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INTRODUCTION 

 

The relevance of the Doctoral Dissertation 
 

Nanostructured materials are materials with a microstructure, the characteristic 

length scale of which is approximately a few (typically 1–10) nanometers. 

Nanostructured materials consisting of nanometer-sized crystallites with different 

crystallographic orientations and/or chemical compositions are far away from 

thermodynamic equilibrium. Nanostructured materials include atomic clusters, 

layered (lamellar) films, filamentary structures, and bulk nanostructured materials. 

Nanostructured materials focus on the synthesis, characterization, and properties 

relevant to nanostructured materials applications that require bulk and mainly 

inorganic materials. The properties of nanostructured materials deviate from those of 

single crystals (or coarse-grained polycrystals) and/or glasses with the same average 

chemical composition. This deviation results from the reduced size and/or 

dimensionality of the nanometer-sized crystallites as well as from the numerous 

interfaces between adjacent crystallites. In some cases, the physics of such nanoscale 

materials can be very different form the macroscale properties of the same 

substance, offering often superior properties that warrant much interest in these 

materials. 

In particular carbon coatings attract attention of scientist since it is possible 

varying deposition conditions and technological parameters to produce different 

coating structures having unique chemical and physical properties ranging from 

those of diamond like carbon to graphite like carbon (Robertson, 2002). Special 

interest is paid to polymer like carbon coatings due to their flexibility to 

modification. Polymer like coatings might be used as dielectric optical or protective 

coatings for micro electromechanical (MEM) devices functioning in chemically or 

radiation harsh environment. Different methods might be applied to create hard 

carbon structures: varying initial gas mixture content, admixing additives, changing 

fabrication conditions or technological parameters. Modification and hardening of 

carbon structures is also possible applying high energy electrons and photons, since 

such types of irradiation causes structural changes in irradiated structures that in turn 

are directly linked to the coating’s surface morphology changes and influence 

physical and chemical properties of carbon coatings (Casiraghi et al., 2007; Ferrary 

and Robertson, 2004). Carbon coatings reveal by unique properties consequently 

may occur in crystalline and/or amorphous phase, which can be characterized by 

structures similar to the polymer nanocomposite.   

The overwhelming attention towards nanostructured materials containing 

nanoparticles (NPs) is increasing day-to-day due to their exceptional size-related 

properties as compared to bulk materials (Jovanovic et al., 2012; Pomogailo et al., 

2005). Whatever they are made of, the structure, composition and properties of 

nanoparticles (Berret et al., 2006; Dallas et al., 2011) are highly important since NPs 

are applied in electronics, optics, catalysis, biotechnology and medicine (Prabhu et 
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al., 2012; Chen and Schluesener, 2008). Nano-size metal (Li et al., 2010) particles 

play a special role among all nanoparticles and are the most examined in 

nanotechnology. The successful application of nanoparticles depends upon both the 

synthesis and the surface modification of these particles (Pomogailo et al., 2005; Tee 

et al., 2007). Surface modification can improve the intrinsic characteristics of 

nanoparticles and allow the fabrication of nanocomposites and other structures also 

inexistent in nature (Jovanovic et al., 2012). 

Polymer nanocomposites are progressive functional materials (Alsawafta et 

al., 2011; Tao et al., 2008) composed of nanoparticles dispersed inside of polymer 

matrix and covered by polymer, thus forming a skeleton structure. Polymer 

composites are appealing expectants for ionizing radiation armor applications and 

can be made transparent. In order to capitalize on the superior properties of polymer 

composites in transparent armor applications, novel techniques and 

fabrication/modification methods are needed. Modification of polymers with high 

energy radiation (X-rays, gamma rays, electron beam) leads to the formation of new 

bonds, free radicals, oxidized products, grafts, scission of main chains and cross-

linking (Chmielewski et al., 2007; Liu et al., 2009; Pal Chalal et al., 2012). 

Radiation induced processes have many advantages over other conventional 

methods. The importance of the research of radiation hardness of polymers is 

growing up due to the miniaturization of polymeric constructive elements and 

broader application of polymeric films characterized by modified surface. 

Functionality and exploitation characteristics of the devices are dependent on the 

quality and stability of polymeric materials.  

Specific interest is paid to synthesis of heavy metal and alloy nanoparticles 

exhibiting exceptional structural, magnetic and mechanical properties (Tsyntsaru et 

al., 2012; Walton, 2002): nanocomposites containing these particles are widely used 

for fabrication of different hard coatings (Gonzalez-Garcia et al., 2010; Klima, 

2011). Also the interest to polymeric Pb free nanocomposites with incorporated 

heavy metal or metal alloy nanoparticles that might be used for the construction of 

radiation protection devices is growing up. An alternative simple, fast and cost 

effective synthesis method of nanoparticles is the sonoelectrochemical deposition 

(Delphine et al., 2003). The ultrasound affected molecules in electrolyte bath sustain 

a chemical reaction (Birkin et al., 2005) and due to acoustic cavitation (Gedanken, 

2004) participate in formation, growth and collapse of bubbles in the liquid. The 

main advantage of pulsed ultrasound assisted electrolysis method is that the 

electrochemically deposited nanoparticle’s shape and dimensions can be adjusted by 

changing the electrolyte composition and pH value, by changing electrolysis 

temperature, by varying current density and ultrasonic power, by synchronizing the 

current pulse duration and the operation and relaxation time of ultrasonic pulse 

(Tsyntsaru et al., 2012, 2013; Saez and Mason, 2009). Continuous ultrasound 

assisted electrosynthesis is another way to produce nanoparticles and to form 

nanostructures/nanoclusters. In this way it is possible to get the desired size of 
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nanoparticles or nanoclusters. The crystallinity of produced nanoparticles depends 

on technological (experimental) conditions (Karaagac et al., 2013; Subramanian et 

al., 2002). 

 

The aim of the Doctoral Dissertation 
 

Investigation of electron and photon beam induced formation and modification 

mechanisms of different nanostructured nanocomposites and assessment of radiation 

impact on mechanical and optical properties of fabricated composites. 

 

Tasks of the Doctoral Dissertation 
 

1. To explore mechanisms of nanostructure formation in polymer like a-C:H 

coatings irradiated by high energy photons and electrons, to assess structural 

changes and to investigate mechanical and optical properties of modified 

coatings; 

2. To investigate the formation processes of Ag nanostructures in different 

polymeric matrices and applying two-step synthesis approach: photochemical 

synthesis (UV radiation) and radiolysis (energetic photon radiation) to form an 

Ag/polymer composites and to examine their optical and mechanical 

properties; 

3. To analyze the electrochemical formation mechanism of W-Co nanoparticles 

applying sonoelectrochemical method for the formation of metal alloy 

nanoparticles. 

 

Statements carried out for defence 
 

1. Interaction of high energy photons and electrons with polymer like a-C:H 

carbon coatings is responsible for hydrogen release from coatings and 

restructuration of polymeric chains depending on technological conditions and 

deposition parameters of carbon coatings. Due to irradiation the polymeric 

structures with embedded sp
2
 hybridization graphite clusters are formed.  

2. Application of two step Ag nanoparticles synthesis method (photochemical 

synthesis, employing UV radiation and radiolysis induced by high energy 

photons and electrons radiation) depending on the applied exposure parameters 

stable Ag/PVP composite structures with silver particles embedded within the 

polymer matrix are formed.  
3. Application of low dose rate photon irradiation allows the formation of Ag 

nanoparticles directly in PMMA matrix; however, Ag nanoparticles tend to 

agglomerate to larger structures.  

4. The new W-Co nanoparticles synthesis method applying electrochemical 

deposition process when aqueous electrolyte influenced by continuous 

ultrasound was proposed and adapted.  
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Scientific novelty and practical value 
 

 Modification possibility of polymer like a-C:H carbons’ employing high 

energy photons and electrons is shown and radiation induced formation of 

strongly cross-linked three-dimensional network with embedded small 

graphitic clusters is discussed. It is shown that the properties of irradiated 

carbons depend on technological conditions and deposition parameters. 

Varying the fluency of photons and electrons, synthesis parameters and 

irradiation dose it is possible to get coatings that might be used as dielectric 

optical or protective coatings. 

 Synthesis possibility of Ag nanocomposites employing two-step synthesis: UV 

photochemical synthesis and radiolysis induced by high energy photons and 

electrons is shown. It is found that high energy photons and electrons enhances 

production and growth of Ag nanoparticles within polymer matrix and 

contributes to modification of mechanical and especially optical properties. 

 Formation possibility of Ag nanocomposites direct from silver salts admixed 

to polymer solution using low dose rate photon irradiation is explored. 

Radiation induces Ag nanoparticles growth and formation of the composite, 

however the prolong exposure time leads to agglomeration of Ag nanoparticles 

into larger clusters with induced disorder in the polymeric structure.  

 A new method of W-Co nanoparticles synthesis is proposed which is related to 

formation of W-Me alloy nanoparticles under continuous ultrasound. W-Co 

nanoparticles incorporated in polymers form the polymeric nanocomposites 

that might be used for the construction of radiation protection devices due to 

their high radiation absorption ability. 

 

Part of the results presented in this thesis was obtained implementing research 

project No. MIP-091/2012 „Optically transparent polymeric nanocomposite shields 

for radiation protection”, 2012-2014 (Collaborators: D. Adlienė, I. Prosyčevas, V. 

Jankauskaitė, E. Griškonis, P. Narmontas, T. Kleveckas, S. Zacharovas, R. Šeperys, 

R. Plaipaitė-Nalivaiko, N. Vaičiūnaitė, K. Jakštas), which was supported by 

Lithuanian Research Council. 

 

The object and methodology 
 

To implement the tasks of the work following theoretical and experimental 

research was performed. 

Polymer like a-C:H carbon coatings were synthesized using plasma enhanced 

vapor deposition (PECVD) method, varying ion beam energy and substrate 

temperature. Experimental coatings were exposed to gamma irradiation in 

teletherapy unit with 
60

Co (1.25 MeV) source or irradiated with high energy 

electrons in medical linear accelerators Clinac DMX (12 MeV) and Clinac2100C (6 

MeV). The radiochemical mechanisms of nanostructure formation in carbon 
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coatings irradiated by high energy photons and electrons were analyzed. The 

structural changes were assessed and physical properties of modified coatings were 

investigated. The assessment of the bonding structure of carbon coatings has been 

carried out using Fourier-transform infrared spectroscopy (FTIR, Nicolet 5700) and 

Raman spectroscopy (RS, Ivon Jobin with Nd:YAG laser (λ = 532.3 nm)); optical 

properties (absorbance, reflectance, refractive index) have been obtained using 

ultraviolet-visible spectrometer (USB4000-UV-VIS) and ellipsometer “Gaertner 

117” (with He-Ne laser: λ=632.8 nm); surface morphology has been characterized 

by atomic force microscope (AFM, NT-206).  

Ag derivatives were synthesized applying photochemical synthesis method 

(UV irradiation), which was followed by film irradiation with high energy photons 

or electrons, that lead to the formation of Ag/polymer composites. The morphology 

of the Ag/polymer nanocomposites and bulk composition have been investigated 

using optical microscope (OM, Optika B-600 MET), scanning electron microscope 

(SEM, JSM-5610 LV) with attached energy dispersive X-ray analysis (EDX, JED-

2201) and atomic force microscope (AFM, NT-206). Bonding structure of 

experimental Ag/PMMA nanocomposite films has been assessed using Fourier 

Transform infrared spectrometry (FTIR, Bruker Vertex 70). Optical properties have 

been obtained using ultraviolet-visible spectroscopy (UV/VIS/NIR, AvaSpec-2048). 

Tungsten-cobalt alloy nanoparticles (W-Co NPs) have been synthesized from 

aqueous electrolyte by sonoelectrochemical method applying pulsed potential mode 

of current supply and continuous ultrasound irradiation. The morphology of W-Co 

NPs and their chemical composition have been investigated with a scanning electron 

microscope (SEM, FEI Quanta 200 FEG) with attached energy dispersive 

spectroscope (EDS, Bruker XFlash
®
 4030). Some specific data was extracted from 

transmission electron microscope (TEM, JEOL JEM 1210) images. The size of 

synthesized W-Co NPs has been assessed by photon correlation spectroscopy (PCS, 

Delsa). 

 

Author’s contribution 
 

Most of the experimental work was carried out in Kaunas University of 

Technology: Faculty of Mathematics and Natural Sciences Department of Physics, 

Faculty of Chemical Technology, and Institute of Materials Science. Experimental 

coatings were also analyzed exploring analytical equipment of Lithuanian Energy 

Institute. Belarusian State Technological University, Center of Physical and 

Chemical Investigations (Minsk, Belorussia) offered possibility to perform analysis 

of surface morphology and coating structure using SEM and TEM. Irradiation of 

coatings with electrons and photons was performed at Lithuanian Health Care 

University. 

The author of Doctoral Dissertation has personally performed irradiation of 

experimental carbon coatings with high energy electrons and photons. She 

performed (to large extent) characterization of coatings before and after irradiation, 
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analyzed coatings properties and discussed radiochemical mechanisms responsible 

for restructuration of coatings due to their irradiation. The author has collaborated 

closely with a team preparing experimental coatings from Ag containing solutions 

and personally performed their irradiation, which led to formation of Ag/polymer 

nanocomposites and their radiation induced modification. The author has also 

worked close together with a team of chemists synthesizing W-Co alloy 

nanoparticles contributing with the idea of application of continuous ultrasound for 

particles formation and investigation of the particles properties and radiation 

absorbing properties of compounds that were produced using synthesized particles. 

 

Approbation of the research results 
 

The main results of this work were presented in 11 international and 1 national 

conferences. The research results published in 13 scientific publications: 8 articles 

were published in the journals belonging to scientific international databases (3 – 

Indexed in the Thomson Reuters Web of Knowledge database with Impact Factor 

and 5 without Impact Factor), 4 articles were published in international conference 

proceedings and 1 article was published in the periodicals of Lithuania.  

 

Structure of the Doctoral Dissertation  
 

The dissertation consists of introduction, literature review, instruments and 

methods section, results and discussions chapter, conclusions, the list of references 

(166 entries), and the list of scientific publications on the topic of Doctoral 

Dissertation.  

The total size of dissertation is 143 pages, containing 91 figure and 13 tables. 
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1. LITERATURE REVIEW 

 

Nanostructured materials contain nanoparticles and other nanoderivatives 

synthesized directly, embedded into or produced within a host material due to its 

modification. Polymeric nanocomposites are part of nanostructured materials. An 

overview of advances in nanoparticles production, their embedding into polymers 

and radiation induced modification of polymeric composites is provided in this 

chapter. Also modification of properties of amorphous/polymer like carbon 

structures due to irradiation is analyzed, since these materials may have a similar 

structure as polymeric composites.  

   

1.1. Classification of nanostructures 
 

Nanoparticles (NPs) are of great scientific interest as they are essentially a 

bridge between bulk materials and atomic or molecular structures. NPs exhibit a 

number of unique and considerably changed physical, chemical and biological 

properties compared to their macro scaled counterparts: due to their high surface-to-

volume ratio.   

Nanoparticles are classified by the size and by the number, N, of atoms they 

consist of. Fig. 1.1 illustrates the main stages of individual atoms transformation into 

a bulk metal (Pomogailo et al., 2005). 

 
Metal atom     Cluster       Nanoparticle  Colloid              Bulk metal 

0.1 nm     1-10 nm        10-100 nm  >102 nm >>103 nm 
 

Fig. 1.1 Atom transformations to the bulk material (Pomogailo et al., 2005) 

 

Also classification of nanoobjects according to the number of atoms, N, in the 

assembly is possible: 

 molecular clusters (N ≤ 10); 

 clusters of a solid body (10
2
 ≤ N ≤ 10

3
); 

 microcrystals (10
3
 ≤ N ≤ 10

4
); 

 particles of dense substances (N >10
5
). 

The structure is one of the most fundamental properties of a cluster and plays 

an important role to understand all aspects of its chemical and physical behavior. 

Much experimental and theoretical effort has been devoted to the determination of 

the cluster structures depending on the size (i.e., the number of atoms in the cluster) 

N. The structure of nanomaterials can be three- (commonly cross-linked by spatial 

molecules of various lengths), two- (e.g. self-organized ligand-stabilized particles on 

the solution surface, often with participation of linking blocks) or one-dimensional 
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(quantum dots, quantum wires and even quantum cables) as it is shown in the Table 

1.1 (Pomogailo et al., 2005). 

 

Table 1.1 Typical nanomaterials (Pomogailo et al., 2005) 
 Size (approximate) Materials 

1D nanocrystals and 

clusters (quantum dots) 
1–10 nm in diameter 

Metals, semiconductors, magnetic materials, 

Langmuir–Blodgett films 

Other nanoparticles 1–10 nm in diameter Ceramic oxides 

Nanowires 1–10 nm in diameter Metals, semiconductors, oxides, sulfides, nitrides 

Nanotubes 1–10 nm in diameter Carbon, layered metal, chalcogenides 

2D arrays (of 

nanoparticles) 
A few nm2 to 1 μm2 

Metals, semiconductors, magnetic materials, 

polymer films 

Surfaces and thin films 1–100 nm thick Various materials 

3D structures 

(superlattices) 

A few nm in all 

three dimensions 

Metals, semiconductors, magnetic materials, 

consolidated material, 

nanostructured materials 

NPs in polymers 1–100 nm Metal–polymer nanocomposite 

 

Nanoclusters offer attractive possibilities for innovative technological 

applications in the fields of the controlled growth of nanostructures, from catalysis 

to miniaturization of electronic devices (Pomogailo et al., 2005).  

 

1.2.  Formation of nanostructured materials containing metal / metal oxide / 

alloy particles 
 

1.2.1.  Production of metal nanostructures and their properties 
 

Attention towards nanostructures materials is steadily increasing due to an 

extensive range of its application in different fields of science (Berret et al., 2006; 

Dallas et al., 2011; Prabhu et al., 2012). Metal nanoparticles having size of 1-100 

nm play an important role in development of new nanomaterials and composites. 

The reason of the enforcement for nanoparticles in various applications is their 

fascinating properties (Li et al., 2010; Vodnik et al., 2010). Whatever they are made 

of, the structure, composition and properties of nanoparticles (Jovanovič et al., 2012; 

Prabhu et al., 2012; Tee et al., 2007; Vodnik et al., 2010) are highly important since 

NPs are applied in electronics, optics, catalysis, biotechnology and medicine 

(Alsawafta et al., 2011; Knauert et al., 2007; Tyurin et al., 2010). The successful 

application of nanoparticles depends upon both the synthesis and the surface 

modification of these particles (Chen et al., 2008; Pomogailo et al., 2005). 

Nanoparticles aggregate easily because of their high surface energy and are quickly 

oxidized as well (Tyurin et al., 2010).  

There are two complementary methods to produce nanostructures: the top-

down approach – where one starts with bulk material and machines it down to the 

nanoscale and the bottom-up approach, starting at the molecular level and building 

up the material through the small cluster level to a nanoparticle or an assembly of 
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nanoparticles (Fig. 1.2) (Peng et al., 2009; Tao et al., 2008). Top-down approaches 

are good for producing structures with long-range order and for making macroscopic 

connections, while bottom-up approaches are best suited for assembly and 

establishing short-range order at nanoscale dimensions. The integration of top-down 

and bottom-up techniques are expected to eventually provide the best combination 

of tools for nanofabrication (Zahmakiran et al., 2011). 
 

 
Fig. 1.2 NPs production approaches. Adapted from (Zahmakiran et al., 2011) 

 

Top-down approach. The method sometimes called dispersion or top-down 

method and these are physical processes. They are based on first-order phase 

transformations in the absence of chemical reactions during which block metal is 

atomized to nanoparticles. In the top down methods, the features are written directly 

onto a substrate, for example, by electron beams, and then by applying appropriate 

etching and deposition processes, the nanoscopic features are engraved. 

Bottom-up approach presents numerous groups of methods (radiation 

synthesis methods (Liu et al., 2009; Pal Chalal et al., 2012), chemical reduction 

(Khan et al., 2011; Wang et al., 2005), photoreduction (Krstic et al., 2014; Vodnik et 

al., 2009), thermal decomposition (Jeevanandam et al., 2010), reduction in micro 

emulsions (Zielinska-Jurek et al., 2012) and other) that employ chemical approaches 

to the assembly of nanoparticles from either mononuclear metal ions or nucleus of a 

lower tendency to nucleation. In the bottom-up approach, nanocomponents are made 

from precursors in the liquid, solid, or gas phase employing either chemical or 

physical deposition processes that are integrated into building blocks within the final 

material structure (Šileikaitė et al., 2009). The difficulty of the nanomaterials 
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synthesis lies in the control of their shape, aggregation or precipitation and 

stabilization against aging effect (Amendola et al., 2010). To eliminate 

agglomeration of such particles at storage and transportation, a great variety of 

stabilizers, including donator ligands, surfactants, and polymers are used (Abu 

Bakar et al., 2010; Çapan et al., 2009; Chmielewski et al., 2007; Hutter et al., 2001; 

Slistan-Grijalva et al., 2008). Zielinska et al. (2009) has investigated the influence of 

different parameters such as, type of silver precursor, reducing agent and protecting 

agent on stability and optical properties of silver nanoparticles (Amendola et al., 

2010; Rao et al., 2011; Tao et al., 2008; Tee et al., 2007; Tyurin et al., 2010; 

Zahmakiran et al., 2011; Zielinska et al., 2009). Silver nanoparticles prepared using 

different reducing agents had different morphologies and sizes.  

NPs could be synthesized in different form and shapes according to synthesis 

method and parameters. It was shown (Fig. 1.3) that forming noble-metal particles 

clusters adopt one of three morphologies: icosahedral (ICO), decahedral (DECA) or 

close-packed (fcc truncated octahedra) (Häkkinen et al., 2004; Uppenbrink et al., 

1992). 

 
Fig. 1.3 Structures of Ag (on the top) and Au (on the bottom) clusters represented on 

different structures: closed atomic shell icosahedral (ICO), decahedral (DECA), and 

cuboctahedral (CUBO). Adapted from (Häkkinen et al., 2004) 

 

Changing the synthesis routes, particles with different shape (spheres and rods 

(Saraidov et al., 2009), triangulars, cubes, prisms, bipyramids, octahedrons (Tao et 

al., 2008), nanorods, nanoshells, nanostars (Garsia – Leis et al., 2013) as well as 

structured array films) and size (from few nanometers to hundreds) in different 

media (water, alcohols, and polymers) can be formed (Petryayeva et al., 2011). The 

physical, mechanical, electronic, magnetic, optical and chemical properties of 

nanoparticles are not necessarily the same as of the bulk material and can all differ 

(Pomogailo et al., 2005). It is especially evident when analyzing metal nanoparticles. 

The formation of nanoparticles proceeds in stages. The main are: nucleation 

and growth of clusters; rupture of material chains and formation of a new phase 

(Pomogailo et al., 2005). Despite the difficulty by identifying of stages, the 

formation of a new phase is a well-explored physical domain. Chain nucleation 

(stage of formation of active M1 particles), growth of the new phase particles and 

generation of transformation products (P, P*) can be treated from the viewpoint of 
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kinetics as a chain process (monomolecular or bimolecular) (Hill et al., 2004; 

Pomogailo et al., 2005): 

                                            j

k
MMM  1

0  

*

1 PMMM j                                            (1.1) 

and chain extension (cluster (which consist of j atoms Mj) growth)  

1 j

k

j MMM j  (  j1 )                             (1.2) 

The reactions of dissociation of clusters, take place along with chain nucleation and 

growth 

nnj

k

j MMM j  



 ( 1n )                                (1.3) 

interaction between chain carriers (including coagulation) 

nj

k

nj MMM nj

 ,  ( 1, nj )                             (1.4) 

and destruction of the chains as a result of interaction of the growing cluster and 

stabilizer molecule (or matrix S∗) 
** SMSM j

k

j
x                                         (1.5) 

To describe phase formation, it is necessary to discuss elementary reactions 

and to solve a lot of differential equations. Quantitative characteristics of reactions 

during nucleation and growth of metal-containing nanoparticles practically are 

unknown so far. The basic feature of nanoparticle formation in the kinetic respect is 

the high rate of metal-containing phase nucleation against to its low growth rate. It 

serves as a criterion for determining topological means of synthesizing nanoparticles 

(Pomogailo et al., 2005). 

Exceptional optical properties of metal nanoparticles are the consequence of 

the electromagnetic field interaction with particles which lead to induced collective 

oscillations of the conduction band electrons within metal particles, known as 

surface plasmons (Kango et al., 2013; Petryayeva et al., 2011; Prosyčevas et al., 

2010; Rao et al., 2011; Šileikaitė et al., 2009). This process is indicated as plasmon 

excitation and results in appearance of absorption peak (Fig. 1.4).  

 
Fig. 1.4 Schematic of plasmon oscillation, showing the displacement of the conduction 

electron charge cloud relative to the nuclei (Peng et al., 2009) 

 

The width, position, and intensity of the plasmon interaction displayed by 

nanoparticles (Fig. 1.5) depend on: dielectric functions of the metal and the host 
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material; particle size and shape; interface between the particle and the host; 

distribution of particles within the host (Uppenbrink et al., 1992). The extinction of 

light by metal nanoparticles occurs by both scattering and absorption mechanisms, 

but absorption is by far the dominant factor for nanoparticles of small size (< 20 

nm). Increasing the size of the particles, or increasing the dielectric constant of the 

medium, causes a redshift in the plasmon absorption (Hutter et al., 2004; Petryayeva 

et al., 2011; Willets et al., 2007). 
 

 
Fig. 1.5 Extinction (black), absorption (red), and scattering (blue) spectra calculated for Ag 

nanoparticles of different shapes: (a) a sphere displaying a single dipole resonance peak and 

(b) a cube, (c) a tetrahedron, (d) an octahedron, and (e) a triangular plate. (f) Extinction 

spectra of rectangular bars with aspect ratios of 2 (black), 3 (red), and 4 (blue). Note that the 

nonspherical particles typically exhibit multiple, red-shifted resonance peaks. Adapted from 

(Petryayeva et al., 2011) 

 

For metal nanoparticles, the shift in peak position is minimal for small 

particles, as well as for larger particles, the redshift of the plasmon resonance 
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position is more significant (Petryayeva et al., 2011). If the particles are distorted in 

shape, then the plasmon band splits into different modes corresponding to the 

different aspects of the electron oscillations. Thus, nonspherical NPs tend to exhibit 

multiple, redshifted peaks in comparison to spherical particles, as illustrated by Fig. 

1.5. Ag exhibits the high efficiency of plasmon excitation (Petryayeva et al., 2011) 

and interacts with light more efficiently than a particle of the same dimension 

composed of any known organic or inorganic chromophore (Fan et al., 2014; Manai 

et al., 2015). The main motivation for using organic coatings around nanoparticles is 

to tailor their surface chemical properties to particular applications and to protect 

them from chemically aggressive environments. 
 

1.2.2. Thermodynamics in the synthesis of nanoparticles 
 

According to LaMer (LaMer and Dinegar, 1950) model nucleation is 

endothermic process. Break of bonds in the initial compound, removal of a solvate 

shell is energy consuming. At the same time, the processes of NPs growth and 

agglomeration accompanied by a decrease in enthalpy of the system owing to the 

bond energy of a lattice are exothermic. Formation of a blocked solid is always 

energetically beneficial as compared to nanoparticle formation with a typically 

extensive surface, unsaturated bonds, and no occupied coordination sites (Pomogailo 

et al., 2014). 

In a typical chemical synthesis of metal nanoparticles a compound metal-

precursor reduces with formation of zero-valent metal atoms, building blocks of 

metal nanoparticles (Hwang et al., 2012). During fast reduction concentration of 

atoms spontaneous homogenous nucleation begins, which is characterized by high-

energy barrier (Fig. 1.6). Due to short time of the nucleation, the obtained particles 

have narrow size distribution. At high supersaturating, an additional mechanism of a 

decrease in dispersion of particles is possible. The essence of the conception of 

“explosive nucleation” is in inducing of an individual nucleation process and 

excluding of additional nucleation from the further growth process. This method as a 

method of synthetic strategy is often called “separation of nucleation and growth” 

(Hwang et al., 2012; Lu et al., 2014). 

