KAUNAS UNIVERSITY OF TECHNOLOGY

KRISTINA BESPALOVA

AUTOMATED META-PROGRAM DEVELOPMENT AND
SPECIALIZATION USING FEATURE-BASED MODEL
TRANSFORMATIONS

Summary of Doctoral Dissertation

Physical Sciences, Informatics (09P)

2015, Kaunas

The dissertation was prepared at Kaunas University of Technology, Faculty of
Informatics, Department of Software Engineering during 2011-2015.

Scientific supervisor: Prof. Dr. Habil. Vytautas STUIKYS (Kaunas University
of Technology, Physical Sciences, Informatics — 09P).

Dissertation Defense Board of Informatics Science Field:

Prof. Dr. Habil. Rimantas BARAUSKAS (Kaunas University of Technology,
Physical Sciences, Informatics — 09P) — chairman;

Prof. Dr. Andrej BRODNIK (University of Ljubljana, Physical Science,
Informatics — 09P)

Prof. Dr. Valentina DAGIENE (Vilnius University, Technological Sciences,
Informatics Engineering — 07T);

Prof. Dr. Vacius JUSAS (Kaunas University of Technology, Physical Sciences,
Informatics — 09P);

Prof. Dr. Alfonsas MISEVICIUS (Kaunas University of Technology, Physical
Sciences, Informatics — 09P).

The official defence of the Dissertation will be held at the open meeting of the
Board of Informatics Science Field at 11 a. m. on December 14, 2015 in the
Dissertation Defence Hall of the Central Building of Kaunas University of
Technology.

Address: K. Donelai¢io g. 73-403, LT—44249, Kaunas, Lithuania.
Phone (370) 37 30 00 42, fax. (370) 37 32 41 44, e-mail doktorantura@ktu.lt

The send out date of the summary of the Dissertation is on 13 November 2015.

The Dissertation is available at http://ktu.edu/It and at the Library of Kaunas
University of Technology (K. Donelai¢io g. 20, Kaunas, Lithuania).

mailto:doktorantura@ktu.lt
http://ktu.edu/lt

KAUNO TECHNOLOGIJOS UNIVERSITETAS

KRISTINA BESPALOVA

AUTOMATIZUOTAS METAPROGRAMU KI:JRIMAS IR
SPECIALIZAVIMAS PANAUDOJANT POZYMIAIS
GRINDZIAMU MODELIU TRANSFORMACIJAS

Daktaro disertacijos santrauka

Fiziniai mokslai, Informatika (09P)

2015, Kaunas

Disertacija rengta 2011-2015 m. Kauno technologijos universiteto Informatikos
fakultete, Programy inzinerijos katedroje.

Mokslinis vadovas: Prof. habil. dr. Vytautas STUIKYS (Kauno technologijos
universitetas, fiziniai mokslai, informatika — 09P).

Informatikos mokslo krypties daktaro disertacijos gynimo taryba:

Prof. habil. dr. Rimantas BARAUSKAS (Kauno technologijos universitetas,
fiziniai mokslai, informatika — 09P) — pirmininkas;

Prof. dr. Andrej BRODNIK (Liublijanos universitetas, fiziniai mokslai,
informatika — 09P)

Prof. dr. Valentina DAGIENE (Vilniaus universitetas, technologijos mokslai,
informatikos inzinerija — 07T);

Prof. dr. Vacius JUSAS (Kauno technologijos universitetas, fiziniai mokslai,
informatika — 09P);

Prof. dr. Alfonsas MISEVICIUS (Kauno technologijos universitetas, fiziniai
mokslai, informatika — 09P).

Disertacija bus ginama vieSame Informatikos mokslo krypties tarybos posédyje,
kuris jvyks 2015 m. gruodzio 14 d. 11 val. Kauno technologijos universiteto
centriniy rimy disertacijy gynimo saléje.

Adresas: K. Donelai¢io g. 73-403, LT-44249, Kaunas, Lietuva.
Tel. (+370) 37 30 00 42, faksas (+370) 37 32 41 44, el. pastas
doktorantura@ktu.lt

Disertacijos santrauka i$siysta 2015 m. lapkricio 13 d.

Disertacija galima perzitréti interneto svetaingje http://ktu.edu/lt ir Kauno
technologijos universiteto bibliotekoje (K. Donelai¢io g. 20, Kaunas).

mailto:doktorantura@ktu.lt
http://ktu.edu/lt

1. INTRODUCTION
1.1. Relevance of the topic

Transformation of one form objects (process, energy products and etc.) to
another is an essential attribute of all technical systems. In informatics, this
attribute is even more important for the following reasons: (1) The
transformation objects are not physical objects, but their abstract representations
(data, applications and models); (2) there are many forms of representation; (3)
abstract representations enable the implementation of transformations much
easier; (4) transformation in informatics determines practically any kind of
computer system functionality.

The transformations within systems are used in different contexts and
cover a wide spectrum of processes, from the lowest level to the highest. The
lowest level is the traditional transformation: the processor, operating system. A
higher level transformation is a compilation, even higher — application design
transformation, and the highest — system-system transformation. In software
engineering and informatics, the main transformation is performed by programs
and models. The program transformation is used in a wide range of applications,
including compiler construction, optimization, program synthesis,
transformation, software renovation, and reverse engineering (Visser, 2001).

Research in the field of model and program transformation is very wide,
but all kinds of transformations seek the same goal — to increase productivity and
efficiency in system development. Therefore, the main goal of transformation is
automation.

Over the last decade, a striking leap in information technology advances
surpassed can be observed. For example, the base technological advancements
have all expectations. Today people are using new technology elsewhere. In
other words, we are living and working in the digital world, where changes are a
constant phenomenon. With the development of information technology (IT), the
following trend is evident: an extremely rapid growth of I1T-based systems and
the ever-increasing requirements imposed by market pressure. On the other hand,
the software content within the systems is growing too, even at a higher rate than
the systems do. It is especially true in the sectors of embedded systems and web
applications (e.g. the Internet of Things).

Rapid technological advances have a direct impact on program size,
quality and complexity. These attributes provide great challenges for the system
designers. The approved way to respond to the challenges is the use of
automated design methods, supported by transformation tools. The development
of contemporary systems is based on the reuse methodology. This methodology
is based on the concept of product lines (it can be seen as a meta-system) also
known as Product Line Engineering (PLE) (Pohl, Bockle and van der Linden,
2005). The latter covers the domain analysis, modelling (creation of models and
meta-models) and the development of generic (meta-) components and program

5

generators. The PLE methodology focuses on reuse and mainly operates with
feature-based models. The methodology is represented by two levels (domain
engineering and application engineering).It promotes the whole development
process, uses the high-level models, abstractions and transformations in order to
achieve a higher degree of reuse and automation. It was found in recent studies
(through analysis) that the model-based methodology is prevailing. However,
there are still many unresolved problems associated with analysis, variability
modelling (Capilla, Bosch and Kang, 2013), mapping, transformation and
realization (Biehl, 2010; Fioravanti et al. 2011; Volteret al., 2013; Zhang, 2014).
Therefore, this dissertation deals with specific tasks that so far have not
been explored sufficiently: feature model transformation into the heterogeneous
meta-program and the transformation of the meta-program itself, e.g. aiming at
its specialization and adaptation. The heterogeneous meta-program development
is a complex process that requires both a deep knowledge and tool support,
which is the main topic of the dissertation. By the heterogeneous meta-program
(further meta-program) throughout the dissertation it is meant the one, which is
described using two languages: meta-language and target language. The latter
specifies the base domain functionality. The first is used for generalization, i.e.
for expressing the domain variability through parameterization (Stuikys and
Damasevicius, 2013).
1.2. Research object

In this dissertation, the research object is the problem domain feature models,
meta-programs, their development and transformation processes and methods.

