = 0, because the
joint angle θ7 cannot be calculated from the sensor data. Human arm-hand postures are
computed using joint angles depending on the link structure’s DH parameters.

The forward kinematic problem between end pose 0T7 and joints coordinates
(j, j = 1, 2, . . . , 7) can be handled by the coordination transformation matrix j−1Tj from joint
j− 1 to joint j, according to the parameters of the human arm DH, where
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j−1Tj =


cosθj −cosαjsinθj sinαjsinθj 0
sinθj cosαjcosθj −sinαjcosθj 0

0 sinαj cosαj dj
0 0 0 1


3.3. Joint Topology Detection Backbone Network

One of the industry standards for human posture estimation is COCO, which consists
of 17 joints tracked on the human body. However, these points are not enough for a certain
posture estimation, as they lack scale and orientation information for the limbs that are
vital for applications trying to evaluate fitness. For this reason, the inclusion of additional
trackable keypoints is crucial for detecting bad human posture and estimating pose. Our
solution involves a total of 33 human body keypoints as a superset for the COCO skeleton
topology, allowing for more accurate posture detection. All subjects have the same skeleton
topology, and suitable bone lengths are computed per subject (by automatically scaling a
reference skeleton based on the person’s known height).

For pose estimation, a two-stage detector–tracker pipeline was used, where the de-
tector locates the region-of-interest (RoI) for the given image, while the trackers predict
the joints within the given RoI. In our model, we establish a series of IMU track targets,
each of which is associated to a bone and has the IMU’s rotational and translational offsets.
IMU orientation readings and derived acceleration measurements are used to express the
rotational transform between each IMU reference frame and the global coordinates. The
estimation and tracking of joint location estimation, depicted in Figure 1, is performed by
training the network on top of the combination of BlazePose and BlazeFace models [47].
Reusing the BlazeFace model allowed us to have a baseline that could be used to track the
orientation and position of the human, whereas the joint position baseline was based on
that of the BlazePose model.

Figure 1. Pose estimation pipeline.

Our network further augments these technologies by substituting missing angles
from the original skeletons calculated from the depth data (we used three RealSense depth
cameras at different angles). As some of the joints that the network predicts are redundant,
e.g., fingers or toes, the reduced joint input is passed into the neural network as an input.
However, to bind human joints to a skeleton, their position in 3D space is insufficient. This
task requires calculating the joint orientation based on its parent joints, with the complexity
increasing with each additional joint, thus requiring the development of a dedicated deep
learning-based inverse kinematic model. To obtain real-time performance, each network
component must be suitable for real-time applications. To achieve this, the assertion is made
that the best recognizable feature of the human torso direction is its face. This assertion
allows the solution to simplify pose estimation by using a face detection network capable
of real-time performance. Based on the link between the human torso and human head, we
can extrapolate the radius of the human body, which enables faster detection of key features
such as body center rotation and scale, which are required to estimate complicated poses.

The architecture of the backbone network adapted for our system is given in Figure 2.
It takes a 256 × 256 RGB image as input and outputs 33 tracked joint 3D locations along
with their visibility. Unlike other methods, which use computationally prohibitive heatmap
predictions, this backbone only uses supervised learning combined with heatmap/offset
prediction during the training process. The acquired keypoints can then be processed and
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used in tasks dependent on their location, for example, detecting the performed action
or evaluating its deviation from the baseline. Using joints, we extrapolate other required
features for posture evaluation, these include: the top and base of the spine; top and
base of the neck, and combine them into the final skeleton. Using sequence analysis or
manual detection, we determine the action that the subject is about to take and compute
the required errors based on such features as neck angle in relation to the shoulders, spine
shift based on the vertical axis, or shoulder shift based on the horizontal axes. If a defined
error threshold is reached, the user is informed that the performed action was completed
improperly and which parts of the body (and by how much) have failed to fit the posture.
A constraint is also added for each 2D spatial measurement from the smartphone camera.
This function aims to reduce the Euclidean distance between both the measured 2D position
in tracked human skeleton coordinates and the calculated (predicted) global track target
position mapped.

Figure 2. Backbone network architecture.

3.4. Pareto-Optimized Deep-Learning Architecture for Inverse Kinematics Processing

In human movement, there is often no clear preservation of bone lengths and rotations
of the limbs are not evaluated. Our method uses keypoint detection over multiple camera
frames as input for kinematic optimization to obtain an accurate 3D human pose. This
kinematic pose output preserves bone length and can be used directly to perform 3D
simulation. Our method attempts to “lift” a 3D pose from a single RGB image by including
the knowledge of plausible human poses into the training, refining the detection estimates
using a complex method. The 3D human pose is triangulated from a single camera, using
CNNs, and a kinematic fitting, using an offline expectation maximization approach over
the entire sequence. In our approach, surface grids are applied to single-view images,
yielding dense pose correspondences. In unbounded environments, monocular methods
are characterized by depth ambiguity, hindering their capability to reconstruct the full pose
on absolute scale.

Inverse kinematics (IK) is generally an iterative approach; this makes it hard to apply
for real-world tasks. A deep-learning neural network architecture (seen in Figure 3) has
been created that allows for single-pass IK prediction of the skeleton as opposed to an
iterative one. Here, the input is the joint position in the 3D space, and the output is the joint
rotation in the 3D space represented as Euler angles in radians. The first network stage
extracts 1024 most useful features from the input that are required for IK calculations, and
23 parallel predictions (one for each joint) are made and combined into a single feature
vector. The resulting feature map uses a branched prediction approach to predict joint
rotations. Joint-location predictions of the backbone network were used as an input for this
inverse kinematics network, for the loss function evaluation, the expected IK results of the
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model are calculated, giving a ground-truth value. The network was then trained using the
created dataset until it converges.