 
Fig. 1.6 Diagram of the change of precursor concentration under nanoparticle growth 

(Pomogailo et al., 2014) 
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To analyze the effect of charge on the coarsening behavior of nanoparticles, it 

is assumed that each particle is singly charged, electrically-conducting, and spherical 

with isotropic interface free energy, dispersed in a matrix phase with a dielectric 

constant of 1. According to this assumption, ions are regarded as the primary 

rudiments of charged nanoparticles. It is further assumed that the charged 

nanoparticles do not coagulate with each other and that the atomic transfer between 

particles is diffusion-controlled. The Gibbs free energy of a spherical conducting 

particle with radius r and charge e (corresponding to the unit charge of an electron) 

is expressed as (Hwang et al., 2012): 

;
2

4
2

2

r

e
krG                                                 (1.6) 

where σ is the interface free energy of the particle and k is defined by 1/(4πε), where 

ε is the vacuum permittivity (Hwang et al., 2012). ke
2
 is 2.3068·10

-28
 N·m

2
. It should 

be noted that with decreasing r, the interface free energy term decreases but the 

electrostatic energy term increases. 

The modified Gibbs-Thomson equation is derived as: 
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where Co is the solute concentration in the matrix without capillary effect, Vm – 

molar volume, μ0 and μr are the bulk and surface chemical potentials, r – the particle 

radius.  

According to the theory of diffusion-controlled coarsening (Pomogailo et al., 

2014), the growth rate of a particle radius, r, is given by: 

];*[
0

rr

gf

rRT

CVD

dt

dr
                                     (1.8) 

where R is the gas constant, T the absolute temperature, and Df is the diffusion 

coefficient of the solute. μr* is the chemical potential of a particle of critical size, 

which neither grows nor shrinks at the given instant. 

Since the phenomenon of digestive ripening runs counter to the decrease of 

interfacial free energy, a different type of free energy must be involved. The driving 

force for digestive ripening must compete against the reduction of the interface free 

energy. There are two such free energies. One is strain energy and the other is 

electrostatic energy. Since solid particles dispersed in liquid do not have any 

appreciable strain energy, the electrostatic energy is a possible candidate. In fact, 

Hwang et al. (2012) states, that if nanoparticles are electrically charged, they have 

an electrostatic energy inversely proportional to the radius of the particles. Since 

electrostatic energy increases with decreasing particle size, charged particles cannot 

shrink away completely. Therefore, the presence of charge can drastically change 

the Ostwald ripening behavior. The chemical potential change arising from the 

presence of charge can be treated by modifying the Gibbs-Thomson equation in 

consideration of the electrostatic energy. 
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Fig. 1.7 Electrostatic stabilization of nanoparticles (Pomogailo et al., 2014) 

 

The coarsening behavior can be analyzed quantitatively by solving Eq. (1.8) 

under the constraint of mass conservation for a total number of particles Np, and is 

expressed as: 

 
pN

n

n
n

dt

dr
r ;04 2                                              (1.9) 

Substituting Eq. (1.8) into Eq. (1.9) yields: 
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where C
*
 is the equilibrium concentration of solute. From Eqs. (1.8), (1.9) and 

(1.10), the following equation can be derived: 
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If the growth rate of each particle is determined by Eq. (1.11), the new radius 

after dt is given by: 
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                                   (1.12) 

Once the initial size distribution of particles is given, the time-dependent size 

distribution can be obtained by solving equations (1.11) and (1.12) by iteration. 

According to the numerical analysis performed by molecular dynamic method, 

dimers and trimers have higher electron affinity than the initial precursor. It is 

assumed that reduction will go predominantly by transition of electron from a 

reducing agent to these dimer and trimer intermediates on the way to clusters and 

seeds. 

At that, association of complexes to a cluster or a respective removal of a 

ligand from the cluster can significantly accelerate growth of metal nanocrystal. 
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Such acceleration is usually regarded as autocatalytic process which is found in 

many systems (Fig. 1.8) 

 
Fig. 1.8 Mechanism of nucleation and growth of nanoparticles (Pomogailo et al., 2014) 

 

As many research teams have shown, Ag clusters demonstrate various optical 

spectra depending on a number of Ag atoms contained in a cluster. 

Atoms of Ag0 produced during reduction undergo subsequently some 

transformations with cluster formation (Pomogailo et al., 2014). 
  2

8

2
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32 AgAgAgAg  or  
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  dAgdAg  

;21

  AgAgAg  
  dAgdAg ReRe 22

 

..........................................  

nmmn AgAgAg   
 

Red is the reduction agent 

Particles of Ag1 and clusters consisting of a small number of atoms are 

unstable (redox-potential of atomic silver E
o
 Ag1/Ag

+ 
= - 1.8V instead of E

o 
Ag/Ag

+
 = 

+ 0.799V for metal silver). As metal clusters grow, their stability increases. For 

example, Ag8
2+

 cluster is quite stable, it lifetime is measured by 10 min. Optical 

band corresponding to it in the absorption spectrum differs from the bands typical 

for Ag (360 nm) and Ag2
+
 (310 nm) dimers and disappears as Ag8

2+ 
cluster 

transforms in silver sol (Fig. 1.9) 
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Fig. 1.9 Absorption spectra of the silver salt solution after an electron beam exposure (Ag8

2+
 

cluster transformations in a silver sol). Irradiation duration: 6 s (1), 1 min (2), 5 min (3), 15 

min (4) (Pomogailo et al., 2014) 

 

As long as a seed forms, it begins to grow due to adding of atoms. Theoretical 

consideration of the “diffusion growth” model has shown that growth rate of 

particles is inverse to their radius, because a number of atoms diffusing to the 

surface of a particle increases in proportion to its squared radius, and the particle 

volume increases as cube of its radius. Taking this into account, it is shown that for 

the ensemble of spherical particles a change in radius distribution σ
2
 decreases 

during the growth (Lu et al., 2014). 

If a colloidal particle grows in supersaturated solution, the solute may diffuse 

from the bulk liquid phase containing a uniform concentration of solute Cb to the 

particle surface through a diffusion layer with some concentration gradient where Cr 

is the solubility of the particle. In this condition the growth rate is described by 

(Hwang et al., 2012):  
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where D is the diffusion coefficient of the solute, r is the particle radius, δ is the 

diffusion radius around a particle and k is the rate constant of the interface reaction 

of a solute at the particle interface. 

If D is much larger than kr (D >> kr), the interface reaction process becomes a 

rate determining step and Eq is reduced to: 

 ;0 rm CCkV
dt

dr
                                             (1.14) 
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In this case of the interface-controlled growth, the growth rate does not depend 

on the particle size. If D is much smaller than kr (D << kr), however, the diffusion 

process of a solute becomes a rate-determining step and thus: 

);( 0 r
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                                           (1.15) 

In this case, of the diffusion-controlled growth, the growth rate is inversely 

proportional to the radius of each particle. This means that large particles grow more 

slowly than small ones, which is in contrast with the interface-controlled growth, 

where the growth rate was the same regardless of the size. Therefore, the diffusion-

controlled growth has a stronger tendency to approach the monodisperse distribution 

than the interface-controlled growth. 

The variation of the radius distribution σ
2
 during growth changes with time as 

follows: 
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r  and ( r/1 ) are the mean values of r and 1/r, respectively. C0 and Cr are 

concentrations in solution and on the particle surface, respectively. 

Standard methods of control over direction of reactions and equilibriums in 

colloid chemistry are electrostatic and steric stabilization of the particle surface just 

after nucleation stage (Fig. 1.10). 

 
Fig. 1.10 Growth and stabilization of nanoparticles (Pomogailo et al., 2014) 

 

1.2.3. Formation of metal/polymer composites 
 

It should be noticed, that produced particles are not stable and tend to 

aggregate. To reduce these problems metal NPs are incorporated into polymer 

matrix forming nanocomposites (Alsawafta et al., 2011; Berret et al., 2006; Dallas et 

al., 2011; Kango et al., 2013; Knauert et al., 2007; Pomogailo et al., 2005; Prabhu et 

al., 2012; Puišo et al., 2013; Satyananda et al., 2008; Tyurin et al., 2010; Vodnik et 
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al., 2013). Nanoparticle-polymer composites are progressive functional materials 

(Chen et al., 2008; Hill et al., 2004; Vodnik et al., 2013) composed of nanoparticles 

dispersed inside of polymer matrix and covered by polymer, thus forming a skeleton 

structure. Addition of nanoparticles or other materials to the polymer matrix enables 

the modification of polymer properties (improved optical, thermal, mechanical, 

electrical, magnetic and other properties (Berret et al., 2006; Dallas et al., 2011; 

Uppenbrink et al., 1992) or sometimes implies addition of new properties to the 

polymers. With reference to Peng and Yang (2009) and Tao et al. (2008) 

investigations, the properties of polymer composites depend on type of incorporated 

nanoparticles, their size and shape, their concentration and interaction with polymer 

matrix. The main motivation for using organic coatings around nanoparticles is to 

tailor their surface chemical properties to particular applications and to protect them 

from chemically aggressive environments.  

Nanocomposite materials are defined as one-dimensional, two-dimensional, 

three-dimensional and amorphous materials, made of distinctly dissimilar 

components and mixed at the nanometer scale. Five categories cover the majority of 

composites synthesized with recent techniques being modifications or combinations 

(Pomogailo et al., 2005): 

1. An organic polymer embedded in an inorganic matrix without covalent 

bonding between the components.  

2. An organic polymer embedded in an inorganic matrix with sites of covalent 

bonding between the components. 

3. Co-formed interpenetrating networks of inorganic and organic polymers 

without covalent bonds between phases. 

4. Co-formed interpenetrating networks of inorganic and organic polymers with 

covalent bonds between phases. 

5. Non-shrinking simultaneous polymerization of inorganic and organic 

polymers. 

Nanocomposites can be produced by various methods such as sol gel 

processing (Saraidov et al., 2009), in-situ polymerization (Vodnik et al., 2009; 

Vodnik et al., 2010), particle in-situ formation (Singho et al., 2014), blending (Krstic 

et al., 2014), radiation synthesis (Chmielewski et al., 2007; Jovanovic et al., 2012; 

Jurasekova et al., 2011; Liu et al., 2009): by generating nanoparticles in a specially 

prepared polymer matrix, less often by polymerization or polycondensation of 

corresponding precursors and not much by creation of the materials in a single stage 

with simultaneous shaping of both nanoparticles and the polymer shell. In fact, these 

two completely different processes have the same kinetics including nucleation, 

growth and termination of material chains. In nanocomposites, covalent bonds, ionic 

bonds, Vander Waals forces, hydrogen bonding could exist between the polymer 

matrix and filler components (Tee et al., 2007; Vodnik et al., 2013). 

Irradiation is one of the important methods for the synthesis of metal clusters 

under ambient conditions and has important advantages as compared to the chemical 
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reduction method (Jovanovic et al., 2012; Jurasekova et al., 2011; Zhao et al., 2013). 

Radiolysis does not require the addition of reducing agents, reducing species are 

uniformly distributed in the solution; the overall process can be performed at room 

temperature. Singho et al. (2014) has shown that the successful synthesis of 

Ag/PMMA nanocomposites depends on reducing PMMA polymerization in the 

surface of silver nanoparticles. A PMMA forms an active site, which initiates 

reduced polymerization and gives rise to nanodispersion of Ag/PMMA 

nanocomposites. PMMA acts a protective agent that restricts the mobility of silver 

ions during the reaction, and the agglomeration is mostly controlled.  

The majority of metal cluster synthesis produced by the irradiation technique 

have been performed by using γ irradiation in the presence of surfactants or 

polymers acting as stabilizer of the colloidal suspension (Jovanovic et al., 2012; 

Petryayeva et al., 2011; Prosycevas et al., 2010; Willets et al., 2007). According to 

Zhao et al. (2013) the Ag nanoparticles with different morphologies can be produced 

via γ irradiation process. Increasing the γ ray dose to 36 kGy the one-dimensional 

Ag nanowires can be produced (Fig. 1.11). The growth process did not stop until all 

Ag
+
 ions are reduced completely. The length and number of one- dimensional 

structures increased with the elongation of irradiation time. 
 

 
Fig. 1.11 TEM images of the coatings irradiated in the presence of PVP with doses of 12, 16, 

24 and 36 kGy, respectively (Zhao et al., 2013) 

 

Prosyčevas et al. (2010) have shown that UV irradiation of Ag and PAMAM 

solutions lead to photosynthesis of neutral Ag atoms within PAMAM matrix (Fig. 

1.12 and Fig. 1.13). Additional irradiation of the mixture to high energy γ photons 

(
60

Co source) was responsible for clustering of silver atoms and formation of silver 

nanoparticles captured in PAMAM network producing Ag-PAMAM composite. The 
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polymer chains assumed to crosslink upon irradiation and give rise to a three-

dimensional network inhibits the aggregation and growth of nanoparticles. It has 

been shown that γ irradiation had induced changes in optical properties (redshift of 

the absorbance spectrum after irradiation) of Ag/PAMAM composites. Surface 

morphology was also changed due to irradiation, but there was almost no influence 

on the surface roughness parameters of the composite samples observed. 

(Prosycevas et al., 2007). 
 

  
Fig. 1.12 UV-VIS Absorbance spectra of Ag/PAMAM nanocomposites before and after γ 

irradiation (Prosyčevas et al., 2010) 
 

In contrary, Eisa et al. (2011) has found that increasing dose of γ-rays up to 

100 kGy the SPR blueshifts from 422 nm to 412 nm indicating formation of smaller 

particles (the average size of particles is 30 nm, which decreased to 17 nm with 

increasing irradiation dose). It is to point out that at higher irradiation doses (up to 

100 kGy), γ-rays induce chain scissions in the polymer matrix that causes the 

polymer chains relax, due to the released stresses. Therefore Ag nanoparticles start 

to move and are tending to aggregate and agglomerate in larger structures, which in 

turn reduce the absorption band intensity.  

Recently, some papers (Calinescu et al., 2014; Chmielewski et al., 2007; 

Ibrahim et al., 2009; Jurasekova et al., 2011; Molokovsky et al., 2005; Podsvirov et 

al., 2010; Prosyčevas et al., 2006; Schardein et al., 2011) have been published on the 

synthesis of metal clusters including silver nanoparticles (Ag NPs). Such synthesis 

based on electron irradiation of solutions containing metal ions and polymers (i.e. 

PVA, PEG, etc.) as stabilizers (Kango et al., 2013; Puiso et al., 2008; Rao et al., 

2011). For example, Calinescu et al. (2014) explored the synthesis of Ag NPs using 

EB irradiation. Two different dose rates of 2 kGy/min and 7-8 kGy/s respectively 

were applied. According to the results of the performed UV-VIS investigation it was 

found, that at low dose rates the formation of Ag nanoparticles is prevailing as well 

as in the case of high dose rate irradiation formation of Ag nanoclusters is prioritary. 

Polymers are considered a good host for inorganic nanoparticles. Since the 

main idea of this part of the overview is to show the applicability of high energy 
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photons and electrons for the formation of nanostructured materials/nanocomposites, 

behavior of polymers under radiation exposure shall not be overseen. 

 
Fig. 1.13 AFM images of polymers and nanocomposites: a – 2.5 % PMMA; b – 2.5 % 

PMMA{(Ag0)PAMAM}0.1 before γ irradiation; c – 2.5 % PMMA{(Ag0)PAMAM}0.1 after 

γ irradiation; d – 2.5 % PC; e – 2.5%PC{(Ag0)PAMAM}0.05 before γ irradiation; f – 

2.5%PC{(Ag0)PAMAM}0.05 after γ irradiation (Prosyčevas et al., 2010) 

 

Summary. Possible modification of polymers due to their irradiation, if 

managed, may contribute to the formation of metal-polymer composites 

characterized by specific structures with distinguished features. Most of the methods 

applied for the production of metal-polymer nanocomposites are in the development 

stage. There are still some unsolved problems concerning the stability and 

aggregation of nanoparticles, control of crystal growth, and morphology, size and 

particle distribution within polymer matrix. Also some difficulties occur in the 

management of the synthesis processes as in the case of the radiolysis technique. 

Surface modification can improve the intrinsic characteristics of nanoparticles and 
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allow the fabrication of nanocomposites and other nanostructured systems also 

inexistent in nature (Vodnik et al., 2013; Uppenbrink et al., 1992). This might be 

achieved combining radiation effects in materials induced by UV exposure, electron, 

ion, and gamma and X-ray irradiation. However, there is a lack of information about 

combining the two complementary radiation methods for synthesis of nanomaterials. 

Application of two consequently following radiation synthesis methods would be of 

advantage creating nanostructured materials with new appealing properties.   

 

1.2.4. Formation of W-Co nanoparticles 
 

The origin of sonochemical method is the phenomenon of acoustic cavitation. 

Acoustical energy is mechanical energy - molecules do not absorb it. Ultrasound is 

transmitted through a medium via pressure waves by inducing vibrational motion of 

the molecules that alternately compress and stretch the molecular structure of the 

medium due to a time-varying pressure. Therefore, the distances among the 

molecules vary as the molecules oscillate around their mean position. If the intensity 

of ultrasound is increasing, a point is reached at which the intramolecular forces are 

not able to hold the molecular structure intact (Pacheco et al., 2014). Consequently, 

it breaks down and a cavity is formed. This cavity is called cavitation bubble as this 

process is called cavitation and the point where it starts cavitation threshold 

(Pacheco et al., 2014). A bubble responds to the sound field by expanding and 

contracting, i.e. it is excited by a time-varying pressure. Two forms of cavitation are 

known: stable and transient. Stable cavitation means that the bubbles oscillate 

around their equilibrium position over several refraction/compression cycles. While 

transient cavitation, the bubbles grow over one (sometimes two or three) acoustic 

cycles to double their initial size and finally collapse violently. The size, life time 

and fate of a cavitation bubble depend on frequency, acoustic pressure, solvent, 

bubble gas, temperature. Continuous ultrasound is responsible for formation of 

cavitation in the deposit due to explosive collapsing of hydrogen bubbles. Cavitation 

results in detachment of particles from electrode and their dispersion in the solution. 

As it was mentioned above there are a lot of various methods of producing 

metal nanoparticles including radiation methods (Yen et al., 1999), thermal 

decomposition (Kim et al., 2006), vapor deposition (Ponce et al., 2005), reduction in 

micro emulsions (Haram et al., 1996) and chemical reduction methods (Athawale et 

al., 2005). However most of these methods are relatively expensive and time-

consuming. An alternative simple, fast and cost effective method is the 

sonoelectrochemical deposition. Electrodeposition is a process of electrochemical 

deposition of solid materials on an electrode surface using electrolysis via electrons 

transfer from work electrode for metallic ions reduction in solution (Garcia et al., 

2013). In practice it is difficult to synthesize tungsten nanoparticles and for this 

purpose induced co-deposition is used to enhance the reaction rate in 

electrochemical processes and produce metal nanoparticles with high productivity in 

spite of its simple operations. Such method used to supersonically agitate the 
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aggregates nucleated through electrolysis timely off the cathode and to disperse 

them into electrolyte. Due to the chemical reaction and the effect of electrical 

current for electrolysis, the main reactions occur in the electrolyte and at the cathode 

and anode as follows, respectively (Garcia et al., 2013): 

)()( s
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aq MneM   ;                                            (1.18) 

)(2)( 22 gaq HeH   ;                                            (1.19) 

Due to electrons transfer from work electrode for metallic ions in solution, 

there is a relation between the current and the overpotential for the electrodeposition, 

given by Eq. (1.20) (Garcia et al., 2013): 
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where F - Faraday's constant, k - constant, C - concentration of metal ions in 

solution, α corresponds to a coefficient of symmetry (near 0.5), η corresponds to 

overpotential, R - the ideal gas constant; T - the absolute temperature, in Kelvin.  

There is an exponential dependence between the current and applied 

overpotential. It is clearly seen, that with increasing of overpotential, the ionic 

current that electrolyte can supply is limited by the other processes as such material 

transport or electrical conductivity (Garcia et al., 2013). Through Coulomb's law the 

relation of thickness with the charge density can be obtained by Eq.:  

nF

Mq
d   ;                                                      (1.21) 

where M - molecular weight, q - charge density, n - charge of metal ions, ρ - the 

density. 

The sonoelectrochemical effects are explained on the base of different physical 

mechanisms such as acoustic streaming, microstreaming and turbulence due to 

cavitation, and formation of microjets in the course of collapse of cavitation bubbles 

(Klima, 2011). 

The main advantage of pulsed ultrasound assisted electrolysis method is that 

the electrochemically deposited nanoparticle’s shape and dimensions can be adjusted 

by changing the electrolyte composition and pH value, by changing electrolysis 

temperature, by varying current density and ultrasonic power, by synchronizing the 

current pulse duration, the operation and relaxation time of ultrasonic pulse 

(Gedanken, 2004; Saez et al., 2009).  

Continuous ultrasound is another way to get the nanoparticles (Fig. 1.14). The 

formation of nanoparticles, their binding to the nanoclusters run continuously 

compared with pulsed sonoelectrodeposition. As it mentioned above the growth of 

nanoparticles up to its maximum size is followed by decomposition into smaller 

nanoparticles and the reaction is repeated again and again until the ultrasound is 

switched off. In this way it is possible to get the desired size of nanoparticles or 

nanoclusters. The products are sometimes nanoamorphous particles, and in other 
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cases, nanocrystalline depending on technological (experimental) conditions 

(Gedanken, 2004; Saez et al., 2009; Tsyntsaru et al., 2013). 

 
Fig. 1.14 Mechanism of ultrasonic agitation (Birkin et al., 2005) 

 

It is well-known (Delphine et al., 2003; Klima, 2011; Tsyntsaru et al., 2012; 

Tsyntsaru et al., 2013) that co-deposition method might be applied for the formation 

of tungsten nanoparticles. However electrodeposition of pure tungsten is requires 

special technological conditions: it might be deposited from the corresponding salt 

melts at a high temperature and at large cathode current densities (Abdel Hamid, 

2003; Subramanian et al., 2002; Vasauskas et al., 2008). This limits availability of 

pure tungsten NPs. Nevertheless, in some cases it is possible to replace pure 

tungsten NPs by tungsten/alloy nanoparticles characterized by their own features 

however exhibiting some similarities to W nanoparticles. A lot of information could 

be found about tungsten/metal alloy electrodeposition from the aqueous solutions 

containing salts of iron group metals (Fe, Co, Ni) (Abdel Hamid, 2003; Gedanken, 

2004; Haram et al., 1996; Saez et al., 2009; Subramanian et al., 2002; Tsyntsaru et 

al., 2012). The essence of these models is that at first reduction of the tungstate (VI) 

ion to tungsten (IV) oxide and other complex oxygen compounds of various 

compositions occur. When the nodules of crystallites of iron group metals are 

formed on the surface of the electrode the tungsten oxide and their complexes easy 

reduce to metallic tungsten. Thus, electrochemically deposited tungsten form alloys 

with Fe, Co or Ni (Dontez et al., 2003; Subramanian et al., 2002).  

Electrodeposited tungsten-rich alloys of iron group metals are of interest for 

various applications (Gedanken, 2004; Saez et al., 2009). So electrodeposited 

tungsten alloys possess a good wear resistance competing with chromium, a 

mechanical durability (Tsyntsaru et al., 2013), a premium hardness (Vasauskas et 

al., 2008), a smooth surface (Birkin et al., 2005; Yen et al., 1999), soft magnetic 

properties (Tsyntsaru et al., 2013), and a reasonable corrosion resistance (Gedanken, 

2004; Saez et al., 2009; Tsyntsaru et al., 2013). The structure of the tungsten-based 

alloys depends on the electrodeposition conditions, and ranges from a crystalline one 

down to a nano-crystalline one (Gedanken, 2004; Saez et al., 2009). The current 

efficiency and the composition of the electrodeposited tungsten alloys are strongly 

affected by the pH of the electrolytes (Gonzalez-Garcia et al., 2010; Klima, 2011; 

Tsyntsaru et al., 2012; Walton et al., 2002). Due to hydrogen evolution that takes 

place during the electrodeposition of tungsten alloys, the pH near the electrode 
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increases which can cause nonuniform tungsten content along the thickness of 

electrodeposited coatings. This effect can be avoided by using electrolytes 

possessing a sufficient buffer capacity that is achieved by the addition of ammonia 

or ammonium salts (Dontez et al., 2003; Subramanian et al., 2002), but the presence 

of ammonia is not critical to achieve high electrodeposition rates of W-Co in 

contrast to Ni-alloys. Thus, non-volatile citrate electrolytes containing boric acid as 

a buffering agent for Co alloy electrodeposition are appealing for long-term 

electrodeposition at higher temperatures. It is known, that electrodeposition can be 

carried out both in direct (DC) and pulse (PC) current modes. Consequently, 

tungsten - nickel (W-Ni) and tungsten - cobalt (W-Co) alloys are especially 

interesting due to their unique combination of tribological, specific magnetic, 

electrical, mechanical, thermal and corrosion resistance properties (Indyka et al., 

2014; Tsyntsaru et al., 2013). These alloys exhibit good mechanical properties (e.g., 

high tensile strength and premium hardness, as well as superior abrasion resistance), 

good corrosion resistance in different aqueous media, high melting temperature and 

anisotropic magnetic properties. To improve the tribological properties and thermal 

stability of tungsten alloys, it is sometimes eligible to increase tungsten content in 

the coating. Unfortunately, this is difficult, even when theWO4
2−

 ion in solution is in 

large excess compared to the Ni
2+

 ion. It possible to increase the tungsten 

concentration in the alloy by removing the ammonia (NH3) from the bath and using 

citrate (C6H5O7)
3−

 as a ligand, the tungsten content of the alloy may be increased up 

to 50 at. % (76 wt. %).  

Hoshino et al. (2005) as well as Karami and Mohammadzadeh (2010) 

synthesized cobalt nanowires by constant current electrosynthesis method in cobalt 

ions solution. The obtained results indicated that pulsed sonochemical method can 

be used as a reliable and controllable method of producing the cobalt nanorods. 

Ultrasonication causes the decrease of diameter and increases the lengths of 

nanorods. Pulse time, relaxation time, pulse height, synthesis temperature, pH, 

structure additive and ultrasonic irradiation are the most important parameters 

affecting the morphology, particles sizes and phase compositions of cathode 

products (Birkin et al., 2005; Hoshino et al., 2005; Indyka et al., 2014; Karami et al., 

2010; Tsyntsaru et al., 2013; Walton et al., 2002). The low pulse height is 

responsible of producing small and uniform nanoparticles due to slow nucleation 

rate that is lower than particle growth rate as well as the high pulse height causes the 

producing of big nanoparticles, which are nonuniform and agglomerated. Hence, 

when the electrosynthesis was performed at temperature ~ 45 °C and lower, the 

synthesis was slow, due to this the prepared samples were amorphous and 

agglomerated. At temperatures higher than 45 °C, the synthesis rate is fast, 

amorphous percent of samples is increased due to high reaction rate, and the 

nucleation and particle growth processes are not controllable. At 45 °C and lower, 

pure metallic cobalt can be synthesized. At high temperature (70 ° and more), cobalt 

will be formed in oxide forms such CoO, Co2O3 and CoO2. Based on the results, the 
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metallic cobalt content of samples is decreased when the synthesis temperature is 

increased from 45 °C up to 70 °C and more. 

Cobalt tungsten alloys with tungsten content to 30% by weight are 

ferromagnetic. Abdel Hamid (2003) studied the optimal conditions for cobalt 

tungsten alloy electrodeposition process, such as temperature, current density, 

concentration of metal ions or surfactants, the morphology of alloy surfaces, their 

microhardness and resistance to corrosion. He observed that adding tungsten to 

cobalt resulted in smoothening of the coating. With tungsten content ranging from 3 

to 10% by weight, the alloy had a fine-grained structure, whereas when tungsten 

content increased to 15% by weight, the structure of the alloy was fibrous with even 

finer grains. At high current densities, the percentage content of tungsten decreased, 

whereas increased bath temperature resulted in higher content of tungsten in the 

alloy. Tsyntsaru et al. (2013) and Vasauskas et al. (2008) studied the mechanical 

strength and corrosion resistance of cobalt tungsten alloys. They observed that 

heating the alloys increased their mechanical strength, but decreased their corrosion 

resistance and tribological properties. The mechanical strength of cobalt tungsten 

alloys was also studied by Weston et al. (2013). They checked the tear and wear rate 

of cobalt, chromium and cobalt tungsten alloy coatings according to the loads 

applied. They concluded that cobalt tungsten alloys demonstrate very good 

mechanical strength and hardness. They observed a significant influence of the 

current density, morphology and hardness of the coatings. Moreover, the tribological 

properties of the coatings were found to be greatly dependent on their grain size, 

microhardness, surface morphologies and composition. Tsyntsaru et al. (2013) 

demonstrated that higher tungsten content in cobalt tungsten alloys improved their 

corrosion resistance.  