1.3. Research objective

The objective of the research is to create and explore the methodology for
the meta-program automated creation and transformation, including the tools that
support the processes.

1.4. Research tasks

1. Analysis and evaluation of the methodologies related to model and
program (meta-program) transformations.

2. Creation of a meta-program using the feature model transformation.

3. The initial meta-program automatic transformation (specialization) into
the multi-stage meta-program' aiming at its adaptation.

4. Development and research of the meta-program design processes,
transformation algorithms and corresponding tools.

1 . . - -

Multi-stage meta-program is a lower-level meta-program generator. It is designed so that to
enable the execution process in separate stages sequentially. A stage is defined by a subset of
the active parameters, while the remaining is being deactivated.

1.5. Statements presented for defence

5. Problem and solution domain feature-based models enable firstly to
systematize and then to create meta-programs semi-automatically.

6. Formal models of meta-program specialization and adaptation ensure the
functionality and correctness of the transformation tool.

7. The transformation tools developed ensure efficient meta-program
creation, transformation and support.

1.6. Scientific novelty

1. The proposed method for developing meta-programs is based on the
feature model transformations, thus enabling the automation of the process.

2. The established multi-stage transformation condition (i) for the existence
of solutions and (ii) for the permissible number of stages. Both enable the
generalisation of the two-stage meta-program transformation into the multi-stage
meta-program.

3. Proposed the complete meta-program design process, comprising: (i)
model and meta-program creation (using the design tool), (ii) their
transformations (using the refactoring tool), and (iii) customization and
generation / adaptation of a target program.

1.7. Practical relevance

1. Automated meta-program design (tool) was used for the educational robot
control program generation.

2. Automated multi-stage meta-program design (called refactoring tool) was
used for context-aware automatic adaptation of the meta-programs used in the
real teaching setting.

1.8. Approbation of the research results

The main results of the dissertation are represented in 8 scientific
publications: 2 in the periodical scientific journals (ISI Web of Science) and 6 in
international conference proceedings.

1.9. The structure and volume of the dissertation

The dissertation consists of an introduction, 6 main chapters and
conclusions. A list of author’s publications, a list of references and 4 appendixes
are also given. The total volume of the dissertation consists of 153 pages,
including 48 figures, 20 tables and 217 references.

2. MODELS AND PROGRAM TRANSFORMATION METHODS

Analysis and manipulation of a program source code are regarded as one
of the most important computing aspects (Harman, 2010). As the size and
complexity of software is continuously growing, the manual manipulation
becomes ever more infeasible. At present, however, there is an evident shift from
the program code transformation towards program model transformation.

In this dissertation, feature-based modelling has been adopted to build the
tool for the semi-automatic development of the meta-program. Meta-
programming is a higher-level programming paradigm that deals with the
methodology of manipulating programs as data (Stuikys and Damasevicius,
2013). The result of the manipulation is the lower-level program. The concept of
meta-programming has been introduced to support, to enhance and to enforce
reusability in the domain. With respect to reusability in mind, the transformation
processes should be handled and managed as effectively as possible. Here, for
this purpose, the reuse-based framework borrowed from the SWE domain has
been introduced and applied, which is known as design-for-reuse (DfR) and
design-with-reuse (DWR) (Sametinger, 1997). In Fig. 2.1, a research framework
that gives a general understanding of the proposed approach is presented.

DfR
Feature-based Domain xecutabl
knltzacvplzgge domain variability l\ﬁodels) pemflcatlon
modeling model transformation
Modeiling and FDs Mod_eis and
verification tools Design tool
tWR
ioliga. Executable Aadaptation Executable
Specializa specification M*SMKL pecmcatl Pl
tion of M MK oMY generatlon
M, specialization tool ~ M* M¥, meta-language M? Mor M*, meta-

processor language processor

—> —data; —> — tool support; -—=> — explanation; L— — process; C— — model; FD — feature
diagram; M — meta-program; k — the number of stages; Pl — target program instance(s);
DfR — Design-for-Reuse; DWR — Design-with-Reuse

Fig. 2.1 A general research framework

DfR includes the processes of domain modelling and the processes of
meta-program design. To model the domain (which is highly heterogeneous), the
system uses the expert’s knowledge, the known domain analysis methods
resulting in the creation of feature models to design a meta-program. The
designed meta-program, in fact, represents a family of target program instances
(similarly to program families in Product Line Engineering (Pohl et al., 2005).

DwR includes the processes of meta-program specialization for the
adaptation and generation of target program instances as the domain content is
derived automatically from the meta-program specification using the meta-
language processor. As a result, the user is able to create a multi-stage meta-
program that can be adapted to produce various variants of use on demand.

8

3. HETEROGENEOUS META-PROGRAM DEVELOPMENT USING
FEATUDE MODEL TRANSFORMATION

A meta-program is a program generator that generates other programs or
program parts. Meta-programming is writing of meta-programs. Heterogeneous
meta-programming is based on using at least two languages for the development
of a meta-program. The language at a lower-level of abstraction, called target
language, serves for expressing the concrete domain functionality. A target
program written in the target language is used as data to perform manipulations
at a higher-level of abstraction. The language at a higher-level of abstraction,
called meta-language, serves for expressing generalization of a target program
through the transformations according to the pre-scribed requirements for
change.

Meta-program creation is a complex task. Abstractly, building a meta-
program is a process of mapping of the given problem domain onto the solution
domain. Formally, it is expressed as:

SR = PD — SD, (3.1)

here, SR — solution result, PD — problem domain and SD — solution domain.

Hereby, the problem domain means a domain model that is to be
implemented using heterogeneous meta-programming. The solution domain
means meta-programming techniques and approaches. Each domain has to be
represented using the same formalism in order to make the model transformation
feasible. Therefore, both domains are represented by feature models. In Fig. 3.1,
the Y-chart shows a hierarchy of models for each domain.

Problem Domain (PD)

Domain context
model

Feature model of
domain variability

Solution Domain (SD)

Feature model of
meta-program

L Vertical
transformation

Mapping

Vertical A\
transformation

Transformation

Elements of domain Lles Elements of meta-
variability feature model program feature model

Computational model,
Design tool

Integration
Executable specification
(meta-program)

Fig. 3.1 Meta-program development framework

Judging meta-program development tasks, the problem domain and
solution domain models and their transformation are individually analysed first.
For both domains, the vertical transformation is applied, excluding elements of
the horizontal transformation, i.e. the essential features in the feature models.
Both domain models are therefore defined formally. The model formalisms
enable to derive the transformation rules that should describe how problem
domain elements are transformed into solution domain elements.

3.1. Fundamentals of feature models

A feature diagram is a graphical notation for feature models, represented
as a tree-like or directed acyclic graph (Stuikys and DamasSevi¢ius, 2013).
Feature diagrams as a domain model enable the structural, functional and
behavioural variability to be expressed in a unified way using feature types and
relationships.

Definition 3.1. Variant point is the parent feature whose child is grouped
alternative or optional features.

Definition 3.2. Variant is the value of the variant point.

Definition 3.3. Base domain feature model is the compound:
FM =(G, Ejpand: Gxor Gor» REQ, EX), where G =(F,E,r) is a rooted tree, F is a
finite set of features, E — F x F is a finite set of edges, r € F is the root feature;
Emang < E is a set of edges that define mandatory features with their parents;
G,or € P(F)xF, G,, < P(F)xF, define alternative and optional feature groups

and are sets of pairs of child features together with their common parent feature;
REQ and EX are finite sets of constraints requires and excludes (adopted from
(Acher et al., 2013)).

Definition 3.4. Problem domain feature model is a high granularity model
that features detail the domain to the level of its elements.

Definition 3.5. Context feature model is the model of fuzzy variables that
are treated as features taken from the set {HP, IP, LP} along with adequate
constraints of the type requires, where: HP — High Priority, IP — Intermediate
Priority, LP — Low Priority.

