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Abstract: The rapid growth of the Internet of Things (IoT) and its applications requires high com-

putational efficiency, low-cost, and low-power solutions for various IoT devices. These include a 

wide range of microcontrollers that are used to collect, process, and transmit IoT data. ESP32 is a 

microcontroller with built-in wireless connectivity, suitable for various IoT applications. The ESP32 

chip is gaining more popularity, both in academia and in the developer community, supported by 

a number of software libraries and programming languages. While low- and middle-level lan-

guages, such as C/C++ and Rust, are believed to be the most efficient, TinyGo and MicroPython are 

more developer-friendly low-complexity languages, suitable for beginners and allowing more rapid 

coding. This paper evaluates the efficiency of the available ESP32 programming languages, namely 

C/C++, MicroPython, Rust, and TinyGo, by comparing their execution performance. Several popular 

data and signal processing algorithms were implemented in these languages, and their execution 

times were compared: Fast Fourier Transform (FFT), Cyclic Redundancy Check (CRC), Secure Hash 

Algorithm (SHA), Infinite Impulse Response (IIR), and Finite Impulse Response (FIR) filters. The 

results show that the C/C++ implementations were fastest in most cases, closely followed by TinyGo 

and Rust, while MicroPython programs were many times slower than implementations in other 

programming languages. Therefore, the C/C++, TinyGo, and Rust languages are more suitable when 

execution and response time are the key factors, while Python can be used for less strict system 

requirements, enabling a faster and less complicated development process. 
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1. Introduction 

The increasingly widespread IoT applications related to the development of various 

embedded systems and signal processing tasks require specialized hardware. This tech-

nical equipment must be characterized by small dimensions, low energy consumption, 

efficient memory use, and sufficient performance for the implementation of different sig-

nal processing functions. The main role in this case is played by various microcontrollers, 

which usually collect data from sensors and end-user devices, process those data, and 

forward results to higher-level systems. Currently, the market offers a whole range of 

specialized signal processing microcontrollers specially adapted for IoT tasks. One of the 

popular choices has become the ESP32 microcontroller, which is attractive to developers 

due to its technical characteristics and good software support, as well as the ability to use 

various programming languages. As concluded by [1], ESP32 is an excellent option for 

IoT devices due to the price and performance achieved by a dual core structure and a 

significant extension of operational features. 

Recent scientific publications have proven that ESP32 chips are widely used in vari-

ous fields. Aghenta and Iqbal proposed several SCADA systems [2,3] that use the ESP32 

microcontroller for sensor data processing and brokering. Allafi and Iqbal [4] used ESP32 

for the implementation of a low-cost web server to monitor and collect real-time 
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photovoltaic data. Carducci et al. [5] utilized the ESP32 microcontroller for the implemen-

tation of a building automation system. Sangeethalakshmi et al. [6] created an IoT patient 

health monitoring system consisting of sensors, a data acquisition unit, and an ESP32 mi-

crocontroller. Taştan and Gökozan [7] proposed a real-time indoor air quality monitoring 

system, where air quality data is measured by the sensor array monitored via the 32-bit 

ESP32 Wi-Fi controller. An ESP32-based solar irrigation pumping control system was pro-

posed by Biswas and Iqbal [8], while Hangan et al. [9] reviewed information and commu-

nication technology systems for monitoring, control, and management of water resources, 

and concluded that although the Raspberry Pi 4B shows the highest processing score and 

an average interfacing score, the ESP32 is the most versatile for IoT applications, showing 

the highest overall score. 

Since ESP32 microcontrollers are quite popular among researchers and system de-

velopers, several programming languages are available for ESP32 programming. Alt-

hough C/C++ is the leading programming language for the development of IoT and em-

bedded systems, there is also the possibility to use Rust, TinyGo, MicroPython, Circuit-

Python, and even JavaScript for ESP32-based systems as well. Few studies related to the 

evaluation of the performance of programs written in some of these languages have been 

conducted on ESP32 and other IoT platforms. Usually, such studies use the C/C++ lan-

guage as the gold standard and compare its performance with other languages. Ionescu 

and Enescu [10] investigated the performance of the MicroPython and C languages on 

ESP32 and STM32 microcontrollers, finding that the MicroPython performance level is 

lower, but that it has better portability and is more suitable for inexperienced students. 

Dokic et al. [11] compared MicroPython with Arduino C and concluded that Arduino IDE 

is a faster platform than MicroPython for the development of neural networks on edge 

devices. Grunert [12] discussed the advantages and disadvantages of using the JavaScript 

language for microcontroller development and compared several JavaScript engines, suit-

able for ESP32 development, but left the evaluation of the performance and memory as-

pects of the interpreters for future work. To our knowledge, no one has so far conducted 

a performance evaluation of the Rust and Golang (TinyGo) programming languages on 

ESP32 or similar platforms. Therefore, this paper evaluates the efficiency of the C/C++, 

MicroPython, Rust, and TinyGo programming languages by comparing their execution 

performance on the ESP32 platform. 