 
Fig. 1.15 Mapping chart correlating intrinsic and extrinsic properties of Co–W coatings 

(Tsyntsaru et al., 2013) 
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Tsyntsaru et al. (2012, 2013) obtained nanocrystalline Co–W coatings with 13 

– 36 at. % W from citrate–borate electrolyte under DC and PC plating conditions at 

pH 5, 6.7 and 8. A crystalline structure was obtained when the tungsten content is in 

the range of 13 to 20.8 at. % W. Investigated coatings presented a mixture of two 

crystalline phases: W solid solution in hcp Co and a small quantity of Co with fcc 

structure. When the quantity of W exceeds 21 – 22 at. % the lattice constants of hcp 

Co gain values characteristic of Co3W (Fig. 1.15.).   

The increased content of tungsten in alloys results in the grain size decrease. 

The grain size depends rather on the tungsten content than on the electrodeposition 

conditions (Tsyntsaru et al., 2013).  

Summary. A majority of analysis and studies of the W-Co alloy nanoparticles, 

are due to protect surfaces against mechanical, chemical impact, but the W-Co 

nanoparticles embedded in a polymer matrix, could create a polymer nanocomposite 

This is an innovation in this scientific area. There is lack information on similar 

research. In polymer nanocomposites W-Co nanoparticles could replace the lead, 

which is toxic and hazardous. W-Co NPs stop ionizing radiation the same as the lead 

stops (Adliene et al., 2015). Thus, the W-Co polymer composites could be adapted 

for protection against ionizing radiation. 
 

1.3. Carbons 
 

When investigating nanostructured materials, special attention shall be paid to 

carbons that are able to form materials ranging from crystals to amorphous and 

polymer-like materials in which formation of nanostructures may take place leading 

to occurrence of nanostructured materials having similar structure as polymer 

nanocomposites have.  

 

1.3.1. Classification 
 

Carbon is a fascinating chemical element that exists in more than 90 % of all 

known chemical materials. The interest for carbon based materials remains high 

over the years. These materials, especially amorphous ones, having no dominant 

crystalline lattice structure exhibit outstanding mechanical, optical, electrical and 

chemical properties (Chu et al., 2006; Godet et al., 1998; Grill, 1999; Lifshitz, 1998; 

Mahalik et al., 2011; Robertson, 2002) as well as advantageous tribological 

properties (Santra et al., 2010; Santra et al., 2011). These materials usually compose 

a blend of graphite and diamond microstructures and thus contain properties of the 

two. Amorphous carbon films obtained in different forms of matrices and are 

generally doped with a large amount of hydrogen thus making the materials more 

different. Generally chemical bonds in amorphous carbon are sp
3
, sp

2
 and to less 

extent sp
1
 hybridizations (Fig. 1.16).  
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Fig. 1.16 Carbon hybridization forms (Jakubienė, 2009) 

 

The sp
2
 hybridized carbon represents a graphite structure where carbon atom 

has three sp
2
 orbitals forming three σ bonds and the remaining p orbital forms a π 

bond. sp
3
 hybridized carbon represents diamond structure where carbon atom has 

four sp
3
 orbitals making a strong σ bond to the neighboring atom. The three σ bonds 

and π bond usually create a ring plane in sp
2
 clusters. Depending on the 

hybridization, carbon can form structures of various geometries with different 

fractions of sp
3
 and sp

2
 bonding in both crystalline and non-crystalline forms. 

Diamond and graphite are the crystalline forms of carbon (Casari et al., 2008; Fang, 

2009; Jakubienė, 2009).  

Glassy carbon, DLC, carbon fibers and others are the noncrystalline forms of 

carbon, which are amorphous containing a mixture of sp
3
 and sp

2
 bonded carbon and 

has the properties between diamond and graphite. Amorphous carbon consists of 

mixture of sp
3
 and sp

2
 carbon structures interconnected in different ways, having or 

not sp
2
 bonded graphite-like clusters embedded in an amorphous sp

3
 bonded carbon 

matrix (Table 1.2) (Ferrary et al., 2004).  
 

Table 1.2 Comparison of diamond, diamond like carbon and graphite (Casiraghi et 

al., 2007) 
 Diamond Diamond like carbon Graphite 

Structure 

 
Crystalline  

(sp3 bondings) 

 
Amorphous (sp3  

and sp2 bondings) 

 
Crystalline  

(sp2 bondings) 

Constitutive 

element 
C C-H C 

Process 
PECVD (nonequilibrium 

plasma) 

PECVD, Ion plating, etc. 

(nonequilibrium plasma) 

CVD (equilibrium 

plasma) 

Reactive gas 
CnHm and H2 

CH4:H2 = 1:100 

CnHm or CVapor 

CH4; C2H2; C6H6 and etc. 
CnHm 

Processing 

temperature 
~700 °C RT ~300 °C >1500 °C 
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Even nanocrystalline graphite and diamond structures can be observed when 

the sizes of sp
2
 and sp

3
 clusters become large enough. It should be taken into account 

that clusters may be produced by fusing double bonds and rings (Buijnsters et al., 

2012): due to annealing, irradiation (Godet et al., 1998; Mahalik et al., 2011; Santra 

et al., 2010) or as as-deposited under a high temperature (Santra et al., 2011; Yadav 

et al., 2009). Generally, amorphous carbons contain significant quantities of 

hydrogen. Hydrogen appears to play a very significant role (Ferrary, 2002; Lackner 

et al., 2009; Robertson, 2002) since it can increase the fraction of C–C sp
3
 and C–H 

bonds. 

Raman spectroscopy (RS) is widely used for the characterization of the carbon 

films (Casiraghi et al., 2007; Ferrary, 2002; Yadav et al., 2009). It has been found 

that a-C:H films have a broad asymmetrical peak in the 1100 – 1700 cm
−1

 range and 

it may have two shoulders at 1570 and 1350 cm
−1

 (Fig. 1.17). Both these peaks are 

due to sp
2
 sites. The effect of sp

3
 sites is mainly via their influence on the sp

2
 

configuration. Changes in the G peak position and width are associated with changes 

of the disorder level in the sp
2
-bonded fraction of a-C:H. The D peak position and 

intensity correlates with the fraction of sp
3
-bonded carbon. The D and G peak 

intensity ratio ID/IG is associated with the sp
3
/sp

2
 bonding ratio and the size of 

graphite clusters (Ferrary, 2002; Robertson, 2002). 

 
Fig. 1.17 Raman spectra characterization of carbon films (Robertson, 2002) 

 

Depending on the sp
3
 content, H content and based on the main binding 

framework carbon films can be classified as (Casiraghi et al., 2007; Ferrary, 2002; 

Godet et al., 1998; Grill, 1999; Lifshitz, 1998; Robertson, 2002):  

1. a-C:H films with the highest H content (40 – 70 %) called polymer-like a-C:H 

(PLC). Their band gap ranges from 2 to 4 eV. These films can have up to 70 % 

sp
3
, but, most of the sp

3
 bonds are hydrogen terminated and these materials are 

soft and have low density. These films are usually deposited by plasma-

enhanced chemical vapor deposition (PECVD) at low bias voltage. 

2.  a-C:H films with intermediate H content (20 – 40 %), called diamond-like a-

C:H (DLC). Their band gap ranges from 1 to 2 eV. Actually if these films have 

lower sp
3
 content, they form more C–C sp

3
 bonds than PLC. Therefore, they 
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have better mechanical properties. These films are usually deposited by 

PECVD, or electron cyclotron resonance, or reactive sputtering at moderate 

bias voltage. 

3. a-C:H with low H content (less than 20 %), called graphite-like a-C:H (GLC). 

Their band gap is under 1 eV. They have a high sp
2
 content and sp

2
 clustering. 

These films are usually deposited by PECVD at high bias or by magnetron 

sputtering. 

4. Hydrogenated tetrahedral amorphous carbon films (ta-C:H). ta-C:H films are a 

class of DLC for which the C–C sp
3
 content can be increased while keeping a 

fixed H content. However, the ta-C:H films with the highest sp
3
 content (~ 70 

%) and ~ 25 atm. % H content do really fall in a different category. Their 

optical gap can reach 2.4 eV. These films are deposited by high-density 

plasma sources such as electron cyclotron wave resonance and plasma beams. 

The ternary diagram proposed by Robertson (2002) and Ferrary (2004) 

illustrates the specific domains of various carbon-based coatings with respect to their 

sp
2
 and sp

3
 type bonding characteristic and hydrogen content, but it does not include 

quantitative aspect of carbon form evaluation that might lead to some confusion 

identifying a-C:H coatings. To identify which of the carbon forms is on a particular 

coating, the fraction of hydrogen and the fraction of sp
3
 bonded carbon atoms (not 

graphite) must be measured. Knowing those two numbers enables a user to plot the 

"location" of the coating on the VDI-map (Fig. 1.18) (VDI, 2012). The closer to the 

upper left corner that a material plots, the better (and more) pure is the DLC. 

 
Fig. 1.18 VDI-map of diamond like carbon coatings (VDI, 2012) 

 

According to VDI standard (2012) the bond types have a considerable 

influence on the material properties of amorphous carbon films. If the sp
2
 type is 

dominant the film will be soft, if the sp
3
 type is dominant the film will be hard. The 

fractional content of hydrogen is a second factor of quality. Some of the production 

methods involve hydrogen as a catalyst, due to this, the considerable percentage of 

hydrogen can remain in the finished DLC material. It is notable, that soft plastics are 
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made from carbon that is bonded purely by the diamond like sp
3
 bonds, but also 

includes chemically bonded hydrogen; it is not surprising to learn that fractions of 

hydrogen remaining in DLC films degrade them almost as much as do residues of 

sp
2
 bonded carbon (Ferrary, 2004; Robertson, 2002; VDI, 2012). 

a-C:H films that have a large H content (40 – 70 %) and low density are called 

polymer-like a-C:H (PLC) or soft a-C:H and consist of an amorphous matrix with 

carbon clusters and crystallites in it (Ferrary, 2004; Robertson, 2002; Oliveira et al., 

2012; VDI, 2012). The existence of polymeric a-C:H films that are free of 

nanocrystalline diamond has been also experimentally approved (Buijnsters et al., 

2012; Chu et al., 2006; Saito et al., 2000; Yadav et al., 2009). DLC/PLC films 

provoke huge research interest: they exhibit special optical absorption, intense 

photoluminescence and electron affinity, are highly flexible to wide range of 

different modifications due to the high hydrogen content (Chu et al., 2006; Grill, 

1999; Lifshitz, 1998). PLC coatings demonstrate features of polymeric micro- and 

nanostructured materials (Fig. 1.19) and are applicable as dielectric and optical 

coatings that inhibit corrosion and may protect surfaces of micro electromechanical 

and electronic devices (MEMS) in harsh chemical environment and to some extent 

also in radiation harsh environment (Luo et al., 2007).  

 
Fig. 1.19 3D AFM images of DLC and PLC films deposited by PECVD on silicon (Oliveira 

et al., 2012) 

 

Fig. 1.19 shows AFM images of DLC and PLC a-C:H films deposited 

(PECVD method) on silicon substrate varying deposition parameters. Different 

surface morphology of coatings was observed: an irregular morphology, including 

rounded grains with different sizes and nucleation shapes, was present on the surface 

of the PLC films. DLC films presented rough and more structured surface indicating 

formation of needle like micro-structures. Thus, the PLC and DLC phases showed 

different surface morphologies due to variations in the deposition parameters 

(Oliveira et al., 2012).  

According to Robertson (2002) and Saito et al. (2000) the most properties of a 

PLC films depend on the hydrogen concentrations, formation of sp
2
 and sp

3
 bonds in 

the coating, sp
2
/sp

3
 ratio and the concentrations of C±Hn groups. Their 

concentrations decrease with decreasing gas ratio due to the etching effect of 
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hydrogen (Saito et al., 2000). These parameters are controlled when relevant 

deposition method and process parameters are chosen. A special attention shall be 

paid to the coating deposition temperature, since it affects structural and some 

mechanical properties of synthesized coatings (Mahalik et al., 2011; Plaipaite–

Nalivaiko et al., 2013; Santra et al., 2011). Mechanical properties of a-C:H films are 

defined by sp
3
 bonds. Hydrogen can affect mechanical properties of the coatings due 

to the decreased content of sp
3
 bonds (Godet et al., 1998; Grill, 1999; Lifshitz, 1998; 

Robertson, 2002). Electrical and optical properties of PLC films depend upon sp
2
 

bonds. PLC films are characterized by a wide optical band gap (1.8 – 4 eV) (Ferrary, 

2002; Ferrary, 2004; Robertson, 2002), which decreases with growing cluster size or 

sp
2
 distortion.  

Various deposition methods (ion beam deposition (Aisenberg et al., 1972; 

Schwarz et al., 2009), pulsed laser deposition (Eskusson et al., 2009), plasma-

enhanced CVD, plasma-assisted CVD (Lackner et al., 2009; Oliveira et al., 2012; 

Santra et al., 2010), and etc.) are used to produce PLC films from different gas 

sources: acetylene, methane, benzene and others at low bias voltage. The properties 

of precipitated coatings depend on the chosen deposition method, initial gas mixture 

content, admixing additives, fabrication conditions or technological parameters. 

Among many CVD methods plasma enhanced chemical vapor deposition (PECVD) 

process is very efficient method to produce homogeneous organic thin films on large 

area substrates and offers good control over the film properties (Kim et al., 2004). 

The plasma-enhanced chemical vapor deposition (PECVD) method is the one of few 

methods, that can produce hydrogenated amorphous carbon (a-C:H) coatings/films 

from gaseous hydrocarbons. The properties of plasma deposited a-C:H films are 

strongly affected by kinetic energy of ions bombarding the growing film surface 

(Novikov et al., 1997). Depending on the chosen pressure and gas mixture at low 

bias voltage precipitated coatings have a large H and C–H sp
3
 content and low 

density, also C–C sp
2
 sites form small clusters that tend to be olefinic.  

Due to the unique structure of amorphous carbons it is possible to modify their 

properties applying different methods (Adlienė et al., 2008; Grigonis et al., 2011; 

Marcinauskas et al., 2012). Modification of a-C:H coatings with high energy 

photons, ions and electrons shall be also considered (Adlienė et al., 2008, 2010; Imai 

et al., 2014). Taking into account that at least highly hydrogenated a-C:H have a 

structure which is similar to that of polymers, unique properties of irradiated 

materials can be achieved due to radiation induced polymerization, cross-linking and 

modification of polymeric structures (Marcinauskas et al., 2012; Plaipaite–Nalivaiko 

et al., 2013). High irradiation doses (at least of kGy range) are applied for polymer 

modification in most industrial applications (Makuuchi and Cheng, 2012), however 

it is also known (Adlienė et al., 2010; Imai et al., 2014) that low dose irradiation 

induced polymerization is also possible. Possible rearrangement of carbon network 

upon its interaction with high energy photons and electrons is one of the attractive 

features of PLC coatings since radiation may induce nanoclusterization within 
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polymeric matrix and lead to the formation of new structures characterized by the 

new properties (Makuuchi et al., 2012; Šniurevičiūtė et al., 2009).  

Imai et al. (2014) has found that the irradiation of PLC films with X-rays lead 

to the hydrogen desorption and surface etching proportional to irradiation dose. 

These changes resulted in decreased surface roughness and increased hardness of the 

irradiated films. Similar results for a-C:H were firstly provided by Adlienė et al. 

(Adlienė et al., 2008; Adlienė et al., 2010). According to these investigations it was 

found that the surface of the irradiated films became smoother as compared to not 

irradiated films (Fig. 1.20). It was also shown that some rearrangements in carbon 

bonding network due to hydrogen release from material were present that resulted in 

increased refractive index and hardness. Experimental findings regarding structural 

changes in films are also supported by the theoretical calculations (Adlienė et al., 

2008) that explain formation (due to induced radiation defects) and desorption of 

hydrogen H2 from the coating. Recently it was shown that X-ray irradiation is 

responsible for the increased film density and refractive index (Imai et al., 2014).  

 
Fig. 1.20 Surface morphology of the a-C:H film: a) before irradiation, b) after high energy 

X-ray irradiation (Šniurevičiūtė et al., 2009) 

 

Investigation of stress and strain in the amorphous a-C:H was dependent on 

film deposition time and their structural organization. Additional stress induced by 

high-energy (12 MeV) electron beam bombardment of DLC coatings was higher in 

the films with non-uniform structure. Radiation induced changes of the sp
3
/sp

2
 ratio 

and hydrogen content are most likely responsible for the changes of the residual 

stress in irradiated films. Competing stress relaxation processes present after the 

rearrangements in the film structure due to the irradiation with higher doses could be 

possible (Šniurevičiūtė et al., 2009). 

Novikov et al. (1997) have investigated that bombardment of PLC film with 

ions may lead to film hardening which might be assessed when analyzing hysteresis 

loop of irradiated coating (Fig. 1.21). Formation of hysteresis loop is typical for 

polymers and is caused by their viscoelastic behavior when deformed. It has been 

found that the mechanical properties of a-C:H films are strongly dependent on the 

pressure in the reactor. When the pressure decreases the nanohardness and wear 

resistance increases. Load displacement curves for polymer-like a-C:H film 

hardened by ion bombardment and without hardening are provided in Fig. 1.25. 

High elastic recovery of the indent depth after load removal is observed in PLC 
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films bombarded by ions. The work, carried out on indenter penetration, is spent 

mainly for elastic deformation of the coating in and around the indent. This curve 

differs from load displacement curve constructed for initial polymer-like a-C:H film. 
 

 
Fig. 1.21 On the left: Load displacement curve for polymer-like a-C:H film hardened by ion 

bombardment. On the right: Load displacement curve for initial polymer-like a-C:H film 

(Novikov et al., 1997) 

 

The accelerated electrons bombardment induced grafting and crosslinking of 

polymeric structure of PLC films (Makuuchi et al., 2012; Novikov et al., 1997). 

Some recent studies (Casari et al., 2008; Makuuchi et al., 2012; Santra et al., 2011) 

have disclosed that the application of the multifunctional monomers in irradiation 

resulting in the shorter irradiation time and the lower dose. Also, the improved 

physico-mechanical characteristics accelerated ageing resistance and fastness to 

chemicals and a minimization of macromolecular chain splitting reaction. 

Summary. A lot of investigations regarding modification of a-C:H coating 

properties by high energy photons and especially electrons have been reported, 

however it is to notice, that the low irradiation dose and low dose rate induced 

effects in polymer like carbon coatings are still not fully understood and disclosed in 

details. Taking into account that PLC have polymeric structure and there are 

graphite (sp
2
 phase) clusters present within polymer matrix, it is to expect that upon 

radiation PLC will obtain a broad spectra of different features that are characteristic 

to irradiated polymeric composites. 

  

1.4. Radiation interaction with material 
 

1.4.1. Radiation enhanced synthesis processes (radiolysis) 
 

Irradiation is one of the important methods for the synthesis of metal clusters 

under ambient conditions and has important advantages as compared to the chemical 

reduction method (Chmielewski et al., 2007). It does not require the addition of 

reducing agents, reducing species are uniformly distributed in the solution; the 

overall process can be performed at room temperature. 

The radiolysis does not require the addition of reducing agents because the 

metal reduction is performed by radical species formed after interaction of ionizing 
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radiation with the solvent (Biswal et al., 2013). In fact, the interaction of high-

energy radiation with a solution of metal ions induces ionization and excitation of 

the solvent, and leads to the formation of radiolytic species (Eq. (2.18)). In 

particular, the solvated electron eaq
-
, and hydrogen atom, 

•
H, produced by radiolysis 

of water, are strong reducing agents capable to reduce metal ions to lower valences 

and finally to metal atoms (Calinescu et al., 2014; Jovanovič et al., 2012; Liu et al., 

2009). 

HOHeOH aq

 2
                                      (2.18) 

Radiation enhanced synthesis processes were analyzed in order to prove the 

applicability of high energy irradiation and its effectiveness in producing of silver 

NPs within host substrate (Saion et al., 2013). However before starting this analysis 

it is necessary to distinguish between physical processes that are present due to 

electron and photon interaction with materials, taking also into account that the 

particle penetration depth and energy transfer processes are different (Fig. 1.22, Fig. 

1.23). 

 

 
A B 

Fig. 1.22 Illustration of different processes induced in material by penetrating ionizing 

radiation. A - illustration of gamma or X-ray photons induced processes in material; 1-

gamma or X-ray photons; 2-Compton electrons; 3-secondary electrons; 4-irradiated medium; 

B - illustration of electron induced processes in material; 1-electron beam (primary 

electrons); 2-depth of penetration; 3-secondary electrons; 4-irradiated medium (Drobny, 

2012) 

  
                  A B 

Fig. 1.23 Penetration depth of radiation. A – gamma or X-rays; B – electrons. Adapted from 

(Drobny, 2012) 
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1.4.2. High energy electron interaction with material  
 

The electron is ejected and atom is ionized when the energy transferred to the 

irradiated material is higher than of a particular orbital electron. If the energy is not 

high enough for ionization, the electron emerges in upper energy level, resulting in 

excitation. The main parameter describing energy transfer to the target is the 

stopping or mass stopping power, which might result in production of the secondary 

(ejected) electrons within limited depth (collision stopping power), or production of 

the secondary X-ray radiation (radiation stopping power). For light charged particles 

like electrons are, Scol > Srad for the energies < 10 MeV. Ionization might also be 

responsible for the breaking of chemical bonds in materials that lead to formation of 

new nanostructures. Generally, the changes in a material depend on the amount of 

absorbed energy, which in turn, is related to radiation dose and dose rate. 

 
Fig. 1.24 High energy electron interaction with matter (Drobny, 2012) 

 

When the high energy electrons enter the material, they lose their energy as a 

result of a large number of interactions, each with only a small energy loss (Drobny, 

2012; Pomogailo et al., 2005). The interactions with atomic electrons result in 

production of excited atoms or molecules and ionization. Contrarily, the interactions 

with atomic nuclei result in production of X-rays (Bremsstrahlung) (Drobny, 2012; 

Pomogailo et al., 2005). Energy transfer during interaction of high-energy electrons 

with organic matter (Fig. 1.24) results in: 

1. Ionization, which occurs when energy transferred is higher than the bonding 

energy of the bond electron:  

;  eABAB  

2. Excitation, when  electron from the ground state moves to the excited state: 

; ABAB   

3. Low energy electron capture by atoms or molecules: 

;  ABeAB     

4. Dissociation of ionized or excited molecules into free radicals and radical ions:  

;,,   BAABBAABBAAB             
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Newly formed free radicals may initiate polymerization, cross-linking, backbone or 

side-chain scissions, structural rearrangements in polymers or participate in 

chemical reactions resulting in change in the properties of materials.  

 

1.4.3. Photon irradiation  
 

Interaction of γ-radiation with matter is of electromagnetic nature so the 

physical mechanism of such interaction differs from that of charged particles 

(Kharisov and Kharissova, 2013). Photon interaction processes are of probabilistic 

origin and depend on photon energy and atomic number of target material. The 

relative importance of the photon interaction processes are presented in Fig. 1.25. 

 
Fig. 1.25 The relative importance of various processes of photon interaction with matter 

(Kharisov and Kharissova, 2013) 

 

The γ-rays emitted from the decaying atoms (discrete energy) and artificially 

in X-ray tubes generated X-rays (broad energy spectrum), participate in ionization of 

irradiated material mainly through secondary electrons.  

The main processes of high energy photon interaction with matter are: 

 Photoelectric effect, which is based on liberation of bond electron when it 

absorbs sufficient energy transferred by photon. 

 Compton scattering, which is based on partial energy transfer from photon to 

electron that results in scattered photon of lower energy and recoil electron. 

 Electron-positron pair production, which is based on creation of electron and 

positron pair when high energy photon interacts with nucleus.   

The passage of a high energy photon through matter stimulates a complex 

cascade of processes that result in the dissipation of the primary energy, eventually 

as thermal energy and chemical reactions. If the energy of photons is relatively low 

two most important energy loss processes are observed: Compton scattering and 

photoelectric effect. In the case of Compton scattering photon interacts with an 

electron resulting in ejection of the electron and deflection of the photon with 

reduced energy. The probability of Compton scattering event and the consequent 
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energy of the ejected electron and scattered photon depend on the primary energy of 

the photon and the electron density of the material. In the case of the photoelectric 

effect, total energy of the photon is absorbed by a single electron. Whereas the 

energy of the electron is reduced, there is an increased possibility of recombination 

of cations and secondary electrons to form excited states. The excited-state 

molecules may return to the ground state, or endure dissociation reactions to form 

free radicals, which are supposed to be the main agents in further radiochemical 

reactions. Heterolytic bond decay may in addition result in the formation of charged 

species or very reactive intermediates. Suchlike intermediates can follow some 

reaction paths, which result in rearrangements and/or formation of new bonds. The 

eventual effects of these reactions can be the formation of oxidized products, grafts, 

scission of main polymer chains (degradation) or cross-linking. The degree of these 

transformations depends on the structure of the polymer and the conditions of 

treatment before the irradiation, during and after irradiation. 

Energy lost by photons penetrating target due to photon interactions in 

irradiated material, results in decrease of photon intensity (Fig. 1.26).   

 
Fig. 1.26 A scheme of photon interaction with matter (Drobny, 2012) 

 

Photon absorption by matter is described by Beer-Lambert law:  
xeII  0 ;        (1.22) 

where I0 - photon beam intensity at the surface of material, I - photon beam intensity 

at the certain penetration depth x in material, μ - linear absorption coefficient of 

material. 

The interaction of high-energy radiation with a solution of metal ions induces 

ionization and excitation of the solvent, and leads to the formation of radiolytic 

molecular and radical species throughout the solution (Saion et al., 2013). For 

example, in aqueous solutions (Eq. (1.23)) 

;,,,,, 22232 OHHOHHOHeOH aq

                   (1.23) 

The produced solvated electrons eaq
-
 and hydrogen atom H

•
 are strong reducing 

agents capable to reduce metal ions to lower valences and finally to metal atoms. For 

instance, from monovalent cations metal atoms are formed according to: 

;0MeM aq                                           (1.24) 

;0   HMHM                                     (1.25) 
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Oxidation by hydroxyl radical OH
•
 is avoided by addition of radical 

scavengers, such as 2-propanol or polyvinylalcohol which yield after reactions with 

OH
•
 and H

•
 to a secondary reducing radical (CH3)2C

•
OH (Saion et al., 2013): 

;)()( 22323 OHOHCCHOHCHOHCH                 (1.26) 

;)()( 22323 HOHCCHHCHOHCH                    (1.27) 

Metal atoms formed in solution by reduction then tend to associate with other 

ions and coalesce into dimers. These dimers progressively grow into oligomers 

followed by larger clusters which eventually precipitate. In the case of homonuclear 

monovalent metal ions, the reactions can be written as follows: 

;2

0   MMM                                             (1.28) 

;2

00 MMM                                               (1.29) 

;





  z

p

y

yn

x

xm MMM                                          (1.30) 

To obtain stable clusters, to control NPs shape, possible aggregation or 

precipitation of NPs and to limit their coalescence, a great variety of stabilizers, 

including donator ligands, surfactants, and polymers are used.  

Taking into account, that the final size of nanocluster (NPs) depends on the 

type of stabilizing polymer, the polymer/metal ratio, the irradiation dose and the 

dose rate (Remitta et al., 2005). In order to obtain better insight to the energy 

deposition and irradiation effects in hosting polymers, three types of ionizing 

radiation were used: electron beam, gamma and X-rays. 

 

1.4.4. Radiation impact on polymer structures 
 

The effect of ionizing radiation on polymers is that macromolecules change 

their degree of polymerization and structure. Polymer resistance to natural factors 

depends not only on the main circuit connection, strength, and any number of 

alternatives links and chemical composition. Mostly links substituent to reduce the 

carbon chain macromolecules resistant to physical destruction. Replacing all bound 

with the main chain atoms of hydrogen, natural resistance factors rises again. In 

addition, the destruction rate and the product composition depends on the type and 

intensity of exposure, concentration of the polymer and its environment. Physical 

destruction of the macromolecular chain is always destruction: first of all active 

centers formed like free radicals, continues, branching, and completing the radical 

reactions of kinetic chain. 