Figure 3. Inverse kinematics of a skeleton, resulting output is Euler angles.

To assist in determining optimal skeleton keypoint values, the Pareto dominance
relation was generated as a tuple on the possible skeleton bone state space, so that an
optimization model is one that is not dominated by any other solution. The goal is to
find the trade-off surface, also known as the Pareto front, which is the collection of non-
dominated solution locations. These are also known as Pareto-optimal solution points. The
tracked subject’s kinematic stance is Pareto-optimized as shown below.

The Pareto set comprises the optimal answers when alternative options that may
improve at least one of the objectives without deteriorating any other are not available. For
multi-objective problems, there is usually a set of solutions that offers the most information
about optimization. After multi-way comparison of solutions, those that meet the fewest
number of objectives are labeled as inferior. The decision vector x∗ ∈ F is the Pareto optimal
solution to maximize the objective functions k if no alternative decision vectors meet both
of the following conditions:

fi(x) ≥ fi(x∗), ∀i ∈ {1, 2, . . . , k}
f j(x) > f j(x∗), ∃j ∈ {1, 2, . . . , k}

If these requirements are met, the decision vector x dominates the decision vector y in
the maximizing problem, as shown by x > y. This is written as

fi(x) ≥ fi(y), ∀i ∈ {1, 2, . . . , k}
f j(x) > f j(x∗), ∃j ∈ {1, 2, . . . , k}

The Pareto-optimal set is defined as follows: if no solution in the search space domi-
nates any member of the set P, then the solutions in the set P create a global Pareto-optimal
set. All feasible solutions in the complete solution space are acquired after optimiza-
tion, eliminating the requirement to combine all objective functions into one. Using the
Pareto-optimal frontier sets, one can choose the best solution based on their preferences.

3.5. Image Processing Backend

The network input can be any type of sensor that captures RGB information, e.g., webcam,
phone, camera, etc. Each of the video frames is then extracted at the desired frame rate,
and the resulting frame is then sent to the estimator, where its processing is performed to
extract the object’s joint orientation. To playback a video containing the estimated subject
posture, firstly we need to preprocess each of the frames by first evaluating the object
skeleton in our network; this gives us the estimated object joint positions in 3D space from
a flat RGB image. After the joint locations for the poses are estimated, they need to be
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contracted into an excessive joint model by omitting such features as fingers for better
and faster estimation, as these features do not add any important information for the task.
Once the joints are selected, an IK neural network is used to estimate the orientations of the
joints so that they could be bound to the skeletal mesh. Our approach stores the skeleton’s
posture as a single multidimensional vector representing the root’s 3D global translation.
The process is then completed by combining the stacking local joint rotations of each bone
(along with the root), which are expressed as 3D angle–axis vectors derived by multiplying
the axis of rotation by the angle of rotation in rads. The variable that is optimized is this
parameter vector, with the root movement and joint rotations extracted and used in the
calculations as needed. Extracted object joints are then bound onto a selected body mesh
and saved; the process is repeated for all videos. Once the video is processed, it can be
played back and interacted with in 3D space, allowing for the expert to change the camera
location to the desired position and to observe the performed action from multiple angles.
This entire process is illustrated in the sequence diagram displayed in Figure 4.

Figure 4. Estimation of a skeleton joint orientation.

Due to the nature of rehabilitation-exercise data, our technique also required variable-
length processing. In contrast to generalized computer-vision applications that use sequen-
tial data (action/motion categorization in general), rehabilitation-kinesitherapy data show
considerable changes within variable-length data. One prominent explanation might be
that exercise performers are a broad group of people, ranging from experienced therapists
to patients with various disorders and problems. Furthermore, rehabilitation data can
be obtained in confined lab/gymnasium settings, indoor/outdoor settings, and home
settings. In addition, rehabilitation activities may require a different number of repetitions
depending on the therapist’s prescription. As a result, individuals direct varying amounts
of time to the same exercise with much the same number of iterations.

A simple spatio-temporal approach allows us to take the average or maximum re-
sponse for a predefined window size while maintaining the time scale and without losing
some subtle features, all while keeping the main model for predicting correctness score.
Sequential dependencies are represented in the spatiotemporal feature vectors in the pro-
cessing back-end. It allows us to extract the discriminative traits that have been collected
over time. This little information is critical in predicting an exercise’s accuracy score.

Dense trajectories have been shown to be useful in recognition of human actions [81].
They represent a person’s walking patterns and can be easily computed straight from sensor
data; we utilized them to compute skeletal joint characteristics. To calculate trajectories, we
choose a group of dense points from a frame and track them in consecutive frames. In a
dense optical-flow field, tracking is performed using displacement information. In frame
t + 1, each picked point Pt = (xt, yt) in frame at time t is tracked. A trajectory is formed by
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the concatenation of these tracked sites into successive frames. S represents a displacement
vector sequence and is calculated as,

S = (∆Pt, ∆Pt+1, . . . , ∆Pt+L−1),

where L is the length of the trajectory and ∆Pt = (Pt+1 − Pt). The resulting vector S is
normalized as follows:

S′ = (∆Pt ,...,∆Pt+L−1)
t+L−1

∑
j=t
‖∆Pj‖

Given a skeleton pose sequence S′ with N frames, defined as S′ = Ft, where
t = 1, 2, 3, . . . , N. Let ptj and ptk be the 3D positions of the j-th and k-th joints in Ft.
Then, the inter-joint distance I JDt

jk between ptj and ptk at time sample t is calculated as

I JDt
jk = ||p

t
j − pt

k||2, (t = 1, 2, 3, . . . , N)

The angle of the human joint and the angle variation can be employed as deep spatial
characteristics in an action-detection job based on bone data. When combined with the
2D (x, y) coordinates provided in the human-skeleton dataset, the length of the bone and
the angle between the bones are easily calculated. We can simply depict the location of
connections in the human skeleton using these variables.