The previously cited performance evaluation study [10] used Secure Hash Algorithm 

(SHA-256) and Cyclic Redundancy Check (CRC-32) algorithms, while the authors of [11] 

implemented Machine Learning (ML) algorithms (neural networks) for comparison pur-

poses. Security-related algorithms are also evaluated in Suárez-Albela et al.’s study [13], 

which compares Elliptic Curve Digital Signature Algorithm (ECDSA) and Rivest–Shamir–

Adleman (RSA), using a resource-constrained IoT node based on the ESP32 system-on-

chip. Further IoT and ESP32-related literature analysis shows that there are many appli-

cations of digital signal processing (DSP) algorithms, mainly Fast Fourier Transform (FFT) 

and various filtering algorithms as well. For example, Kodithuwakku et al. [14] used FFT 

for patient monitoring utilizing the ESP32 development environment. Fabregat et al. [15] 

used FFT to create a real-time sound-source localization system implemented on the 

ESP32 microcontroller. Shinde and Mundada [16] used ESP32-based FFT implementation 

to develop a bike engine health monitoring system. 

Since many IoT applications include signal processing and security-related algo-

rithms which are computationally demanding, the comparison of the programming lan-

guages in this paper is based on several popular data and signal processing algorithms, 

including FFT, CRC, SHA, Infinite Impulse Response (IIR), and Finite Impulse Response 

(FIR) filters. These algorithms were implemented in C/C++, MicroPython, Rust, and Ti-

nyGo programming languages, and their execution times were compared. The aim of this 

research is to find out whether more user-friendly (higher-level, less error-prone, with 

simpler and less code-demanding syntax) programming languages, including 
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MicroPython, Rust, and TinyGo, have similar execution performance compared to C/C++, 

which is officially supported by ESP32. 

This study explores, for the first time, the execution performance of the quite popular 

Rust and TinyGo languages and compares them with widely used C and Python (Mi-

croPython). The present study is expected to contribute to our understanding of the suit-

ability of the programming languages available for the development of IoT systems using 

the ESP32 platform. The results of the study are important both for the developers of IoT 

systems and academia, which use ESP32 microcontrollers extensively for research and 

teaching purposes. They show that programs written in the C programming language are 

fastest in most cases, but this advantage is not very great compared to TinyGo- and Rust-

written programs. Moreover, in some cases, C programs are outperformed by both C and 

Rust implementations. 

This article is organized as follows. Section 2 presents the performance evaluation 

methodology and experimental setup. Section 3 shows the results of the execution com-

parison of digital signal processing algorithms implemented in selected programming 

languages. Section 4 discusses the results and compares them with previous research. 

2. Materials and Methods 

2.1. Programming Language Features 

The most important aspect when choosing a microcontroller programming language 

is the support of its hardware and peripherals, such as GPIO pins and communication 

modules like WiFi, Bluetooth, or SPI. Microcontroller vendors almost always offer hard-

ware abstraction libraries (HALs) to access specific registers and peripherals. Without 

such libraries, even an otherwise very powerful language is not useful for development 

on a chosen platform, in this case, ESP32. 

Another aspect is the support for the language itself on a device. It is not uncommon 

that more advanced features of a high-level programming language are limited or not 

supported at all on certain platforms. 

Memory management is also an important feature of any programming language, as 

it is closely related to overall safety and performance of any project developed in that 

language. The three most common memory management types are automatic, manual, 

and garbage collector-based. In automatic management, the memory is allocated by the 

compiler without an explicit instruction from the programmer, mainly occurring with 

stack management. In contrast, manual memory management requires the programmer 

to do all the hard work of allocating and deallocating memory. This is usually used for a 

heap. Finally, with garbage collection, memory allocation can be manual, but deallocation 

is performed automatically at certain intervals. While manual memory management can 

introduce bugs and safety issues, garbage collection comes with a performance penalty 

and unpredictability, since the runtime environment must stop the execution of the actual 

code to search for memory that is not in use. This is especially important in real-time ap-

plications, where execution times must be well known and controlled. 

It is Important to consider what compiler and, by extension, toolchain will be used to 

compile the code for ESP32. In embedded environments, the ability to optimize code size 

is usually important. For example, GNU Compiler Collection (GCC) offers one optimiza-

tion level of size (-Os), while Low Level Virtual Machine (LLVM) compiling technology 

offers two optimization levels (-Os and -Oz). The alternative is an interpreted language, 

which allows one to immediately run the code on a platform with a suitable interpreter. 

Finally, a programming language runtime system handles tasks that include setting 

and managing stack and heap, handling garbage collection, threading, and other dynamic 

features available in that language [17]. The features of runtime are provided by the stand-

ard library of the language (or interpreter for an interpreted language) and, by extension, 

an operating system (typically, a real-time operating system on embedded hardware). The 
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so called bare-metal runtime is also possible, where no OS, or even standard library sup-

port, is available; however, it is usually limited in features. 

2.2. Programming Languages Used for Evaluation 

This paper evaluates four programming languages available for ESP32: C/C++, Rust, 

TinyGo, and MicroPython. Each language represents a different set of important features 

relevant to embedded and real-time programming, which are provided in Table 1. 

Table 1. Overview of the programming languages compared on ESP32. 

Language 

ESP32  

Peripherals 

Support 

Language Features 

Support on ESP32 

Memory 

Management 

Compiler 

for ESP32 

Runtime 

System on ESP32 

C/C++ Full Full Manual/Automatic GCC 
C/C++ standard library on 

FreeRTOS 

Rust High High Fully automatic LLVM 
Rust standard library on 

FreeRTOS 

TinyGo Limited Limited 
Garbage 

collection 
LLVM 

Go standard library 

on bare-metal 

MicroPython Medium Limited 
Garbage 

collection 
Interpreted 

MicroPython interpreter 

on FreeRTOS 

The C language was developed in 1978 by Brian Kernighan and Dennis Ritchie [18]. 