Note that priorities are defined in the analysis phase by a domain expert. In
fact, fuzzy variables are parameter weights that are helpful to sequencing
parameters in constructing the MP interface.

Definition 3.5. Extended domain feature model is the aggregation of the
base feature and priority models. Formally, it is expressed as:

here FMp — extended domain feature model, FM, — problem domain feature
model, FM — context feature model; & — aggregation operator.

10

3.2. Fundamentals of meta-programs

The heterogeneous meta-program is the higher-level executable
specification, which is coded using at least two languages (meta- and target) to
specify and generate a set of the target program instances.

Definition 3.6. Meta-program model z(M)is the structure:
uM)=pM)HU(Mg), where u(M,) — meta-interface model and x(Mg) -
meta-body model (Fig. 3.2).

Meta-interface of Meta-program:
Metadata supplied to meta-body to initiate the functioning of meta-program

Meta-body of Meta-program:
Describing the implementation of Meta-program functionality; structurally,
Meta-program specifies a set of target program instances

Fig. 3.2 Structural model of Meta-program

Definition 3.7. In terms of the set-based notion, interface model (M) is
the n-dimensional non-empty space of parameters and their values defined as:
(M) ={P;V}, where P — the full set of n parameter names, i.e. n=|/P|, V -
the ordered set of all parameter values.

As each parameter P;(P € P)has its own set of values as follows:

{vil,viz,...,viq}cV.Thus, we can write: B =V, :{vil,viz,...,viq}ev, iq— the
number of values of a parameter P, . The symbol “-” means ‘is defined’.
Definition 3.8. Two parameters P, and P; (B, P; = P(i # j)) are said to be

dependent upon the choice of their values if a pair of values exists(v; ,v;)

(vi, eR,v; eP;, whered e[Lij]Jand te[l, j,I; d, m — the number of values
adequately) such that the following condition holds:

(v;, requires v;) or (v; excludes v;) = true. (3.3)

Definition 3.9. Two parameters B, and P; (R, P; = P(i =])) are said to be

independent upon the choice of their values (otherwise not interacting) if a pair
of values exists (v; ,v;j) (vi, €R,v; €P;, where d €[Lij]and te[l, j,I; g m

— the number of values adequately) such that the following condition holds:
(v;, requires v;) or (v; excludes v;) = false. (3.4)

Definition 3.10. The graph G(P",U) is the interface model of the context-
aware meta-program, where w is the weight of a parameter to model the context
of the parameter use. This model is also the parameter interaction model.

11

Definition 3.11. The graphH((V;,V;),E)is the parameter values

interaction graph.
Definition 3.12. The meta-body model is an ordered set of functions:
u(Mg) ={f,(a;)}, where f, —are constructs or functions of the meta-language

and a — is the argument of a function.
In Fig. 3.3, is the feature model related to the solution domain.

Meta-Body

ML TL
constructs| |constructs

11 11 [1*1 1,]

Fig. 3.3 Solution domain feature models

3.3. Transformation rules

Rule 3.1. Variant point in the FMp corresponds (is equal) to a parameter
name in the FMs.

Rule 3.2. Variants of a variant point within the FMp correspond (is equal)
to parameter values in the FMs.

Rule 3.3. The format of a simple assignment statement within the interface
is as follows: <parameter>=<parameter_value_set>.

Rule 3.4. The format of a conditional assignment statement within the
interface is as follows: <parameterl><condition><parameter2><parameterl> =
<parameter_value_set>; the conditional assignment statement appears if and
only if the adequate variant point has constraints requires or excludes.

Rule 3.5. The number of parameters extracted from the model FMs is
equal to the number of variation points extracted from the FMp to be transferred
to the engine to form the interface according to Rule 3.3 or Rule 3.4.

Rule 3.6. Abstract State Machine (ASM) engine orders parameters
(identified by Rules 3.1, 3.2 and 3.5) according to their priorities (note that the
priority feature is represented as a parameter weight, but not as the parameter
itself, see Rule 3.1).

Rule 3.7. ASM engine presents the values of the priority parameters as a
comment (/*...*/) before each simple assignment statement.

Rule 3.8. ASM engine builds the meta-program interface according to
Rules 3.1 - 3.7.

12

Rule 3.9. To form the meta-body, the following set of functions of the
meta-language is used: {Operation (assignment (‘="), OPEN-WRITE-CLOSE),
conditional, loops}.

Rule 3.10. Target language generic instance (TLGIp, if any) should always
be written by the designer with the clear specification of the location where
parameters have to appear.

Rule 3.11. In the case of TLGIp presence, the ASM engine performs
parsing, i.e. syntactic analysis of the item and builds the meta-body
automatically.

Rule 3.12. If there is no TLGIlp, ASM provides the meta-body template for
its filling in by the user.

4. META-PROGRAMS SPECIALIZATION AND CONTEXTUAL
ADAPTATION

Program specialization (or partial evaluation) is the technique that makes it
possible to automatically transform a program into a specialized version,
according to the context of use (Le Meur, Lawall and Consel, 2002).

Program specialization also relates to stage programming (Inoue, Taha,
2012) and meta-programming, especially in logic programming research.
Shortly, it can be summarized as multi-stage programming, i.e. the development
of programs in several different stages.

Futamura (1999), for example, formulates specialization task as a
transformation process r as follows:

7(C1, Coree €y s Tpree) = (7, €1, Co oo € (I Do) (421)
The left side of Eq. (4.1) presents the state of a program to be evaluated
before specialization. Here the values(c;,Cy,....Cp, 1, F,....l,)Of variables

(c1,Cy,... Ly Hy b,y 1) OF the program are split into two subsets: the constants

as compile time values and variables as run time values. The right side of the
equation specifies the state of the program after specialization using the

“specialization algorithm ¢, which evaluates (c;,C,,....C,,) in the first stage and

then evaluates (r;,1,,...,r,) in the second stage, though the stages are not defined
explicitly. In fact, the specializer is a meta-program because it generates through
the process rthe other, i.e. a specialized program.

Now are able to formulate the meta-program specialization problem
similarly. Let be given a set of parameters P ={(p;,--,Pm)s (Pms1s---:Pn)} Of @
meta-program, where the space P is decomposed into two subsets under the
following constraint (the subsets are not intersecting). Similarly to (4.1), it is
possible to formulate the problem as the two-stage specialization task as follows:

(PLy-+1Pms Pmsts--1Pn) = (7, Prr-+sPm) Prats-- Pr) 4.2)
13

here, parameters(py,...,p,,) are evaluated in stage 2, thus being treated as
constants, while the remaining parameters (p,,,;,..-,p,) at this stage are treated
as variables. To be evaluated in stage 2, parameters (p,,...,p,,) have to be active

(meaning their usual role in the meta-program), while the remaining parameters
have to be passive (meaning not being evaluated).
It is the role of a specializer (formally denoted as «), among others, to

pre-program the change of states so that parameters(p,,s,...,p,) would be
passive at stage 2 (which describes evaluation of (py,...,p,,)only) and they
would be active at stage 1 (which describes evaluation of (Py,q,---:Pn)) -

The equation (4.2) can be generalized by introducing the concept of multi-
stage (e.g. k-stage) specialization. Therefore, it could be thought of in terms of
recursion, i.e. to apply “specialization” by partitioning the remaining parameters
(Pma1s---Py) In two subsets (under the stated constraints) again and again until
some of the remaining parameters will be evaluated (k -1) times. Consequently,
the following can be written:

Z(PLy-1Pms Prsts--1Pn) = (7, PrreesPm)(Pmats--Pr)
a(r, pm+l"-!pi)(pi+l"-!pn)
e 07, Pigay s P(Pjsae-sPn) - (4.3)

Egs. (4.2 and 4.3), in fact, describe the specialization not a meta-program
itself but its model expressed as a parameter set. With respect to specialization
through staging, however, the parameters of different type should be evaluated
differently.

