friried applied
e sciences

Article

MDA-Based Approach for Blockchain Smart
Contract Development

Mantas Jurgelaitis *(, Lina Ceponiené , Karolis Butkus, Rita Butkiené

check for
updates

Citation: Jurgelaitis, M.; Ceponiené,
L.; Butkus, K.; Butkiené, R.;
Drungilas, V. MDA-Based Approach
for Blockchain Smart Contract
Development. Appl. Sci. 2023, 13, 487.
https:/ /doi.org/10.3390/
app13010487

Academic Editors: Malgorzata

Pankowska and Emilio Insfran

Received: 13 November 2022
Revised: 21 December 2022

Accepted: 27 December 2022
Published: 30 December 2022

Copyright: © 2022 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

and Vaidotas Drungilas

Department of Information Systems, Faculty of Informatics, Kaunas University of Technology, Studentu Str. 50,
LT-51368 Kaunas, Lithuania
* Correspondence: mantas jurgelaitis@ktu.lt

Abstract: Blockchain smart contracts can support the decentralisation of business processes, but due
to smart contracts’ specifics, their development is a complicated process. Introducing model-driven
development principles in smart contract development can facilitate requirement specification, design,
and implementation activities. This paper presents a model-driven development method MDAs-
martCD (Model-Driven Architecture-based Smart Contract Development) to alleviate smart contract
development by supporting the complete MDA life cycle, covering the definition of Computation-
Independent Model, Platform-Independent Model, and two instances of Platform-Specific Models.
In MDAsmartCD, model transformations (model-to-model and model-to-text) are used to produce
smart contract code in the Hyperledger Fabric platform Go and the Ethereum platform Solidity
programming languages. The method application was demonstrated by implementing the smart
contract for the hackathon solution and executing the generated Solidity and Go smart contracts in
the workflow of issuing certificates for hackathon participants. During the execution of the workflow,
both deployed smart contracts behaved identically and recorded analogous results in respective
blockchain data storages. This demonstrated that the MDAsmartCD method enables the generation
of compilable and executable smart contract code, ready for deployment on a blockchain platform.

Keywords: smart contract; MDA; UML; code generation; model transformation

1. Introduction

Decentralisation of business processes can increase trust, transparency, and traceability,
thus augmenting the existing information systems or assisting the development of new
ones [1]. Among the various means of introducing decentralisation, blockchain technology
is the most prominent solution. The introduction of blockchain requires smart contracts to
be developed, which are considered to be the main software artefact of most blockchain
technology-based solutions [2]. In essence, smart contracts are programs executed on
a specific blockchain platform network. They can be utilised to cover parts or all aspects
of business processes by implementing software components that are hosted on a peer-
to-peer network and allow data sharing across network participants using the public
blockchain ledger [3]. Currently, the majority of blockchain platforms support smart
contracts, thus ensuring that the technology has the potential to cover entire decentralised
software applications without the need to rely on any intermediaries.

The introduction of smart contracts in the information system domain provides nu-
merous advantages, but such improvements come with development constraints since
the technology introduces specific principles to which applications must adhere [4]. Al-
though the smart contract itself is a software artefact, it has specific features that make
the development of smart contracts a complicated process, even more complex than tradi-
tional software development. In iterative software development, the phases of requirement
specification, design, implementation, testing, and deployment can be repeated according
to the need, thus not only enabling prompt response to changes but also ensuring the

Appl. Sci. 2023, 13, 487. https:/ /doi.org/10.3390/app13010487

https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13010487
https://doi.org/10.3390/app13010487
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-2221-0765
https://orcid.org/0000-0002-6812-0215
https://orcid.org/0000-0003-3250-4599
https://orcid.org/0000-0002-1096-4351
https://doi.org/10.3390/app13010487
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13010487?type=check_update&version=1

Appl. Sci. 2023,13, 487

2 of 28

continuous support of the deployed software. In contrast, the smart contract development
process can support iterations only before the deployment phase: due to smart contract
immutability, the code of the smart contract cannot be altered after it has been deployed on
the blockchain. Existing methodological support for the development of smart contracts is
limited, and current development processes are usually poorly defined [5-7]. Furthermore,
the development phases are not as interconnected as they should be and the inputs and
outcomes are not clearly defined [5], leaving the developer to fill the gaps with experience
or with additional analysis during each development phase [8]. To facilitate the develop-
ment of smart contracts, additional support and a clearer definition of the smart contract
development process are required [3,9].