Considered the standard language in low-level system programming, it is also usually the 

default choice for embedded programming, since most microcontroller vendors provide 

tools for their products primarily in C. It is no exception with ESP32, since its vendor Es-

pressif provides a development environment (ESP-IDF) and multiple libraries for inter-

acting with hardware in C. It offers full support for ESP32 by the vendor via hardware 

abstraction libraries. It is also used in the popular Arduino framework extension for the 

ESP platform. In the context of embedded programming, C++ can be considered an exten-

sion of C (sometimes called C with classes) and is generally supported by vendor-pro-

vided tools (i.e., it is possible to use C++ on ESP32), but most available libraries and frame-

works use only C. Most of the low-level C functionality is provided by its standard library. 

The C language is relatively low level, has manual memory management (for heap allo-

cation), and is weakly typed. On ESP32, the C runtime environment includes FreeRTOS 

[19], which is embedded in ESP-IDF (and other development environments that use ESP-

IDF, like Arduino [20]). While in principle it is possible to fully disable the real-time op-

erating system (RTOS), it is not the standard use case (no support for this is offered by the 

vendor, or FreeRTOS itself), and was not considered for this paper. 

Rust was originally developed by Graydon Hoare and later overtaken by Mozilla as 

a community-driven project [21]. Rust 1.0 was released in 2015 and since then has grown 

in popularity as a multipurpose programming language. A quite unusual feature of Rust 

is its fully automatic memory management without using garbage collection. All memory 

allocations are managed during compilation time, making many programming mistakes 

(which can easily be left in the C code) impossible [22]. Rust’s ecosystem Cargo offers 

features such as building benchmarking and documentation generation [23]. Like C, Rust 

provides a large part of its functionality via the standard library (called crate in Rust). For 

ESP32 it is also possible to build Rust projects using the bare-metal environment, which 

does not use the standard library. However, this restricts the languages features (e.g., heap 

allocation or stack overflow protection is not supported, external custom libraries are 

needed) [24]. There is extensive Rust binding for ESP-IDF (esp-idf-sys crate) [25], which 

provides a high support for ESP32 features. However, support for ESP32 in Rust is in the 

so-called “Tier 3” [26], which does not guarantee that the project will build and work cor-

rectly. 
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TinyGo [27] is a recent version of the Go programming language (created at Google 

in 2007) that is oriented to embedded systems. Since Go uses an LLVM compiler like Rust, 

its ecosystem is also quite similar. The language is designed to be easy to parse and, by 

extension, easy to manipulate. Its garbage collector is predictable and easy to see for a 

programmer [28]. The TinyGo community lists such advantages over Rust as built-in sup-

port for concurrency without the need to rely on an RTOS-like framework, and architec-

turally better support for bare-metal applications [29]. As indicated in [30], TinyGo uses a 

cooperative scheduler and does not preempt tasks such as RTOS. Currently, support for 

ESP32 is not complete, and interfaces such as WiFi, Bluetooth, and even ADC are not 

available. Furthermore, not all standard library packages (Go library version) are sup-

ported [31]. Access to available peripherals is provided through the machine package. 

MicroPython is an interpreter of Python 3 for microcontrollers and was developed 

by Damien George in 2014. Python is an interpreted language with garbage collector and 

is often perceived as a scripting language. It is widely used for application programming, 

especially by inexperienced programmers, due to its relative ease of use. The interpreter 

must be flashed into the supported microcontroller first. Some vendors now include the 

MicroPython interpreter as a default development environment in their products [32] as 

an easier alternative for beginners. MicroPython includes a subset of Python functions 

and libraries that are optimized for limited embedded environments [33]. MicroPython 

aims to be as compatible with normal Python as possible to allow an easy migration of 

desktop code to a microcontroller or embedded system. On ESP32, many peripherals are 

supported, including WiFi [34]. Since ESP32 does not usually contain a MicroPython in-

terpreter, it can be downloaded and flashed following the instructions on the creator’s 

website [35]. Python code can be uploaded and interpreted dynamically through a serial 

interface, or stored on microcontroller flash memory and run at boot time. 

2.3. Algorithms Used for Performance Comparison 

The ideal choice for performance comparison and evaluation would be to use an al-

ready existing comprehensive benchmark suite which includes a wide selection of differ-

ent algorithms. However, few exist that are specifically targeted at embedded systems, 

and none exist that would consider relatively new languages like Rust or TinyGo. Existing 

embedded-oriented benchmarks include Bristol Energy Efficiency Benchmark Suite 

(BEEBS) benchmark, aimed at evaluating the energy consumption of embedded proces-

sors [36], MiBench [37], and EEMBC suite [38]. They all categorize used algorithms into 

different application categories, such as security, automotive, network, telecommunica-

tion, etc. These benchmarks test different types of embedded system applications in real-

life use. A subset of algorithms was chosen from the benchmark suites mentioned above 

while considering these aspects: 

• Presence in more than one embedded-oriented benchmark suite and more than two 

test categories. Algorithms that were already used in several benchmarks and 

grouped into different test categories were preferred, as they are known to be suitable 

for a more comprehensive performance evaluation. 