4.1. Fundamentals of multi-stage meta-programs

The multi-stage meta-program means constructing a meta-generator that
generates the lower-level meta-programs. Here, the stage refers to as an
abstraction to re-arrange the structure of a meta-program so to enable its
specialization.

Definition 4.1. Formally, the multi-stage meta-program’s structural model

yk is a composition of the meta-interface model y(M,k)and the meta-body

model (M §) (Fig. 4.1), which consists of a lower-level meta-interface models
and meta-body models. Formally, it is expressed as:

H(Mg) = u(M) + (.t (M + (M) (4.4)

here k - number of the meta-program stages.

To specify the functional model in designing meta-meta-programs, it is
needed to introduce some technological terms such as deactivating label,
deactivating index, active / passive meta-construct.

14

Definition 4.2. Meta-construct is a meta-parameter or meta-function of a
meta-language within the meta-body.

Definition 4.3. The label '\' or \\\ sequence ... is called deactivation label.

Definition 4.4. Meta-construct is active if it does not have a deactivation
label, i.e. perform their defined function.

Definition 4.5. Meta-construct is passive if it contains the deactivating
label (labels) written before the meta-construct, and do not perform their defined
functions and therefore regarded as a target language text.

Meta-interface of k-stage meta-program

Meta-body of 2-stage meta-program

Meta-interface of 1-stage meta-program

Meta-body of 1-stage meta-program

Fig.4.1 Structural model of k-stage meta-program

Definition 4.6. Deactivating index is the adequate number of deactivating
labels written before a meta-construct. Formally, it is expressed as:

k-2
DI = 0 for stage k; DI = 1 for stage (k-1), etc. DI = Y 2%, (4.5)
a=0

here DI-deactivating index.

Definition 4.7. Deactivating process is the multi-stage process (in terms
of k-stage processing) to reducing the deactivating index by 1, or changing the
state of a meta-function from the passive state to the active state.

Definition 4.8. Transformations (M ——>M¥) (1<k <k,) exist iff the
dependency graph G(P,U) of meta-program is disconnected.

Property 4.1. The upper bound of the eligible number of stagesk,,, to

perform specialization of the given correct meta-program specification into its k-
stage format is defined by inequality:

Kiex <0, (4.6)
here g — the number of connected sub-graphs including the null graphs.

15

Definition 4.8. Context-based specialization is the process governed by
the contextual information to define which stage is to be selected and to specify
the parameter permutation to stages using the prescribed transformation rules

4.2. Rules to perform specialization transformation
Rule 4.1. The parameters and their context information are extracted from
the context-aware interface model G(P",U), we{HP, IP, LP}. The information

is to be represented in a separate file.

Rule 4.2. Meta-parameter and contextual information data file must be
created with appropriate structures.

Rule 4.3. The check expression defined in clause (4.6). If k < g, then the

transformation may occur, otherwise it is impossible to transform.

Rule 4.4. Dependent meta-parameter must always be assigned the same
stage.

Rule 4.5. A stage is not empty, i.e. it has at least one parameter group or a
separate parameter.

Rule 4.6. The group of parameters with the highest priority (HP) should
appear at the higher stages.

Rule 4.7. The group of parameters with the intermediate priority (IP) or
with the lower priority (LP) should appear at the lower stages.

Rule 4.8. The number of stages and the parameters’ group allocation to
stages are performed automatically according to the context information (i.e.
according to the parameter priorities).

Rule 4.9. The number of stages and the allocation of the parameters to
stages can also be performed by the user.

Rule 4.10. Rule 4.8 and Rule 4.9 are mutually exclusive

Rule 4.11. When the parameter allocating process runs at stage i, all
parameters are to be deactivated by the deactivating index at stages (i-1) ... 1.

Rule 4.12. Each deactivated parameter requires the deactivating of the
meta-function (within the meta-body) with the same deactivating index, in which
this parameter appears.

4.3. Meta-program adaptation

The aim of this transformation is to make possible the pre-programmed
user-guided adaptation of meta-programs when used. The specialization process
results in creating the multi-stage executable specification that is coded as the k-
stage heterogeneous meta-program. Specialization of meta-program by staging
enables to automatically prepare the content for the different contexts of use.

Content adaptation is the user-guided process that includes user’s actions
and automatic processing by the tool. The user views the given interface of meta-
program so that to recognize and supply his / her context parameter values. Then
the automatic processing follows; yielding more specialized variants to support
the needs for adaptation (Fig.4.2).

16

User action Phases Results Parameter space
(parameter

value selection) %

at stage k ‘ P, %LOA«D =\ Kl Legend:
W S - Specialized
A - Adapted
[- Process
at stage 2 ‘ Pe1) GLOA(lD <=\ = oat
— - Input/output
at stage 1 ‘ Pk }%C LOA) < - Compliance

Fig. 4.2 Stage-based adaptation processes

5. TRANSFORMATION TOOLS: CREATION AND EVALUATION
5.1. Meta-program development tool ,,MePAG*

The tool ,,MePAG*“ (Meta-Program Automatic Generator) supports the
transformation M2MP (meaning model-to-meta-program, i.e. transformation
lowering of the abstraction level). The transformation process is semi-formal
because not all input data used it is difficult, or even impossible, to present
formally. The reason is that the heterogeneous meta-program generation
paradigm used, in which the meta-language and the target language, are both
abstract (not formal). Furthermore, not always is possible to synthesize a meta-
program fully automatically.

A standard meta-language processor (e.g. PHP-processor in our case,
though other languages such as C++, Java) can be used in the role of a meta-
language serves as a generating tool to provide the experimental validation of a
synthesized meta-program. This process may be multi-cycle with feedback
possible. This may happen due to some semantic or syntactic inconsistency
introduced by the designer when such an interleaving is needed.

The technique enables the development of a higher-level executable
specification (i.e. meta-program) from which target program instances are
generated on demand automatically, at the use phase.

The tool ,,MePAG* that supports the approach enables it to synthesize
heterogeneous meta-programs from two input feature models and supplementary
data, such as constructs of the meta-language and target language (in generic
instance model TLGI). One feature model, namely FMp, and TLGIp represent the
problem domain; whereas the other feature model, namely FMs, and meta-
languagefunctions MLFs (see Fig. 5.1) represent the solution domain.

Two additional properties of the input models are important to state: 1) it
is possible to create TLGIp easily (for not complex tasks), 2) there are difficulties

17

in creating TLGIp for real world tasks when the efforts of developing the model
TLGIp are roughly the same as manual coding of the meta-program meta-body.

Typically, the first case means that it is able to develop the relatively
simple meta-programs automatically. The second case is more general and
specifies the real-world tasks for which we are not always able to develop meta-
programs automatically, or such a mode is merely unreasonable due to the
complexity issues as defined previously.

There is some difference among the models FMp and FMs in terms of their
mode of use. The first model is created anew for each new problem task to be
solved; whereas the second model is common for all domain tasks considered in
the given context. Therefore, due to this property, it is able to represent the
model FMs within the transformation engine as a fixed data structure while the
model FM; should be always be supplied to the engine as the external input
model (Fig. 5.1).

Transformation

MePAG
FMp Generation
(Tion) AsMengine | [(M1
a)
Desi, K
Transformation ?C’tg}(')’ﬁg y
MePAG f”TfilT"
emplate
FMe } fiIIan } Generation
- ! I
FMs | !
Dataon ML Task data (TL) b)

(D —model; [__] - process; FM — feature model; P- problem domain; S —solution domain;

TLGI - Target-language generic instance; IMC — intermediate code; ASM — Abstract State Machine;
ATR — ASM-based transformation rules; MLF — meta-language function; M — meta-program;

ML — meta-language; TL — target-language; Pl — target program instance(s).