In information system development, the principle of raising the level of abstraction
is commonly used by introducing software modelling, which can also enable code gen-
eration [10]. Modelling facilitates the specification of the system under development in
a more abstract notation than the code itself; simplifies communication, documentation,
and collaboration; and promotes reuse by separating the specification from the specific
implementation technology. Concept modelling is particularly apparent in model-driven
development (MDD), which also can be successfully applied in smart contract develop-
ment, by introducing models that define the structure and behaviour of smart contracts
as key artefacts of the development process [11,12]. The modelling can cover a variety
of activities during which the developer, instead of investing a considerable amount of
time in smart contract programming in a specific programming language, could spend the
time outlining the behavioural and structural details common to any blockchain platform
and eliciting requirements to be met for the decentralisation of the business processes.
The specified models can then be used to support the verification of requirements, system
design, code production, testing, and deployment activities. In the area of model-driven
development, a more comprehensive approach exists which encompasses the application
of several abstraction layers for introducing support of different implementation platforms.
This approach is called Model-Driven Architecture (MDA) [13], which defines guidelines
for the development of Computation-Independent Model (CIM), Platform-Independent
Model (PIM), and Platform-Specific Model (PSM), which can further be used for generating
code for the implementation platform of choice. The application of MDA principles in smart
contract development can help solve the issues related to rapid technology change, emerg-
ing new platforms and technologies, and the need to verify the smart contract solution
before its deployment [5,12,14].

Although smart contract development using modelling is a relatively new field and
there is no unified approach, several proposals on model-driven smart contract devel-
opment have been outlined [11,12,15,16]. Additionally, MDA is also used as a basis for
several proposed smart contract development processes [17-20], but these proposals are
in conceptual stages, and most of them do not fully employ MDA techniques, such as
model-to-model transformations, and are mainly tailored for one implementation platform.
Therefore, in this paper, we propose an MDA-based method, MDAsmartCD (MDA-based
Smart Contract Development). The presented method is a continuation of the research
described in [21,22], where we proposed algorithms for different types of model transfor-
mations: code generation from Unified Modeling Language (UML) sequence diagrams to
Hyperledger Go [21], and transformations from PIM (encompassing UML state machine
diagrams for behaviour description) to Ethereum PSM and afterwards to Solidity code [22].
The proposed MDAsmartCD method supports the complete MDA life cycle (encompassing
the revised versions of previously proposed algorithms) and demonstrates the application
of specification reusability by supporting two different implementation platforms. The aim
of this paper is to demonstrate how the application of the MDA-based method can be used
to automate the development of smart contracts.

The proposed method covers the definition of CIM, PIM, two instances of PSM, and
model transformations (model-to-model and model-to-text) for producing smart contract
code in the Hyperledger Fabric platform Go and the Ethereum platform Solidity languages.

Appl. Sci. 2023,13, 487

30f28

The main novelty of our method is the support of requirement and design phases of smart
contract development, ultimately resulting in a generated smart contract code that can be
used during implementation. MDAsmartCD also supports multiple platforms, which was
demonstrated using Hyperledger Fabric and Ethereum, but the set of supported platforms
can further be extended following the method principles. The method was applied by
implementing the business process of issuing hackathon certificates in smart contracts for
both the Hyperledger Fabric and Ethereum blockchain platforms.

The rest of the paper is structured as follows. The second section overviews the
related work in terms of model-driven approaches for blockchain-based solutions and
smart contract development, placing a heavier emphasis on MDA-based approaches. The
third section presents the proposed MDA-based method, consisting of UML metamodel
extensions and proposed model definition and transformation activities. The fourth section
presents the application of the proposed approach for a certificate issuing in the context
of a hackathon organisation and outlines the results of proposed transformations, as well
as the produced smart contract execution results. The results of the application of the
approach, its advantages, and its limitations are discussed in the fifth section.

2. Related Work

Model-driven development [12,15] can facilitate development by eliminating redun-
dant or automating repeated manual actions during smart contract development and
shifting the focus to development activities such as requirement elicitation, design, veri-
fication, and validation that are generally neglected [8]. A number of research efforts to
introduce model-driven development principles into smart contracts development exist [15]
and are mostly tailored for testing [5], code generation [11,12,15,16], deployment [23,24],
or requirement verification/validation [16,25] activities. Such activities are deemed es-
pecially important due to the immutability of smart contracts, which requires that smart
contracts be completely developed before deployment, as changes after deployment are
either impossible or very complicated [3,26].