• Presence in related works. Algorithms that were already used in similar performance 

comparisons on ESP32 were considered to be better tested and well suited for this 

work. Currently, the authors of [10] compare CRC-32 and SHA-256 in C and Mi-

croPython on ESP32. 

• Availability in vendor libraries. Algorithms that are implemented in Espressif (ESP32 

vendor) officially provided libraries were assumed to be well tested and suited for 

ESP32, as well as faster to implement and port to other languages, due to their com-

prehensive documentation and use examples. 

• Ease of use and verification. Since each selected algorithm had to be implemented in 

four different languages, it was crucial to be able to verify that each version outputs 

the correct results. Algorithms that can take a simple stream of data (such as an array) 
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and similarly output another stream of data or a single value were preferred. Then 

the input and expected output data could be easily generated and verified. 

• Open source. The algorithm code should be available as an open source in any of the 

compared languages. 

Five algorithms were chosen for comparison: popular hash functions CRC-32 and 

SHA-256, and three signal processing functions, FFT, IIR, and FIR. Many well-tested open 

source implementations of these functions can easily be found. The reasons for the selec-

tion of each algorithm are given in Table 2. 

The CRC-32 or 32-bit Cyclic Redundancy Check is used in data integrity checks, 

while the SHA-256 (256-bit Secure Hash Algorithm) is used in authentication, encryption 

algorithms, and even cryptocurrencies. They take a byte stream for input. These functions 

were chosen to test how relatively simple operations perform on ESP32 while compiled 

in different languages, since their implementation involves simple bitwise shifting, logi-

cal, and arithmetic operations. They are used in two embedded-oriented benchmarks, the 

Bristol Energy Efficiency Benchmark Suite (BEEBS) and MiBench, and fit into the network, 

telecommunication, and security categories. 

Another set of functions for this test were signal processing functions: Fast Fourier 

Transform (FFT), Infinite Impulse Response (IIR), and Finite Impulse Response (FIR) fil-

ters. EPS32 is powerful enough to be used for various signal processing tasks onboard; its 

vendor Espressif provides a comprehensive open source DSP library in Ansi C, and as-

sembly and benchmark results for this library [39]. This enabled an easy comparison of 

other programming languages with vendor-provided code in C. To have more variety in 

data types, FFT with integer data points as inputs was selected, while IIR and FIR take 

float32. These algorithms are also used in the MiBench, BEEBS, and EEMBC benchmark 

suites and fit into the telecommunication, consumer, and automotive test categories. 

Three of the selected algorithms can be further parameterized: CRC-32 by its polyno-

mial, while FIR and IIR filters by their coefficients. For this work, no special considerations 

were made to select these parameters. Their values and amount (for FIR and IIR) were 

used as they appeared in the original source code or its usage examples. FIR was imple-

mented as a 255th-order bandpass filter, while IIR was biquadratic type with five coeffi-

cients from their usage examples in the original source code. IEEE polynomial 

(0xEDB88320 in hexadecimal) was used for CRC-32. 

The source codes for the selected functions were taken from free open sources in C 

(except for CRC-32, which was adapted from Go), then ported to other languages. Some 

functions were slightly adapted to make them stand-alone: library-wide error code defi-

nitions were removed from DSP functions; union type was removed from FFT code, as it 

has no close alternatives in other languages. The general structure of the code was kept as 

close as possible in all languages, while using some higher-level features of Rust, TinyGo, 

and MicroPython (e.g., using array length properties, instead of passing an additional 

length parameter like in C; using methods for structures). The details of each function are 

summarized in Table 2. 

Table 2. The details of the functions used for the performance evaluation in selected programming 

languages. 

Function Source 
Input Data Type 

(Passed as Array) 
Comment Reasons for Selection Areas of Use 

CRC32 [40] uint8 
IEEE polyno-

mial 

Presence in more than one bench-

mark (BEEBS, MiBench) 

Presence in related works  

Ease of use and verification 

Network 

Telecommunication 

Security 

SHA256 [41] uint8 - 

Presence in more than one bench-

mark (BEEBS, MiBench) 

Presence in related works  

Network 

Telecommunication 

Security/Cryptography 
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Ease of use and verification 

FFT [42] int16 - 

Presence in more than one bench-

mark (MiBench, EEMBC) 

Availability in vendor libraries 

Ease of use and verification 

Telecommunication 

Consumer 

Automotive 

FIR [43] float32 
256 coeffi-

cients 

Presence in more than one bench-

mark (EEMBC, BEEBS) 

Availability in vendor libraries 

Ease of use and verification 

Telecommunication 

Consumer 

Automotive 

IIR [44] float32 biquad type 

Presence in more than one bench-

mark (EEMBC, BEEBS) 

Availability in vendor libraries 

Ease of use and verification 

Telecommunication 

Consumer 

Automotive 

MATLAB models for each function were also written. They were used to generate 

output data, which were transferred to the source code for each language, and used as a 

reference to verify the correct execution of the functions (more details in Section 2.3). The 

full source code with compilation and uploading instructions is provided in GitHub re-

pository: https://github.com/ignasp/ProgLangComp_onESP32 (accessed on 27 December 

2022). 

2.4. Performance Comparison Methodology 

While there are many benchmarking libraries available for each language (Rust tool-

chain even has a built-in benchmarking capability), they all greatly differ in implementa-

tion and use details. To provide a unified way to benchmark the selected functions, a sim-

ple custom benchmark library was first implemented in C and then ported to Rust, Ti-

nyGo, and Python. 