Fig. 5.1 ,,MePAG* tool working modes: a) automatic, b) semi-automatic

5.2. Functioning algorithm of the tool ,,MePAG*

Step 1. if <IMCy exists> then Read data; /* Rule 3.5; value of n (n> 1) is defined */

Step 2. if n >1 then Sort parameters according to their priorities; /*Rule 3.6 */

Step 3. Create the MP file /*MP.php*/ to store MP’s statements;

Step 4. Write a comment to denote the beginning of the interface; /* for template filling
in*/

Step 5. fori=1tondo

18

Read data for the parameter i; /*Rule 3.1 & Rule 3.2*/
if <parameter independence exists> then Create the
parameter value selection form; /* Rule 3.3 & Rule 3.7*/
else Create the parameter value selection form with
the conditional branching; /* Rule 3.4 & Rule 3.7*/
end;
Step 6. Create a comment to denote the beginning of the meta-body; /* for template filling
in*/
Step 7. if <TLGIp not exists> then do Create comments for the user; Create the MP
completion statements; end do; /*Rule 3.12 */
else do Read the TLGI and make the parser’s initialization; /*Rule 3.10; value of
m (m >1) is defined */
fori=1tomdo
Perform parsing the line i within TLGIp;
Find the parameter locations in the line and create parameter
variables; /*Rule 3.11*/
Create the meta-body line; /*Rule 3.9*/
end;
Create the MP completion statements;
end do;
Step 8. end.

5.3. Meta-program specialization tool ,,MP-ReTool*

On the basis of the specialization process and the theoretical background,
an experimental tool ,,MP-ReTool* (Fig. 5.2) has been developed that transforms
a meta-program into its k-stage representation as follows: 1—+2, 1—»3, 1—»4 and
1—-5. Here, the numbers define stages. The tool enables the saving of a great
deal of the user’s efforts and resources because: 1) the manual process is error-
prone and time-consuming and 2) the direct manual refactoring (e.g. 1—4) is
practically unachievable due to readability issues.

MP-ReTool

M —

Parameter allocation to stages M

S refactoring | M¥

b

M — meta-program; IMCp — problem domain feature model intermediate code;
k — the number of meta-program stages

IMCp —

Fig. 5.2 Structure of ,,MP-ReTool*

The tool implements the user-tool communication model to solve the
specialization problem. There are two modes of using the tool. In mode 1, the
user (typically teacher) indicates (through the communication model) how the

19

meta-parameters are to be allocated to stages. In mode 2, the tool works fully
automatically. In this case, however, parameters are to be supplied with non-
redundant weights introduced by the meta-program designer when the
specification is coded.

5.4. Algorithm to perform refactoring transformation

Step 1. Choose the operating mode; /* mode 1 or mode 2*/
Step 2. Read the (meta-)interface model; /* Rule 4.1, Rule 4.2; the model is created by
 MePAG“*/
Step 3. Read the meta-body;
Step 4. if <mode 1> then do Initiate parameters’ assignments to stages; /*Rule 4.8 */
if n >1 then Sort parameters according to their priorities; /*n — the number of
parameters*/
Identify the number of required stages; /*according to the priority values
from the set: {HP; IP (L1); IP (L2); IP (L3); LP (L4, L5, L6)} */
Allocate parameters to stages; /* according to the parameter priority values;
Rule 4.4 - 4.7*/
if <there is no refactoring feasibility> then Print error message ‘correct the
model, i.e. change the priority values and start from the beginning’
end;
Step 5. if <mode 2> then do Initiate parameters’ assignments to stages; /*Rule 4.9 */
Choose the number k; /* k is # of required stages */
if k >g then Print message ‘refactoring impossible: reduce k ’;
/* Rule 4.3; g — the maximum number of stages*/
if n >1 then Sort parameters according to their priorities;
Allocate parameters to stages; */ according the user's choice; the priority
values from the set: {HP; HP or IP; IP; IP or LP; LP}; Rules 4.4 - 4.7 */
if <allocation is incorrect> then Print error message: allocate parameters
anew;
end;
Step 6. Perform the meta-interface refactoring as follows;
fori=1tondo
Read data of the parameter i;
Fix the parameter to the given stage (which will be used);
if <parameter i is independent > then Create the simple interface form for
this stage; /* the parameter i deactivation; Rule 4.11 */
else Create the branching interface form for this stage; /* the parameter i
deactivation; Rule 4.11 */
end;
Step 7. Perform the meta-body refactoring as follows;
for j =1 to m do (m — the number of meta-body code lines)
Perform parsing of the meta-body line j;
if <any parameter in the line j exists> then
Fix the parameter stage from the staged interface; /* it has already been
formed at Step 6 */
if <the parameter stage is less (<) than k> then
Deactivate the parameter and its all functions; /* Rule 4.12*/

20

else Rewrite the line j without changes;
else; Rewrite the line j without changes;
end;
Step 8. end.

6. EXPERIMENTAL EVALUATION

This section presents a methodology of the experiments and results
obtained applying the manual development and using the developed tool.
Experiments were carried out with real tasks to investigate both the meta-
programs and the tool. The experience of the author (authors) was about 5 years
in robot-based programming and meta-programming. Table 6.1 presents the

comparison of meta-program design modes.

Table 6.1. Attribute-based comparison of meta-program design modes

M design
mode Manual 1 Manual 2 Semi-automatic Automatic
Attributes
Input data TL,ML,R,C TL,ML,R,C | TL,ML,R,C TL,ML,R,C
Input data Explicit by Explicit by Explicit by FMs Explicit by
representation example scenario EFMs
Models Ad hoc based on | Systemized Systemized based Systemized based
constructing intuition & based on on models and on extended
Designer’s models and Tool (Me-PAG) models and Tool
knowledge manual (Me-PAG)
design rules
Models input Implicitin Explicit DfR and DWR The same as
data designer’s mind | problem framework, previous plus
domain FM Learning Solution domain
variability FMs, models, CBFM
CBFM
Transformation | Intuitive rules Explicitrules, | Tool supported Tool supported
rules based on explicit basic set of extended set of
designers context transformation model
competence, rules, context FM transformation
implicit context Rules, context FM
Transformation | No Week human ASM-based ASM-based
engine computational —oriented computational computational
model computational | model comprising | model comprising
model the interface the interface and
design only meta-body design

Legend: M — meta-program; TL- target language; ML— meta-language, Rs — requirements, Cs —
constraints; FM — feature model; CBFM — context-based feature model; ASM- abstract state machine

The aim was twofold: to test correctness of meta-programs and to test the
correct functionality of the tool ,,MePAG* through the solving of real world
tasks.

Teaching and learning in CS basic courses were selected as a problem
domain, using meta-programs as higher-level Learning Objects to generate the

21

Learning Objects instances on demand. To support advanced learning in CS,
LEGO NXT-based and ARDUINO-based educational environments were used.
The task specification (i.e. feature models) was developed by the domain experts.

In Fig. 6.1, the needed efforts to design meta-programs of three modes
(manual design, semi-automatic and automatic design) for the same version for
all selected tasks are presented. The average efforts expressed by the time
dimension are provided.

min.

Robot Calibration
Line Follower
Ornaments design
Obstacle

Color recognition
Help system
Scrolling text on

LCD

Light follower
Traffic light

B Manual design B Semi-automatic design O Automatic design

Fig. 6.1 The needed efforts to design meta-programs three modes

The obtained comparative evaluation of manual design with semi-
automatic design and manual design with automatic design are at Fig 6.2. The
semi-automatic development of SLOs is more efficient by 30 — 46 % as
compared to the pure manual development. The automatic development is more
efficient by 33 — 54 % as compared to the automatic development. The automatic
mode gains compared with the semi-automatic mode is evaluated by 6 — 13 %.