It is important to compute the angle created by its two bones. The length of each bone
and the angles between the joints are estimated on the basis of the coordinates of each node
in the human-bone dataset and its physical relationship.

θi = arccos


(

xpred(i) − xi

)
×
(

xsucc(i) − xi

)
+
(

ypred(i) − yi

)
×
(

ysucc(i) − yi

)
√(

xpred(i) − xi

)2
+
(

ypred(i) − yi

)2
×
√(

xsucc(i) − xi

)2
+
(

ysucc(i) − yi

)2


where xi and yi denote the abscissa and ordinate of the node i, succ(i) is the successor node
of node i, pred(i) is the predecessor node of node i, and θi represents the angle on the node
i. A length is calculated as follows:

|L1| =
√
(x1 − x2)

2 + (y1 − y2)
2

where |L1| denotes the length of the bone between the nodes, and its subscript represents
the label of the first bone.

The deep-space feature matrix is obtained by extracting the angle between bone length
and bone, as well as the angles and lengths between all bones in a single frame.

3.6. Materials

Postural examination is often the initial component of any patient’s tests and measure-
ments for any musculoskeletal problem. The therapist looks at the patient from the front,
rear and sides. Postural assessment is a critical component of objective evaluation, and ideal
static postural alignments have been proposed. However, both static and dynamic postures
must be assessed to determine the patient’s functional mobility and capacity to self-correct
static habits. Scoliosis, postural decompensation, anatomic short leg, previous trauma
or surgery, trunk control (after stroke), or particular segmental somatic dysfunctions in
areas of the body where asymmetry is present can all be caused by postural misalignment
or asymmetries and are very important to assess at the beginning of the rehabilitation
program [82,83].

Stroke causes a wide variety of clinical forms of postural instability and pathological
conditions. The variety of stroke and the impairments of the patients is one of the primary
challenges in the treatment of postural instability after stroke [84]. Workouts, sensors,
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modalities, actuators, communications, configurations, and end users were all characterized
in the literature review study by Hribernik et al. [22], where they summarized that real-
time biomechanical input can accelerate physical recovery. During a postural assessment,
a medic usually measures and records active ROM at all peripheral joints, especially
shoulder/upper limbs. Many pertinent questions about the rehabilitation of postural
imbalance after stroke are raised:

• Which physical training method is the most effective?
• What is the most important difference between such a specialized technique aimed at

postural imbalance and the generalization benefits of a non-specific approach?
• Is postural imbalance therapy only a sensory approach?
• What is the benefit of technology?
• What is the effectiveness of the training program in relation to the period after

the stroke?
• Which workout intensity is the most effective?
• What are the implications for autonomy and quality of life?

Causes of limitations may include pain, weakness, muscle shortening, or swelling.
Shoulder ROM limitations, muscle performance and strength deficits may can affect
changes in posture or incorrect posture. That is why we used full active ROM of shoul-
der (extension/flexion/rotations) during assessment, as factors most influencing postural
changes or occurring compensatory mechanisms (e.g., full shoulder flexion influences
trunk control and leads the hyperextension of the back). Roland et al. [85] explored if
bilateral standing with visual feedback treatment increases posture and balance after stroke
as compared to traditional therapy, as well as the applicability of the benefits of visual
feedback treatment on gait and gait-related tasks. Yu et al.’s experimental research [25]
included the muscle stimulation location, stimulation parameters, transition of each stage,
and transition between each condition. Their findings demonstrated the usefulness of the
control technique for clinical rehabilitation-plan formulation and rehabilitation-training
execution. The posture recognition experiment was based on the recognition of six funda-
mental upper-limb motions. By making comparisons with various classification methods,
the viability of a fully connected neural network in posture recognition has been deter-
mined, and it can be merged with the rehabilitation assessment of patients in the later stage,
and it can serve as a reference basis for the evaluation of the extent of rehabilitation of
patients, which is extremely important for the recovery of patients.

To create the dataset, two motion capture databases were used. The first dataset used
to train the neural network is MoVi [86], it contains vast amounts of motion capture data
from multiple camera perspectives. Each of the videos consist of subjects performing
multiple different actions; the videos are captured using regular camera sensors.

The second dataset was custom-made by us, using exercise database recorded using
two different depth sensors and coordinated by the experts from Vilnius Santara clinics. An
example of the dataset can be seen in Figure 5. The first depth sensor Intel Realsense L515
was placed in front of the subject, the second depth sensor Intel Realsense D435i positioned
90◦ right of the subject. Both of the sensors were placed 1.4 m above ground level and 1.8 m
away from the subject. The database consisted of 23 subjects of varying physical conditions,
age from 26 to 71, 61% male, 32% female, and the rest identified as other genders). In total,
168 recordings were made for each participant. We provided a demonstration by an expert
rehabilitation specialist explaining the purpose and methodology behind the exercises.
Each of the subjects performed these action movements from the diagnostic rehabilitation
functional assessment methodology [87,88]:

1. Shoulder flexion (90°);
2. Shoulder flexion and internal rotation;
3. Shoulder flexion and internal rotation, elbow flexion;
4. Shoulder extension and internal rotation;
5. Shoulder flexion;
6. Full shoulder flexion (180°);
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7. Shoulder adduction.