To measure execution time, a timer structure (or object) and associated methods start 

and stop were defined, as detailed in pseudocode below: 

STRUCTURE Timer : a 

 tStart : Time value 

 tDuration : Time value 

FUNCTION start(timer : TIMER) : 

 timer.tStart = current time 

FUNCTION stop(timer : TIMER) : 

 timer.tDuration = calculated with timer.tStart as a ref-

erence 

In each language, functions were used that return a monotonically increasing clock. 

They were provided by either the standard library of the language or by the vendor of the 

ESP32 (Espressif) library. Table 3 lists the exact functions used for each language. 

Table 3. Functions and code used to measure execution time in each language. 

Language Function for tStart Function to Calculate Duration 

C/C++ esp_timer_get_time() esp_timer_get_time()—tStart 

Rust esp_idf_sys::esp_timer_get_time(); esp_idf_sys::esp_timer_get_time()—self.tStart 

TinyGo time.Now() time.Since(tStart) 

MicroPython utime.ticks_us() ticks_diff(ticks_us(), tStart) 

Next, a test function type RunFp was defined: 

TYPE RunFp : FUNCTION RezVerification( 

data_len : Integer, 

Timer : TimerObject/Struct) 

https://github.com/ignasp/ProgLangComp_onESP32
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Different versions were implemented for every function tested since they all differ in 

the types and size of input and output data, the necessary initializations, and the cleanup. 

The function takes two parameters—data length, to enable testing for different input 

length sizes, and a timer object, to measure the execution time. It also compares the gen-

erated output data with predefined expected values and returns a RezVerification enumer-

ation type, which indicates whether the output data match the reference result data. Fig-

ure 1 presents the RunFp function algorithm. 

 

Figure 1. The algorithm of the execution time measurement function. 

Finally, another structure and a bench_Run method/function were defined to auto-

mate execution of the testing function for different number of iterations and input data 

lengths: 

STRUCTURE Tester : 

TestName  : String 

TestLengths : Integer array 

Niterations : Unsigned integer array 

Ptype  : Test result printing type (Readable, CSV) 

RunFn  : RunFp (Test runner function) 
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FUNCTION bench_Run (test : Tester) : 

 INITIALIZE timer : Timer 

 FOR data length IN test.TestLengths : 

 FOR: iteration number IN test.Niterations : 

   test result : RezVerification = run test.RunFn(data 

length, timer) 

   PRINT( 

    Language Name 

    test.test name 

    CPU frequency 

    Iteration number 

    timer.tDuration in microseconds 

    test result) 

The structure stores the test name for readability, an array of tested input data 

lengths, a number of iterations, a result printing type (which defines how the test results 

are printed to a serial interface), and a reference to the testing function type RunFp. The 

bench_Run method takes a Tester as a parameter and runs the referenced testing function 

for every defined data length and number of iterations, while printing the results of each 

iteration to the serial console, as detailed in Figure 2. 

 

Figure 2. The general algorithm of the execution time measurements. 

Two ways of results printing are available: readable for quick verification, and CSV. 

Figure 3 shows an example of readable results in a seral terminal emulator. 

 

Figure 3. Test results for 3 iterations of CRC-32 in C programming language with data length of 32, 

displayed in a serial terminal. 
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The results printed in CSV format can be easily transferred to another program (such 

as Microsoft Excel) for data consolidation and further analysis. In C programming lan-

guage, CPU cycles were also measured as a reference for DPS algorithms (FFT, IIR, and 

FIR), which have their benchmark result in CPU cycles provided by the vendor Espressif. 

The tester structure is defined in the main body of the program, and the bench_Run 

method is called for every algorithm tested. For this study, all tests were run for 100 iter-

ations, with input data lengths of 0, 16, 32, 64, 128, 256, 512, and 1024. Since the code on 

ESP32 is executed on top of FreeRTOS (except for TinyGo), it is expected to see some var-

iation in execution times of different iterations due to its preemptive scheduling (SysTick). 

No RTOS specific functions were used in the code. 

It is also important to note that the tests were performed using a 160 MHz CPU fre-

quency. While the ESP32 can work with up to 240 MHz, the default value after boot is 160 

MHz, and it currently not possible to set the custom frequency in all languages (as their 

standard libraries do not have functions for that and 160 MHz is hardcoded), so the de-

fault 160 MHz was used, and verified by reading and printing the CPU frequency by 

available functions (provided in all languages). 

During development, it was discovered that TinyGo fails to link the full code, with 

all functions and reference output data included. To solve this, each function was first 

compiled and executed separately, with full reference output data included (the problem 

was traced to the linker script, where it is indicated that constant global variables are 

loaded in DRAM, and not flash memory, and this should be fixed eventually [45]). After 

being convinced that all functions return the correct result, the final tests were executed 

with 32 reference output data points included in the code. Since the verification of the 

output data is outside of any time measurements, it is not expected to affect the results in 

any way. 

A similar problem arose with MicroPython (the interpreter failed to load the full 

code), so the same solution was introduced. 

Initially, different optimization levels were attempted for the compiled languages. 

TinyGo, compiled with levels other than -Oz (highest optimization for size), produced 

incorrect results (verification failed; it was asserted that this was due to functions produc-

ing results different from reference data), or caused program panic. Since a full compari-

son for other optimization levels could not be made, the tests were performed with -Os 

for C and -Oz for Rust and TinyGo. 