Obstacle
Help system
Light follower
Traffic light

=
[
E
2
K=}
L
9]
=
-

Robot Calibration

Ornaments design

Color recognition

Scrolling text on
LCD

B Manual design and semi-automatic design & Manual design and automatic design 4 Amelioration

Fig. 6.2 Comparative evaluation of design modes

22

CONCLUSIONS

1. Analysis of the related work has shown that:

— It was identified that the essential requirement to deal with the problem
domain tasks in designing systems is the identification and specification
of commonality-variability relationships in representing models for
transformation.

— As meta-programming enables the achievement of a high-level
automation in creating programs (meta-program is a program
generator), the following problems (meta-programs creation through
model-based transformations and meta-program specialization through
adaptation-based transformation) stand for research tasks of the
dissertation.

2. The task of creating heterogeneous meta-programs has been formulated as
the multistage transformation of two model types. The first model
represents the problem domain, whereas the second represents the solution
domain, i.e. meta-programming. For each domain, the created feature
models and the following theoretical result has been achieved: the formal
description of the models with the identified properties and relationships.
The latter enables to formulate the transformation rules to create the
adequate algorithms and tools.

3. The meta-program specialization task has been formulated on the basis of
the Futumura program specialization task. Furthermore, by applying the
ideas of multistage programming, it was possible to formulate the meta-
program specialization task for the general case, i.e. as a multi-stage
transformation task. This generalization is treated as a new scientific result,
because so far there has only been known the two-stage meta-program
transformation task.

4. The essential theoretical result of the multistage meta-program
transformation (specialization) task is formulated as follows:

— The task solvability condition is: the solution exists if and only if the

weighted graph G(P",U), representing the meta-interface of the original

meta-program, is a disconnected graph (here P — set of meta-parameters,
U — set of edges that represents the interaction among meta-parameters,
w — a variable of fuzzy logic describing the meta-parameter context of
use).

— It was identified that the maximum number of stages is equal to the total

number of the components of the graph G(P",U).

— To solve the problem, the principle of deactivation-activation of meta-
constructs and identification of the value of the deactivating index (DI)
were applied:

23

For the stage k, DI =0, for the stage (k-1), DI =1, and for the remaining
k-2

stages DI = 3 22,
a=0

The suggested, tested and applied tools (,,FAMILIAR* and ,,SPLOT* —
have been selected, ,MePAG*“ and ,MP-ReTool“ have been created)
support the complete meta-program life cycle: modeling, model
transformation into meta-program, meta-program transformation,
generation and maintenance.

It was identified that using the tool ,MePAG* obtained an efficiency
increase in creating meta-programs by 34 % on average as compared to the
manual process.

The conducted experiments with the meta-program transformations into the
multistage representation have proved the hypothesis that the meta-program
specialization changes only its structure, preserving its initial functionality.
The tool ,,MP-ReTool“ is for automatic transformation of one-stage meta-
program into the multistage one. Such a kind of transformation enables to
automatically create the meta-programming-based meta-generators and
investigate meta-program adaptation problems for the use context.

The investigation on the complexity evaluation and complexity changes as
related to the introduced methods using the known complexity measures
has been provided. It was identified that with the increase of stages —
complexity is increasing too (Cognitive Difficulty in higher stage increases
more than 50 %); however, the understandability is diminishing
significantly and the only way to deal with the problem is the use of the
developed tool. Also some difficulties of the investigated approach (e.g.,
the initial model discovery, etc.) have been identified for the future work.

REFERENCES

24

1.

ACHER, M., COLLET, P., LAHIRE, P. and FRANCE, R. B. (2013).
Familiar: A domain-specific language for large scale management of
feature models. Science of Computer Programming, 78.6: 657-681.
BIEHL, M. (2010). Literature study on model transformations. Royal
Institute of Technology, Tech. Rep. ISRN/KTH/MMK.

CAPILLA, R., BOSCH, J., KANG, K. C. (2013). Systems and Software
Variability Management. Springer.

FIORAVANTI, F., PETTOROSSI, A., PROIETTI, M. and SENNI, V.
(2011). Program transformation for development, verification, and
synthesis of programs. Intelligenza Artificiale, 5.1: 119-125.
FUTAMURA, Y. (1999) Partial evaluation of computation process--an
approach to a compiler-compiler. Higher-Order and Symbolic
Computation, 12.4: 381-391.

6. HARMAN, M. (2010). Why Source Code Analysis and Manipulation
Will Always be Important. In: Source Code Analysis and Manipulation,
SCAM. p. 7-19.

7. INOUE, J., TAHA, W. (2012). Reasoning about multi-stage programs. In:
Programming Languages and Systems. Springer Berlin Heidelberg, p.
357-376.

8. LE MEUR, A. F., LAWALL, J. L., CONSEL, C. (2002).Towards
bridging the gap between programming languages and partial evaluation.
In: ACM SIGPLAN Notices. ACM, p. 9-18.

9. POHL, K., BOCKLE, G., VAN DER LINDEN, F. J. (2005). Software
product line engineering: foundations, principles and techniques.
Springer Science & Business Media.

10. SAMETINGER, J. (1997). Software engineering with reusable
components. Springer Science & Business Media.

11. STUIKYS, V., DAMASEVICIUS, R. (2013). Meta-Programming and
Model-Driven Meta-Program Development: Principles, Processes and
Techniques. Springer Science & Business Media.

12. VISSER, E. (2001). A survey of rewriting strategies in program
transformation systems. Electronic Notes in Theoretical Computer
Science, 57: 109-143.

13. VOLTER, M., STAHL, T., BETTIN, J., HAASE, A. and HELSEN, S.
(2013). Model-driven software development: technology, engineering,
management. John Wiley & Sons.

14. ZHANG, X. (2014). Developing Model-Driven Software Product Lines.
PhD. University of Oslo.

LIST OF PUBLICATIONS ON THE SUBJECT OF DISSERTATION

Publications in journals included into the Institute for Scientific Information
(IS1) database

1. Stuikys, V., Bespalova, K., & Burbaité, R. (2014). Refactoring of
Heterogeneous Meta-Program into k-stage Meta-Program.Information
Technology and Control. ISSN 1392-124X. 43(1), p. 14-27. [ISI Web of
Science; INSPEC].

2. Burbaité, R., Bespalova, K., Damasevi¢ius, R., & Stuikys, V. (2014)
(n.d.). Context-Aware Generative Learning Objects for Teaching Computer
Science. Accepted tolnternational Journal of Engineering Education. 30(4), p.
929-936. [ISI Web of Science; Scopus].

Articles referred in other international databases

1. Burbaite, R., Damasevicius, R., Stuikys, V., Bespalova, K., &
Paskevicius, P. (2011). Product variation sequence modelling using feature
diagrams and modal logic. CINTI 2011: 12th IEEE International Symposium on

25

Computational Intelligence and Informatics, November 21-22, 2011, Budapest,
Hungary: proceedings. Budapest: IEEE, 2011. ISBN 9781457700439. p. 73-77.
[IEEE/IEE].