In smart contract engineering, model-driven development encompasses areas of smart
contract structure and/or behaviour modelling. The most common approach to outline
the structure of smart contracts is to use UML class diagrams, which are used for visual-
isation [27], validation [24], deployment [23], and code generation [28,29]. Additionally,
some proposals for code generation and validation also employ behaviour models that, in
addition to the structure, are used to verify [30], simulate [16], or generate code. The smart
contract behaviour specifications range from business process modelling using BPMN no-
tation [31] to modelling the smart contract as a software artefact using state machine such
as notations [32-34]. Some methods propose to use sequence diagrams/interaction specifi-
cations for outlining the behaviour and collaboration of multiple system components [35].
In some cases, code embeddings can also be included directly in the model [25,36]. Specific
embeddings could be tailored to a variety of cases such as outlining the behaviour of
functions, classes, and additional structural details, and in the case of smart contracts, such
embeddings can be tailored to community-based ERC standards [37-39].

The specific case of model-driven development is Model-Driven Architecture (MDA)
framework. Although a relatively small proportion of current research in smart contract
engineering uses MDA, overall, four methods are based on or adjacent to MDA [17-20],
and are directly compared to each other and our proposed method in terms of MDA
Computation-Independent, Platform-Independent, and Platform-Specific Models (Table 1).

The CIM abstraction layer is the least utilised in smart contract development, as is
often the case in other domains [10]. In [18], the CIM is specified in textual notation
using ADICO statements, in which a developer can outline the aim, conditions, input, and
outputs. Similarly, in [17], the developer outlines contract party agreements. In [19], the
REA ontology is used as a basis to outline the class diagram that consists of a transaction,
contract, commitment, events, commitments, and resources. The authors of [20] do not

Appl. Sci. 2023,13, 487

4 of 28

employ the CIM abstraction layer at all, and none of the aforementioned approaches
support automatic transitions between the CIM and PIM abstraction layers.

Table 1. Comparison of MDA-based methods for smart contract development.

[17] [18] [19] [20] MDAsmartCD
. Business process model
Specification Result Cogtrraeztn}laeaﬁles ADICO statements REA ontology Use case model
& Domain model
P . . UML activity, use case,
CIM Specification Notation Textual Textual UML class diagram Does not employ CIM class diagram
. ATL
Transforn:;a)ti—)cirl\l/[from M (not yet Manual Manual ATL
implemented)
Abstract Formal Smart contract state Commitment-based Business logic model Smart contract structure
Specification Result Smart Contract machine ontolo Blockchain Technical Smart contract
Description &Y Design Model behaviour
PIM Specification Notation Event-B Finite State Machine =~ UML class diagram B-MERODE UML cla5§, state
machine diagram
Transforr?gtligrlt/[from PIM ATL Manual Manual Not defined ATL
Refined Formal 30 . Object-Event Table Smart contract structure
e Solidity smart Commitment-based -
Specification Result Smart Contract Existence Dependency Smart contract
Descrinti contract code ontology .
escription Graph behaviour
UML class, state
Employed Notation Event-B Cod duced UML class diagram Not defined machine, sequence
PSM ode produce diagram
- directly from PIM 8
Transforntlgtégr(;;rom PSM Teigf}lle:sl—gg}s]ed Acceleo M2T Not defined Acceleo M2T
Supported Platforms, Ethereum 3 Ethereum SOhdlty Ethereum Ethereum Solidity
Programming Languages Solidit Ethereum Solidity Hyperledger Fabric Corda Hyperledger Fabric Go
& & Languag y Java Hyperledger Fabric P &

The PIM abstraction layer is where the most common characteristics between the
different methods can be observed. In [18], the ADICO statements are used to outline the
behavioural details of smart contracts as a finite state machine. Considering that the smart
contract is closely related to state behaviour, the FSM allows one to model the behaviour
of a smart contract consisting of states, transitions, and conditions. In [17], an Event-B
notation is used to outline a formal smart contact description. Event-B is a modelling
notation which allows one to specify discrete transition systems consisting of contexts
and machines. Specifically, the machine encapsulates the state by a set of variables and
captures transitions as guarded events. In [19], the UML class diagram is used to outline
the structure, while for the behaviour specification, the commitment-based ontology is
used. This allows one to outline the goals, conditions, commitments actions, and timing
of smart contracts. Lastly, [20] supports the specification of the business logic model and
blockchain technical design model, and, since it is based on B-MERODE [40], also supports
the behaviour specification using finite state machines. In general, the transition from
the PIM abstraction level to the PSM is performed manually or is not explicitly defined,
or, as in the case of the [17] transformation, is planned to be implemented using the ATL
transformation language.