2.5. Hardware Setup 

ESP32 is a family of powerful microcontrollers, based on the Xtensa 32 bit architec-

ture and manufactured by Espressif [46]. It has integrated WiFi Wi-Fi 802.11 b/g/n, dual-

mode Bluetooth version 4.2, and a variety of peripherals. ESP32 has a dual core processor 

with a frequency of up to 240 MHz, 520 Kilobytes of SRAM, and 16 Megabytes of flash 

program memory. ESP32 is supported by various popular integrated development envi-

ronments (IDE), such as Arduino (for C/C++) and PlatformIO (for various languages 

through extensions). 

Due to its relatively low price, the ESP32 is used in numerous prototyping and de-

velopment boards [47], aimed both at professionals and enthusiasts. For this test, an M5 

Stack Basic development kit with ESP32-D0WDQ6-V3 (Figure 4) was used. 
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(a) (b) 

Figure 4. (a) M5 Stack Basic kit used for tests; (b) the kit opened, showing the ESP32. 

No special preparation is needed to use the kit. It is simply connected to the computer 

via USB and discovered as a serial device, on which programs can then be deployed by 

any of the available IDEs, or simply by using a vendor-provided tool (which is also used 

by the aforementioned IDEs) [48]. For this test, no internal or external peripherals were 

used. 

2.6. Software Development Environments and Compilers 

For code development, integrated development environments (IDE) were used. Vis-

ual Studio Code (VS Code) [49] was used for C, Rust, and TinyGo, and Thonny [50] was 

used for MicroPython. 

Thonny is an open source Python IDE, which also allows using MicroPython via se-

rial port. It was used on a Windows 10 machine. 

VS Code is an open source multiplatform IDE developed by Microsoft. Its features 

can be highly customized by installing extensions, which are available for a wide variety 

of languages and scripts, including C/C++, Rust, and TinyGo. 

VS Code with the PlatformIO extension [51] was used on a Windows 10 machine for 

the development of C/C++ code. PlatformIO allows development for various embedded 

platforms, including ESP32. The C/C++ extension was automatically installed as a depend-

ency. A new project was created for the M5stack core, with the Arduino framework. All 

other configurations were handled by the extension. 

For Rust, VS Code with the rust-analyzer extension [52] was used on a Debian 11 

machine. Debian was chosen over Windows as it appeared to be easier to install the nec-

essary toolchain on a Linux machine. The rust-analyzer extension only provides syntax 

highlight and checking; the toolchain needed to compile Rust for ESP32 was installed fol-

lowing instructions provided in [24]. With the development environment ready, a Rust 

project was created using template [53]. 

Finally, for TinyGo, VS Code with the TinyGo extension [54] was used on the same 

Debian 11 machine. The TinyGo extension automatically installs the Go extension as a 

dependency. As with Rust, the actual toolchain was installed separately, following [55]. 

Table 4 lists the specific versions of the IDE, extension, and toolchain versions in-

stalled for this study. 

Table 4. Overview of the development environment used for each programming language. 

Language IDE Relevant Toolchain Versions 

C/C++ 

VS Code with plugins: 

PlatformIO v2.5.5 and Espressif 32 v5.2.0 

C/C++ v1.12.4 

no additional version output available, toolchain 

is fully managed by Espressif platform via  

PlatformIO 
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Arduino framework 

Rust 
VS Code with plugins: 

rust-analyzer v0.3.1285 

Xtensa toolchain: esp-2021r2-patch5-8_4_0 

cargo 1.65.0-nightly (4bc8f24d3 20 October 2022) 

rustc 1.65.0-nightly (5b08d0476 4 November 2022) 

esp-idf-sys 0.31.9 

TinyGo 

VS Code with plugins: 

TinyGo v0.4.0 

Go v0.36.0  

Tinygo—version 0.25.0 linux/amd64 (using go 

version go1.19.1 and LLVM version 14.0.0) 

MicroPython Thonny v4.0.1 
micropython 3.4.0; MicroPython v1.19.1 on 18 

June 2022 

3. Results 

This section presents the results of the comparison of different data and signal pro-

cessing algorithms, including CRC-32, SHA-256, FFT, FIR, and IIR. The algorithms were 

implemented using four programming languages, namely, C, Rust, TinyGo, and MicroPy-

thon. The results of this comparison are presented in the diagrams and table below. Each 

algorithm has a corresponding graph that shows the average execution time for each pro-

gramming language using a logarithmic scale. In addition, Table 5 shows the execution 

times together with the standard deviations. For this study, all tests were run for 100 iter-

ations, with input data lengths of 0, 16, 32, 64, 128, 256, 512, and 1024 bytes. Therefore, 

there are eight measurements in each figure. 

Figure 5 presents a comparison of the average execution times of the CRC-32 algo-

rithms. Since MicroPython average execution times are several orders of magnitude 

higher than times of the other programming languages, the results are presented using 

the logarithmic scale. As we can see in Figure 5, in most cases, the TinyGo implementation 

was the fastest, except for data sizes of 0, 16, and 32, where the C-based algorithm was 

slightly faster or equal. In all cases, the Rust implementation showed the third result, 

while the MicroPython program showed the worst execution times. 