2. Stuikys, V., & Bespalova, K. (2012). Methodology and Experiments to
Transform Heterogeneous Meta-program into Meta-meta-programs. Information
and software technologies: 18th International Conference, ICIST 2012, Kaunas,
Lithuania, September 13-14, 2012: proceedings / [edited by] Tomas Skersys,
Rimantas Butleris, Rita Butkiene. Berlin, Heidelberg: Springer, ISBN
9783642333071. p. 210-225. [Conference Proceedings Citation Index]

3. Stuikys, V., Bespalova, K., & Burbaité, R. (2014). Generative Learning
Object (GLO) Specialization: Teacher’s and Learner’s View. Information and
software technologies: 20th International Conference, ICIST 2014, Druskininkai,
Lithuania, October 9-10, 2014: proceedings / [edited by] Giedré Drégvaité,
Robertas damaSevicius, Springer International Publishing, 2014. ISBN
9783319119571. p. 291-301. [Conference Proceedings Citation Index]

4. Burbaité, R. & Bespalova, K.(2014). Model-Driven Processes and Tools
to Design GLO for CS Education. SIIE 2014: XVI International Symposium on
Computers in Education, November 12-14, 2014, Logrono, La Rioja, Spain:
proceedings. Logrono: IEEE, 2014. p. 193-199. [IEEE/IEE]

5. Stuikys, V., Bespalova, K., & Burbaité, R. (2014). Feature
Transformation-Based Computational Model and Tools for Heterogeneous Meta-
Program Design. CINTI 2014: 15th IEEE International Symposium On
Computational Intelligence and Informatics, November 19-21, 2014, Budapest,
Hungary: proceedings. Budapest: IEEE, 2014. p.185-190. [IEEE/IEE]

6. Bespalova, K., Stuikys, V. & Burbaité, R. (2015). CS-Oriented Robot-
Based GLOs Adaptation through the Content Specialization and Generation.IFIP
TC3 Working Conference A New Culture of Learning: Computing and Next
Generations, July 1-3, 2015, Vilnius, Lithuania

26

INFORMATION ABOUT THE AUTHOR OF THE DISSERTATION

Education:
2002 — 2007: gained Bachelor in informatics engineering at Kaunas University
of Technology.
2007 — 2009: gained master degree in informatics engineering at Kaunas
University of Technology.
2011 — 2015: doctoral studies in informatics at Kaunas University of
Technology.

Work experience:
1999 — 2004: engineer, Kauno kolegija / University of Applied Sciences.
2004 — 2013: methodologist, Kauno kolegija / University of Applied Sciences.
2013 — 2014: head, unit of information system management, Kauno kolegija /
University of Applied Sciences.
2014 — 2015: head, unit of study programs, Kaunas University of Technology.
Since 2015: head, unit of study administration, Kauno kolegija / University of
Applied Sciences.

E-mail: kristina.bespalova@ktu.edu

27

mailto:kristina.bespalova@ktu.edu

REZIUME
Darbo aktualumas

Transformavimas vienos formos objekty (procesy, energijos, gaminiy ir
pan.) j kitag yra esminis visy techniniy sistemy atributas. Informatikoje $is
atributas dar svarbesnis dél Siy priezas¢iy: (1) transformavimo objektai yra ne
fiziniai objektai, o jy abstraktiis atvaizdavimai (duomenys, programos, modeliai);
(2) egzistuoja gausybé atvaizdavimo formy; (3) abstraktiis atvaizdavimai jgalina
daug lengviau jgyvendinti transformavimus; (4) transformavimas informatikoje
lemia praktiSkai visy kompiuteriniy sistemy funkcionaluma.

Transformavimas informatikoje naudojamas jvairiuose kontekstuose ir
apima labai platy spektra, nuo Zemiausio iki auk$¢iausio lygmens. Zemiausiame
lygmenyje yra tradicinés transformacijos: procesoriaus, operacinés sistemos.
Aukstesniame lygmenyje yra kompiliavimo transformacijos, dar auks$Ciau —
taikomyju sistemy projektavimo transformacijos, o aukSciausiame — sistemy-
sistemy lygmens transformacijos. Programy inzinerijoje ir informatikoje esminés
transformacijos atliekamos su programomis ir modeliais. Programos
transformavimas yra taikomas konstruojant, optimizuojant, programy sintezéje,
pertvarkyme, programinés jrangos atnaujinime, apgrazos inzinerijoje ir kt.
(Visser, 2001).

Transformavimo tyrimai labai platis, taciau galima teigti, kad jy visy
tikslas vienas — padidinti kuriamy sistemy na$uma ir efektyvuma. Pagrindinis
transformavimo siekis — automatizavimas.

Per pastarajj deSimtmet] mokslo ir technikos srityje stebimas ryskus
informaciniy technologijy Suolis. Baziniy technologijy raida (turima omenyje
lustus) pranoko visus liikesGius. Siandien mes jau naudojamés tuo pagrindu
sukurtomis naujomis technologijomis, gyvename ir dirbame skaitmeniniame
pasaulyje, kuriame pokyciai yra pastovus reiSkinys. Vystantis informacinéms
technologijoms (IT) sparciai auga IT vartotojy kategorijos, atsiranda vis didesnis
poreikis kuriamas sistemas pritaikyti prie rinkos reikalavimy. Dar viena esminé
ypatybé — nepaliaujamai auga programinio kodo svoris (apimtis) sistemose. Tali
geriausiai matoma jterptinése sistemose (pvz., realaus laiko) ir internetiniuose
taikymuose (pvz., daikty internetas).

Sparti technologijy raida ir rinka taip pat lemia projektuojamy sistemy
sudétingumo, dydzio ir sgveikos laipsnio bei programinio kodo augimg. Tai yra
Technologijy raidos patikrintas atsakas — abstrakcijos lygmens kélimas tiek
nagrinéjant probleming sritj (t. y. taikymus), tiek sprendimy sriti (t. y. metodus).
Todél kuriamas sistemas siekiama atvaizduoti auks$tesniu abstrakcijos lygmeniu,
kuriami nauji projektavimo metodai, sistemos sudalijamos j atskiras dalis
(koncepcijy atskirtis), kuriant naudojami automatiniai transformavimo jrankiai.
Aukstesnis abstrakcijos lygmuo jvairiuose kontekstuose mokslinéje literattiroje

28

ivardijamas kaip metalygmuo (pvz., placiai naudojamos sgvokos metamodelis,
metaduomenys, metakalba, metaprograma ir kt.).

Kita vertus, S$iuolaikiniy sistemy kirimas grindziamas pakartotinio
naudojimo (angl. reuse) metodologija. Si metodologija remiasi programy
Seimynos koncepcija (jas galima traktuoti kaip metasistemas), apima srities
analiz¢, modeliavimg (modeliy ir metamodeliy sukiirimg), bendryjy (meta)
komponenty bei programy generatoriy kiirima.

Pastaraisiais metais dominuoja dvi pakartotiniu naudojimu grindZziamos
kiarimo metodologijos: OMG modeliy inzinerija (angl. Model-Driven
Engineering, MDE), kuri paprastai remiasi objektinémis abstrakcijomis (UML
standartas) ir pozymiy modeliy inZinerija, kuri labiau iSrySkina ir akcentuoja
programy Seimyny koncepcijg (angl. Product Line Engineering, PLE) (Pohl ir
kt., 2005). Abi metodologijos nagrinéjamos dviejuose lygmenyse (srities
inzinerijos ir taikymy inZinerijos) skatina visame kiirimo procese naudoti auksto
lygmens modelius, jy transformavima uztikrinant sisteminj pakartotinj
panaudojima, t. y. siekiant aukStesnio automatizavimo laipsnio, didesnio nasumo
ir kokybés. Nustatyta, kad modeliais grjstos metodologijos yra vyraujancios
naujausiuose tyrimuose. Cia dar daug neisspresty problemy, siejamy su analize,
variantiSkumo modeliavimu (Capilla, Bosch ir Kang, 2013), atvaizdavimu,
transformavimu ir realizacija (Biehl, 2010; Fioravanti ir kt. 2011; Volter ir kt.,
2013; Zhang, 2014).

Disertacijoje keliami ir nagringjami uzdaviniai yra specifiniai, mazai
tyrinéti iy metodologijy atvejai: pozymiy modeliy transformavimas
heterogenines metaprogramas, vidinis metaprogramy transformavimas siekiant
ju adaptavimo prie konkretaus taikymo. Metaprogramy kirimo ir tobulinimo
procesai sudétingi, reikalauja giliy Ziniy tiek i§ taikomosios, tiek i§ sprendimo
srities. D¢l to metaprogramy kiirimo, transformavimo ir palaikymo procesus
tikslinga automatizuoti. Kita vertus, §io tipo metaprogramy automatizuotas
kiirimas remiantis pozymiy modeliy transformavimu, miisy ziniomis, i§vis
nebuvo nagrinétas. Kadangi metaprogramos yra tikslo (srities) programy
generatoriai, todél galima drasiai tvirtinti, kad disertacijoje pasirinkta tema yra
aktuali ir savalaiké.