Radiation destruction of macromolecules might be induced by X-ray, γ-rays, 

electrons and other particles. Macromolecules operating power can be 9 to 10 eV. It 

is significantly higher than the binding energy between atoms of macromolecules, 

which is in range from 2.5 eV to 4 eV. Ionizing radiation energy is sufficient for the 

irradiation of the polymer from atomic orbitals to dislodge electrons. But it 

consumes only a small part of absorbed energy. Ionization of macromolecule due to 

irradiation, results in the appearance of a secondary electron: 

  eMM mnmn
. It 
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might transfer molecule to the excited-state: 





  mnmn MeM . Being excited 

macromolecule can split into two macro radicals: 

  mnmn MMM .  

Electron interaction processes with neighboring molecules are very fast and 

take only 10
-12

 seconds. Cross-linking and scission together with grafting and curing 

are main radiation induced mechanisms in polymers (Fig. 1.27). 
 

 
Fig. 1.27 Radiation induced mechanisms in polymer (Drobny, 2012) 
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Cross-linking is the intermolecular bond formation of polymer chains. The 

degree of crosslinking is proportional to the radiation dose. The mechanism of 

crosslinking involves the splitting of a C–H bond on one polymer chain to form a 

hydrogen atom, followed by occurring of a second hydrogen atom from a 

neighboring chain to produce molecular hydrogen. Then the two adjacent polymeric 

radicals combine to form a crosslink (Bhattacharya, 2000). The overall effect of 

cross-linking is that the molecular mass of the polymer steadily increases with 

radiation dose, leading to branched chains until the three-dimensional polymer 

network is formed when each polymer chain is linked to another chain. 

Scission is an opposite process of cross-linking in which the break-up of C–C 

bonds occurs. Cross-linking increases the average molecular weight while the recent 

process reduces it. Provided the energy of the radiation is high, chain breaking 

occurs through the splitting of C–C bond. The mechanism of scission process is 

indirect due to free radicals of polymers. In the presence of oxygen polymeric free 

radicals form peroxy species and this lead to polymer decomposition into smaller 

molecules. The oxidative degradation of the polymers depends upon the solvent 

used in the system and competes with the oxidation of the solvent (Ahmad et al., 

2005, Bhattacharya, 2000). 

Grafting is a process when monomers are attached laterally to the polymer 

chain. It should be noted that curing is the rapid polymerization of an oligomer 

monomer mixture to create a coating, which is in fact bonded by physical forces to 

the substrate (Berret et al., 2006).  

There are a lot of similarities between grafting and curing, but though there are 

specific differences. The grafting process can continue minutes, hours or days, but 

for curing process it lasts only a second. Covalent C–C bonds are formed in grafting 

processes as well as in curing, bonding usually relays on weaker van der Waals 

forces. Van der Waals bonding proceeds at the distances associated with smaller 

energies. Nevertheless, covalent bonding is effective at small internuclear distances 

and is associated with higher energies. Curing reactions may occur at the same time 

as concurrent grafting leading to improved mechanical properties of irradiated 

species. 

Three different techniques might be applied to achieve polymer grafting:  

a) pre-irradiation;  

b) peroxidation;  

c) mutual irradiation. 

Applying pre-irradiation technique, the polymer backbone is irradiated 

simultaneously in vacuum or in gas to form free radicals.  

Applying peroxidation grafting method, the trunk polymer is subjected to 

high-energy radiation in the presence of air or oxygen, which leads to the formation 

of hydroperoxides or diperoxides depending on the nature of the polymeric 

backbone and the irradiation conditions. Stable peroxy products are then treated with 

the monomer at high temperature, from where the peroxides undergo decomposition 
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to free radicals that initiate grafting. The advantage of this technique is that the 

intermediate peroxy products can be stored for long period before performing the 

grafting step (Pandey et al., 2014).  

Applying mutual irradiation technique, the polymer and the monomers are 

irradiated simultaneously to form the free radicals and thus addition takes place. 

Since the monomers are not exposed to radiation in the preirradiation technique, 

there are no problems related to homopolymer formation which occurs applying the 

simultaneous technique. However, applying the pre-irradiation technique the 

scission of the base polymer due to its direct irradiation is possible. The latter brings 

forth predominantly the formation of block copolymers rather than graft copolymers. 

Polymer resistance to natural factors depends not only on the main circuit 

connection, strength, and any number of alternatives links and chemical 

composition. Mostly links substituent to reduce the carbon chain macromolecules 

resistant to physical destruction. Replacing all bounds with the main chain atoms of 

hydrogen, natural resistance factors rises again. In addition, the destruction rate and 

the product composition depends on the type and intensity of exposure, 

concentration of the polymer and its environment. 

Radiation induced modifications depend on the irradiation dose rate and may 

lead to the deterioration of mechanical and optical properties. 

 

1.4.5. Radiation induced processes in carbons 
 

Depending on the hybridization, carbon can form structures of various 

geometries with different fractions of sp
3
 and sp

2
 bonding in both crystalline and 

non-crystalline forms. In this work attention is paid to amorphous hydrogenated 

diamond like carbons and polymer like carbons. Structural fragment of polymeric 

chains containing a C=C bond is provided in Fig. 1.28.  

 
Fig. 1.28 Structural fragment of polymeric chains containing a C=C bond (Novikov et al., 

1997) 

 

Hydrogen atoms bonded to the carbon network are believed to play an 

important role in saturating the carbon dangling bonds and softening the carbon 

network. A significant loss of hydrogen creates a number of carbon dangling bonds 

which in turn could bond together under the impact of deposited extra energy, 

resulting in a structural change. 

There are some models describing amorphous carbon structure (Liu et al., 

2004; Robertson, 2002). Nevertheless all of the models suggest that carbon may be 

composed of sp
2
-bonded clusters interconnected by a random network of sp

3
-bonded 
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atomic sites. The range of cluster sizes is large, but usually sp
2
 islands are limited to 

single sixfold rings (aromatic) and short chains (olefinic). Even more: three 

dimensional sp
2
 bonding is possible as well as the structure composition with 

dispersed cross-linked sp
2
 sites that provide the network with rigidity (Fang, 2009; 

Godet et al., 1998; Yadav et al., 2009). Although the sp
3
 and sp

2
 bonds do not as 

long distance as they are in crystalline diamond or graphite, sometimes the bonds 

can admix and present extended order on a nanoscale. The plenty of larger clusters 

can be produced by fusing double bonds and rings (Ferrary, 2002; Rodil et al., 

2001). The rings can be together with each other, or may be deformed in the rigid 

sp
3
 network. 

In this work we consider that from C2H2 gas produced carbon films consist of 

sp
2
 bonded clusters interconnected in the random network of sp

3
 bonded atomic 

sites. Presence of the large amount of hydrogen in the film is favorable when 

performing modification of films structure due to high energy electron and photon 

irradiation: release of hydrogen in any form allows tetrahedral coordinated carbon 

atoms (sp
3
 hybrids) to form strongly cross-linked three-dimensional network in 

which small graphitic clusters are embedded (Fig. 1.29). This leads to the film 

hardening and modification of optical and mechanical properties.  
 

  
Fig. 1.29 sp

2
 clusters and the schema of producing the cluster after the modification with 

ionizing radiation or ion bombardment (Robertson, 2002) 

 

Penetration of high energy electrons into the film is followed by a cascade of 

secondary electrons produced in the vicinity of the primary collision event, causing 

energy deposition on the carbon network in a short time of 10
-13

 s. Therefore, the 

bonding rearrangement could only occur very locally, and then quench in a very 

short time if the irradiated ion flux is so small that the interaction among the incident 

electrons can be neglected. It is known that at the energies < 10 MeV electron 

stopping is dominant process of energy deposition in the target a-C:H film.  

The interaction of the electrons and a-C:H film results in an ionization volume 

in which the target atoms are excited or ionized so as to break some of the C–H and 

C–C bonds. The released hydrogen atoms and some small hydrocarbon units could 

re-combine together to form hydrogen molecules or even methane molecules and 

diffuse out of the irradiated film. Therefore a number of carbon dangling bonds 

would be produced. The carbon dangling bonds may rebound, under the influence of 

the extra deposited energy, to form a more stable carbon network.  
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2. INSTRUMENTS AND METHODS 

 

2.1. Experimental equipment 
 

2.1.1. Plasma enhanced chemical vapor deposition 
 

Polymer like a-C:H carbon coatings have been synthesized by plasma-

enhanced chemical vapor deposition (PECVD) method at room temperature under 

almost atmospheric pressure from pure (99 %) acetylene (C2H2) in RF (13.56 MHz) 

dual-plasma reactor, which was constructed on the basis of the industrial system 

YBH-72M-2 (Fig. 2.1.).  

 
Fig. 2.1 Experimental PECVD set-up. Adapted from (Grigonis and Rutkūnienė, 2007) 

 

Plasma-enhanced chemical vapor deposition (PECVD) is a process in which a 

gas mixture reacts to form a solid product which is deposited as a coating on the 

surface of a substrate. The types of coatings that can be obtained by PECVD are 

varied: insulating, semi conductive, conductive, or super conductive coatings; 

hydrophilic or hydrophobic coatings, ferroelectric or ferromagnetic layers; coatings 

resistant to heat, wear, corrosion or scratching; photosensitive layers, etc. PECVD is 

mainly used for the deposition of high quality thin films; to generate plasma, it uses 

RF shower head electrode. The plasma is formed in the reaction chamber using an 

RF generator. The necessary energy for the chemical reaction is not introduced by 

heating the whole reaction chamber but just by heated gas or plasma. It contains 

reactive ions and radicals. The growth of the deposit starts easily because of the 

activation and cleaning of the surface by the more or less intense bombarding with 

ions from the plasma. The retainer heated resistively or cooled with chilled water 

circulation. The chamber is evacuated to low pressure turbomolecular pump backed 

with mechanical pump. Standard equipment comes with one inert gas, three reactive 

gas lines and four mass flow controllers. The plasma source with its unique gas 

distribution system makes it possible to meet wide range of requirements such as 

plasma density, uniformity and separate activation of reactive species to cover the 

broadest possible deposition parameters as well as good adhesion and high growth 
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rates. The properties of the coated layers can be better influenced with PECVD than 

in simply thermal deposition technique, because more process parameters can be 

varied. Important are the adjustment of adhesion, compressive and tensile stress 

causing war page, hydrogen content and density, etch ability, etch rate and 

selectivity in etching, step coverage as well as stoichiometry (consistence) and 

cleanliness of the deposited layers, which can be evaluated by the refractive index. 

The PECVD process parameters influence the maximum thickness of the deposit 

and the best uniformity of the coating. Also some film properties can be modified 

subsequently. 

 

2.1.2. Centrifuge 
 

The experimental silver/polymer composites were obtained by the spin coating 

technique using a centrifuge “Dynapert Precima” (Colchester, UK). The coatings 

were spin-coated on substrates and performed at 60 s rotation speed of 1800 min
–1

.  

The centrifuge “Dynapert Precima” (Fig. 2.2) is a centrifugal separation 

equipment that the bowl driven by motor and revolve in a high speed, to separate the 

liquid with smaller density from material or carry out the settling, stratification, and 

separation. Some mixed liquids are easy to be stratification; some of them can be 

stratification in quite a long time and not very clear. The centrifuges revolve in high 

speed, and form powerful centrifugal force. However, the separating speed is fast, 

according to the different properties of different materials, so that form many 

centrifuges with different specifications.  

 

 

 

A B 

Fig. 2.2 A – “DYNAPERT PRECIMA” centrifuge: 1– sample holder; 2 – time speed control 

button, 3 – “ON” button; 4 – “OFF” button, 5 – vacuum, 6 – speed monitoring button; B – a 

schematic view of spin coating technique processing steps 

 

2.1.3. UV irradiation 
 

Synthesis of Ag nanoparticles was performed using photocatalytic reduction of 

silver atoms directly in a thin layer of deposited polymer. UV light source Hibridas 

Exposure Unit MA4 (power 1200 W, wavelength 300 – 400 nm) was used for this 

purpose. Applied UV exposure time of 5 min. was enough for photoreduction of Ag 

ions and formation of silver nanoparticles. 
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2.1.4. Continuous ultrasound NPs synthesis 
 

Method of continuous ultrasound assisted sonoelectrochemical synthesis used 

for the production of W-Co NPs is based on application of pulsed potential mode to 

working electrode under continuous impact of ultrasound waves on electrolyte. 

Electrochemical synthesis of W-Co NPs was performed in 100 cm
3
 volume beaker 

which was filled up to the half with the corresponding electrolyte. Beaker was 

placed into ultrasound bath (cleaner) Sono Swiss SW3H (ultrasonic frequency 38 

kHz, effective ultrasonic power 80 W) keeping the same level of the electrolyte and 

of water in the ultrasound bath (Fig. 2.3).  

 
Fig. 2.3 Experimental set-up: HE – heating coil; US – piezoelectric ultrasonic transducer; 

WE – working electrode; RE – saturated Ag/AgCl reference electrode; CE – counter 

(auxiliary) electrode; electrolyte containing tungstate(VI) and cobalt(II) ions 

 

The electrolyte was heated up to the 60 °C and this temperature was kept 

throughout the entire electrosynthesis procedure which was performed under 

continuous ultrasound impact. The mode of pulsed potential was maintained using 

potentiostat-galvanostat SP-150 (France, BioLogic) interfaced with EC-Lab 

(v10.23) software. The working electrode (cathode) was 0.5 mm thick titanium alloy 

Ti90-Al6-V4 plate with dimensions of 3 x 100 mm. It was dipped about 20 mm in 

electrolyte during synthesis process thus working area of this electrode was 

approximately 140 mm
2
. It should be emphasized that the main reason to choose Ti 

alloy for working electrode (cathode) was a poor adhesion of electrodeposits on this 

alloy.  

Two square-shaped platinum plates with dimensions of 10 x 10 mm each were 

symmetrically arranged on both sides of the working electrode as auxiliary 

electrodes (parallel connected two anodes). Before the experiment surface of Ti 

alloy working electrode was polished with Nr. 600 emery paper, washed with 

distilled water and degreased with isopropanol. The potential control of the working 

electrode (cathode) was carried out using saturated Ag/AgCl electrode for reference. 

During the experiment working electrode was pulse polarized from steady-state 
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potential of approx. -0.16 V to -1.5 V (vs. Ag/AgCl). The impulse duration was timp 

= 500 ms. Electrochemical system relaxed between the pulses at open circuit 

conditions for tocc = 800 ms. The sonoelectrochemical synthesis in pulsed potential 

mode lasted for 1h.  

Synthesized W-Co NPs were transferred from the aqueous electrolyte to the in 

water insoluble trichloromethane (chloroform, CHCl3) solvent protecting them from 

corrosion. Transfer of W-Co NPs was performed by centrifugation of mixture 

containing equal volumes of trichloromethane and electrolyte. This was possible due 

to the fact that the density of CHCl3 (d = 1.483 g/cm
3
) is higher than the density of 

water. Centrifugation was carried out for 30 minutes in laboratory centrifuge CL-1 at 

the speed ≥ 3500 rpm.  

 

2.1.5. Irradiation equipment 
 

Ionizing radiation used to modify physical, chemical and biological properties 

of the materials. The main applications of radiation are materials modification like 

as polymerization, polymer cross-linking, and nanoclusterization.  

Gamma ray irradiation equipment. Gamma rays were generated in ROKUS-M 

irradiation facility with 
60

Co isotope as the gamma radiation source (Fig. 2.4). 
 

 
Fig. 2.4 ROKUS-M schematical view 

 
Fig. 2.5 Decay scheme of Co-60 

 
60

Cobalt (Fig. 2.5) is a synthetic radioactive isotope with a half-life T1/2 = 5.27 

yrs. It emits beta and gamma rays. The beta decay energy is low (E = 0.31 MeV) and 

easily shielded, but the gamma-ray emission lines have energies E1 = 1.17 MeV and 

E2 = 1.33 MeV and are highly penetrating. 

Polymer like a-C:H coatings were irradiated with medical teletherapy unit 

ROKUS-M. Gamma photons were emitted from 
60

Co source. Varying the bias 

voltage the activity of 
60

Co source was 6.52 · 10
13

 Bq with the dose rate of 6.5 

mGy/s. Varying the temperature the activity of 
60

Co source was 4.28 · 10
13

 Bq with 

dose rate of 2.8 mGy/min. The maximum distance between the source and 

irradiation surface (SSD) was 75 cm and the irradiation field was 10*10 cm
2
. Total 

irradiation dose varied in the range 2 – 50 Gy. 

X-ray irradiation equipment. Experimental films were irradiated to different 

doses at dose rate of 3.5 mGy/min using 35 keV and 30 mA X-ray photons 
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generated in X-ray diffractometer DRON-3 (Fig. 2.6). The diffractometer was 

equipped with a single crystal graphite flat monochromator for transmitting a narrow 

Cu Kα wavelength (λ = 0.15405 nm). Irradiation of coatings was performed with the 

aim to investigate low dose X-ray radiation induced modification of their optical 

properties, caused by polymer degradation and formation of metal nanoparticles 

within polymer matrix. 

 

 
Fig. 2.6 X- ray diffractometer DRON 3.0 

 
Fig. 2.7 Clinac 2100 

 

Electron beam irradiation equipment. High energy (up to 12 MeV) electrons 

have been generated in medical linear accelerator Clinac DMX and Clinac 2100C 

(VARIAN) (Fig. 2.7): the energy of electrons was 12 MeV and 6 MeV respectively. 

The dose rate was 2 Gy/min and 3 Gy/min respectively as well as the maximal 

irradiation dose was 2 and 3 Gy respectively. 

The electrons are generated in a high vacuum. The electrons emitted from the 

cathode are accelerated in an electrostatic field applied between cathode and anode. 

The acceleration takes place from the cathode that is on a negative high voltage 

potential to the grounded vessel as anode. The accelerated electrons might to be 

focused by an optical system to the window plane of the accelerator (Adliene et al., 

2009). The energy gain of the electrons is proportional to the accelerating voltage 

and is expressed in electron volts (eV), which represent the energy gained by a 

particle of unit charge by passing the potential difference of 1 V. The electrons leave 

the vacuum chamber only if their energy is high enough to penetrate the 15 – 20 μm 

thick titanium window of the accelerator. When an EB enters a material the energy 

of the accelerated electrons is significantly changed.  

 

2.2. Analytical methods 
 

Characterization of nanoparticles and polymer like carbon coatings is 

important to understand and control their synthesis and applications. 

Characterization is performed using a variety of different techniques such as 

transmission, scanning electron and optical microscopy (TEM, SEM, OM), atomic 

force microscopy (AFM), Fourier transform infrared spectroscopy (FTIR), Raman 
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spectroscopy (RS), photon correlation spectroscopy (PCS), and UV–VIS 

spectrometry (UV–VIS).  

These techniques are used for determination of different parameters such as 

particle size, shape, pore size and surface area. Moreover, orientation, intercalation 

and dispersion of nanoparticles in nanocomposite materials could be determined by 

these techniques. For instance, TEM, SEM and AFM could determine the 

morphology and particle size. The advantage of AFM over traditional microscopes 

such as SEM and TEM is that AFM measures three-dimensional images so that 

particle height and volume can be calculated. Furthermore, dynamic light scattering 

is used for determination of particles size distribution. Moreover, UV–VIS 

spectrometry is used to confirm film formation by showing the plasmon resonance. 

 

2.2.1. Ultraviolet-visible spectrometry 
 

Optical spectra of polymer like a-C:H coatings were characterized using the 

USB4000–UV–VIS spectrometer. The USB4000–UV–VIS Spectrometer was pre-

configured with order-sorting filter to cover the 200 – 850 nm wavelength range. 

Light Source: integrated deuterium tungsten halogen light source and pixel 

resolution: 0.2 nm; Logger Pro 3 (version 3.6 or newer) software is required 

Optical absorbance spectra (carrying information about plasmonic properties 

of material) of the silver/polymer nanocomposite films were measured using UV-

VIS Avantes UV/VIS/NIR AvaSpec–2048 spectrometer in the wavelength range 

190 – 1100 nm. The AvaSpec–2048 Fiber Optic Spectrometer (Fig. 2.8) is based on 

the AvaBench–75 symmetrical Czerny-Turner (Fig. 2.9) design with 2048 pixel 

CCD Detector Array. The spectrometer has a fiber optic entrance connector, 

collimating and focusing mirror and diffractional grating. A choice of 15 different 

gratings with different dispersion and blaze angles enable applications in the 200 – 

1100 nm range. The AvaSpec–2048 is especially suitable for low light level and 

high resolution applications. An optional detector coating enhances the CCD 

performance for the UV range and a detector collection lens offers high sensitivity. 

Resolution is 1.4 nm. 

 

 
Fig. 2.8 AvaSpec 2048 UV–VIS 

spectrometer 

 
Fig. 2.9 Czerny-Turner grating monochromator 
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The UV–VIS spectrometer is a portable ultraviolet light and visible light 

spectrophotometer. UV–VIS spectrometry records the change of intensity of light 

upon interaction with matter to the initial incident intensity. The analysis is based on 

Beer–Lambert Law, and gives information about the chemical composition of the 

material, thickness and absorption coefficient. It is used for the determination of 

main optical characteristics of different materials that might be evaluated from 

absorption spectrum taking into account transmittance and reflectance of the light 

passing through the experimental films. The absorption spectrum reflects the 

transitions of electrons from a ground state to an excited state in the molecular 

orbitals that are appropriate in the wavelength range of investigation. The electronic 

transitions observed in the UV–VIS spectroscopy generally appear as broad peaks 

because of the interactions of polymer molecules with each other and the solvent 

molecules. 

The size of synthesized nanoparticles plays also an important role in the 

setting of the absorption spectrum in UV–VIS range, since metal nanoparticles have 

very specific absorption peaks in the visible region, so called surface plasmon 

resonance (SPR) band. 

Absorption coefficient with reference to optical transmittance and reflectance 

measurements may be calculated according to: 

 




















2
100

ln
1

R

T

d
 ;                                     (2.1) 

where T – Optical transmittance; R – reflectance and d – film thickness. 

Due to that the refraction was not measured, the absorption coefficient was 

estimated with reference to measured UV-VIS transmittance spectra, according to 

Beer-Lambert law: 
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where T – Optical transmittance; d – film thickness. 

As mentioned above, nanoparticles of noble metals like silver and gold have 

very specific absorption peaks in the visible region called surface plasmon resonance 

(SPR) band, which make those nanoparticles important in optical applications 

(Dadosh, 2009; Ponelyte and Palevicius, 2014). SPR band originates from the 

quantum size effect of the nanoparticles, since nanoparticles have neither atomic nor 

metallic electronic properties, because of their confined energy levels. Their 

electronic properties strongly depend on the particle size, interparticle distance, and 

nature of the protecting shell and the shape of the nanoparticles (Amendola et al., 

2010). The quantum size effect is seen when the de Broglie wavelength of the 

valence electrons is of the same order as the size of the particle itself. When this 

happens, particles behave electronically as zero-dimensional quantum dots. Freely 

mobile electrons get trapped in such metal boxes and show a characteristic collective 
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oscillation frequency of the plasma resonance, which is called surface plasmon 

resonance band (Hutter and Fendler, 2004).  

 

2.2.2. Fourier transform infrared spectroscopy 
 

The bonding configuration of polymer like a-C:H coatings was studied by 

means of infrared spectroscopy. Reflectance and transmittance spectra of coatings 

were measured in the range of 650 – 4000 cm
-1 

and in the range of 400 – 4000 cm
-1

 

respectively using Fourier-transform infrared spectrometer Nicolet 5700. Silicon 

wafer and air gap were taken for the reference.  

Bonding structure of experimental Ag/PMMA nanocomposite films was 

investigated using Fourier Transform infrared spectrometer Bruker Vertex 70, in the 

wavenumber range from 400 cm
-1

 to 4000 cm
-1

, with a resolution of 0.5 cm
-1

. 

Spectroscopy is the study of matter and its interaction with electromagnetic 

radiation. All matter contains molecules; these molecules have bonds that are 

continually vibrating and moving around. These bonds can vibrate with stretch 

motions or bend motions. FTIR is a versatile experimental technique for identifying 

the functional groups. The IR region of the spectrum composes of radiation with 

wave numbers ranging from about 12500 cm
-1

 to 50 cm
-1

 wavelength. IR region lies 

between visible and microwave region. The IR region constitutes 3 parts: 

1. the near IR (0,8 µm – 2,5 µm or 12500 cm
-1

 – 4000 cm
-1

); 

2. the middle IR (2,5 µm – 15 µm or 4000 cm
-1

 – 667 cm
-1

); 

3. the far IR (15 µm – 200 µm or 667 cm
-1

 – 50 cm
-1

). 

The most of the analytical applications are confined to the middle IR region 

because absorption of organic molecules is high in this region. It gives sufficient 

information about the structure of a compound. FTIR can be used to obtain 

important information about everything from delicate biological films to tough 

materials. The most significant advance in IR spectroscopy is well-established 

mathematical process of Fourier-transformation. FTIR has improved the quality of 

IR spectra and minimized the time required to obtain data (Chu et al., 2006). IR 

absorption arises from vibrational modes with a dipole moment. It is widely used in 

a-C:H to determine the C–H bonding configurations also provides precise 

information about orientation of specific functional groups within the polymer film. 

It should be noted that IR spectroscopy is useful in determining chemical 

structure because energy that corresponds to specific values allows identifying 

various functional groups within a molecule. An IR spectrum usually extends from 

radiation around 4000 cm
-1

 to 500 cm
-1

 and can be split into the functional group 

region and the fingerprint region. The functional region can be further split into 3 

regions: the first region from 4000 cm
-1

 to 2500 cm
-1

 corresponds to single bonds to 

H, e.g. O–H, C–H; the second region from 2500 cm
-1

 to 2000 cm
-1

 corresponds to 

triple bonds, e.g. C≡C; the third region from 2000 cm
-1

 to 1500 cm
-1

 corresponds to 

double bonds, e.g. C=C, C=O; and fingerprint region from 1500 cm
-1

 to 500 cm
-1

 

corresponds to single bonds, e.g. C–O, C–C. 
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A FTIR spectrometer (Fig. 2.10) simultaneously collects spectral data in a 

wide spectral range. The term Fourier transform infrared spectroscopy originates 

from the fact that a Fourier transform (a mathematical process) is required to convert 

the raw data into the actual spectrum. A radiation from the source falls on the 

interferometer. It comprises of beam splitter, moving mirror, fixed mirror. The beam 

splitter splits the light into two half beams of equal intensities. One half of the beam 

is passed to the fixed mirror. Other half is directed towards the mirror. It moves at 

short distance away the beam splitter at constant speed. Light enters the 

spectrometer and is split by the beam splitter. The figure above shows what is 

referred to as the Michelson interferometer. Speed of the moving mirror is controlled 

by using a helium-neon laser beam. Because of the steady movement, detector 

receives constants signals of maxima and minima. Beams after undergoes reflection 

from the respective mirrors are recombined and send signal to the detector. 

Combined signal is called as interferogram. After that, the interferogram is both 

transmitted and reflected to the coating cell. Coatings absorb only those IR 

frequencies that cause vibration within the coating molecules. The signal is 

transmitted to the detector where it gets measured. The coded signal has been 

decoded by using computer. FT spectroscopy can be employed for a long range of 

frequencies varying over ultraviolet, visible, near infrared, mid infrared and far 

infrared regions by selecting different beam splitters and detectors for the required 

ranges. No other dispersive technique can be used for such a wide range of 

frequencies (Rodil et al., 2001). 

 
Fig. 2.10 Fourier transform infrared spectrometer 
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2.2.3. Ellipsometry 
 

Coating thickness and refractive index was estimated using null ellipsometry 

(ellipsometer Gaertner 117 with He-Ne laser: λ = 632.8 nm). The angle of incidence 

of the light is 30 °, 50 °, 70 °. Laser ellipsometry is based on the analysis of 

parameters of polarization of monochromatic polarized light beam reflected from the 

coating. Thickness of films possible for analysis is 0.001 – 1 µm. Uncertainty of 

thickness measurements is ± (0.5 – 1) nm. The accuracy of the refractive index 

measurements is ± 0.01. A schematic view of the ellipsometer components is 

presented in Fig. 2.11. 