Each of the videos in both datasets was pre-processed to be used for neural network
training. This was performed by extracting every 0.5 s to minimize the number of similar
frames in the video feed; a breakdown can be seen in Table 1. The frame was then passed
to our network to extract its joints and, subsequently, each of the joint orientations was
calculated for IK neural network training. Each person also wore eight HTC VIVE trackers
to gather the data to check and tune the accuracy of the kinematics model. The HTC
trackers provide an IK solution of their own, allowing us to increase the accuracy of the
joints containing the HTC trackers by obtaining a mean orientation of the HTC joints and
the calculated joints.

Figure 5. Dataset example.

Table 1. Real-world dataset breakdown captured for a single perspective selfie video (average
distribution for different subjects).

Exercise No. Average Distribution per Subject

Ex. 1 99
Ex. 2 76
Ex. 3 78
Ex. 4 87
Ex. 5 92
Ex. 6 71
Ex. 7 70

Total 592

4. Experimental Evaluation and Results
4.1. Experimental Setup

Dealing with a video sequence requires processing large amounts of data; even a
single recording of a person performing an exercise can contain thousands of frames, each
of which must be evaluated individually. When the task is expanded to deal with multiple
camera calibrations, multiple exercises, etc., this quickly becomes an enormous task of big
data that cannot be processed manually. For this, tools that would allow to optimize the
video-feed evaluation are required. Our method attempts to simplify the big-data task of
human posture evaluation by providing such processing tools. During the training process,
we used MoVi and our own created data sets split using the 80:20 rule where 80% of the
data set recordings are used for training and 20% of the remaining recordings are used for
testing. However, this solution can still bias the results, as the results can be chosen so that
the remaining 20% have good results but not necessarily be a generalized solution fit for all
cases. Therefore, during these experiments, a new validation dataset consisting of eight
videos was prepared that attempted to encompass all edge cases. For example, these edge
cases involve determining if the network can detect user actions such as bending sideways,
forward/backward, or touching their face. This validation dataset includes these edge
cases because our solution relies on monocular images that lose a lot of depth information
that can only be inferred from certain lightning conditions, i.e., shadows and based on
subjects’ orientation to the camera.
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4.2. Limitations and Examples

To evaluate the method edge cases, five common movements evaluating changes in
body pose and related to human mobility, motion performance, and posture (walking,
climbing the stairs, balance, self-care, or work activities) were selected, where the test
subjects are leaning left, leaning right, leaning forward, leaning backward and finally the
subject touching their face (seen in Figure 6). As we can see, in most cases where the
subject is holding their hand in front of the face, our solution successfully predicted the
joint orientation, except for where the subject was instructed to fully touch their face. This
is due to the model being unable to accurately predict the user’s hand depth relative to
the face, and not the IK method itself, suggesting further research could be expanded by a
more accurate depth estimation method or depth sensor. The disparity between object joint
orientation and IK prediction can be seen in Figure 7; as we can see, some misalignment
can occur due to the fact that IK must ensure that the joints create a valid human pose
without scaling the human body, as our solution does not, at the moment, account for the
person’s height.

Figure 6. Cont.
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Figure 6. Subject image (left) and its pose reconstruction (right) (From top to bottom): subject
leaning left, subject leaning forward, subject leaning backwards, subject leaning sideways, subject
touching face.

Figure 7. Example of joint overlay.

4.3. Metrics

Object keypoint similarity (OKS) [89] was used to calculate the average keypoint
similarity between all keypoints of objects, depending on the size of the topic and the
distance between the anticipated and ground-truth points. Each keypoint was assigned a
similarity value ranging from 0 to 1, and OKS was calculated as the average of all these
values at all keypoints.

OKS =
∑ exp(−d2

i /2s2k2
i )δ(vi ≥ 0)

∑i δ(vi ≥ 0)

where di is the Euclidean distance between a keypoint and its corresponding ground truth,
s is the object scale (subject height), vi is visibility of the ground truth, and ki is a constant
per keypoint; in our case k1 is always 1 because we assume that all keypoints are visible as
they are inferred from other joint orientation.

The mean average precision (mAP) [90] was used to show the accuracy of keypoint
detection according to precision, was calculated as a ratio of true positive results to the total
positive, and then obtained the mean of the average precision over multiple IoU thresholds
throughout the model. The joints included in the evaluations are defined by the MPII
dataset [54] which include: (1) right ankle, (2) right knee, (3) right hip, (4) left hip, (5) left
knee, (6) left ankle, (7) pelvis, (8) thorax, (9) upper neck, (10) head top, (11) right wrist,
(12) right elbow, (13) right shoulder, (14) left shoulder, (15) left elbow, (16) left wrist.

mAP =
1
N

N

∑
i=1

APi

where APi is the AP value for the i-th joint and N is the total number of joints evaluated.
The percentage of correct keypoints (PCK) [91] was used to measure the accuracy

of the localization (a higher PCK value means better performance) of different keypoints
within a threshold of 50 % of the pose head segment length of each test frame:

PCK =
∑(Jointdetected ∩ Jointgroundtruth|vis>0)

∑(Jointgroundtruth|vis>0)
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where Jointdetected ∩ Jointgroundtruth|vis>0 is the number of joints recognized successfully by
the network, and Jointgroundtruth|vis>0 is the number of visible joints tagged in the ground
truth annotations. The PCK of the joints was determined in our implementation by taking
visibility > 0 into account.

Mean per joint position error (MPJPE) [92] was used as a metric for calculating 3D,
by retrieving the Euclidean distance between the calculated 3D joints and the ground
truth positions:

MPJPE =
1
N

N

∑
i=1
||Ji − J∗i ||2

Here, N is the number of joints, Ji and J∗i are the ground truth position and the
calculated position of the ith joint.

Range of motion error (ROME) [93] reflects the accuracy in the calculation of the
largest amplitude of the motion

ROME = [max()−min(x)]− [max(y)−min(y)]

where x refers to the ground-truth human joint angles, and y are the joint angles obtained
using the proposed method.