Tyrimo objektas

Darbe tiriama probleminés srities poZymiy modeliai, metaprogramos, jy
kiirimo ir transformavimo procesai ir metodai.
Darbo tikslas

Darbo tikslas — sukurti ir iStirti heterogeniniy metaprogramy
automatizuoto kirimo ir transformavimo metodika, jskaitant tuos procesus
palaikancius jrankius

29

Darbo uzdaviniai
1. ISanalizuoti ir jvertinti modeliy ir programy (metaprogramy)
transformavimo metodus.
2. Sukurti ir istirti heterogeniniy metaprogramy kiirimo metoda panaudojant
pozymiy modeliy transformacijas.
3. Sukurti ir iStirti metoda, kuris transformuoty vienpakopg¢ heterogening
metaprograma j daugiapakopg.
4. Sukurti ir istirti metaprogramy kiirimo ir transformavimo algoritmus ir juos
realizuoti atitinkamuose jrankiuose.
Ginamieji teiginiai
1. Probleminés ir sprendimo sri¢iy pozymiais grindziami modeliai jgalina
metodiskai kurti metaprogramas automatizuojant kiirimo procesg.
2. Metaprogramy specializavimo ir adaptavimo formalieji modeliai uztikrina
transformavimo jrankio funkcionalumg ir korektiskuma.
3. Sukurti ir iSbandyti transformavimo jrankiai uZtikrina efektyvy
metaprogramy kiirima, transformavima ir palaikyma.
Mokslinis naujumas

1. Pasiilytas ir iStirtas heterogeniniy metaprogramy automatizuotas kiirimo
metodas, kuris remiasi pozymiy modeliy transformacijomis.

2. Nustatyta daugiapakopés transformacijos uzdavinio sprendiniy egzistavimo
salyga bei maksimalus leistinas pakopy skaiCius, jgalinantis apibendrinti
dvipakope metaprogramy transformacija j daugiapakope.

3. Pasillytas isbaigtas procesas, apimantis (i) modeliy ir metaprogramy
sukiirimg (panaudojant sukiirimo jrankj), (ii) jy transformavima
programy pritaikyma.

Praktinis naujumas

1. Automatizuotas metaprogramy kiirimas (jrankis) ir automatinis mokomuyjy
roboty valdymo programy generavimas.

2. Automatizuotas daugiapakopiy metaprogramy kiirimas (jrankis) ir
automatinis metaprogramy bei mokomyjy roboty valdymo programy
adaptavimas panaudos kontekstui.

ISVADOS

1. Atlikus literatiiros Saltiniy analize nustatyta, kad:

— esminis reikalavimas kuriamiems probleminés srities modeliams ir jy
transformavimui yra bendrybiy-skirtybiy ir jy sqveikos identifikavimas,
kaip tiriamosios srities variantiSkumo israiska;

— heterogeninis metaprogramavimas jgalina pasiekti programy kiirimo
automatizavimo tikslus, o programy generatoriai realizuoja generatyvinj
pakartotinj panaudojima.

30

. Sukurti bendrybes ir skirtybes apraSantys probleminés ir sprendimy srities
formalizuoti pozymiy modeliai, jy sarysSiai, savybés ir pozymiais
grindziamy modeliy transformavimo taisyklés jgalino automatizuotai kurti
heterogenines metaprogramas.

. Pritaikytas Futamuros programy specializavimo uzdavinio interpretavimas
igalino suformuluoti dviejy pakopy metaprogramy specializavimo uzdavinj,
po to, pastarajam pritaikius apgrazos principg, suformuluotas pradinés
(vienpakopés) metaprogramos daugiapakopio transformavimo (t. y.
specializavimo) uzdavinys. Kadangi dviejy pakopy metaprogramos modelis
(kitoje notacijoje) jau buvo zinomas, tai $is apibendrinimas yra moksliskai
naujas.

. Daugiapakopio transformavimo esminis teorinis rezultatas apibréziamas
taip:

— nustatyta apibendrinto specializacijos uzdavinio iSsprendziamumo
salyga, t. y. ,uzdavinys iSsprendziamas tada ir tik tada, jei
vienpakopés metaprogramos metasqgsajos Svorinis gmfasG(PW,U)
néra jungusis grafas (¢ia P — metaparametry aibé, U — briauny aibg,
vaizduojanti metaparametry saveika, W — neraiskiosios logikos
kintamasis, aprasantis metaparametro kontekstg);

— nustatyta, kad maksimalus pakopy skaicius lygus metasgsajos grafo
visuminiam komponenciy skai¢iui (t. y. jungias ir nejungias
komponentes kartu paémus);

— uzdaviniui iSspresti pritaikytas metakonstrukcijy deaktyvacijos-
aktyvacijos principas ir nustatyta pakopos deaktyvacijos indekso (DI)
reik§mé duotai metakalbai, t. y. pakopoje k DI =0, pakopoje (k-1)

k-2
DI =1, o Zemesnése pakopose DI = Y 22,
a=0

. Pasiiilyti, i8bandyti ir pritaikyti jrankiai (vieni — ,,FAMILIAR® ir ,,SPLOT*
parinkti, kiti — ,,MePAG* ir ,,MP-ReTool*“ sukurti), palaikantys pilng
metaprogramos gyvavimo cikla: modeliavimo, modeliy transformavimo,
metaprogramy transformavimo j daugiapakopes.

. Nustatyta, kad naujai sukurto jrankio ,,MePAG*“ panaudojimas leido
metaprogramas kurti efektyviau. Metaprogramas kuriant pusiau
automatiniu biidu sugaiStama vidutiniSkai 34 % maziau laiko nei kuriant
rankiniu biidu. Pusiau automatinio ir automatinio kiirimo biidy laikai labai
artimi, nes automatinis biidas reikalauja didesniy laiko sagnaudy modeliams
sukurti. Nustatyta, kad tikslo kalbos bendrinj programos egzemplioriy
tikslinga kurti tada, kai zinome, kad metaprograma bus ne kartg kuriama
pakartotinai.

. Atliktas metaprogramos transformavimo] daugiapakope metaprograma
ekvivalentiSkumo tyrimas patvirtino hipoteze, kad metaprogramos

31

32

specializavimas keiia metaprogramos struktiirg, taciau iSsaugo pradinj
metaprogramos funkcionaluma.

Nustatyta, kad naujai sukurtas jrankis ,,MP-ReTool* leidZia automatizuotai
transformuoti vienpakope metaprograma | daugiapakope. Sios
transformacijos déka sukuriama specializuota metaprograma, kuri jgalina
metaprogramas adaptuoti prie skirtingo konteksto.

Atlikus heterogeniniy metaprogramy technologinio sudétingumo tyrima
nustatyta, kad didé¢jant metaprogramos pakopy skaiciui didéja
metaprogramos sudétingumas. Pazinimo sudétingumo metrikos verté
kiekvienoje aukstesnéje pakopoje auga daugiau nei 50 %. Tai parodo, kad
metaprogramg transformuojant | viena pakopa auksStesn¢ metaprograma,
dvigubai mazéja jos suprantamumas.

UDK 004.4°24 (043.3)

SL344. 2015-11-04 2 leidyb. apsk.1. Tirazas 50 egz. Uzsakymas 392.

I8leido Kauno technologijos universitetas, K. Donelaicio g. 73, 44249 Kaunas
Spausdino leidyklos ,,Technologija“ spaustuvé, Studenty g. 54, 51424 Kaunas