 
Fig. 2.11 Ellipsometry. a – a schematical view of ellipsometer; and b – light interaction with 

thin film 

 

It is made of: 

1. Light source beam (L): Lasers and arc lamps are typical sources for an 

intense light beam. For spectroscopic ellipsometers, an arc lamp of variable 

wavelengths is used while for a single wavelength ellipsometer a laser source 

is used. 

2. Polarizer (P): is a linear polarizer. It generates linearly polarized light. 

3. Compensator (Q): is an optical element that introduces a phase shift between 

the two linear polarizations, enabling the generation of an arbitrary states. 

4. Sample (S): the sample represents the thin film understudy. 

5. Analyzer (A): is another polarizer situated after the sample. 

6. Detector (D): collected the output signal from the sample. 

Interaction of light with the film layers will lead to changes in the polarization 

of light due to refraction and reflection. Fresnel coefficients describe the ratio of 

change between the incoming and the outgoing signals. 

When a radio wave propagating through a medium encounters a boundary 

layer, which is plane and large compared to the wavelength the wave is partially 
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reflected and partially transmitted, respectively. If the second medium is perfectly 

electric conducting, then all incident energy is reflected back into the first medium 

without any loss of energy. The electric field strength of the reflected and 

transmitted waves may be related to the incident wave through the Fresnel reflection 

and transmission coefficients Rk and Tk respectively. The Fresnel coefficients 

depend on the material properties, wave polarization, angle of incidence, and 

material parameters which are frequency dependent. A polarized electromagnetic 

wave may be mathematically represented as a sum of two orthogonal components, 

such as vertical and horizontal, or left-hand and right-hand circularly polarized 

components. For an arbitrary polarization, linear superposition may be used to 

compute the reflected fields from a surface. 

 

2.2.4. Microscopy 
 

Microscopy is the technical field of using microscopes to view objects and 

areas of objects that cannot be seen with the naked eye. There are a lot of various 

microscope types (figure below) that are used in different scientific and industrial 

fields. 

 
Fig. 2.12 Various types of microscopes 

 

Optical microscopy. The morphology of the Ag/PMMA nanocomposite films 

and bulk composition were investigated using optical microscope Optika B-600 

MET with coaxial coarse and fine focusing mechanism (0,002 mm). 

http://en.wikipedia.org/wiki/Microscope
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Optical or light microscopy involves passing visible light transmitted through 

or reflected from the film through lenses to allow a magnified view of the film. The 

single lens with its attachments, or the system of lenses and imaging equipment, 

along with the appropriate lighting equipment, film stage and support, makes up the 

basic light microscope.  

Scanning electron microscopy/energy dispersive spectroscopy. The 

morphology of the silver/polymer nanocomposite films and bulk composition were 

investigated in a scanning electron microscope (JSM–5610 LV) with attached 

energy dispersive X-ray analysis (EDX JED–2201; JEOL, Japan). 

The morphology of W-Co NPs and their chemical composition were 

investigated with a scanning electron microscope (FEI Quanta 200 FEG) with 

attached energy dispersive spectroscope (Bruker XFlash
®
 4030).  

The scanning electron microscope (SEM) is a type of electron microscope that 

images the films surface by scanning it with a high-energy beam of electrons in a 

raster scan pattern. The electrons interact with the atoms that make up the film 

producing signals that contain information about the film's surface topography, 

composition and other properties. 

Energy dispersive X-ray spectrometer EDX detects all characteristic X-ray 

emitted from a specimen simultaneously. It allows even a specimen containing many 

types of elements to be analysis in a short time. Full Quantitative/Qualitative 

analysis procedures can be combined with X-ray digital maps, area and line element 

distribution using the SEM–EDX integration features.  

Transmission electron microscopy. The particulars about morphology of W-Co 

NPs were extracted from the transmission electron microscope (JEOL JEM 1210; 

max. accelerating voltage 120 kV) images. 

Transmission electron microscopy (TEM) is a microscopy technique in which 

a beam of electrons is transmitted through the specimen, interacting with the 

specimen as it passes through. An image is formed from the interaction of the 

electrons transmitted through the specimen. 

Atomic force microscopy. Surface morphology of PLC coatings have been 

characterized by atomic force microscope (AFM NT–206) using V–shaped 

ULTRASHARP Si cantilever (force constant 1.5 Nm
-1

). The measurements were 

performed using tapping mode. Corresponding software was used for the evaluation 

of the roughness parameters of coatings within the scanned area of 3 μm × 3 μm and 

10 μm × 10 μm. 

Surface morphology of Ag/PVP nanocomposites films was investigated by 

atomic force microscope (AFM) NT–206. V–type silicon cantilever NSC11/15 

(constant force 3 N/m, resonant frequency 21 kHz) was used for AFM 

measurements in tapping mode. Mechanical properties of Ag/PVP films were 

determined from load-distance measurements using AFM.  

http://en.wikipedia.org/wiki/Visible_light
http://en.wikipedia.org/wiki/Lens_(optics)
http://en.wikipedia.org/wiki/Microscope
http://en.wikipedia.org/wiki/Electron
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Characteristics of the AFM: maximum scan field area: up to 30 × 30 μm; 

measurement matrix up to 512 × 512 points and more; maximum range of measured 

heights: 4 μm; lateral resolution: 2 nm, vertical resolution: 0.1 – 0.2 nm. 

The atomic force microscope (AFM) is a very high resolution type of scanning 

probe microscopy with demonstrated resolution of fractions of a nanometer more 

than 1000 times better than the optical diffraction limit. The AFM is one of the 

foremost tools for imaging, measuring and manipulating matter at the nanoscale. 

The information is gathered by tapping the surface with a mechanical probe. 

Piezoelectric elements that facilitate tiny but accurate and precise movement on 

command enable the very precise scanning. The technique involves imaging a 

coating through the use of a probe or tip, with a radius of 20 nm. The tip, which is 

attached to the end of a cantilever 100 to 200 μm long, is held several nanometres 

above the surface using a feedback mechanism that measures surface–tip 

interactions on the scale of nN. A detector measures the cantilever movement as the 

tip moves over the coating. From these tip movements and data from the detector, a 

computer is used to reconstruct a map of the surface morphology. The forces 

between the tip and the coating surface (van der Waals, magnetic, electrostatic) 

cause the cantilever to bend or deflect are shown in Fig. 2.13 as function of tip to 

coating distance. The force most commonly associated with atomic force 

microscopy is an interatomic force called the Van der Waals force.  

 

 

Fig. 2.13 Interatomic force vs. distance curve: a) repulsive force, b) attractive force 

 

There are two AFM modes: 

1. Contact mode (soft physical contact) is the simplest AFM method. In the 

contact mode, the tip scans across the coating surface, coming into “direct” physical 

contact with the coating. As the probe tip scans, varying topographic features cause 

deflection of the cantilever. The force here is usually repulsive. The amount of 

motion of the cantilever or the force it applies to coating can then be used in a 

feedback loop to control the Z piezo, maintaining constant cantilever deflection. In 

this way, topographic data is obtained. 

2. In the non-contact mode, the cantilever is oscillated near the surface of a 

coating at its resonant frequency. The spacing between the tip and surface is on the 

order of tens to hundreds of angstroms. As the probe gets closer to the coating 
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surface, the attractive force between the tip and coating (largely a result of long-

range Van der Waals interaction) will change the oscillation amplitude and the 

changes in phase can be detected and used by the feedback loop to produce 

topographic data. Amplitude detection is the non-contact method usually used for 

high-amplitude oscillation. Phase detection is the method usually used when the 

oscillation amplitude is relatively small and/or higher sensitivity is needed for stable 

feedback. Non-contact AFM method is ideal for scanning soft and adhesive 

coatings, for example polymers, because takes place without any physical contact 

between the probe tip and coating surface. 

 

2.2.6. Raman spectroscopy 
 

The structure of experimental as-prepared and irradiated polymer like a-C:H 

coatings was ex-situ characterized using Raman spectroscopy (RS). RS of 

experimental coatings were obtained in the range of 1000 – 2000 cm
-1

 using Ivon 

Jobin spectrometer with a Spectra Physics Nd:YAG laser (λ = 532.3 nm, 50 mW at a 

0.3 mm spot size). The overlapped background corrected Raman spectral bands were 

fitted with multi-Gaussian contours, using Least Square Fitting software.  

RS is a fast and non-destructive method for the characterization of carbon 

materials. All carbon show common features in their RS in the 800 – 2000 cm
-1

 

region, the so called G and D peaks, which lie at around 1560 and 1360 cm
-1

, 

respectively for visible excitation, and the T peak at around 1060 cm
-1

, which is only 

seen for UV excitation. The G peak is due to the bond stretching of all pairs of sp
2
 

atoms in both rings and chains. The D peak is due to the breathing modes of sp
2
 

atoms in rings. The T peak is due to the C–C sp
3
 vibrations (Ferrary and Robertson, 

2004; Ferrary, 2002; Rodil et al., 2001). 

The Raman effect occurs when electromagnetic radiation affects on a molecule 

and interacts with the polarizable electron density and the bonds of the molecule in 

the phase (solid, liquid or gaseous) and environment in which the molecule finds 

itself. For the spontaneous Raman effect, which is a form of inelastic light 

scattering, a photon (electromagnetic radiation of a specific wavelength) excites 

(interacts with) the molecule. The intensity of the Raman scattering is proportional 

to the electric dipole-electric dipole polarizability change. The Raman spectra 

(Raman scattering intensity as a function of the Stokes and anti-Stokes frequency 

shifts) is dependent on the rotational and vibrational energy levels of the ground 

electronic states of the coating. This dependence on the electric dipole-electric 

dipole polarizability derivative differs from infrared spectroscopy where the 

interaction between the molecule and light is determined by the electric dipole 

moment derivative, the so-called atomic polar tensor; this contrasting feature allows 

one to analyze transitions that might not be IR active via Raman spectroscopy, as 

exemplified by the rule of mutual exclusion in centrosymmetric molecules. Bands 

which have large Raman intensities in many cases have weak infrared intensities and 

vice versa. For very symmetric molecules, certain vibrations may be both infrared 

https://en.wikipedia.org/wiki/Molecule
https://en.wikipedia.org/wiki/Electron
https://en.wikipedia.org/wiki/Chemical_bond
https://en.wikipedia.org/wiki/Light_scattering
https://en.wikipedia.org/wiki/Light_scattering
https://en.wikipedia.org/wiki/Photon
https://en.wikipedia.org/wiki/Rule_of_mutual_exclusion
https://en.wikipedia.org/wiki/Centrosymmetry
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and Raman inactive (within the harmonic approximation). In those instances, one 

can use a technique inelastic incoherent neutron scattering to determine the 

vibrational frequencies. 

 

2.2.7. Photon correlation spectroscopy 
 

Photon Correlation Spectroscopy (PCS) is based on dynamic light scattering. 

The time decay of the particles caused by the Brownian motion is used to estimate 

the size of nanoparticles through the Stokes-Einstein relation. At fixed temperature 

T the method requires the knowledge of the viscosity of the liquid for the estimation 

of the average particle size and its distribution function. According to temperature 

and viscosity liquid molecules are moving at a fixed speed. While they run into a 

particle suspended in the liquid an elastic pulse is resulting. This impact moves the 

particle in accordance to its size. Small particles will react rather fast while rough 

particles will move slower as they also may be impacted by more than one molecule 

from different directions at the same time because of their bigger volume. 

The effect can be described as diffusion by the Stokes-Einstein equation: 

x

Tk
xD B

3
)(  ;                                                   (2.5) 

where D – diffusion constant (coefficient); kB – Boltzmann constant; T – absolute 

temperature; η – liquids dynamic viscosity; x – particle diameter. 
 

 
Fig. 2.14 The Brownian motion results from impacts of the movement of the molecules of 

the suspending fluid on the particles 

 

A laser beam is diffracted by sub-micron particles in suspension. The spread of 

particles causes rapid fluctuations in scattering intensity of the laser around a mean 

value at a certain angle (varying from 10 to 90°) and this depends on particle size. 

The calculated correlation function results in a diffusion coefficient for a given 

temperature and viscosity, that can be converted into particle size. The technique is 

used to identify the average particle size in a range between 3 and 3000 nm. The 

measurements result in an average and mode effective hydrodynamic diameter and 

polydispersity index. 

https://www.sympatec.com/EN/PCCS/PCCS.html
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As it was mentioned above PCS is based on the Brownian motion enabled by 

elastic pulses between liquid molecules and particles. Any minute particle suspended 

in a liquid (or gas) moves chaotically under the action of collisions with surrounding 

molecules. The intensity of this chaotic motion is increased with an increase in 

temperature. The main physical principle of Brownian motion is that the mean 

kinetic energy of any molecule of a liquid (or gas) is equal to the mean kinetic 

energy of a particle suspended in this medium. The mean kinetic energy of forward 

motion E can be written as: 

;
2

3

2

2 kTmv
E                                              (2.6) 

where m – mass of a particle, v – velocity of a particle, k – the Boltzman constant, 

and T – temperature.  

It is seen that mean kinetic energy of Brownian motion is proportional to the 

temperature. With a random velocity, a Brownian particle will move in a disorderly 

path, and will progress with time away from its original location. Calculations show 

that the mean-square displacement r
2 

= x
2
 + y

2
 + z

2
 of a Brownian particle is 

described by the equation: 

;62 kTBtr                                                      (2.7) 

where B – mobility of the particle, which is inversely proportional to the medium 

viscosity and the size of the particle; k – the Boltzman constant, T – temperature; t – 

time. 

2.3. Materials and preparation of samples 
 

2.3.1. Polymer like carbon coatings 
 

Polymer like a-C:H carbon coatings were synthesized by PECVD method at 

room temperature from pure (99%) acetylene (C2H2) in RF (13.56 MHz) dual-

plasma reactor. Two parameters were varied when producing experimental coatings: 

Coating fabricated varying the bias voltage. Bias voltage varied from 80 V to 

480 V as well as primary ion current varied from 1.0 to 1.4 mA, keeping gas flow 

rate of 5,6 cm
3
/s. Deposition pressure of 25 Pa was kept during entire deposition 

process. Deposition time of all coatings was 420 s.  

Coating fabricated at different temperatures. Deposition of carbon coatings 

was performed at different temperatures ranging from 298 to 673 K using acetylene 

(C2H2) as a precursor. Deposition time of PLC coatings was 300 seconds. 

Deposition pressure of 33 Pa was kept during entire deposition process. 

 

2.3.2. Ag/polymer nanocomposites 
 

Ag/PVP nanocomposites. Silver nitrate (AgNO3) and poly (N-

vinylpyrrolidone) (PVP, average MW = 10000) and sodium dodecyl sulfate (SDS, 

MW = 288.38) were obtained from Sigma Aldrich. Deionized water was prepared 

with a Millipore water purification system. 
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1 g of PVP and 170 mg of AgNO3 was dissolved in 4 ml and in 1 ml water, 

respectively. Ag
+
 salt’s solution was admixed to PVP solution. 100 μm of 20% of 

SDS was dropped to Ag/PVP colloid as a surfactant. 

Ag/PVP films were deposited on the silica substrates. Prior the deposition the 

substrates were sonically pre-treated in acetone for 10 min., chemically etched in the 

warm special chrome solution (K2CrO7 + H2SO4 + H2O) for 10 min, and dried in the 

air stream. Ag/PVP films were spin-coated using “DYNAPERT PRECIMA” 

centrifuge from Ag/PVP colloidal solution on the pre-treated silica substrates at 

1800 rpm for 60 s and dried in electrical oven at 100 °C for 10 min.  

Ag/PVP nanocomposite films were obtained irradiating deposited Ag/PVP 

films by UV light source (Hibridas Exposure Unit MA4, power 1200 W, wavelength 

300 – 400 nm). Applied UV exposure time of 5 min. was sufficient enough for 

photoreduction of Ag ions and formation of silver nanoparticles. 

Ag/PMMA nanocomposites. Poly-methyl methacrylate (PMMA) solution with 

metal powder (Ag) additives was prepared dissolving 0.001 M of AgClO4 in 50 ml 

of 1% PMMA solution in chloroform. ~ 1 mm thin layers of polymeric structures 

were spin-coated on the surface of polished optical glass using “DYNAPERT 

PRECIMA” centrifuge. Prepared films were dried in the desiccator (air humidity ~ 

30%). PMMA films without additives were also produced for the comparison. 

Ag/PMMA nanocomposites were produced by in-situ polymerization 

technique without using any external chemical reagent. PMMA was acting as a 

protective agent that restricts the mobility of silver ions during the reaction, and 

hence, agglomeration was mostly controlled. Chloroform was used as a solvent to 

form chemical network between silver nanoparticles and PMMA. Synthesis of Ag 

nanoparticles was performed using photocatalytic reduction of silver atoms directly 

in a thin layer of deposited polymer. UV light source (Hibridas Exposure Unit MA4, 

power 1200 W, wavelength 300 – 400 nm) was used for this purpose. Applied UV 

exposure time of 5 min. was sufficient enough for photoreduction of Ag ions and 

formation of silver nanoparticles.  

 

3.3. Metal alloy/polymer nanocomposites 
 

W-Co NPs were electrochemically synthesized in aqueous electrolyte 

containing 0.05 M of cobalt sulfate (CoSO4 ∙ 7H2O, Aldrich 99.0 %) and 0.2 M of 

sodium tungstate (Na2WO4 ∙ 2H2O, Aldrich 99.0 %) as the source of metal species, 

and 0.25 M tri-sodium citrate dehydrate (Na3C6H5O7 ∙ 2H2O, Lachema 99.0 %) as 

the complexing and buffering agent. The 0.01 mM of sodium dodecylsulphate 

(CH3(CH2)11OSO3Na, Merck 99.0 %) was added to the mixture as a surfactant and 

stabilizer of synthesized W-Co NPs in electrolyte. All reagents were dissolved in 

double-distilled water with specific conductivity of < 0.5 μScm
–1

. Prepared at room 

temperature electrolyte was weakly alkaline (pH = 9.1), however pH value of heated 

up to the working temperature of 60 °C electrolyte was slightly lower i.e., 8.5. 
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2.4. Characterization of samples 
 

2.4.1. Polymer like carbon coatings 
 

Coating thickness, ractive index and extinction coefficient were obtained using 

laser ellipsometer Gaertner 117 with He-Ne laser (λ = 632.8 nm). 

The chemical bonding structure of coatings was studied by means of infrared 

spectroscopy. IR spectra of coatings were measured in the range of 650 – 4000 cm
-1 

using FTIR spectrometer Nicolet 5700.  

The structure of carbon coatings was ex-situ characterized using Raman 

spectroscopy (RS). RS of experimental coatings were obtained in the range of 1000 

– 2000 cm
-1

 using Ivon Jobin spectrometer with a Spectra Physics Nd:YAG laser (λ 

= 532.3 nm, 50 mW at a 0.3 mm spot size). The overlapped background corrected 

Raman spectral bands were fitted with multi-Gaussian contours, using Least Square 

Fitting software. 

Optical reflectance spectra of coatings were obtained in the wavelength range 

of 200 – 850 nm using the USB4000-UV-VIS spectrometer with a special filter.  

Surface morphology of carbon coatings has been characterized by atomic force 

microscope (AFM NT–206) using V–shaped ULTRASHARP Si cantilever (force 

constant 1.5 Nm
-1

). The measurements were performed using tapping mode. 

Corresponding software was used for the evaluation of the roughness parameters of 

coatings within the scanned area. 

 

2.4.2. Ag/polymer nanocomposites 
 

Bonding structure of experimental coatings was investigated using Fourier 

transform infrared spectrometer Bruker Vertex 70, in the wavenumber range from 

400 cm
-1

 to 4000 cm
-1

, with a resolution of 0.5 cm
-1

. 

Optical spectra (carrying information about plasmonic properties of material) 

of the Ag/PVP nanocomposite films were measured using UV-VIS Avantes 

UV/VIS/NIR AvaSpec–2048 spectrometer in the wavelength range 190 – 1100 nm. 

Surface morphology of Ag/PVP nanocomposites films was investigated by atomic 

force microscope (AFM) NT–206. V–type silicon cantilever NSC11/15 (constant 

force, 3 N/m, resonant frequency, 21 kHz) was used for AFM measurements in 

tapping mode. Elastic properties of Ag/PVP films were determined from load-

distance measurements using AFM. The thickness of Ag/PVP nanocomposite films 

was measured using custom made scratch testing apparatus and AFM NT–206. 

The morphology of the coatings and bulk composition were investigated using 

a scanning electron microscope (JSM–5610 LV) with attached energy dispersive X-

ray analysis (EDX JED-2201; JEOL, Japan) and/or using optical microscope Optika 

B–600 MET. 
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3.4. Metal alloy/polymer nanocomposites 
 

Two commercially available monochromatic lasers: red beam (wavelength, λ = 

640 nm, power, N = 1 mW) and green beam (wavelength, λ = 532 nm; power, N =  

50 mW) were used for irradiation of electrolyte after entire sonoelectrochemical 

synthesis procedure searching for Tyndall effect which proves the presence of 

differently sized nanoparticles in electrolyte. The size of synthesized W-Co NPs and 

distribution according to their size was investigated in details by photon correlation 

spectroscopy (PCS) using Delsa
™

 Nano C (USA, Beckman Coulter) analyzer.  

The morphology of W-Co NPs and their chemical composition were 

investigated with a scanning electron microscope (SEM, FEI Quanta 200 FEG) with 

attached energy dispersive spectroscope (EDS, Bruker XFlash
®
 4030). The solution 

or, more precisely, suspension of W-Co NPs in trichloromethane was dripped on a 

polished silicon wafer (20 mm x 20 mm) and particles remaining on the silicon 

substrate after the evaporation of volatile organic solvent were analyzed. More 

detailed information about morphology of W-Co NPs was extracted from the 

transmission electron microscope (TEM, JEOL JEM 1210; max. accelerating 

voltage 120kV) images.  

 

2.5. Modification of samples 
 

2.5.1. Polymer like carbon coatings 
 

Coatings produced at different bias voltage were irradiated with gamma 

photons in teletherapy unit ROKUS-M with 
60

Co source (the activity of 
60

Co source 

at the time of investigation was 4.28 · 10
13

 Bq; the dose rate was 2.8 mGy/min) and 

with 12 MeV electrons, generated in medical linear accelerator Clinac DMX (the 

dose rate was 2 Gy/min). Irradiation dose was the same – 2 Gy. 

Irradiation of coatings produced at different deposition temperatures to high 

energy (6 MeV) electrons was performed in medical linear accelerator Clinac2100C 

(VARIAN) at the dose rate of 3 Gy/min. Maximal irradiation dose was 3 Gy. 

 

2.5.2. Ag/polymer nanocomposites 

 

Teletherapy unit “ROKUS–M” with 
60

Co (1.25 MeV) source was used to 

irradiate Ag/PVP nanocomposites. The activity of 
60

Co source was 6.52 · 10
13

 Bq 

and the dose rate was 6.5 mGy/s. The distance between the source and irradiation 

surface (SSD) was 75 cm and the irradiation field was 10 × 10 cm
2
. Total irradiation 

dose varied in the range 2 – 50 Gy. 

UV exposed PMMA and polymeric nanocomposite (Ag/PMMA) films were 

irradiated to different doses up to 2 Gy. The dose rate was 3.5 mGy/min and the 

energy of X-ray photons generated in X-ray diffractometer DRON-3 was 35 keV. 

Diffractometer DRON-3 was equipped with a single crystal graphite flat 

monochromator for transmitting only a narrow Cu Kα wavelength (λ = 0.15405 nm). 



77 

 

Irradiation of films was performed with the aim to investigate soft X-ray radiation 

induced modification of their optical properties, caused by two processes: polymer 

degradation and formation of metal nanoparticles within polymer matrix.  
 



78 

 

3. RESULTS AND DISCUSSIONS 

 
3.1. Polymer like carbon coatings 
 

Modification of polymer like amorphous hydrogenated carbon (a-C:H) 

coatings fabricated varying deposition parameters has been performed applying high 

energy photons and electrons. Mechanisms of structural changes in irradiated 

coatings have been analyzed and discussed on the basis of the obtained results in 

order to assess the role of hydrogen in the formation of the stable 3D network 

structure of tetrahedral configured carbon atoms (sp
3
 hybridization) with embedded 

small graphite clusters or formation of polymer nanocomposite similar structure 

consisting of polymer like carbon matrix with sp
2
 clusters in it. Discussed new 

formations have unique physical and chemical properties and have a broad spectrum 

of different applications. 

In this work modification of two types of polymer like a-C:H coatings have 

been investigated: coatings produced varying bias voltage and coatings produced 

varying deposition temperature. 

 

3.1.1. Carbon coatings fabricated varying bias voltage 
 

Carbon coatings were synthesized at room temperature from pure (99 %) 

acetylene (C2H2) in RF (13.56 MHz) dual-plasma reactor, on silica substrates. The 

bias voltage varied from 80 V to 480 V as well as primary ion current varied from 

1.01 to 1.36 mA, keeping gas flow rate of 5.6 cm
3
/s. Deposition pressure of 25 Pa 

was kept during the deposition process as well as deposition time of all coatings was 

420 s. Information on deposition parameters is provided in the Table 3.1.  

 

Table 3.1 The deposition parameters of carbon coatings 
Parameters  RP3 RP4 RP5 RP6 RP7 RP8 RP9 

Bias voltage, V 80 100 120 200 300 400 480 

Primary ion current, mA 1.16 1.04 1.03 1.01 1.08 1.16 1.36 

Initial chamber pressure, Pa 22.22 26.56 26.56 26.56 24.24 23.19 24.24 

Chamber pressure with forming gas, Pa 29.23 29.23 29.23 29.23 45.44 45.44 45.44 

Substrate heating time, s 120 120 120 120 180 180 180 

 

Deposited coatings were prepared for the exploration. Index RP was assigned 

to the “as prepared” coatings, RE – to the electron beam irradiated coatings and RG 

– to the coatings irradiated by photons.  

Characterization of as prepared coatings was performed using the results of 

null laser ellipsometry. Ellipsometric parameters were measured at three tilting 

angles and in at least three randomly selected locations on the coating’s surface, as it 

is indicated in Fig. 3.1 for RP4 coating. 
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Fig. 3.1 Measurement points on the RP4 coating surface 

 

The particular model of the formed structures were applied. Model represents 

structure, containing of a quartz target and deposited carbon coating on the top of the 

coating (Table 3.2). A set of measured ellipsometric parameters for the experimental 

coating RP4 is shown in the Table 3.3.  

 

Table 3.2 Applied model 

Model  Refraction index  Extinction coefficient  

Carbon coating 1.5 – 1.7 0 – 0.200 

quartz 0.5mm 3.882 0.019 

 

Table 3.3 Measured ellipsometric parameter of the RP4 coating  

Meas. 

loc. 

Meas. 

angle, 

deg 

P1 A1 P2n A2n P2 A2 Ψ Δ 
Ref. 

index 

Extinction 

coefficient 

Coating 

thickness, 

nm 

Test 

4.1 

30 43.9 40.3 133.9 139.7 133.8 139.8 40.3 182.3 

1.542 0.003 1160 50 65.0 35.0 155.0 145.0 155.2 145.9 34.6 139.8 

70 53.9 28.0 83.9 152.0 84.3 151.4 28.3 98.2 

Test 

4.2 

30 48.0 40.5 138.0 139.5 137.9 139.9 40.3 174.1 

1.607 0.010 1003 50 20.1 50.1 110.1 129.9 110.4 132.0 49.1 129.5 

70 72.7 19.3 162.7 170.7 161.9 170.8 9.3 125.4 

Test 

4.3 

30 45.1 40.4 135.1 139.6 134.9 139.3 40.6 180.0 

1.568 0.006 1225 50 43.8 69.2 133.8 110.8 132.6 110.4 69.4 183.6 

70 59.9 10.4 149.9 169.6 148.8 169.6 10.4 151.3 

Averaged 1.572 0.006 1129 

 

The same evaluation procedure was applied for all fabricated experimental 

coatings. Results of the evaluation are provided in Table 3.5. 

 

Table 3.4 The characteristics of all fabricated coatings 

Parameters 
Experimental coatings 

RP3 RP4 RP5 RP6 RP7 RP8 RP9 

Bias voltage, V 80 100 120 200 300 400 480 

Refraction index 1.615 1.572 1.626 1.675 1.669 1.690 1.690 

Extinction coefficient 0.007 0.006 0.003 0.004 0.006 0.010 0.011 

Coating thickness, nm 766 1129 856 1343 1005 1001 854 
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It was found, that applying the model for the performance of the test 

measurements at different locations of the same coating, overestimation of the 

refractive index was possible. These uncertainties might be related to the assumption 

regarding constant SiO2 layer thickness and have an impact on the average refraction 

index values of a certain coating leading to misinterpretation of the obtained results. 