The Sprague and Geers’ metric [94] was used to measure the similarity of the amplitude
and phase between the true and measured curves pointwise. Recently, it was used in a
related context for assesing the parameters of children’s gait [20].

Suppose that the two signals being compared are represented by p and m. p is the
projected data from the simulation model, while m is the observed data from the experiment.
The S&G magnitude error is calculated by

MSG = sig(rme) log10(1 + |rme|)

where the relative magnitude error rme is given by

rme =
∑N

i=1 p2
i −∑N

i=1 m2
i√

∑N
i=1 p2

i ∑N
i=1 m2

i

where N is the number of points. The phase error is defined by

PSG =
1
π

cos−1

 ∑N
i=1 pimi√

∑N
i=1 p2

i ∑N
i=1 m2

i


The S&G comprehensive error measure is given by

CSG =
√

M2
SG + P2

SG

Given the small number of participants in this study, we used the Wilcoxon–Mann–
Whitney test instead of the t-test to find significant differences. The test was carried out on
each joint performance measure, and the significance level was set at p = 0.05.

The mean and standard deviations (SD) for the verified system and the criteria were
calculated. Bland and Altman plots were created to visually show the data’s heteroskedas-
ticity and validity of measurements. Bland-Altman bias and limits of agreement (LoA)
were estimated according to [95], Pearson’s correlation (ρ), the concordance correlation
coefficient (CCC) [96] and the intraclass correlation (ICC) [97] to measure agreement be-
tween spatio-temporal skeleton characteristics. Pearson’s correlation and CCC evaluate
the relative and total agreement between the measured values and the ground truth. LoAs
were considered excellent, good, moderate, or modest if ρ, CCC, or ICC were greater than
0.9, 0.8, 0.7, or 0.5, respectively.
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4.4. Results on Our Self-Collected Dataset

Generally, IK requires multiple iterations to find the appropriate joint orientation for
the pose (seen in Figure 8), while the advantage of neural networks is that they can perform
the same action in a single iteration, reducing the overall computation time. The ground
truths calculated by the Blender IK solver were used to train our deep-learning-based
IK solver.

Figure 8. Skeleton inverse kinematics histogram.

The deep-learning-based approach allowed for predicting the joint orientation with
high precision. To evaluate the error, the MPJPE metric was used, where the resulting mean
square error of all skeleton joints is 0.251 with a standard deviation of 0.067, this implies
high predictive capacity; a breakdown of joint position error for all poses by exercise can be
seen in Figure 9.

Additionally, while predicting the human body pose in space is not a necessary task
for human posture evaluation, it is an important feature to preview the action performed in
a 3D environment from multiple points of view; the breakdown of error in 3D space offset
can be seen in Figure 10, while the breakdown by exercise can be seen in Figure 10. Exercise
breakdown (a) shoulder flexion; (b) shoulder flexion and internal rotation; (c) shoulder
flexion and internal rotation, elbow flexion; (d) shoulder extension and internal rotation;
(e) shoulder flexion; (f) full shoulder flexion; (g) shoulder adduction; and (h) exercises from
the unsorted MoVi dataset.

Figure 9. Skeleton inverse kinematics joint MSE by exercise.
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Figure 10. Skeleton inverse kinematics Offset MSE by exercise.

The achieved skeleton inverse kinematics joint MSE was stable accross the whole
averaged video-frame sequence as is displayed in Figure 11.

Figure 11. Skeleton IK joint MSE accross video-frame sequence of an exercise.

The average OKS value achieved is 0.989, while its breakdown by exercise can be seen
in Figure 12.

Figure 12. Skeleton inverse kinematics OKS values.

The PCK values thresholded at various detection confidence rates are given in Table 2.
Generally, our method allows to achieve better results for joints, which have a lower
amplitude of movement and are located at an upper part of the body.
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Table 2. Summary of PCK values when thresholding at different detection confidence rates.

Detection Confidence PCK@0 PCK@0.2 PCK@0.5

Head 0.96 0.98 0.99
Shoulder 0.90 0.93 0.94
Hands 0.82 0.87 0.92
Knees 0.68 0.75 0.82
Legs 0.55 0.66 0.74
All keypoints 0.88 0.92 0.95

Table 3 displays the RMSE and ROME for all keypoints during all exercises. In all joints,
the mean values of RMSE and ROME were less than 5◦, which is considered clinically valid.

Table 3. Summary of RMSE and ROME over all subjects and 95% confidence interval (CI)

Exercise RMSE (Deg) ROME (Deg)

Leaning left 3.2964 (1.8306–4.7622) 1.9293 (1.0408–2.8178)
Leaning forward 3.5323 (2.5728–4.4919) 1.4839 (0.3116–2.6562)
Leaning backwards 2.9320 (2.3884–3.4757) 2.1103 (1.4680–2.7526)
Leaning sideways 2.9112 (2.3884–4.1522) 1.6518 (0.5339–2.7698)
Touching face 3.0301 (1.8922–4.1679) 2.1526 (1.2196–3.0856)

To demonstrate the agreement between recorded and reconstructed signals, we used
the Sprague and Geers’ (S&G) metric. The overall error is presented by combined S&G
error between recorded signals and the IK-reconstructed signals have a more than 97%
Pearson’s correlation, indicating that the recorded and reconstructed signals are very similar.
Table 4 summarizes the S&G error as well as the Pearson’s correlation for various exercises
performed by all subjects.

Table 4. Mean Sprague and Geers’ error and Pearson’s correlation between recorded and IK-
reconstructed joint positions for all subjects.