 

Figure 5. Average execution times of the CRC-32 algorithm (please note the logarithmic time scale). 
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Figure 6 presents a comparison of the average execution times of the SHA-256 algo-

rithms. As we can see in Figure 6, in all cases, the algorithm implemented in C language 

was the fastest, followed by the TinyGo and Rust programs. The TinyGo algorithm 

showed the second result in most cases, except for data lengths of 512 and 1024, where the 

Rust implementation was slightly faster. The MicroPython program again showed the 

worst execution times. 

 

Figure 6. Average execution times of the SHA-256 algorithm (please note the logarithmic time scale). 

Figure 7 presents a comparison of the average execution times of the FFT algorithms. 

As we can see in Figure 7, in all cases, the algorithm implemented in the C language was 

the fastest, followed by the TinyGo and Rust programs, except for the function calls with 

zero data, which resulted in equal average times. The MicroPython program showed the 

worst execution times, as expected. 
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Figure 7. Average execution times of the FFT algorithm (please note the logarithmic time scale). 

Figure 8 presents a comparison of the average execution times of the FIR filter algo-

rithms. It is quite interesting that in this case, the algorithm implemented in the Rust lan-

guage was the fastest, followed by the TinyGo and C programs, except for the function 
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No surprise, the MicroPython algorithm was slowest again. 
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Figure 8. Average execution times of the FIR filter algorithm (please note the logarithmic time scale). 

Figure 9 presents a comparison of the average execution times of the IIR filter algo-

rithms. As we can see in Figure 9, in all cases, the algorithm implemented in the C lan-

guage was the fastest, followed by the TinyGo and Rust programs, except for the data 

length of 32 samples, where the TinyGo program was only 0.1 µs faster on average. The 

MicroPython program showed the worst execution times again. 
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Figure 9. Average execution times of the IIR filter algorithm (please note the logarithmic time scale). 

Table 5. Average execution times and standard deviations of the algorithms compared (Time 

AVG—average execution time, SD—standard deviation). 

Algorithm 
Input Data 

Length 

C TinyGo Rust MicroPython 

Time AVG, 
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SD, 

µs  

Time AVG, 
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SD, 

µs  

Time AVG, 

µs 

SD, 

µs  

Time AVG, 

µs 

SD, 

µs  

CRC-32 

0 1.0 0.1 1.0 0.0 1.0 0.0 278.2 15.2 
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SHA-256 
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16 40.6 2.8 56.0 0.0 70.2 2.4 67,290.5 6.8 

32 41.3 2.0 59.0 0.0 71.8 2.7 67,519.3 6.7 
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FFT 
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256 373.0 5.5 683.0 0.0 726.4 6.0 168,833.7 4.2 
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512 827.9 4.4 1515.0 0.0 1565.9 3.7 377,029.0 8.9 

1024 1821.5 4.3 3331.0 0.0 3525.5 21.0 844,854.8 15.0 

FIR filter 

0 0.9 0.2 1.0 0.0 1.1 0.3 128.0 5.0 

16 518.5 5.7 421.0 0.0 433.5 6.0 76,422.1 229.9 

32 1029.8 0.4 848.0 0.0 821.3 5.5 158,668.8 151.3 

64 2033.6 2.6 1720.0 0.0 1591.9 6.1 324,258.9 15.7 

128 3962.1 1.1 3541.0 0.0 3114.0 6.3 658,492.5 2062.2 

256 7514.6 5.5 7485.0 0.0 6083.1 6.4 1,366,597.5 33.1 

512 15,028.0 1.6 14,968.0 0.0 12,124.0 7.8 2,989,716.9 152.7 

1024 30,054.7 2.5 29,934.0 0.0 24,219.2 12.8 9,066,768.4 4479.6 

IIR filter 

0 0.9 0.2 1.0 0.0 1.1 0.2 157.4 5.6 

16 4.2 0.4 5.0 0.0 8.5 0.6 1032.1 4.7 

32 8.1 2.5 8.0 0.0 12.0 0.4 1858.2 5.9 

64 14.1 0.3 15.0 0.0 18.9 0.4 3513.9 7.2 

128 27.3 0.5 29.0 0.0 33.0 0.4 6802.7 6.1 

256 54.4 2.8 57.0 0.0 61.0 0.9 13,420.2 7.8 

512 108.0 3.9 113.0 0.0 120.9 1.1 33,257.1 15.6 

1024 214.3 4.4 225.0 0.0 248.9 4.3 90,163.6 28.7 

Table 5 shows the average execution times for different algorithm implementations, 

as well as the standard deviations for each selected data length. Note that TinyGo devia-

tions are equal to zero in all cases, which can be explained by the fact that TinyGo pro-

grams do not use the operating system and are deployed directly on the hardware. There-

fore, TinyGo-written programs always have the same execution time on the ESP32 plat-

form, which is a very valuable feature from the point of view of the real-time systems 

developer. The MicroPython-based algorithms showed the worst execution performance, 

which is logical, since this language is not compiled, but interpreted, resulting in very 

high computational overhead. On the other hand, MicroPython (like any Python version) 

is a higher-level language than the other evaluated languages. Therefore, theoretically, it 

allows faster and easier code development, resulting in only a few lines of code. This is 

true for high-level system development, but it is not always the case in embedded pro-

gramming, where a code developer usually needs to create an algorithm himself accord-

ing to some formula, like in our study. 