To overcome this problem, experimental data collected following coating structure 

was considered for further investigation. 

Taking into account estimated refraction index values (Fang, 2009) 

investigated carbon coatings were identified as amorphous hydrogeneted/polymer 

like carbon coatings. Starting with RP6 carbon coatings were identified as coatings 

containing graphite clusters. It was found, that at the lowest bias voltage (80 V, 

RP3) coating thickness was not uniform and the refractive index at different coating 

surface points varried significantly: from 1.42 to 1.69. Well pronounced polymer 

like coating structure with a surface roughnes Rq = 0.9 nm was observed at 100 V 

bias (RP4), where refracton index values at different measurement points varried 

within interval 1.541 – 1.610; however surface thickness was not uniform (Fig. 3.2 

A). 

 

 

 
Fig. 3.2 Three dimensional AFM images of as prepared coatings: A – AFM image 

of RP4 coating: Rq = 0.9 nm, Ra = 0.7 nm; B – AFM image of RP6 coating: Rq = 0.9 nm, Ra 

= 0.7 nm; C – AFM image of RP8 coating: Rq = 0.4 nm, Ra = 0.3 nm 
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The increase of bias voltage lead to formation of some graphite clusters within 

polymer matrix of experimental coating. At 200 V (RP6) refractive index values of 

1.810 and 2.143 were registered at two randomly selected measurement points on 

the coating surface. Due to this the number of ellipsomeric measurement points on 

the coating surface was increased to 10 as total. The refractive index values at these 

points varried arround 1.65 ± 0.005 indicating polymer like carbon structure. 

Surface structure of the RP6 coating was more uniform as compared to coatings 

produced at lower bias, however surface roughness remained the same Rq = 0.9 nm 

(Fig. 3.2 B). The average refraction index values were not changing significantly 

and varried arround 1.74 ± 0.03 when the bias voltage was increased to ≥ 300 V, but 

the coating surface became smoother (Rq = 0.4 nm) (Fig. 3.2 C).    

After the analysis of initial coatings, the modification of carbon coatings using 

high energy electron and photon beams was estimated. Considering that radiation 

impact on amorphous/polymeric structures is responsible for the scission and cross-

linking of polymeric chains that lead to structural rearrangements, experimental 

coatings were irradiated to high energy (12 MeV) electrons generated in medical 

linear accelerator Clinac DMX (VARIAN). The dose of 2 Gy was delivered at 2 

Gy/min dose rate. For the comparison some of coatings were irradiated by gamma 

photons in teletherapy unit ROKUS–M with 
60

Co source. Irradiation dose was the 

same – 2 Gy at the dose rate of 0.281 Gy/min. 

Suggesting that the model developed by Liu et al. (2004) and Saito et al. 

(2000) and adapted by us for electron beams describes the behavior of hydrogen in 

the coating properly, experimental evaluation of the structure and properties of the 

irradiated coatings was performed applying ellipsometry, UV–VIS spectrometry, 

Raman spectroscopy, FTIR spectroscopy, AFM and other relevant coating 

examination methods. 

Raman spectra of experimental coatings were obtained in the range of 1100 – 

1800 cm
-1

. The D and G bands were fitted simultaneously by Gaussian at a linear 

background. G position was chosen as the maximum of the function rather than its 

center, to allow comparison with symmetric curve fits. Robertson (2002) and Ferrari 

(2004) have proposed that G peak observed in 1500 – 1630 cm
-1

 range is due to the 

bond stretching of all sp
2
 sites in rings and chains. The D peak becomes active only 

in the presence of disorder. The full width at half-maxima (FWHM) of D and G 

peaks as well as the integral intensity ratio between D and G peaks (ID/IG) was 

estimated. All evaluation and calculation results are provided in Table 3.6. 

It was found that D peak location of as prepared coatings varied in the range 

from 1309 cm
-1

 to 1369 cm
-1

, whereas G peak’s location – from 1526 cm
-1

 to 1581 

cm
-1

. Full width at half-maxima FWHMG of the G peak varied from ~ 90 cm
-1

 to ~ 

140 cm
-1

 as well as the full width at half-maxima FWHMD of the D peak varied from 

~ 140 cm
-1

 to ~ 180 cm
-1

 respectively. In line with increasing bias voltage the 

estimated ID/IG ratio of all coatings is increasing in the range from 1.09 to 1.19. 

These findings indicate that coatings most probably are polymer like and contain 
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considerably high number of C–H sp
3
 bonds as it is described in Das et al., (2011) 

and Novikov et al. (1997) papers. However, it should be noted that increasing 

intensity ratio ID/IG is related to the increase of sp
2
 phase in the structure, though 

sp
3
/sp

2
 ratio may depend on the other properties of the coating structure and on the 

hydrogen content in it. Similar results were obtained in Casiraghi et al. (2007) and 

Tai et al. (2006) research. 

 

Table 3.5 The evaluation and calculation results of Raman spectroscopy  
ID 

No 

Bias 

voltage, V 

Characteristics of Raman spectra of as prepared coatings 

D, cm-1 FWHMD, cm-1
 G, cm-1 FWHMG, cm-1 ID/IG 

RP3 80 1319 160 1581 100 1.09 

RP4 100 1309 180 1562 140 1.13 

RP5 120 1328 180 1549 130 1.15 

RP6 200 1318 150 1550 110 1.18 

RP7 300 1323 150 1545 110 1.18 

RP8 400 1369 150 1526 100 1.19 

RP9 480 1352 140 1548 90 1.19 

 

ID 

  No 

Bias 

voltage, V 

Characteristics of Raman spectra of electron irradiated coatings 

D, cm-1 FWHMD, cm-1 G, cm-1 FWHMG, cm-1 ID/IG 

RE3 80 1396 120 1617 70 1.46 

RE4 100 1380 130 1578 100 1.43 

RE5 120 - - - - - 

RE6 200 1384 100 1558 60 1,38 

RE7 300 - - - - - 

RE8 400 1396 120 1578 90 1.34 

RE9 480 - - - - - 

 

Analyzing Raman spectra of experimental coatings after the irradiation with 

high energy electrons it was found that the intensity, location and FWHM of 

characteristic D and G peaks have changed. Raman shift of the G (graphite) and D 

(diamond) peak towards higher wave numbers were observed for the all 

experimental coatings, the ID/IG ratio increased as compared with initial coatings. 

The D and G peaks become more intensive. These changes are related to the 

rearrangements in the coating structure: decreased number of sp
3
 bonds, increasing 

of sp
2
 sites and reduced amount of bonded hydrogen coatings (Ferrary, 2004). 

The Raman spectra of experimental coatings are presented in Fig. 3.3, Fig. 3.4, 

Fig. 3.5 and Fig. 3.6.  
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C D 

Fig. 3.3 Raman spectra of experimental coatings deposited at lowest 80 V bias: A, C – as 

prepared (RP3), B, D – irradiated with high energy (12 MeV) electrons (RE3) 

 

Fig. 3.3 shows the as prepared (RP3) and irradiated with 12 MeV energy 

electrons (RE3) Raman spectra of coatings deposited at lowest bias (80 V). The D 

peak means the disorder carbon bonding centered at around 1319 cm
-1

 and G peak 

means the graphite carbon bonding located at around 1581 cm
-1

. After irradiation the 

D peak gradually grows and its height is less than that of G peak, whereas Raman 

line shapes have a slight skewed potential for D and G peak to shift higher peak 

position. The G peak position shifts from 1581 cm
-1

 (as prepared) to 1617 cm
-1

 

(irradiated) but FWHMG of G peak decreases from 100 cm
-1

 to 70 cm
-1

, respectively. 

The same trend is observed in the D peak position shift. The D peak position shifts 

from 1319 cm
-1

 (as prepared) to 1396 cm
-1

 (irradiated) and the FWHMD of D peak 

decreases from 160 cm
-1

 to 120 cm
-1

, respectively. The relative ratio of the D peak to 

G (ID/IG) is 1.09 (for as prepared coating) increases up to 1.46 (for the irradiated 

coating) and this means that coating starts to increase its disorder performance due 

to slight graphitization and losing the hydrogen as a result in the graphitization 

conversion for C–C and C–H sp
3
 bonded carbon to transform to C–C sp

2
 bonded 

carbon (Tai et al., 2006). The intensity of D peak increases because of conversion of 

sp
3
 bonds to sp

2
 bonds, desorption of hydrogen and conversion of carbon structure to 

nanocrystalline graphite (Chu and Li, 2006). The G peak value of 1617 cm
-1

 (Fig. 
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3.3 D) is attributed to the sp
2
 C=C and indicates olefinic configuration of the bonds 

(Ferrary, 2004).  

 

 

 

 
 A B 

 

 

 

 
C D 

Fig. 3.4 Raman spectra of experimental coatings deposited at 100 V bias: A, C – as prepared 

(RP4), B, D – irradiated with high energy (12 MeV) electrons (RE4) 

 

The Raman spectra of the coating deposited at 100 V bias (Fig. 3.4 A) consists 

from the two separated peaks attributed to well-known D and G bands (Ferrary, 

2004). To estimate the positions and FWHM of D and G peaks, the Gaussian fitting 

was done. It was found that D peak is located at 1309 cm
-1

, while G band position is 

at 1562 cm
-1

. The FWHM of D and G peaks are 180 cm
–1

 and 140 cm
–1

, respectively. 

The relative ratio of the D peak to G (ID/IG) is 1.13. After the irradiation with 12 

MeV energy electrons both peaks (Fig. 3.4 B) changed their position, as well as 

peaks intensity and shape have changed too. The D and G peaks slightly intensified 

and shifted to the higher wave numbers – 1380 cm
-1 

and 1578 cm
-1

, respectively. The 

FWHM of both peaks has narrowed after the irradiation with 12 MeV energy 

electrons from 180 cm
–1 

to 140 cm
–1 

and from 130 cm
–1

 to 100 cm
–1

, 

correspondingly. The integral intensity ratio ID/IG has increased to 1.43 after 

irradiation. According to Casiraghi et al., (2007) there may be some reasons for the 

shape of the spectrum and FWHM values: changes of bonding structure in the 

irradiated coating (increased number of sp
2
 sites), radiation induced stress and 

formation of clusters in the polymer like a-C:H coating’s polymer matrix. 
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Fig. 3.5 Raman spectra of experimental coatings deposited at 200 V bias: A, C – as prepared 

(RP6), B, D – irradiated with high energy (12 MeV) electrons (RE6) 

 

Examination of Raman spectra of coating deposited at 200 V bias (Fig. 3.5 A) 

has shown that the main D and G peaks of RP6 coating were obtained at 1318 cm
-1

 

and 1550 cm
-1

, respectively. The FWHM of D and G peaks are 130 cm
–1

and 70 cm
–1

, 

respectively. The ID/IG ratio is high in comparison with different types of carbon 

coatings and shows that the relative fraction of sp
2
 sites is higher than sp

3
. 

According to Robertson (2002) and Marcinauskas et al. (2007) it is related with 

reduction of bond angle disorder and growth of graphite domains. After the 

modification with high energy electrons the structure of RE6 coating become like 

polymer composite with incorporated graphite domains. The main D and G peaks of 

coating shifted towards higher wave numbers accordingly to 1384 cm
–1 

and 1558 

cm
–1

, as well as the FWHM of D and G peaks narrowed to 100 cm
–1

 and 60 cm
–1

, 

respectively. The ID/IG ratio increased as compared with initial coating (RP6) to 

1.38. The intensity of D peak increases due to reorganization of sp
3
 bonds to sp

2
 

bonds, desorption of hydrogen as well as the narrowed FWHMG according to the 

formation of the strong sp
2
 C=C bonds (Marcinauskas et al., 2010). 

 



86 

 

 

 

  
A B 

 

 

 

 
C D 

Fig. 3.6 Raman spectra of experimental coatings deposited at 400 V bias: A – as prepared 

(RP8), B – irradiated with high energy (12 MeV) electrons (RE8) 

 

 Analysis of Raman spectra of experimental coatings deposited at 400 V bias 

(Fig. 3.6) have shown, that after the irradiation D and G peaks were shifted towards 

higher wave numbers from 1369 cm
-1

 to 1396 cm
-1

 (D peak) and from 1526 cm
-1

 to 

1578 cm
-1

 (G peak). Meanwhile ID/IG ratio was increased from 1.19 to 1.34, the 

FWHM of D and G peaks slightly narrowed from 150 cm
–1

 to 120 cm
–1

 and from 

120 cm
–1

 and 100 cm
–1

, respectively. 

Raman spectrum of irradiated carbon coating produced at 120 V (RE5), 300 V 

(RE7) and 480 V (RE9) does not indicate any typical peaks related to the carbon 

structures in the range of 1100 cm
–1

 – 1800 cm
–1

. According to the RS 

measurements we could not identify the structure and the changes of these coatings 

after the modification with high energy electrons. 

Making presume the high energy photons entering the experimental coatings 

produce high energetic electron-positron pairs or recoil electrons through Compton 

scattering (Plaipaite-Nalivaiko et al., 2012). The electrons can break C–H bond or 

even C=C bond in the films, that can cause rearrangements in film structure 

(Plaipaite-Nalivaiko et al., 2012). Formation of the strong C–C bonds and changes 

of the unbound hydrogen concentration, which could be then released from the films 

by forming hydrogen molecules, is a result of the direct high energy photon 

irradiation of carbon coatings (Plaipaite-Nalivaiko et al., 2012). The shape of the 

spectrum and narrow FWHM values indicates that the production of hydrogen leads 

to the formation of nanocrystalline graphite clusters in experimental coatings. 

According to Robertson (2002) and Adliene (2008) the nano clusterization is 
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possible. It seems it is easy to rearrange films with the low density networking 

structure. But it is possible when the radiation produced free radicals and ions in air 

interact with the material (oxygen or hydrogen etching) creating the new 

connections at least in the surface layer of the film (especially with the unbound 

hydrogen). According to Robertson (2002) while the G peaks width decreases, the 

Urbach energy continues to increase. Urbach energy is a value of inhomogeneous 

disorder that shows the range of sp
2
 cluster sizes present. In such a case, while 

Urbach energy increases, inhomogeneous disorder increases and the optical gap of 

PLC coatings are increasing too. 

The interaction of the electrons and a-C:H film results in an ionization volume 

in which the target atoms are excited or ionized so as to break some of the C–H and 

C–C bonds. The released hydrogen atoms and some small hydrocarbon units could 

re-combine together to form hydrogen molecules or even methane molecules and 

diffuse out of the irradiated film. Therefore, a number of carbon dangling bonds 

would be produced. The carbon dangling bonds may rebound, under the influence of 

the extra deposited energy, to form a more stable carbon network.  

Assuming that the mechanisms for the bond transformation from C–C to C=C 

under the impact of high electron energy could be similar to those happening in 

thermal annealing (Saito et al., 2000), if the electron flux density is significant 

enough (~10
16

 cm
-2

) and might be described by following reactions: 

);()(4)()()()(6 232233 spspCspCspCspCspC       (3.1) 

and formation of H2 from sp
3
-Hn  

;)()()(2 2

333 HspCspCHspC                        (3.2) 

Reactions (3.1) and (3.2) are endothermic with energies of about 0.11 eV and 

0.49 eV, respectively. Hydrogen loss from the irradiated film may also realize 

through a formation of methane, with an endothermic energy of 0.14 eV, which is 

actually smaller than that to form a hydrogen molecule: 

);()(4)()()(6)(4 2322

4

33 spCspCspCspCCHspCHspC   (3.3) 

With hydrogen release and the creation of hydrogen free C(sp
3
)–C(sp

2
) 

bonding clusters, more and more C(sp
2
)=C(sp

2
) bonds are simultaneously produced 

so that they could rearrange into the bigger size of C(sp
2
) atom rings.  

Optical properties of carbon coatings were investigated using USB4000–UV–

VIS spectrometer in the 200 – 850 nm wavelength range. The UV–VIS 

transmittance spectra of RP6 coating (without modification), RE6 coating (after 

modification by electrons) and RG6 coating (after modification by photons) are 

shown on Fig. 3.7. Analyzing UV–VIS transmittance spectra, it is clearly seen that 

due to the modification with high energy electrons and photons, the transparency of 

experimental coatings has reduced. 
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Fig. 3.7 UV–VIS transmittance spectra of RP6 coating before irradiation and after it’s 

modification with high energy electrons RE6 and photons RG6 

 

Decreasing tendency of UV-VIS transmittance spectra occurs due to hydrogen 

release from coating, restructuration processes and formation of new polymeric 

chains. According to the calculations and τ approximation method it was found that 

increasing bias voltage the refractive index increasing while the optical band gap 

narrowing (Table 3.6). Such trends have been observed in other author’s works 

(Saito et al., 2000; Santra et al., 2011). On the other hand, after exposure to high-

energy electrons and photons, the band gap width of experimental coatings slightly 

increases (Fig. 3.6).   

 

Table 3.6 The width of optical band gap 
 RP3 RG3 RE3 RP4 RG4 RE4 RP5 RP6 RG6 RE6 RP7 RP8 RG8 RE8 RP9 

 Bias, V 80 100 120 200 300 400 480 

 E, eV 2.28 2.95 3.02 1.61 1.75 1.81 1.97 1.51 1.79 1.95 1.91 1.56 1.75 1.94 1.58 
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Fig. 3.8 The estimation of band gap from UV–VIS spectra 



89 

 

Reduced sp
3
 content and changed chemical bonding structure in irradiated 

coatings was identified from the FTIR spectra as well. FTIR reflectance and 

transmittance spectra were investigated with a purpose to get additional information 

about chemical bonds experimental coatings. The initial FTIR reflectance spectra of 

the coatings RP3, RP6 and RP8 (produced at the bias voltage of 80 V, 200 V and 

400 V respectively, within a time of 420 s are provided in Fig. 3.9, Fig. 3.10 and 

Fig. 3.11. The FTIR spectra measured after coating’s irradiation with gamma 

photons from 
60

Co source (RG3, RG6 and RG8) and the FTIR spectra obtained from 

the coating irradiated with 12 MeV electrons (RE3, RE6 and RE8) are presented in 

Fig. 3.9, Fig. 3.10 and Fig. 3.11 as well.  

Increased IR absorption level was observed in irradiated experimental coatings 

as a result of rearrangements in the bonding structure due to their bombardment with 

high energy particles. The FTIR spectra show sp
3 

CH2-3 (methylene) groups in 

asymmetric and symmetric stretching and bending modes at approximately 2900 cm
-

1
, as it is usual for hydrogenated a-C:H. It is important to note that the irradiation 

with high energy electrons have greater impact on substrates than irradiation with 

gamma photons. All the modifications could be related to hydrogen content changes 

in the coating, appearance and disappearance of specific bonds and links as it was 

observed in the case of sp
2
 C=O replacement by newly created sp

2
 C=C bonds. Most 

of the hydrogen is bonded to the sp
3
 carbon and forms methylene compounds sp

3
 

CH2-3. It is clearly seen that radiation induces defects and dangling bonds that can 

be easily occupied by oxygen and create C=O and OH bonds (Santra et al., 2010; 

Kim et al., 2004). Intensive peaks at 1723 cm
-1

 and 1107 cm
-1

 (RE3) coating are 

related to sp
2
 C=O valence vibrations. Broad low intensity band observed in the 

range of 3300 cm
-1 
 3700 cm

-1
 corresponds to the sp

1
 OH stretching vibrations. 

Part of this peak might be related to sp
1
 carbon (C≡CH) (Robertson, 2002). The 

fraction of sp
3 

CH3 at 1390 cm
-1

 increases depending on the type of radiation. The 

strong absorption at approximately 1642 cm
-1

 which is attributed to the presence of 

vibration mode of sp
2
 C=C and indicates the presence of aromatic and olefinic 

configuration of the bonds. The peak at 1232 cm
-1

 (RG3, after gamma irradiation) 

indicates growing influence of the mixed sp
2
/sp

3
 CC bonds and possible 

transformation from polymer like to graphite like coating. In a mixed sp
2
/sp

3
 

network 2 types of defects might be distinguished: isolated sp
3
 dangling bonds and 

small sp
2
 clusters where the π bonds can be distorted. 
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Fig. 3.9 FTIR reflectance intensity spectra of RP3 coating before irradiation and after it’s 

irradiation with gamma photons (RG3) emitted by 
60

Co (1.25 MeV) source and after it’s 

irradiation with 12 MeV energy electrons (RE3) 

 

FTIR spectrum of as prepared RP6 coating is very similar to the FTIR spectra 

of irradiated coatings – RG6 and RE6. Some intrinsic peaks shifted, as well as the 

intensity of peaks decreased. Existence of the wide band at 3100 cm
–1

 – 3400 cm
–1

 is 

attributed to OH bonds. Though, the width of this peak also indicates presence of the 

sp
1
 CH sites in the films. The absorption at 2830 cm

–1
 and 2880 cm

–1
 is related to sp

3
 

CH2 symmetric and asymmetric stretch modes, respectively. The peaks appearing at 

1725 cm
–1

 and 1450 cm
–1

 indicate sp
2
 C=O stretching mode and C=C bonds, 

respectively (Marcinauskas et al. 2011). The C=C peak suggests that carbon bonds 

are aromatic and olefinic configurations. Yi et al. (2009) supposed that this 

broadness is due to interaction between the C=C vibrations and the neighboring sp
2
 

C–H bonds. The absorbance bands found at about 1190 cm
–1

 and 1175 cm
–1

 are 

related to C–H, C–C or C–O groups. Presence of the C=O and O–H bands in the a-

C:H films according to Marcinauskas et al. (2007) shows a large concentration of 

free radicals, which react with oxygen. 
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Fig. 3.10 FTIR reflectance intensity spectra of RP6 coating before irradiation and after it’s 

irradiation with gamma photons (RG6) emitted by 
60

Co (1.25 MeV) source and after it’s 

irradiation with 12 MeV energy electrons (RE6) 

 

Analyzing IR spectra of RP8 (400 V) coating it is clearly seen increased 

absorption level after modification with high energy photons. Broad low intensity 

band defining sp
1
 OH stretching vibrations was observed in the range of 3300 cm

-1 
 

3700 cm
-1

 (RE8) (Robertson, 2002). Peak at 2900 cm
−1

 corresponding to the sp
3 

CH2-3 symmetric and asymmetric stretching modes that are usual for a-C:H were 

found in experimental coatings. All the rearrangements could be related to hydrogen 

content changes in the coating, appearance and disappearance of specific bonds and 

links as it was observed in the case of sp
2
 C=O replacement by newly created sp

2
 

C=C bonds. Most of the hydrogen is bonded to the sp
3
 carbon and forms methylene 

compounds sp
3
 CH2-3. Intensive peaks (RG8 and RE8) at range from 1710 cm

-1
 to 

1730 cm
-1

 coating are related to sp
2
 C=O stretching mode. The band around 1480 

cm
-1

 related to sp
3
 CH3 shifted to 1430 cm

-1
 and became more intensive and broader 

after irradiation. This peak could be related to sp
2
 CH in aromatic configuration of 

the bonds. It is possible rearrangement from polymer like to graphite like coating 

due to appearance of small sp
2
 clusters where the π bonds can be distorted. The peak 

at 1210 cm
-1

 (RG8, after gamma irradiation) indicates growing influence of the 

mixed sp
2
/sp

3
 CC bonds as well as the peak at 1230 cm

-1
 (RE8, after electron 

irradiation) are ascribed to sp
2
/sp

3
 C–C bonded carbon. 
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Fig. 3.11 FTIR reflectance intensity spectra of RP8 coating before irradiation and after it’s 

irradiation with gamma photons (RG8) emitted by 
60

Co (1.25 Mev) source and after it’s 

irradiation with 12 MeV energy electrons (RE8) 

 

The transmittance spectra of experimental coatings show the same structural 

information as the reflectance spectra for all coatings. The transmittance spectra of 

RP6 and RP8 coatings after their modification with photons and electrons showed 

below as an example (Fig. 3.12 and Fig. 3.13). 
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Fig. 3.12 FTIR transmittance spectra of RP6 coating after it’s irradiation with gamma 

photons (RG6) emitted by 
60

Co (1.25 MeV) source and after it’s irradiation with 12 MeV 

energy electrons (RE6) 



93 

 

4000 3600 3200 2800 2400 2000 1600 1200 800 400

20

22

24

26

28

30

32

34

36

38

40

42

44

T
ra

n
s

m
it

ta
n

c
e

, 
%

Wavenumber, cm
-1

 RG8

 RE8

3445

2930

2337

2095

1710

1450

1105

1280

760

610

 
Fig. 3.13 FTIR transmittance spectra of RP8 coating after it’s irradiation with gamma 

photons (RG8) emitted by 
60

Co (1.25 MeV) source and after it’s irradiation with 12 MeV 

energy electrons (RE8)  

 

Rearrangements in chemical bonding structure after the irradiation correlate 

with the radiation induced changes of the morphological properties of the irradiated 

coatings. The surface morphology of experimental coatings was examined using 

atomic force microscopy (AFM, NT206) with Vshaped ULTRASHARP Si 

cantilever and the roughness values were determined. 3D topographic scans of the 

coatings before and after their modification by 12 MeV electron beam are provided 

in Fig. 3.14, Fig. 3.15 and Fig. 3.16. Each scan represents 10 μm × 10 μm lateral 

areas.  
 

  
Fig. 3.14 Three dimensional AFM images of as prepared RP4 coating and of irradiated RE4 

coating 
 

As it was mentioned above and considering the estimated refractive index 

values all experimental coatings were identified as amorphous 



94 

 

hydrogenated/polymer like carbon coatings. Well pronounced polymer like coating 

structure with a surface roughness Rq = 0.9 nm was observed at 100V bias (RP4). 

After the modification with high energy electrons the coating’s (RE4) surface 

became smoother whereas the surface roughness of coating decreases to Rq = 0.4 nm 

(Fig. 3.14). 
 

  
Fig. 3.15 Three dimensional AFM images of as prepared RP6 coating and of irradiated RE6 

coating 

 

The increase of bias voltage till 200 V (RP6) lead to formation of some 

graphite clusters within polymer matrix of PLC coating. Surface structure of the 

RP6 coating (Fig. 3.15) was more uniform as compared to coatings produced at 

lower bias, however surface roughness remained the same Rq = 0.9 nm. Due to 

rearrangements in the structure of the coating dependent on the electron beam 

energy and transferred dose the surface of irradiated coating (RE6) become 

smoother, however the surface roughness changed insignificant – Rq = 0.8 nm.  
 

  
Fig. 3.16 Three dimensional AFM images of as prepared RP8 coating and of irradiated RE8 

coating 

 

Increasing the bias voltage up to ≥ 300 V the surface morphology of RP8 

coating (Fig. 3.16) becomes smoother Rq = 0.4 nm as compared to coatings 

deposited in lower bias voltage. The same process is observed after the irradiation of 

experimental coatings with high energy electrons. The roughness of RE8 coating 

decreased to Rq = 0.3 nm.  
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The results support the assumption that the graphite clusters form in a 

polymeric matrix, which is associated with the internal restructuration of carbon 

coatings. 

 
3.1.2. Carbon coatings fabricated at different temperatures 
 

Carbon coatings were synthesized by PECVD method in RF (13.56 MHz) 

dual-plasma reactor on n type silicon (100) substrates. Prior to the deposition silicon 

substrates were cleaned and etched in acetone. The pre-cleaned substrates were pre-

treated in Ar
+
 plasma in order to achieve an oxygen free surface and a buffer layer 

and to enhance coating adhesion. Deposition of carbon coatings was performed at 

different temperatures ranging from 298 K to 673 K using acetylene (C2H2) as a 

precursor. Deposition time of PLC coatings was 300 seconds. Deposition pressure of 

33 Pa was kept during entire deposition process. 

Experimental coatings were prepared for the exploration. Index TA was 

assigned to the “as prepared” coatings, TE – to the electron beam irradiated coatings. 

Concerning the radiation impact on amorphous/polymeric structures experimental 

coatings were irradiated to high energy (6 MeV) electrons generated in medical 

linear accelerator Clinac 2100C (VARIAN) at the dose rate of 3 Gy/min. Maximal 

irradiation dose was 3 Gy. 