Exercise S&G Error Pearson’s Correlation

Leaning left 0.019 0.982
Leaning forward 0.025 0.975
Leaning backwards 0.032 0.984
Leaning sideways 0.024 0.979
Touching face 0.029 0.971

4.5. Results on MPII Dataset

To evaluate the mean average precision of the approach, we use the MPII data set and
achieved an average mAP of 0.950. The breakdown per joint is shown in Figure 13.

Figure 13. Mean average precision (mAP) per joint.



Appl. Sci. 2023, 13, 1116 20 of 32

To further validate our results, we performed the analysis using different cross-
validation schemes. As most machine-learning models improve their performance as
the training set is expanded, the k-fold cross-validation may perform somewhat better
than the cross-validation estimate suggests. As the difference in size between the training
set used in each fold and the entire dataset is only a single pattern, leave-one-out cross-
validation (LOOCV) is nearly unbiased. The results are presented in Figure 14. However,
LOOCV has a high variance (so you would obtain very different estimates in repeated
tests). As the estimator error is a combination of bias and variance, whether LOOCV is
superior to 10-fold cross-validation depends on both quantities. This observation matches
well with other similar studies [98].

Figure 14. The cross-validation graph of accuracy distribution: 10-fold cross-validation vs. LOOCV.

A Bland–Altman analysis of agreement [95] was performed between the spatio-
temporal features. The results (see Figure 15 for the vertical line characterizing the posture,
and Figure 16 for the horizontal line characterizing the posture) show good agreement
between the spatiotemporal features of the gait for subjects calculated using RealSense and
IK analysis. The measure of validity is how close the results are to the truth on average
(i.e., the higher the percentage of error on average, the lower the validity). A 100% validity
would result in a mean difference of 0, resulting in a relative systematic error of 0.

Figure 15. Bland–Altman plot shows the agreement between spatiotemporal features (horizontal
deviation in the position of the vertical neck line betwen Heads and SpineBase joints) for subjects
calculated using RealSense and IK analysis. The reference line at the mean is represented by the red
solid line, and the top and lower limits of agreement are represented by the two black dashed lines.
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Figure 16. Bland–Altman plot shows the agreement between spatiotemporal features (vertical
deviation in the position of the horizontal shoulder line between ShoulderLeft and ShoulderRight
joints) for subjects calculated using RealSense and IK analysis. The reference line at the mean is
represented by the solid line, and the top and lower limits of agreement are represented by the two
black dashed lines.

The correlation between the changes in position between the video sequences of the
frames is represented in Figure 17. the presented graph confirms the validity of position
estimation using IK, while only for 7 frames out of 58, the correlation value was not
significant (p > 0.05).

Figure 17. Correlation between position changes.
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4.6. Robustness Evaluation and Crossvalidation on KIMORE Dataset

The robustness of our system was evaluated using the kinematic assessment of
movement and clinical scores for remote monitoring of physical rehabilitation (KIMORE)
dataset [99], which includes RGB depth videos, as well as skeleton joint position and
orientations, including specified characteristics, as well as physician assessment or score.
We used only RGB materials from the dataset to evaluate performance. No material from
this dataset was used to train our model. The KIMORE dataset includes a large diverse
population of 78 participants separated into two groups. Group I (n = 34) participants with
motor dysfunctions (back pain, after stroke, and Parkinson’s disease) and group II (n = 44)
healthy participants. Each participant completes five distinct workouts. We did not classify
per these three classes as the dataset was imbalanced in this regard, the main focus was to
check the accuracy of 3D recreation of each movements performed. The movements are
as follows:

1. Arms being lifted;
2. A lateral tilt of the trunk with arms extended;
3. Rotation of trunks;
4. Transverse plane pelvic rotations;
5. Kneeling.

The results are displayed in Table 5 and the plot of correctly and incorrectly performed
exercizes is displayed in Figure 18.

Table 5. The Pearson’s correlation, CCC and ICC (with respective confidence intervals), Bland-Altman
bias and LoA’s, percentage error (PE), and repeatability coefficients.

Exercise Correlation CCC (95% CI) ICC (95% CI) Bias (95% LoA) PE (%) Repeatability (%)

Arms being lifted 0.81 0.77 (0.56–0.89) 0.87 (0.72–0.94) −2.81 (−17.15–11.54) 23.98 13.08
Lateral tilt 0.94 0.88 (0.77–0.94) 0.93 (0.83–0.96) −0.91 (−3.79–1.97) 13.05 15.14
Rotation of trunks 0.85 0.80 (0.62–0.90) 0.89 (0.76–0.95) −2.24 (−13.16–8.68) 20.71 13.69
Pelvic rotations 0.84 0.80 (0.62–0.90) 0.89 (0.75–0.94) −2.32 (−13.69–9.06) 21.15 13.61
Kneeling 0.79 0.76 (0.54–0.88) 0.86 (0.71–0.94) −3.02 (−18.66–12.62) 25.22 12.84

Figure 18. Plot of correctly and incorrectly performed exercises.

We tested our final model with fixed-length input after training it with variable-
length data. We generate four fixed-length versions of identical test data (100, 200, 300,
and 400 frames) as suggested by [100]. These fixed-length versions depict rehabilitative
exercises done at various (slow/fast) speeds and repetition counts. As input, we extract the
latent feature representation for variable-length and fixed-length test data.
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To visualize multidimensional feature data, we use t-SNE [101]. t-SNE is a nonlinear
dimension reduction method that allows high-dimensional data to be visualized by assign-
ing each data point a location on a lower-dimensional projection. Each multidimensional
sample is modeled by the t-SNE so that similar samples are mapped to nearby points, and
dissimilar samples are mapped to distant points. The algorithm can capture the local struc-
ture of the dataset while revealing its global structure, such as any clusters. The 2D t-SNE
plot of numerous workouts from the KIMORE dataset is shown in Figure 19. Our model
gives equivalent feature representations for varying input durations, as can be shown.
Based on the results of our pilot study, which compared the movements of disabled and
healthy participants, it is clear that our model can successfully assess physical rehabilitation
exercises/movements regardless of participant anthropometric parameters, the presence of
imbalances or incorrect posture, compensatory mechanisms or slow motion. The model
accurately assesses deviations from the norm or accuracy of the movement regardless of
how many repetitions or how slowly the subjects performed the motion sequence.