4. Discussion 

The data presented in the Results section strongly correlate with some previous work 

[10,11], showing that MicroPython-based programs currently have much worse perfor-

mance on the ESP32 platform, compared to programs written in the C programming lan-

guage. On the other hand, this study allowed us, for the first time, to evaluate execution 

performance of two additional languages, namely, Rust and TinyGo. Both are quite pop-

ular among system developers and were created as an alternative to the C programming 

language, which until now has been considered a gold standard for embedded and IoT 

system development. Therefore, it was interesting for us to find out how good these alter-

natives are. 

The results show that, surprisingly, the C-based algorithms, although fastest in most 

cases, in some cases were not the best. The C-based programs were outperformed by Ti-

nyGo in several cases: 

• CRC-32 implementations with data sizes of 64, 128, 256, 512, 1024; 

• FIR filter implementations with all data sizes, except 0 (just a function/method call 

with zero data); 

• IIR filter implementations with data size 32. 
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The C-based FIR algorithm was outperformed by Rust-based FIR implementation as 

well, with all data sizes except 0. In this case, the Rust-based FIR algorithm was the fastest, 

followed by TinyGo, C, and finally, MicroPython with all data lengths except 16, where 

TinyGo was slightly superior. In other cases, the Rust programs took the third place, ex-

cept for SHA-256 with data sizes of 512 and 1024, outperforming the TinyGo algorithm by 

a few microseconds on average. 

Summarizing the results, it can be concluded that in most cases C algorithms had the 

best execution times, followed by TinyGo, Rust, and MicroPython. The clear outsider in 

this case was MicroPython, whose execution times were thousands of times worse than 

implementations in other languages. 

However, the difference between C and TinyGo programs in many cases was only a 

few microseconds, which is not a very big difference for most embedded applications and 

IoT systems development. In addition, TinyGo-based algorithms have a very important 

advantage over C and other programming languages, since they always have the same 

execution time, i.e., their standard deviation of all execution times is zero. This is ex-

plained by the fact that TinyGo programs are deployed directly to the hardware without 

any operating system; therefore, nothing interferes with the execution process. This means 

that currently TinyGo technology is the best choice for the implementation of hard real-

time systems on the ESP32 platform, where time jitter is a problem. However, it is unclear 

whether this feature will not be lost in the future, since Go (on which TinyGo is based) 

now uses asynchronously preemptible routines (as of version 1.14) [56]. These routines 

would eliminate the jitter-free execution advantage if they were introduced in the ESP32 

TinyGo implementation as well. Besides, TinyGo is still in early stages of development 

[57], while Rust now fully supports its standard library on ESP32 and is more mature. 

Finally, the MicroPython language, which is gaining more popularity, is not the best 

choice for low-level high-performance programming, since its execution times are incom-

parably longer than C, TinyGo, or even Rust. Therefore, the MicroPython language can 

be recommended for general-purpose high-level system programming, especially for 

teaching purposes and student projects, because it allows for faster and easier system de-

velopment. 

4.1. Limitations 

The main limitation of this performance evaluation is that it does not include any 

ESP32 hardware-specific tests (such as using any peripherals). A comprehensive bench-

mark for a specific embedded system would be expected to evaluate the performance of 

accessing and using hardware peripherals as well. Nevertheless, we believe that this work 

provides a fair comparison of the current versions of the languages and produces results 

that will be relevant for a longer time. MicroPython, TinyGo, and Rust are still relatively 

new and developing languages, suitable for the ESP32 platform. While the general non-

platform specific features are not expected to significantly change in the future, the same 

cannot be said about the hardware libraries. 

4.2. Threats to Validity 

The main threat to the validity of this work is within the selection of the algorithms 

to test. As discussed in Section 2.2, compiling a comprehensive benchmark suite for any 

platform is a non-trivial task, more so for four different programming languages. Personal 

bias and insufficient analysis cannot be excluded. However, we are confident that the se-

lected algorithms provide a sufficiently comprehensive (as detailed in Table 2 “Areas of 

use” column), and most importantly, novel insight into performance of the compared lan-

guages on ESP32. 
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5. Conclusions 

In this paper, we have presented the evaluation of the execution performance of the 

C/C++, MicroPython, Rust, and TinyGo programming languages on the ESP32 microcon-

troller. For this purpose, five widely used embedded processing algorithms were utilized: 

FFT, CRC-32, SHA-256, IIR filter, and FIR filter. This study is the first attempt to evaluate 

the execution performance of the newly emerging Rust and TinyGo programming lan-

guages. The aim of this evaluation is to find out how good these user-friendly languages 

are compared to the C/C++ language, which is a gold standard for embedded applications. 

The results of this study reveal that, though the C/C++ programming language is 

widely believed to be the most efficient for embedded programming, that is not always 

the case. Our experiments showed that in a few cases the C/C++ algorithms were outper-

formed by algorithms implemented in TinyGo and Rust. Even in those cases where C/C++ 

implementations were faster, the difference between its execution times and that of other 

languages was not very significant. Moreover, the TinyGo algorithms demonstrated jitter-

free execution, making this language more preferable for hard real-time applications. 

Therefore, TinyGo and Rust can be recommended as efficient higher-level ESP32 pro-

gramming languages, which are characterized by faster and simpler programming com-

pared to the C/C++ language. 

This work may be helpful for embedded software developers, researchers, and stu-

dents who use the ESP32 platform for various application development and study pro-

cesses and need to select the most suitable programming language which is currently 

available on this platform. 
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