The summary of the main characteristics of as-prepared experimental coatings 

obtained from ellipsometric measurements is provided in Table 3.7.  

 

Table 3.7 The characteristics of polymer like a-C:H coatings 

ID 

No 

Precursor 

gas 

Bias 

voltage, V  

Deposition 

temperature, K 

Refractive 

index 

Extinction 

coefficient 

Film thickness, 

nm 

TA4 

Acetylene 

C2H2 
200 

298 1.73 0.001 274  

TA5 405 1.69 0.008 268  

TA3 481 1.66 0.012 251 

TA6 575 1.65 0.009 221 

TA7 673 1.62 0.018 130 

 

Ellipsometric results showed decreasing tendency of the thickness of the 

coatings and decreasing tendency of refractive index while the temperature was 

increasing. There was no well-established tendency observed between extinction 

coefficient and temperature. Investigated parameters strongly depend on the formed 

carbon coating structure and hydrogen content in it, as it was shown analyzing 

Raman spectra of experimental coatings.  

Raman spectra of experimental coatings were obtained in the range of 1100 – 

1800 cm
-1

. The D and G bands were fitted simultaneously with multi-Gaussian 

contours at a linear background. G position was chosen as the maximum of the 

function rather than its center, to allow comparison with symmetric curve fits. The 

main role defining type of carbon coating play the G peak at 1500 – 1630 cm
-1

 



96 

 

which arises from the bond stretching motion of pairs of sp
2
 C atoms in aromatic 

rings or olefinic chains (Ferrary and Robertson, 2000; Rodil et al., 2001), and the D 

peak, which becomes active only in the presence of disorder is due to the breathing 

modes of rings. The full width at half-maxima (FWHM) of D and G peaks as well as 

the integral intensity ratio between D and G peaks (ID/IG) was estimated. All results 

are provided in Table 3.8 and Table 3.9. 

 

Table 3.8 The main results of Raman spectroscopy of as prepared coatings 
ID 

No 

Deposition 

temperature, K 

Characteristics of Raman spectra of as prepared coatings 

D, cm-1 FWHMD, cm-1
 G, cm-1 FWHMG, cm-1 T, cm-1 ID/IG 

TA4 298 1359 80 1573 150 1178 0.64 

TA5 405 1352 120 1557 230 1171 0.57 

TA3 481 1339 160 1532 210 1135 0.59 

TA6 575 1363 60 1579 130 1180 0.62 

TA7 673 1353 110 1581 200 1167 0.53 

 

Analysis of Raman spectra has shown that the wave numbers corresponding to 

the D peak of experimental coatings varied in the range from 1339 cm
-1

 to 1363 cm
-

1
, whereas the G peak – from 1532 cm

-1
 to 1581 cm

-1
. Intrinsic peak varied in a 

range 1135 cm
-1

 to 1180 cm
-1

 was observed for all experimental coatings. This peak 

is called T peak characterized as ν1 mode, also this peak called trans-poliacetylene 

peak. This peak could be related to the formation of nanocrystalline clusters 

however, it is not characterized as sp
3
 phase bonds. 

 

Table 3.9 The main results of Raman spectroscopy of irradiated coatings 
ID 

No 

Deposition 

temperature, K 

Characteristics of Raman spectra of irradiated coatings 

D, cm-1 FWHMD, cm-1
 G, cm-1 FWHMG, cm-1 T, cm-1 ID/IG 

TE4 298 - - - - - - 

TE5 405 1358 80 1592 200 1179 0.59 

TE3 481 1392 100 1568 150 1188 0.63 

TE6 575 1363 80 1589 200 1191 0.71 

TE7 673 - - - - - - 

 

The Raman spectra of experimental coatings are presented in Fig. 3.17, Fig. 

3.18 and Fig. 3.19. 

Fig. 3.17 shows the as prepared (TA3) and irradiated with high energy 

electrons (TE3) Raman spectra of coatings deposited at 481 K temperature. The D 

peak centered at around 1339 cm
-1

, G peak located at around 1532 cm
-1

 and T peak 

was observed at 1135 cm
-1

. After irradiation the D peak gradually grows and its 

height is less than that of G peak, whereas Raman line shapes have a slight skewed 

for D and G peak and shift higher peak position. It should be noted that the T peak 

intensity decreased after the irradiation with high energy electrons and its position 

has changed. The G peak position shifts from 1532 cm
-1

 (as prepared) to 1568 cm
-1

 

(irradiated) as well as FWHMG of G peak decreases from 210 cm
-1

 to 150 cm
-1

, 
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respectively. The same trend is observed in the D peak position shift. The D peak 

position shifts from 1339 cm
-1

 (as prepared) to 1392 cm
-1

 (irradiated) and the 

FWHMD of D peak decreases from 160 cm
-1

 to 100 cm
-1

, respectively. Equally the T 

peak position shifts from 1135 cm
-1

 (as prepared) to 1188 cm
-1

 (irradiated). The 

relative ratio of the D peak to G (ID/IG) is 0.59 (for as prepared coating) increases up 

to 0.63 (for the irradiated coating). The positions of D and G bands compared to 

typical D and G peaks of the polymer like a-C:H films are shifted to the higher 

frequencies. According to Marcinauskas et al. (2007) and Robertson (2002) it is 

related with reduction of bond angle disorder and growth of graphite domains. 

Whereas increasing tendency of ID/IG ratio and of FWHM of both peaks means that 

coating starts to increase its disorder performance due to slight graphitization and 

losing the hydrogen as a result in the graphitization conversion for C–C sp
3
 bonded 

carbon to transform to C=C sp
2
 bonded carbon (Tai et al., 2006). The intensity of D 

peak increases because of conversion of sp
3
 bonds to sp

2
 bonds, desorption of 

hydrogen and conversion of carbon structure to nanocrystalline graphite (Chu and 

Li, 2006). 
 

  
A B 

Fig. 3.17 Raman spectra of experimental coatings deposited at 481 K temperature: A – as 

prepared (TA3), B – irradiated with high energy (12 MeV) electrons (TE3) 

 

It is evident that RS of experimental coatings (Fig. 3.18) contain some 

additional intrinsic peaks indicating more complicated structure of carbon coatings. 

The main Raman peaks of TA5 coating (Fig. 3.18 A) were obtained at 1352 cm
-1

 (D 

peak), at 1557 cm
-1

 (G peak) and at 1171 cm
-1

 (T peak). All peaks change their 

shape, intensity and position after irradiation with high energy electrons. The D and 

G peaks shifted to the higher wave number to 1358 cm
-1

 and 1592 cm
-1

, respectively. 

Investigation of T peak shape and position after the irradiation has shown that peak 

intensity decreased and position shifted to higher wave number accordingly to 1179 

cm
-1

. The full width at half-maxima (FWHM) of D and G peaks is narrowed after the 

modification from 120 cm
-1

 to 70 cm
-1

 (D peak) and from 230 cm
-1

 to 180 cm
-1

 (G 

peak), respectively. The integral intensity ratio ID/IG increases from 0.57 to 0.59. 

According to Casiraghi et al. (2007) there may be some reasons for the shape of the 

spectrum and narrow FWHM values: changes of bonding structure in the irradiated 

coating (increased number of sp
2
 sites), radiation induced stress and formation of 
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clusters in the experimental coating, their size and distribution. In parallel, the 

intrinsic peak is observed in experimental coating TE5 (Fig. 3.18 B): the peak at 

about 1275 cm
-1

 can be assigned to C–O–C asymmetric stretch as polymerization 

product for experimental coating. 
 

  
A B 

Fig. 3.18 Raman spectra of experimental coatings deposited at 405 K temperature: A – as 

prepared (TA5), B – irradiated with high energy electrons (TE5) 

 

Analysis of Raman spectra has shown the similar tendency for Raman peak 

shifting for TA6 coating (Fig. 3.19 A); however the overall relative intensity of 

irradiated coating was lower.  
 

 

  
A B 

Fig. 3.19 Raman spectra of experimental coatings deposited at 575 K temperature: A – as 

prepared (TA6), B – irradiated with high energy electrons (TE6) 

 

After irradiation D peak remains at the same position - 1363 cm
-1

, however the 

intensity of this peak slightly increases. The increased intensity of D peak might be 

explained by the conversion of sp
3
 bonds to sp

2
 bonds, desorption of hydrogen due 

to radiation induced scission and crosslinking processes in polymeric structure. G 

peak of irradiated TE6 coating (Fig. 3.19 B) shifts from 1579 cm
-1

 to 1589cm 
-1

 and 

becomes broader. It is to point out that the FWHM values of the both peaks are 

higher after the irradiation and the ID/IG ratio increases from 0.62 to 0.71. Therefore, 



99 

 

it is possible to suggest that this coating became more polymer-like after its 

irradiation with high energy electrons. The intrinsic peak is observed at about 1275 

cm
-1

 that can be assigned to C–O–C asymmetric stretch. 

The surface conditions play an important role applying PLC as protective 

coatings. Due to this surface morphology of experimental coatings was examined 

using atomic force microscopy (AFM, NT-206) with V-shaped ULTRASHARP Si 

cantilever and the roughness values were determined. 3-D topographic scan of the 

coatings before and after their modification by 6MeV electron beam are provided in 

Fig. 3.20 and Fig. 3.21. Each scan represents 3 μm × 3 μm lateral areas.  

As it was mentioned above and considering the estimated refractive index 

values all experimental coatings were identified as polymer like amorphous 

hydrogenated carbon coatings. Well pronounced polymer like coating structure with 

a surface roughness Rq = 0.8 nm was observed at 405 K temperature (TA5). After 

the modification with high energy electrons the coating’s (TE5) surface became 

smoother whereas the surface roughness of coating decreases to Rq = 0.7 nm (Fig. 

3.20). 

 

 

 

 

 
A B 

Fig. 3.20 Three dimensional AFM images: A – as prepared coating TA5, B – irradiated 

coating TE5 

 

Increasing the temperature up to 575 K the surface morphology of TA6 

coating (Fig. 3.21 A) becomes smoother Rq = 0.4 nm as compared to coatings 

deposited in lower temperature. The same process is observed after the irradiation of 

experimental coatings with high energy electrons. Due to rearrangements in the 

structure of the coating dependent on the electron beam energy and transferred dose 

the surface of irradiated coating (TE6) become smoother, however the surface 

roughness changed insignificant. The roughness of TE6 coating (Fig. 3.21 B) 

decreased to Rq = 0.3 nm.  
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A B 

Fig. 3.21 Three dimensional AFM images: A – as prepared coating TA6, B – irradiated 

coating TE6 

 

It is evident that the structure of carbon coating produced at higher 

temperatures (575 K for TA-6) is more polymer-like and smoother as compared to 

coatings produced at lower temperatures (405 K for TA-5). With reference to other 

publications electron bombardment of coatings is responsible for hydrogen 

evaporation (Plaipaite-Nalivaiko et al., 2013) and radiation induced polymerization 

processes (Novikov et al., 1997). Surface confined polymerization can significantly 

change surface morphology and smoother rough surfaces as it is observed in the case 

of irradiated coatings. It should be noted that the surface roughness of irradiated 

coatings decreases corresponding to rearrangements in the structure of the coatings 

that in turn are dependent on the electron beam energy and transferred dose. 

 

Summary 
 

All prepared experimental coatings were investigated and analyzed. It was 

found that variations of bias voltage and temperature had significant influence on the 

properties of modified coatings. Investigations have shown that the experimental 

coatings can be attributed to polymer like amorphous hydrogenated carbon films.  

Increasing the bias, the refractive index is increasing too, while the optical band 

gap is narrowing. Coatings formed at higher bias are harder. Upon the high energy 

electron and photon irradiation, the bonds between hydrogen and carbon atoms are 

terminated, therefore the restructuration processes and sp
2
 hybridization carbon 

cluster formation proceed. Due to structural changes in the irradiated coatings the 

optical transparency reduces in visible light range, the coating becomes harder. 

Coatings formed at different temperatures are polymer like a-C:H carbon 

coatings. Irradiation of coatings formed at temperatures higher than 200 °C with 

high energy electrons leads to the hydrogen release from coatings, the 

restructurization, and changes of surface morphology. After modification with high 

energy electrons they reflected the increase of the bonding sp
2
/sp

3
 ratio, the 
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occurrence of enhanced clusterization and graphitization processes as well as 

changes in surface morphology. 

 

3.2 Ag/polymer nanocomposites 
 

3.2.1. Ag/PMMA nanocomposites 
 

Poly-methyl methacrylate (PMMA) solution with metal powder (Ag) additives 

was prepared dissolving 0.001 M of AgClO4 in 50 ml of 1% PMMA solution in 

chloroform. ~1 mm thin layers of polymeric structures were spin-coated on the 

surface of polished optical glass using “DYNAPERT PRECIMA” centrifuge. As 

prepared films were dried in the desiccator (air humidity ~ 30%). PMMA films 

without additives were also produced for the comparison.  

Ag/PMMA nanocomposites were successfully synthesized by in-situ 

polymerization technique without using any external chemical reagent at ambient 

temperature. PMMA was acting as a protective agent that restricts the mobility of 

silver ions during the reaction, and hence, agglomeration was mostly controlled. 

Chloroform was used as a solvent to form chemical network between silver 

nanoparticles and PMMA. Synthesis of Ag nanoparticles was performed using 

photocatalytic reduction of silver atoms directly in a thin layer of deposited polymer. 

UV light source was used for this purpose. Applied UV exposure time of 5 min. was 

sufficient enough for photoreduction of Ag ions and formation of silver 

nanoparticles.  

UV irradiation is a widely used technique to produce electrons in the 

corresponding solution for reduction of metal salts is used for the synthesis of 

nanoparticles. Within polymer matrix produced electrons reduce metal ions into 

metal atoms (in present case – Ag
+
 and Ag

0
 correspondingly). In accordance with 

(Eqs. (3.7) and (3.8)), metal atoms Ag
0
 formed in solution from the Ag

+
 reductions 

tend to associate with other ions and can grow into oligomers and larger clusters 

(Eq. (3.9)) (Jurasekova et al., 2011; Calinescu et al., 2014). 
0AgeAg aq  

;                                                (3.7) 

;0   HAgHAg                                           (3.8) 

;2

0 



  x

xmAgAgAgAg                                     (3.9) 

;2

00

nAgAgAgAg                                       (3.10) 

Moreover, silver atoms Ag
0
 can condensate, forming neutral nuclei Agn (Eq. 

(3.10)), which can grow by reducing more silver ions, giving rise to large silver 

nanoparticles (Ag)L (Eqs. (3.11) and (3.12)) 

;)( Ln AgnAgAg  
                                         (3.11) 

;*mnmn AgAgAg                                            (3.12) 
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The produced silver atoms nucleate and grow into silver nanoparticles inside 

the polymer matrix as it is shown in Fig. 3.22 which was redrawn from (Yilmaz, 

2011).  

 
Fig. 3.22 Schematic representation UV radiation induced reduction of Ag

1+
 ions to Ag

0
 

atoms and nucleation and growth of Ag nanoparticles in polymer matrix 

 

During the UV irradiation of the polymer, cross-linking process prevails upon 

polymer scission limiting the growth of the nanoparticles after a critical particle size 

is reached. The in-situ reduction method doesn’t destroy the polymer completely, 

only a very small part of the polymer is degraded (Fig. 3.23) (Puišo et al., 2013; 

Singho et al., 2014; Vodnik et al., 2009). 
 

 
Fig. 3.23 UV radiation to PMMA (Singho et al., 2014) 

 

Experimental films were irradiated to different doses from 0.02 Gy to 0.20 Gy 

at dose rate of 3.5 mGy/min using 35 keV X-ray photons generated in X-ray 

diffractometer DRON-3. The radiolysis of monomer solution results in the 

formation of radicals, which then initiate the polymerization of MMA to form 

polymer chains. The dispersed silver ions are reduced to silver atoms by reductive 

particles and sustain further growing to larger clusters leading to the formation of 

silver nanoparticles (Vodnik et al., 2009). Due to quick polymerization of MMA the 

ductility of the reaction system, resulting the formation of polymer chains, increases. 

This effect as well as the availability of carboxylate functional groups of PMMA 

with a high affinity for the Ag
+
 can limit the aggregation of silver nanoparticles and 

make them dispersed in polymer matrix homogeneously (Akhavan et al., 2010).  
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Fig. 3.24 The mechanism of formation of Ag/PMMA nanocomposite proposed by (Akhavan 

et al., 2010) 

 

Nanocomponents were made from precursors in the liquid phase employing 

chemical and physical processes that initiate building of nanofeatured blocks within 

the final host material structure. Two types of host materials for Ag NPs were 

explored. NPs production within polymer resulted in formation of polymeric 

nanocomposite Ag/PMMA. Photoreduction and radiation enhanced synthesis 

processes were applied to produce Ag nanoparticles and other nanoderivatives in 

this work.  

Optical properties of Ag/PMMA nanocomposites before and after X-ray 

irradiation were analyzed using Avantes UV/VIS/NIR Avaspec – 2048 spectrometer 

operating in the wavelength range of 200 nm – 700 nm. 

The size of synthesized nanoparticles plays an important role in the setting of 

the absorption spectrum in UV-VIS range, since metal nanoparticles have very 

specific absorption peaks in the visible region, so called surface plasmon resonance 

(SPR) band. UV-VIS absorption spectra are quite sensitive to the formation of Ag 

NPs because the position of the SPR peak depends on their particle diameters and 

shapes (Khan et al., 2011).  

UV-VIS absorption spectra of the pure PMMA and Ag/PMMA were obtained 

(Fig. 3.25). In comparison to pure PMMA, the Ag/PMMA composite shows an 

absorption band at about 397 nm, which is in good agreement with the results of 

other authors establishing SPR peak of silver nanoparticles (Deng et al., 2008; 

Jurasekova et al., 2011; Singho et al., 2014). 
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Small peak observed at 397 nm in absorbance spectrum of initial Ag/PMMA 

composite indicates that a number of Ag nanoparticles are already present in the 

polymer composite since they were synthesized during UV preirradiation of films. 

Presence of Ag nanoparticles contributes to the increased transparency of 

nanocomposites as compared to the PMMA. Irradiation of experimental films with 

X-rays shows deterioration of PMMA optical properties due to the degradation of 

polymer caused by scission of its main chain upon irradiation.  
 

 
Fig. 3.25 UV-VIS absorbance spectra of pure PMMA and Ag/PMMA after irradiation with 

photons at low dose rate 
 

Taking into account that the silver ions can also be reduced by the radicals 

produced by the degradation of the polymer and that further formation of silver 

nanoparticles within the polymer matrix is possible, more detailed analysis of 

absorption spectra of irradiated nanocomposites was performed. Growing SPR peak 

intensity after UV irradiation followed by photon irradiation indicated intensive 

formation of silver nanoparticles. Photon irradiation induced red-shift of SPR peak 

from 397 nm in initial Ag/PMMA composite towards higher wavelength to 436 nm 

and broadening of SPR peaks. Redshift of SPR peak of metallic particles indicates 

an increase of metal particle size or formation of the Ag nanoclusters.  

This is valid also taking into account the electron mean free path effect, 

according to which the intensity of the SPR band should be higher for bigger 

particles while the critical size of the surface plasmon mode will be broadened. This 

is related to the energy transfer from the plasmon to single electron excitation 

between the quantized levels or to energy dissipation due to inelastic scattering of 

the transferred electrons, and leads to the strength reduction increasing the size of 

the metal particles. It should be noted that the exact position and broadening of SPR 

peak dependent on such parameters as shape of the particle, surface quality, size, 

and structure. Since SPR peak was observed in the range of 397 – 436 nm it was 

assumed that Ag particles have spherical shape (Petryayeva et al., 2011).  

Investigation of the optical properties of polymer composites was obtained 

employing optical microscope (Optika B-600 MET). It has shown that silver 

nanoparticles were successfully doped in the PMMA matrix. The size of synthesized 

Ag particles was X-ray dose dependent, however not only the formation of particles 
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but polymer chain scission was the main process contributing to the deterioration of 

the nanocomposite’s optical properties. This suggestion was supported by the results 

of surface morphology examinations. Surface morphology of experimental polymer 

films before and after their exposure to soft X-rays is shown in Fig. 3.26. 
 

   
A B C 

Fig. 3.26 Surface morphology of experimental films before their irradiation: A - 

PMMA, B - Ag/PMMA; and after irradiation to 2Gy: C - Ag/PMMA 

 

It is clearly seen that distributed number of Ag particles is present in the 

PMMA matrix after its exposure to UV light (Fig. 3.26 B). However, X-ray 

irradiation of the experimental films to doses up to 2 Gy, degradation of PMMA 

surface and agglomeration of Ag particles to clusters in PMMA matrix (Fig. 3.26 C) 

was observed. More detailed information of surface morphology and bulk 

composition were investigated in a scanning electron microscope (JSM–5610 LV) 

with attached energy dispersive X-ray analysis (EDX JED-2201; JEOL, Japan) 

As it was determined by microscopy measurements, that number of distributed 

Ag particles is present in the PMMA matrix after its exposure to UV light (Fig. 

3.27). In Fig. 3.27 A, B, C small clusters are visible. The Ag nanoparticles tend to 

stick and form agglomerates due to their high surface energy. It is seen that the size 

of the Ag clusters vary in a wide range. This can explain the broad UV–VIS 

absorption peak in the absorption spectra of the composite (Fig. 3.25, red curve). All 

SEM photographs were enlarged 2000, 5000 and 10000 times. 
 

  
A B 
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C D 

Fig. 3.27 SEM images and EDX spectra after films’ irradiation to UV light 

 
Analysis through energy dispersive X-ray (EDX) spectrometer confirmed the 

presence of elemental silver in Ag/PMMA composites (Fig. 3.27 D). The vertical 

axis displays the number of X-ray counts while the horizontal axis displays energy 

in keV. Identification lines for the major emission energies for silver (Ag) are 

displayed and these correspond with peaks in the spectrum, thus giving confidence 

that silver has been correctly identified. The chemical composition of Ag/PMMA 

nanocomposite is provided in Table 3.10. 

 

Table 3.10 Chemical composition of Ag/PMMA composite 
Element E, keV Mass, % Error, % At, % Mass, % K 

C K 0.277 1.32 0.38 3.69 0.5810 

O K 0.525 31.78 1.51 66.72 17.7959 

Na K 1.041 4.38 0.61 6.39 2.8748 

Si K 1.739 0.18 0.27 0.21 0.1640 

Cl K 2.621 5.63 0.20 5.34 8.7529 

Ag L 2.983 56.71 0.64 17.66 65.8313 

Total  100.00  100.00 100.00 

 

The SEM images of experimental film after its exposure to X-rays for 5 min. 

(0.2 Gy) are provided in Fig. 3.28.  

The silver nanoparticles formed were predominantly spherical with uniform 

shape. It is known that the shape of metal nanoparticles considerably change their 

optical and electronic properties (Casiraghi et al., 2007). The elemental mapping 

analysis for a selected region (SEM Fig. 3.28 B) clearly showed that silver (green, 

blue and pink) is homogeneously distributed throughout the surface (Fig. 3.28 D). 
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C D 

Fig. 3.28 SEM images and EDX map after film’s irradiation to X-rays (0.2 Gy) 

 

Fig. 3.29 shows SEM images of the Ag/PMMA composite after its exposure to 

X-rays for 30 min. (1 Gy) The surface is characterized by regions of relatively 

homogeneous particle deposition (Fig. 3.29 A), but also by the presence of large 

agglomerates (Fig. 3.29 B).  

The EDX spectrum of chemical composition of the composite coating is 

provided in Fig. 3.29 C. Clearly expressed Ag peak indicates formation of metal 

NPs that agglomerate to clusters. The elemental mapping analysis (Fig. 3.29 D) for a 

selected region (SEM Fig. 3.29 B) clearly showed that silver is homogeneously 

distributed throughout the surface in addition to other major elements, i.e., C, O and 

Cl. The absence of any other peaks clearly indicates that the synthesized substrate is 

in pure form, thus validating an efficient immobilization of Ag NPs. 
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A B 
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Fig. 3.29 SEM images, EDX spectra and map after film’s irradiation to X-rays (1 Gy) 

 

SEM and EDX images of Ag/PMMA composite exposure to X-rays for 45 

min. (1.5 Gy) are provided below (Fig. 3.30). Analysis of the SEM images shows 

fairly uniform distribution of Ag NPs in the coating, while active Ag NPs 

agglomeration to the Ag clusters. It is clearly seen that Ag NPs of different shapes 

and size dispersed in coating. Analyzing EDX images, well-expressed Ag peak (~ 

80 %) is shown as well as the formation of Ag NPs and their agglomeration to 

clusters. 
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Fig. 3.30 SEM images, EDX spectra and map after film’s irradiation to  

X-rays (1.5 Gy) 

 

Images of experimental films after their exposure to X-rays for 60 min. (2 Gy) 

are provided in Fig. 3.31. The SEM micrograph of Ag/PMMA composite indicates 

that Ag nanoparticles agglomerated and Ag clusters with mean size of 500 – 900 nm 

disperse in the PMMA matrix. This confirms that when reduction of silver ions and 

the polymerization of monomer take place simultaneously during irradiation, the 

silver nanoparticles are homogeneously dispersed in the polymer matrix. In addition, 

many nodular agglomerated grains (having diameter of 500 – 900 nm) that might 

form or are already forming Ag clusters are clearly seen in composite layer. It is 

supposed that a sufficiently uniform distribution of NPs and their agglomeration to 

some extent may contribute to the increased nanocomposite coatings hardness 

(Prosycevas et al., 2011). The EDX map of chemical composition of the composite 

coating is provided in Fig. 3.31 D.  

 



110 
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C D 

Fig3.31 SEM images and EDX map after film’s irradiation to X-rays (2 Gy) 

 

X-ray radiation induced changes in Ag/PMMA composites are linked to the 

reconfiguration of their bonding structure. The possible physicochemical interaction 

between the silver nanoparticles and PMMA was tested by Fourier transform 

infrared spectroscopy (FTIR, Bruker Vertex 70) in the wavenumber range from 400 

cm
-1

 to 4000 cm
-1

. Chemical bonding structure of experimental PMMA and 

nanocomposite (Ag/PMMA) films was investigated before and after their irradiation 

to the doses up to 2 Gy by means of infrared spectroscopy. 

It is known that the shift of the peaks toward the lower wave numbers in the 

FTIR spectrum is an indicator of the chemical bonding of surfactant onto the 

nanoparticle surface (Hill and Whittaker, 2004). The FTIR spectra before and after 

irradiation of Ag/PMMA films to a certain doses are presented in Fig. 3.32.  



111 

 

 
Fig. 3.32 FTIR spectra of Ag/PMMA films before (1) and after (2) their irradiation with X-

rays (2 Gy) 

 

The changes in the intensity and appeared peaks in the FTIR spectra of the 

investigated films after 60 min. (2 Gy) irradiation indicates that polymer chain 

reforms itself for the emerging groups and links. This process is part of radiation 

induced modification of composite structure and properties. 

The FTIR spectra of polymeric nanocomposite (Ag/PMMA) films show sp
3 

CH2-3 (methylene) group in asymmetric stretching and bending mode at 2904 cm
-1

 

which is shifted to lower wavelength at 2865 cm
-1

 for sp
3 
CH2-3 (methylene) group in 

symmetric stretching and bending modes after irradiation. It is clearly seen that 

radiation induces defects and dangling bonds that can be easily occupied by oxygen 

and create C=O and O–H bonds. Broad band ranging from 3300 cm
-1 

– 3700 cm
-1

 

corresponds to the valence and deformation vibrations of O–H group. The C≡C 

absorption peak observed at 2342 cm
-1

 splits into two peaks. The peak at 2277 cm
-1

 

corresponds to the C=C group and peak at 2386 cm
-1

 corresponds to the valence 

vibrations of C–H after irradiation of films with X-rays. The connecting bonding 

between PMMA and Ag through C=O influences the formation of silver 

nanoparticles and their size. Thus, PMMA acts as a surfactant and prevents the silver 

particle aggregation.  

We assign intensive absorption peak observed at wave number 1269 cm
-1

 and 

after its modification with X-rays at 1250 cm
−1

. The bands correspond to C–O–C of 

the methoxy group, and skeletal C–C in Ag/PMMA composites respectively. The 

scission process dominates here and due to this, the formation of Ag clusters could 

take place. This occurrence is observed by analyzing OM images after the 

modification of X-rays. 