Figure 19. t-SNE plot of 5 workouts (exercises) from the KIMORE dataset.

To evaluate the reliability of our model performing on the KIMORE dataset, we used a
five-fold cross-validation. Cross-validation is a statistical approach for evaluating machine
learning models with a prediction aim. A round of cross-validation divides the data into
complimentary subsets, with training on one set and validation testing on the other. To
decrease variability, we performed five-fold cross-validation (a larger number of folds was
not reasonable, considering the limited data in KIMORE).

4.7. Computation Performance

As the target solution does not require real-time performance, our solution does not
require a GPU and is instead CPU-based. The average processing time achieved was 0.494 s
per frame on a Linux Mint 20.2 computer with a Intel i5–10500 CPU and 16 GB DDR4
RAM, an improvement would be achieved by using hardware-accelerated computing. The
processing time per file breakdown can be seen in Figure 20.
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Figure 20. Processing time

4.8. User Experience Evaluation of a Tele-Rehabiliation Tool

The User Experience Questionnaire (UEQ), a validated subjective user experience
(UX) measuring instrument [102], was used to interview 8 physicians and 11 potential end
users (people doing exercises for our dataset, 11 responses were received from the original
group of 31 participants). UEQ assesses the appeal of a tool and includes goal-directed
characteristics (i.e., dependability, efficiency, perspicacity) and not goal-directed quality
(i.e., stimulation, novelty).

Responses are presented in Figure 21 and Table 6. The quality levels were the following:
exceptional (top 10%), good (10–25%), above average (25–50%), below average (50–75%),
and terrible (bottom 25%). The results discussed above indicate that our approach may be
able to satisfy the expectations of its intended user base. The survey participants noted the
dependability and novelty aspects.

Figure 21. The results of UEQ survey.

The majority of them were enthusiastic about the efficacy of the product and eager to
test it. Except for Question 9, which asks whether 3D body analysis was quick or sluggish
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to interact, all questions got a mean score of 5 or above, suggesting a somewhat favorable
experience (4 is neutral). The findings obtained for the subscales indicate a satisfactory
experience with the system. These reported results from the ongoing investigation may vary
when the project is completed. Following the end of the actual prototype development,
a full analysis of the various outcome measures and subjective input from the various
participants will be performed. The UEQ survey allowed us to get feedback on the practical
validity of such a system. Researchers delivered a brief demonstration of our technique at
the beginning of the investigation. Users were advised to spend some time at the start of a
session getting acquainted with the program environment.

Table 6. Summary of UEQ dimensions.

Dimension Mean Variance Rating

Attractiveness 1.3887 1.4490 Above average
Perspicuity 1.4581 1.4890 Above average
Efficiency 1.3602 1.2962 Above average
Dependability 1.6233 1.4434 Good
Stimulation 1.4736 1.2523 Above average
Novelty 1.5207 1.4131 Good

4.9. Comparison to Other Approaches

The best performing methods are summarized in Table 7, comparing methods with
90 % or higher precision on the MPII dataset [54]. Our approach managed to achieve an
mAP of 0.950 for the task of predicting the joint position of a single subject using the MPII
dataset as a benchmark. Therefore, the proposed method achieved state-of-the-art accuracy
when comparing the mAP with other existing state-of-the-art approaches. Additionally,
the proposed solution allows for a seamless evaluation of posture in a 3D environment,
allowing for the subjects performed to be evaluated from multiple angles from a single
filmed camera feed. Further incorporation of depth sensors or multiple camera perspectives
could even further improve the results when dealing with depth precision.

Table 7. Model performance using MPII dataset.

Model Feature Introduced Accuracy (%)

Regression-based approaches

Zhang et al. [103] distribution-aware coordinate representation
of joints

90.60

Luvison et al. [50] using soft-argmax operation 91.20

Detection-based approaches

Sun et al. [104] reducing variations of human poses statistically 91.00
Yang et al. [105] using pyramid residuals to enhance the invari-

ance in scales
92.00

Chen et al. [106] structure-aware convolutional network 92.10
Ke et al. [107] Deep conv-deconv hourglass model 92.10
Artacho et Savakis [108] LSTM architecture for pose estimation 92.70
Nie et al. [109] parsing induced learner to exploit parsing infor-

mation
92.40

Bulat et al. [110] gated skip connection combined with HourGlass
and U-Net

94.10

Our approach activity-independent architecture for anthropo-
metric regularity

95.0
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5. Discussion and Conclusions

Various home-based rehabilitation programs worldwide have been introduced to
increase participation rates, and evidence shows that they are often an effective alternative.
Unfortunately, there is no home or community rehabilitation system in Lithuania. Therefore,
no user-friendly environment and smart tools have been created to be used safely in the
framework of home rehabilitation. The idea of it is only gradually growing among scientists
and medical staff.