The PSMs in most cases are tailored to the Ethereum platform, and Hyperledger Fabric
is second in popularity. The code production from model to text transformations is used
to produce smart contracts in Solidity and Java programming languages. On the other
hand, in [18], the PSM as an abstraction model is ignored since the code itself is considered
to be PSM. In other methods, the content of PSM and how it allows one to map model
elements to specific technology platform concepts are not explicitly outlined. In particular,
the method presented in [19] outlines a datalogical layer consisting of class, operation,
constraint, enumeration, parameter, property, ValueMapping, and PackageImport elements.
In [20], PSM encompasses the intermediary model used to produce the Ethereum, Corda,
and Hyperledger Fabric smart contract code. The method in [17] does not go into detail

Appl. Sci. 2023,13, 487

50f28

about the elements a PSM is composed of, since the method deals with validation. Although
in most proposals, the transformation to code is not explicitly defined, [19] utilises the
Acceleo tool for the implementation of the PSM to code transformation.

Compared to other MDA-based methods that employ textual notation or do not
employ CIM at all, the proposed MDAsmartCD method has a defined CIM abstraction
layer, which specifies the business processes using UML use case and domain models.
Similarly, like the other methods, the proposed method supports PIM and PSM smart
contract structure and behaviour specifications using class diagrams and state machines,
although for the behaviour specification, an alternative of using sequence diagrams is
also proposed. Additionally, support for already outlined smart contract implementation
standards is provided, which are used as opaqueBehaviors directly at the PSM level.
Furthermore, our method supports multiple blockchain technology platforms and code
generation to multiple programming languages.

3. MDA-Based Smart Contract Development Method

According to the MDA principles, the MDAsmartCD method outlines three different
models: Blockchain CIM, Blockchain PIM, and Blockchain PSM. The process of transi-
tioning between these models is defined in our method, along with the definitions of
metamodels (extended using UML profiles), input and output models, and algorithms for
transformations. The general process of the proposed method is presented in Figure 1,
where the main development steps of each model and the final step of the development of
the smart contract code are defined.

The proposed method utilises UML as a basis for the definition of all proposed models
(CIM, PIM, and PSM). In some respects, the UML is used as is, particularly during the
specification of the smart contract behaviour. However, the structure specification is
supported by additional UML metamodel extensions, which include blockchain-specific
stereotypes and datatypes. In each upcoming section, the metamodels of each model of
the MDAsmartCD method are presented, encompassing the elements of UML metamodel
and their extensions. For each model, the model definition steps and model transformation
algorithms are also presented.

The MDAsmartCD method (Figure 1) starts with the Blockchain CIM definition
which is supported by the provided UML profile for Blockchain CIM. In Blockchain CIM,
a developer outlines business processes and uses the defined information for the specifica-
tion of the use case and domain class model. Once the specification is completed, the model
is validated using the Object Constraint Language (OCL) validation rules. The validation
rules check model conformance to the Blockchain CIM requirements (usage of stereotypes
and elements, model structure and composition). The final Blockchain CIM is used as an
input for the definition of Blockchain PIM.

The Blockchain PIM definition starts with a model-to-model (M2M) transformation
of Blockchain CIM to Blockchain PIM. The transformation creates Blockchain PIM ele-
ments based on Blockchain CIM elements and applies specific Blockchain PIM stereotypes
according to the outlined ATL rules. The Blockchain PIM then can be extended by the
developer via augmentation of the model (e.g., developer can specify additional state ma-
chine behaviours and smart contract structural features based on business processes). The
Blockchain PIM is also validated using the defined OCL rules in the Blockchain PIM profile:
if the model is correctly defined (a class for smart contract exists, smart contract has defined
operations, opaque behaviors, state machines); if Blockchain CIM stereotypes are correctly
applied; if state machines are correctly specified (e.g., transition triggers correspond to
smart contract operations). The validated Blockchain PIM is further used as an input for
the definition of Blockchain PSM.

Appl. Sci. 2023,13, 487

6 of 28

_________ o

| «structured» -
: UML profile for Blockchain CIME Define Blockchain CIM lE - Blockchain CIM

| Define

Bussiness |
| process N N |

Specify Use Specify domain

| Cases classes |
' V: 7 [
| Validat L) |
| Blockchain CIM |
I L -

«structured»

: UML profile for Blockchain PIM Define Blockchain PIM

|
'3 : Blockchain PIM
: Blockchain CIMEI BI:;;Qﬁ;?;T:IM extension required
to Blockchain PIM 5 l
| ko |
I I
| Validate |
I Blockchain PIM |
\ _ I ________ J
l’ T T T T T Tstruotureds -
: UML profile for Blockchain PSM Define Blockchain PSM l
=i E : Blockchain PSM
: Blockchain PIM ! Transform
H Blockchain PIM to extension required] |
| Blockchain PSM 7|
2
I [
' Validate |
| Blockchain PSM |
\ _ _ _ _ _ _ _ _ I ________ J
I’ T T T T T Testuetureds -
Develop smart contract l
: Blockchain PSMQ Transform I : Smart contract
Blockchain E
: Implementation language metamodel E PSM to smart |
contract code
I I
| |
I [
I I
\ J

Figure 1. The overview of the MDA-based method for the smart contract development process.