In the presence of Ag nanoparticles characteristic vibration bands at ~812 cm
-

1
, attributed to out-of-plane vibration of the C–H groups. Band at approximately 

1080 cm
−1

 in Ag/PMMA composites is assigned to the sensitive metal complexes of 

methyl rocking vibrations coupled with a C–H vibration mode. Further, broad band 

from 750 – 550 cm
-1

 corresponds to the out of plane O–H vibration. Decrease in the 
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ratio of band intensities with the increase in the silver content indicates the 

interaction between the Ag nanoparticles and O–H groups.  

 

3.3.2. Ag/PVP nanocomposites 
 

Colloidal Ag/PVP solution was performed dissolving 1 g of poly (N-

vinylpyrrolidone) (PVP) and 170 mg of silver nitrate (AgNO3) in 4 ml and in 1 ml 

water, respectively. Ag
+
 salt’s solution was admixed to PVP solution. 100 μm of 20 

% of sodium dodecyl sulfate (SDS, MW = 288.38) was dropped to Ag/PVP colloid 

as a surfactant. 

Ag/PVP films were deposited on the silica substrates. Prior the deposition the 

substrates were sonically pre-treated in acetone for 10 min., chemically etched in the 

warm special chrome solution (K2CrO7 + H2SO4 + H2O) for 10 min, and dried in the 

air stream. ∼ 0.5 μm Ag/PVP films were spin-coated using “DYNAPERT 

PRECIMA” centrifuge from Ag/PVP colloidal solution on the pre-treated silica 

substrates at 1800 rpm for 60 s and dried in electrical oven at 100 °C for 10 min.  

Ag/PVP nanocomposite films were obtained irradiating deposited Ag/PVP 

films by UV light source, applied UV exposure time of 5 min. and 
60

Co isotope of 

gamma therapy unit “ROKUS-M” was used as a gamma irradiations source. Total 

irradiation dose varied in the range 2 – 50 Gy. 

Formation of silver nanoparticles was performed by reduction reaction: 
  )(PVPAgPVPAg . PVP was exploited to decrease the surface energy of 

metal nanoparticles and protect them from agglomeration. PVP in solution 

associates with the metal atoms, thus increasing the probability of nucleus formation 

(Ibrahim et al., 2009; Jovanovic et al., 2012). Differently, the N and O atoms of PVP 

polar group have a strong affinity for the silver ions and for metallic silver particles. 

It is known that the UV generated photoelectrons from PVP are the main reducers in 

Ag and PVP reaction (Zhao et al., 2013). According to Jurasekova et al. (2011) and 

Calinescu et al. (2014) silver salts reduction Ag
+ 

→ Ag
0
 is induced also by the exited 

species of PVP. PVP is reducer and stabilizer in synthesis of Ag particles in Ag/PVP 

solution. PVP loses its stabilizer’s function in Ag/PVP films due to the cross-linking 

and formation of 3D structures. Silver nanoparticles are growing up in irradiated 

Ag/PVP composites but their size is limited by the volume of 3D PVP structures, 

which varies with the UV irradiation.  
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Fig. 3.33 Reduction of Ag

+
 by CH3O-groups of copolymer chain (Pomogailo et al., 2014) 

 
It is assumed that metal ions bound in complex with a polymer chain are 

subjected to reduction, in this case, size of a nanoparticle is limited by space 

confined to local PVP chain containing metal ion (Fig. 3.34): 

 
Fig 3.34 A route for the formation of the polymer–metal complex and nanocomposite 

(Pomogailo et al., 2014) 
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Comparison of the SPR peak positions of Ag/PVP colloidal solution (Fig. 

3.35) was analyzed. It was found that the SPR peak position indicating SPR peak of 

silver nanoparticles. It is in a good agreement with the results of other authors. 

Whereas SPR peak of Ag/PVP colloidal solutions were observed at 420 nm, it could 

be suggested that spherical silver nanoparticles were formed in the solution. A small 

SPR peak appearing in 550 – 650 nm regions of the absorbance spectra after 6 days 

(Fig. 3.35 b) indicates ageing process of colloidal solution and corresponds to the 

formation of the larger particles. It might happen due to the etching of small 

particles and silver ions precipitation to the larger silver nanoparticles (Mikhlin et 

al., 2014). 

 
Fig. 3.35 UV–VIS absorbance spectra of Ag–PVP colloids: (a) 60 s min after mixing of 

components, and (b) after 6 days 

 

The appearance of SPR peak indicates formation of nanoparticles in the film 

after 15 s of irradiation. The SPR peak position, intensity and half width varied with 

the irradiation time as it is shown in Fig. 3.36. Color of the films was dependent on 

the UV irradiation time and was changed from bright to dark yellow. Growing SPR 

peak intensity after short UV irradiation (up to 60 s) indicated intensive formation of 

silver nanoparticles. However after prolonged UV irradiation (up to 5 min) the SPR 

peak was shifted towards longer wavelength, its intensity was reduced and the peak 

became broader. According to Hutter and Fendler (2004) these changes are related 

to the silver particle growth and formation of different sized particles. 

Comparatively to the UV–VIS spectra of Ag/PVP colloidal solutions (Fig. 3.36) and 

Ag/PVP nanocomposite films (Fig. 3.36 A), it was indicated blue shift of SPR peak 

from 420 nm (colloids) to 406 nm (nanocomposite films after 30 s UV irradiation). 

It might be related to the PVP crosslinking induced by UV irradiation. Since SPR 

peak was observed in the range of 405 – 420 nm, it was assumed that Ag particles 

have spherical shape.  
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Fig. 3.36 A: Absorbance spectra of Ag/PVP films on silica substrate after UV irradiation. 

B: Absorbance spectra of Ag–PVP nanocomposite layer after low dose gamma irradiation 

 

Low dose gamma irradiation (2 – 50 Gy) induced red-shift of SPR peak from 

406 nm in initial Ag/PVP composites towards higher wavelengths in the UV–VIS 

spectra of gamma irradiated films, which indicates possible formation of spherical 

silver particles with an average size of ∼ 38 nm. Measured UV–VIS absorbance 

spectra of all gamma irradiated Ag/PVP structures were very similar, SPR peak 

positions were almost the same and hesitated around 415 nm (Fig. 3.36 B).  

Mie theory (Ghosh and Pal, 2007; Šileikaitė et al., 2009) was applied for the 

evaluation of silver particle size in Ag/PVP colloidal solution. Correlation between 

SPR peak position and particle’s size experimentally established by Evanoff and 

Chumanov (2005) was used for the calculation of silver nanoparticles in PVP 

medium using experimental data, employing the calculation of silver nanoparticles 

in PMMA medium established by Evanoff and Chumanov (2005). It was found that 

the size of Ag particles in colloids and in short term irradiated Ag/PVP 

nanocomposites was approximately the same 32 nm. Particle size increased from 32 

to 43 nm in long term (300 s) irradiated films. 

 
Fig. 3.37 Theoretical calculations of spherical Ag particle’s size according to the SPR 

peak position in the UV–VIS spectrum 
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According to the obtained results, it could be suggested that low dose gamma 

irradiation initiate the growth of nanoparticles within PVP until the number of 

almost equal-sized particles saturated and stable nanostructure is formed. Long term 

(higher doses) gamma irradiation of nanocomposites was responsible for the 

rearrangements in polymer structure. 

The morphology of the films and bulk composition were investigated using 

SEM with attached EDX. Distributed number of Ag particles is present in the PVP 

matrix after its exposure to UV light (Fig. 3.38). The silver nanoparticles formed 

were more or less spherical with uniform shape. Some of the Ag nanoparticles tend 

to stick and form agglomerates due to their high surface energy. Analysis through 

EDX shows well-expressed Ag peak (63.31%) that indicates formation of metal NPs 

and clusters. 
 

  
A B 
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Fig. 3.38 SEM images and EDX spectra after film’s irradiation to UV light 

 

Experimental films after their exposure to gamma rays is provided in Fig. 3.39. 

The SEM images of Ag/PVP composite indicates the presence of silver in 

experimental films. The elemental mapping analysis (Fig. 3.39 D) for a selected 

region (SEM Fig. 3.39 B) clearly showed that silver (green, blue and pink) is 

homogeneously distributed throughout the surface in addition to other major 

elements, i.e., C, O and Cl. The estimation of the surface composition indicated that 

nearly 69 mass % of the surface is occupied by elemental silver.  
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E  

Fig. 3.39 SEM images, EDX spectra and map after film’s irradiation with  

gamma rays (1.25 MeV) 

 

Mechanical properties of the Ag/PVP nanocomposites were obtained by the 

UV irradiation induced variations of the surface morphology and adhesion force. 

Adhesion force can be measured by detecting the force interaction during cantilever 

tip approach and retraction from the film surface. Due to this, force–distance 

measurements for experimental films using atomic force microscope (AFM) NT-206 

equipped with a silicon cantilever NSC11/15 were performed and corresponding 

curves indicating deflection of the force sensing cantilever were plotted as it is 
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shown in Fig. 3.40. The figure also includes AFM images indicating surface 

morphology of the same experimental films. 

 

 
Fig. 3.40 Surface morphology and force curves of experimental films measured by 

AFM: A – unexposed Ag–PVP, B – Ag–PVP layer after 60 s UV irradiation, C – Ag–PVP 

layer after 150 s UV irradiation 
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Characteristic force–distance curves with a large hysteresis between loading 

and unloading parts have been observed. The adhesion force of experimental layers 

corresponding in the first approximation to the pull-off force between tip and film 

was calculated from the force–distance curves. It was shown the induced decreasing 

tendency of the adhesion force and sensitivity to the exposure time for UV irradiated 

Ag/PVP nanocomposites. Unexposed Ag/PVP layers adhesion force of 73 nN was 

measured by AFM (Fig. 3.40 A). It decreased from 45 nN (Fig. 3.40 B) to 23 nN 

(Fig. 3.40 C) when UV exposure time of films increased from 60 s to 150 s 

respectively. Irradiated Ag/PVP nancomposite layers were harder and flatter 

comparing with pure PVP or “as prepared” Ag/PVP layers. To get more precise 

information about the surface morphology AFM images (Fig. 3.40) were analyzed. 

It was found that examined surfaces of Ag/PVP composite films were very smooth 

with nano-size irregularities. The roughness, Rq, of 9.6 nm was estimated for 

unexposed Ag/PVP layers. The roughness of irradiated Ag/PVP composites was 

also dependent on UV irradiation time: it decreased from 5.8 nm (60 s UV 

irradiation) to 1.7 nm (150 s UV irradiation). Lower adhesion force and smoother 

surface exhibited tendency for Ag/PVP nanocomposites to become more 

hydrophobic after longer UV irradiation (Robertson, 2002). 

AFM images indicating surface morphology of UV preirradiated (30 s) 

Ag/PVP composites exposed to different gamma irradiation doses are shown in Fig. 

3.41 as well as dependencies of maximal load and adhesion force versus absorbed 

gamma irradiation doses obtained from AFM force–distance measurements are 

presented in Fig. 3.42. 

 

 
Fig. 3.41 AFM images of Ag/PVP nanocomposite layers on silica irradiated with 

different doses 
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Fig. 3.42 Dose dependencies of maximal load and adhesion force of gamma irradiated 

Ag/PVP nanocomposite layers on silica measured by AFM 

 

It was found that the adhesion force of Ag/PVP composite layers to the probe 

decreased almost exponentially with gamma irradiation dose being most sensitive to 

the small fraction of gamma irradiation dose (up to 10 Gy). In this dose region the 

adhesion force decreased significantly from 55 nN to 3.24 nN. Moreover the 

decrease of maximal load was observed. Most likely this effect is connected with 

radiation induced stress and strain in irradiated polymer structure as it was discussed 

in (Adliene et al., 2008; Šniurevičiūtė et al., 2009). Due to the small ionizing 

radiation dose Ag nanoparticles can diffuse to the top layer of mechanically unstable 

polymer matrix and the adhesion force decreases. Increased irradiation dose (> 10 

Gy) initiates and supports polymer cross-linking process and leads to the controlled 

growth of nanoparticles and formation of a stable Ag/PVP nanocomposite structure. 

Adhesion force remains almost stable for higher irradiation doses. Similar 

decreasing tendency of the adhesion force with the increased gamma irradiation dose 

was found for the specimens UV preirradiated for 60 s. 

 

 
Fig. 3.43 Surface roughness of gamma irradiated Ag/PVP composite layers 
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The surface roughness of the irradiated Ag/PVP composite layers decreases 

from 9.6 nm to 2.8 nm with the increased irradiation dose almost exponentially (Fig. 

3.43), indicating that the surface became smoother and the irradiation stable Ag/PVP 

layer has been formed. The behavior and properties of low dose gamma (2 – 50 Gy) 

irradiated composites were different as compared to the UV irradiated specimens 

due to the ionization ability of gamma irradiation. They differed from the properties 

of high dose (kGy range) gamma irradiated polymer structures where radiation 

induced significant changes in the molecular weight of polymer, in the silica 

transition temperature and activation energy was observed in (Eisa et al., 2011; 

O’Keeffe and Lewis, 2009). 

 

Summary 
 

The mechanisms of embedding silver nanoparticles in two different polymer 

matrices have been analyzed and implemented applying photon and electron 

irradiation for the synthesis of Ag nanoparticles and formation of Ag/polymer 

composites. Investigation of the surface morphology, optical and mechanical 

properties of Ag/polymer composites has shown that irradiation leads to significant 

changes of surface roughness as well as modification of surface plasmon properties. 

 Formation of Ag nanocomposites directly from silver salts admixed to 

polymer solution employing UV photochemical synthesis and radiolysis 

induced by low dose rate photon irradiation is shown. It is found, that 

formation of composite is possible, but Ag/PMMA composites have no 

stability. PMMA tend to degrade therefore it doesn’t ensure the stability of Ag 

nanoparticles within polymeric matrix. The prolong exposure time leads to 

agglomeration of Ag nanoparticles into larger clusters with induced disorder in 

the polymeric structure.  

 The synthesis of Ag nanoparticles has been performed mixing the salt and 

polymer aqueous solution, which was influenced with different UV radiation 

doses as well as the modification of Ag/PVP nanocomposites was employing 

with different gamma doses. It was found that depending on the applied 

exposure parameters stable Ag/PVP composite structures with silver particles 

embedded within the polymer matrix are formed, however increasing the UV 

radiation dose, the adhesion with surface decreases. Varying the gamma 

photon radiation dose from 2 Gy to 10 Gy, the adhesion drastically decreases 

from 55 nN to 3.24 nN due to scission and crosslinking processes induced by 

ionizing radiation. Increasing gamma photon dose up to 20 Gy Ag particles 

tend to agglomerate to large structures 

 

3.5. Metal alloy/polymer nanocomposites 
 

W-Co NPs were electrochemically synthesized in aqueous electrolyte 

containing cobalt sulfate and sodium tungstate as the source of metal species, and 
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tri-sodium citrate dehydrate as the complexing and buffering agent. The sodium 

dodecylsulphate was added to the mixture as a surfactant and stabilizer of 

synthesized W-Co NPs in electrolyte. All reagents were dissolved in double-distilled 

water with specific conductivity of < 0.5 μScm
–1

.  

 

Table 3.11 Characteristics and components used for synthesis of W-Co alloy 

nanoparticles  
Components Concentration, mol/l 

Na2WO42H2O 

CoSO47H2O 

Na3C6H5O72H2O 

CH3(CH2)11OSO3Na 

0.20 

0.05 

0.25 

0.01 

 

Method of continuous ultrasound assisted sonoelectrochemical synthesis used 

for the production of W-Co NPs (Fig. 3.44); method is based on application of 

pulsed potential mode to working electrode under continuous impact of ultrasound 

waves on electrolyte.   

 
Fig. 3.44 Impulse diagram of the continuous ultrasound assisted electrolysis process 

 

Prepared at room temperature electrolyte with pH = 9.1 was used to synthesize 

tungsten (W) and cobalt (Co) nanoparticles. Synthesis was performed at 60 °C 

warmed electrolyte; due to heating the pH slightly decreased to 8.5. For 

sonoelectrochemical experiment a thermostatic bath with frequency of 38 KHz was 

used to control the temperature of electrolyte (60 °C) as well it was positioned just 

below the electrochemical cell. Electrodeposition of W and Co nanoparticles was 

carried out in the potential pulse mode under continuous ultrasound. The 

electrochemical analyses were performed in Potentiostat/Galvanostat SP-150 

(France, BioLogic) interfaced with EC-Lab (v10.19) software. The coatings were 

plated onto titanium alloy (Ti90-Al6-V4) plates serving as anode and cathode with 

dimensions of 3 x 100 x 0.5 mm respectively. Prior to the experiment Ti alloy plates 

were polished with Nr.600 emery paper, washed with distilled water and degreasing 
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with isopropanol. During the experiment, working electrode was pulse polarized 

from steady-state potential of approx. -0.16 V to -1.5 V (vs. Ag/AgCl). The impulse 

duration was timp = 500 ms. Electrochemical system relaxed between the pulses at 

open circuit conditions for tocc = 800 ms. The sonoelectrochemical synthesis in 

pulsed potential mode lasted for 1h. The fragment of chronovoltamperometric 

pattern is shown in Fig. 3.45. 

 
Fig. 3.45 The fragment of chronovoltamperometic pattern 

 

It is known that the aqueous alkaline tungstate M2WO4 solution (here M  Li, 

Na, K) is commonly used for the tungsten electrodeposition. Electrodeposition is a 

process of electrochemical deposition of solid materials on an electrode surface 

using electrolysis via electrons transfer from work electrode for metallic ions 

reduction in solution (Garcia et al., 2013). However, for the electrochemical 

reduction of tungstate (VI) to metallic W (0) up to 6 electrons are required: 

;468 )(2)()()(

2

4 lsaqaq
OHWeHWO  

                         (3.13) 

             E
0
  +0,049V  

Although the positive value of potential E
0 

might lead to the theoretical 

assumption that the metallic tungsten should be easily electrodeposited from the 

aqueous solutions of salts, but in practice such a large number of electrons (up to 6 

electrons) in one elementary electrochemical reaction step cannot attend. Therefore 

tungstate reduction to metallic W should take place in several simple intermediate 

stages. The first stage of electrochemical reduction of tungstate to tungsten (IV) 

oxide occurs in the presence of only two electrons.   

;224 )(2)(2)()(

2

4 lsaqaq
OHWOeHWO  

                     (3.14) 

                 E
0
  +0,386V 

The further tungstate reduction to metallic W is aggravated due to ongoing 

unfavorable electrochemical process - the release of gaseous hydrogen by reduction 
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of H
+
 ions and/or H2O molecules (depending on the electrolyte’s composition, 

temperature, pH, etc.). The latter process results in relatively low hydrogen 

overvoltage values of formed tungsten-oxygen compounds on the surface. The 

hydrogen evolution can cause local changes in the pH leading to selective 

precipitation of some species on the growing deposit interface or induce 

morphological transitions and hydrogen embrittlement of the deposits.  

Induced co-deposition is well known electrodeposition mechanism of iron 

group metals (Fe, Co, Ni) and also is used for the formation of electro coatings 

consisting of molybdenum and tungsten alloys. The induced co-deposition occurs 

when the cations of iron group metals are present in electrolyte (in this case Co
2+

 

ions), to form alloys of these metals (W-Co alloys) (Brenner, 2013; Schlesinger and 

Paunovic, 2011). It is to notice that Co
2+

 ions are complexed with citrate C6H5O7
3– 

ions in the electrolyte: 

;)])(([)( )(756)(

3

756

2

)(

  aqaqaq OHCIICoOHCCo               (3.15) 

Taking into account presence of this complex ion in electrolyte, the main 

electrochemical reactions on the cathode are: 

;)])(([)])(([ 2

756)(756

  adsaq OHCICoeOHCIICo           (3.16) 

;)()])(([ )(

3

756)(

2

756 aqsads OHCCoeOHCICo            (3.17) 

At the same time, the reduction of tungstate (VI) ions is catalyzed by complex 

particles 
)])(([ 756 OHCIICo and the following reactions occur on the cathode:  
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eOHOHCIICoWO
              (3.18) 
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OHOHCIICoW
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                 (3.19) 

W and Co atoms deposited on the cathode in this way are forming W-Co alloy. 

Free hydrogen is also formed at the cathode due to the side reactions taking place in 

the weak alkaline electrolyte: 

;222 )()(2)(2

  aqgl OHHeOH                              (3.20) 

It is also to notice that the following reaction is present at the insoluble anode: 

;244 )(2)(2)( glaq OOHeOH  
                             (3.21) 

The presence of sonoelectrochemically synthesized nano/micro particles 

dispersed in electrolyte was checked passing the laser beams (red, λ = 640 nm and 

green, λ = 532 nm) through solution. Typical Tyndall cones of scattered light were 

observed in both cases (Fig. 3.46 A and Fig. 3.46 B). This phenomenon is always 

observed when nano-sized colloidal particles are dispersed in solution. Moreover, 

different shapes and intensities of Tyndall cones observed in colloidal solution when 
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laser beams of different wavelength pass through solution, proves the presence of 

differently sized W-Co NPs in it. For the comparison reference cuvettes filled with 

the same electrolyte before sonoelectrochemical synthesis were illuminated by laser 

beams as well. No scattered light (Tyndall cone) was observed in these cuvettes.  

 

  
A B 

Fig. 3.46 The Tyndall cone in electrolyte with different wavelengths lasers: A - 

monochromatic red laser beam with λ = 640 nm (1 mW); B - monochromatic green laser 

beam with λ = 532 nm (50 mW) 

 

Once detected, the size of synthesized W-Co NPs was investigated by PCS. It 

was found, that the particle’s size varied from 100 nm to 500 nm. The smallest 

detected particle had a size of 70 nm, and the biggest - 930 nm. Normalized 

distribution of the detected particles according to their size is provided in the Fig. 

3.47.  
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Fig. 3.47 The determination of W-Co nanoparticles 

 

The surface morphology of the deposited particles, and their approximate 

chemical composition were studied by SEM and TEM. Analyzing typical SEM and 
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TEM images of sonoelectrically synthesized W-Co NPs (Fig. 3.48) it was found, 

that despite having different size the majority of produced particles had spherical 

shape. More detailed evaluation of particle’ size was performed measuring diameter 

of particles in several directions on SEM and TEM images. It was found that the 

most frequent particles sizes were around 100 nm, 250 nm and 500 nm. However it 

is to point out that some larger structures consisting of already aggregated 

nanoparticles were also observed.  

The internal structure of W-Co NPs was analyzed using TEM images. An 

example of TEM image is provided in Fig. 3.48 C where possible dispersion of Co 

nanoparticles within W nanoparticles could be observed. This is related to the fact 

that the fraction of Co atoms in nanoparticles is much smaller than that of W atoms 

in nanoparticles. According to the performed EDS measurements estimated atomic 

ratio of W and Co is 23:4. It corresponds to tungsten content in W-Co NPs 

approximately of 85 at. % as compared to 15 at. % of cobalt. Oxidation of W-Co 

NPs surface was also very likely.  

Since a certain amount of free hydrogen was also present at the cathode, 

ultrasound was responsible for cavitation followed by explosive collapsing of 

hydrogen bubbles within a very short time after undergoing the formation, growth 

and retraction. Taking into account week adhesion of electrodeposits on the surface 

of Ti and its alloys, freshly formed aggregates of Co-W alloy, i.e. Co-W NPs, were 

easily detached from the surface of Ti alloy cathode. Detached NPs were 

subsequently dispersed in the bulk of electrolyte. Formation of W-Co aggregates 

was possible due to the several reasons: 1) Particular surface areas of Ti alloy 

electrode (e.g. edges and corners) may act as the areas with the higher cathode 

current density where the growth of NPs aggregates is promoted by each pulse of the 

cathode current; 2) Due to different adhesion of nanoparticles at various surface 

areas of working Ti alloy electrode some particles formed by cathode current are not 

detached from the surface of electrode under cavitation when the system operates in 

open circuit mode. These particles act as nucleation centers for growing of 

aggregates during following current pulses. The aggregates are growing 

continuously until critical mass necessary for particle’s detachment from the 

electrode surface is achieved; 3) Agglomeration of individual nanoparticles to large-

scale aggregates, when they are transferred from the aqueous electrolyte to organic 

solvent (chloroform). Continuous ultrasound is responsible for formation of 

cavitation in the deposit due to explosive collapsing of hydrogen bubbles. Cavitation 

results in detachment of particles from electrode and their dispersion in the solution. 
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Fig. 3.48 SEM (A, B and D) and TEM (C) images of synthesized W-Co nanoparticles by 

sonoelectrodeposition 

 

W-Co nanoparticles were transferred from the electrolyte to the ethanol 

(solvent compatible with PMMA), which was mixed with PMMA solution in order 

to form a W-Co/PMMA nanocomposite. W-Co/PMMA nanocomposite are the good 

expectants for radiation protection screens due to good X-ray absorption 

characteristics (lead equivalent of ~ 0.5 mm Pb). It was found that high (> 50 %) W-

Co nanoparticles concentration that can provide X-ray absorption characteristics do 

not effective and do not ensure the stabilization of W-Co nanoparticles. As a result, 

nanoparticles tend to agglomerate to the large structures as well as falls out in 

powdery sediment. Such phenomenon do not observed when the concentration of 

nanoparticles is low, but it is not enough to form composite with necessary good X-

rays absorption characteristics.   
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Summary 
  

The new method of W-Co nanoparticles synthesis has been proposed involved 

the electrochemical synthesis of W-Co alloy nanoparticles under continuous 

ultrasound. Applying this method W-Co nanoparticles were formed dominantly in 

the size range of 100 – 500 nm (85 at.% W ir 15 at.% Co). Embedding W-Co alloy 

nanoparticles in polymers the polymeric W-Co/PMMA nanocomposites are 

forming. Such composite but with high (> 50 %) W-Co concentration could be 

applied for X-ray protection panel displays and radiation protection devices. 

However, the problem of stabilization of high concentration of W-Co nanoparticles 

in polymer do not solved yet. 
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CONCLUSIONS 
 

1. Carbon coatings were synthesized by PECVD method from pure C2H2 gas 

varying the bias voltage (80 – 480 V) and temperature (273 – 673 K). According 

to the results of performed analysis, experimental coatings were assigned to 

polymer like amorphous hydrogenated carbon coatings. It was found that 

increasing the bias up to 200 V, the coating formed with embedded graphite 

clusters, which potentially increases the hardness of the formed coating. The 

presence of transpolyacetylene in coatings was indicated according to the Raman 

spectroscopy results when the substrate temperature was > 300 K.  

2. It was found that high energy electrons and photons initiated the restructuration 

of the carbon coatings followed by the hydrogen desorption from the coatings as 

well as the formation of new polymer structures with embedded sp
2 

graphite 

clusters. A formation tendency of such structures was well pronounced in all 

coatings, synthesized at the temperatures higher than 20 °C. It was found that 

due to radiation induced structural changes the optical transparency of carbon 

coatings was decreasing while the hardness was increasing.  

3. Applying the two-step mechanism (photosynthesis and radiolysis) for the 

synthesis of particles from Ag salts dissolved directly in MMA solution it was 

shown, that irradiation of films with low dose rate X-rays allowed formation of 

Ag/polymer composite. However synthesized Ag particles showed 

agglomeration tendency with the increasing exposure time (dose) which resulted 

in the formation of disordered structures. 

4. Investigation of Ag nanoparticles synthesized from the UV irradiated mixture of 

aqueous solutions of salt and polymer has shown that increasing UV radiation 

time from 15 to 300 s the adhesion force of coating was decreasing from 73 nN 

to 23 nN. Additional irradiation of experimental coatings with gamma photons 

to the doses ranging from 2 Gy to 10 Gy, the adhesion force was drastically 

decreasing from 55 nN to 3.24 nN due to the scission and crosslinking processes 

induced by ionizing radiation. The increase of gamma photon dose up to 20 Gy 

caused agglomeration of Ag particles.  

5. Based on the assessment of the empirical-chemical mechanism of W-Co 

nanoparticle formation, a new method for the electrochemical synthesis of 

nanoparticles under continuous ultrasound has been proposed and adapted and 

W-Co nanoparticles with a size of 100 – 500 nm were produced. It was found 

that optically transparent W-Co/PMMA composite could be formed embedding 

the synthesized W-Co nanoparticles in PMMA matrix at low concentrations. 

However increasing the concentration of W-Co nanoparticles the composite 

transparency was decreasing and nanoparticles were tending to agglomerate and 

fall out in powdery sediments. 
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