The creation of such a technological system which can enable patients after stroke or
trauma to independently undertake rehabilitation exercises at home is a very important part
of today’s health science and it is still a big challenge. The success and good results of the
home training system are determined by a system that is properly and comfortably adapted
to the patient: the prototype must be able to accurately detect movements when performing
prescribed exercises or activities. Such data allow further analysis of the user’s movements,
positions, incorrect posture, and training progress. Our presented system demonstrated a
very promising result, provides accurate measurements not only for these demonstrated
movements of posture, but also for complex evaluation of all body movements (upper and
lower limbs, incorrect posture, balance, and gait parameters); the complex movements
measurements are very accurate and correct, which potentially allows patients to perform
correctly selected movements as suggested by their physiotherapists. It is very important
that precalculated movement patterns are correlated and matched with patient movements.
Consequently, the system must estimate the perceived difficulty of complex movements
by the patient, so that automatic adjustments are made to ensure a highly engaging and
adaptive experience of serious movements.

Our newly developed system allows the user and rehabilitation specialist to receive
biofeedback. Outside of the hospital, a biofeedback-based solution has the potential to
provide feedback on exercise technique and track progress. This, in turn, can increase
rehabilitation participation and improve clinical outcomes. Biofeedback allows a patient
to receive real-time information about his body state to improve health or movement
performance, and it provides people with useful information to help them recreate a
sense of body position in space. The system can precisely assess movements of all body
segments or changes in posture regardless of user anthropometric differences, motions, and
mobility changes associated with dysfunction, movement repetitions, accuracy, and speed.
Furthermore, real-time visual and auditory biofeedback improved motor learning while
people performed specific motor tasks or exercises as instructed. Personalized cognitive
and movement therapy paired with lifestyle counseling can have a greater and longer
lasting impact than standard treatments, and biofeedback from movement sensors can
improve results.

The overall results illustrate the efficacy of predicting human kinematics using a fully
supervised learning technique in reconstructing human posture from unconstrained selfie
videos as an alternative to marker-based motion capture. Our solution is supported by a
Pareto-optimized inverse kinematics model, as well as dedicated joint detection models for
building skeleton components. As a result, like other markerless techniques, it is free of the
shortcomings of marker-based systems [111]. For example, our technique is not limited
to a costly laboratory setup with regulated lighting, reflectance, and other environmental
factors. The deep learning approach has achieved a near real-time performance of user
action tracking by first extracting the 33 key joint features required for pose estimation
and then evaluating the performed action; this approach allows for further evaluation
and reporting its error using the estimated joint metrics. Additionally, the extracted joints
are then passed to the IK prediction network where the predicted joint rotations can be
bound to a human skeleton for further visualization. Naturally, a number of other issues
exist that must be addressed in the near future, in order to further improve the robustness
of the suggested approach. For example, models may generate pose candidates with
symmetrical limbs or lose hands if they are concealed behind the back. Although the
model output might still provide a realistic 3D pose, it may not be appropriate for thorough
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medical assessment. Finally, occlusions and self-occlusions provide the greatest challenge
in pose estimation; however, they may be addressed in part by using a specialized model
or semantic segmentation and data restoration [112,113] or by using a partial UV map to
depict an object-occluded human shape [114].

One significant shortcoming of such evaluation systems is that they still need users
to conduct exercises while standing (or sitting) in front of a smartphone selfie camera.
Musculoskeletal sufferers may find it challenging to operate the equipment and do exercises
in such a restricted environment. In such circumstances, real patients’ compliance may
be low. The accuracy level of all marker-less human posture estimate systems, including
BIOMAC, is a crucial concern. A potential decline in accuracy is possible in uncontrolled
real-world home usage, which can be large due to the broad and vastly different expressions
of aberrant or impaired human motions recuperating from major health issues.

Furthermore, the system cannot forecast what will happen when the user’s hands are
behind his back or his torso is twisted at an angle that is not visible to the camera, and the
AI technique lacks data to adjust and recompensate within the recovered 3D model, for
example when measuring the angle of the knee joint, where a person may stand up with his
or her side towards the camera. The model would first calculate the coordinates of the hip,
knee, and ankle joints. These coordinates form a triangular construct, and after computing
the Euclidean distances between all coordinates, the rule of cosines is used to estimate all
corners. The accuracy with which such joint coordinates are computed is critical, since it
might affect the overall representation and analysis of rehabilitation performance.

In the near future, additional in-depth research into the movement and function of
more sophisticated joints, such as hips, wrists, and shoulders, will be required to increase
the accuracy of 3D posture estimate in this respect. There are also certain unresolved
issues and gaps between research and actual applications, such as the impact of body part
occlusion and congested backgrounds of several people. Future studies ought to look at
both global and local settings for more prejudicial human body characteristics, while also
including human body elements into the deep learning network for antecedent limitations.

Finally, there is the issue of data variety. It is possible to collect more data for certain
complicated circumstances, and there are various ways to enhance current datasets. While
there is an attribute divide between artificial data and real data, GANs may potentially
produce an infinite amount of data. Cross-dataset augmentation, particularly supplement-
ing 3D datasets with 2D datasets, has the potential to alleviate the problem of inadequate
diversity of training data and this is another aim on our investigation list.
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Abbreviations
The following abbreviations are used in this manuscript:

AI Artificial Intelligence
GPU Graphical Processing Unit
HOG Histogram of Oriented Gradient
HSV Hue, Saturation and Value
CNN convolutional neural network
RGBZ Red Green Blue Depth (Z buffer)
TOF time-of-fligh
DH Denavit-Hartenberg
DOF degrees of freedom
COCO Skeleton topology
ROI Region-of-Intere
IMU Inertial measurement unit
IK Inverse Kinematics
ROM Range of motion
MoVi Dataset MoVi
HTC VIVE Virtual reality equipment
OKS Object Keypoint Similarity
mAP Mean Average Precision
PCk Percentage of Correct Keypoints
MPJPE Mean Per Joint Position Error
ROME Range of Motion Error
SG Sprague and Geers’ metric
SD Standard Deviation
CPU Central Processing Unit
UEQ User Experience Questionnaire
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