The Blockchain PSM definition begins with the M2M transformation implemented
using ATL rules. For a selected platform, the M2M algorithm transforms Blockchain PIM
elements to Blockchain PSM elements, applies Blockchain PSM stereotypes, and, based on
the specified state machine behaviours, creates new platform-specific structural features.
The developer once again can augment the model, this time by utilising the provided
opaque behavior library elements or outlining the behaviour using sequence diagrams.
Lastly, the produced model is validated using OCL rules by checking the conformance to the
specifics of the selected blockchain platform, especially the correct stereotype usage, model
conformance to expected structure, and appropriate specifications of behavioural elements.

In the final step of the MDAsmartCD method, the development of the smart contract
starts with the model to text (M2T) transformation, during which the validated Blockchain
PSM is used as an input. In this transformation, MOFM2T templates are used to define the
mappings of Blockchain PSM metamodel elements to implementation language concepts
in order to generate platform-specific smart contract code. Once generated, the smart
contract code can be extended manually or used as is for the deployment to a blockchain
technology platform.

Appl. Sci. 2023,13, 487

7 of 28

3.1. Blockchain CIM Definition

The purpose of Blockchain CIM is to define how blockchain technology could be
integrated into the reorganisation and decentralisation of specific business processes as
well as the context of these processes. The metamodel of Blockchain CIM is presented
in Figure 2, which includes not only the UML metamodel elements of activity, use case,
and class diagrams, but also the extending blockchain-specific stereotypes for class and
actor metaclasses.

Legend

/attribute

[F] Blockchain CIM

0.*

«Metaclass»
Property

memberEnd

association

«Metaclass»

[classifier [0..1 » o Association
eneral ow nedAttribute (0.. «Metaclass»
9 «Metaclass» Relationshi,
1 Classifier i «Metaclass» el lon ip
pow ertype |0..1 «Metaclass» «stereotype» Class
en . 773 attributes
specific |1 BehavioredClassifier T Atname : String [0..1]
[context

/_behaviorOf Context | 0..*

|

generalizationSet 0..*
0.*

extension |0..*

extensionLocation

[

«Metaclass» «Metaclass» | .
Behavior Actor extendedCase «Metaclass» include Metaclassy

1 UseCase : Include
«Metaclass» | | «stereotype» n S o includeOfAddition | 0.
Activity blockchain *name : String [0..1] | addition

1
ow ertypeExtent |0.. _extendOfExtendedCase | 0.. 1 usaCase |1
«Metaclass» «Metaclass» extend
GeneralizationSet Extend 0.*

«Metaclass»

extensionPoint | 0..*

«Metaclass»
DirectedRelationship
L\

* |ExtensionPoint

«Metaclass»

0.*
_generalizationOf General | Generalization
0.*

Figure 2. Blockchain CIM. Extended UML metamodel.

As proposed in MDA, at the CIM definition step, the developer outlines the business
process model (represented using UML activity diagrams). Based on the definition of
business processes, the developer outlines requirements in the form of a use case model.
The use case model includes functional requirements, some of which are associated with
the actor with the «blockchain» stereotype, which denotes the use case integration with the
blockchain (Figure 2). Additionally, a domain class model can be outlined and the classes
and properties in the domain model can be specified using the «on-chain» stereotype. This
stereotype denotes the domain elements (classes, properties, association ends) that should
be further relocated to the blockchain.

In the definition of Blockchain CIM, the development of a business process model
is an initial step which serves as a basis for the specification of use case and domain
class models. The transition from business processes to use cases and domain classes
is performed manually at the same CIM abstraction level since the information about
business processes cannot be automatically translated into use case and domain models,
since such a process requires some design decisions to be made by the developer. Thus,
UML activity diagrams are outlined as an intermediate step, and only elements from the
use case and class diagrams are utilised in the automated transformation from Blockchain
CIM to Blockchain PIM.

3.2. Transformation from Blockchain CIM to Blockchain PIM

Blockchain PIM represents the design model of the smart contract, specified without
the specific details of the blockchain implementation platform. Blockchain PIM (Figure 3)
encompasses UML class diagrams for smart contract structure specification and can also in-
clude UML state diagrams for behaviour specification. The Blockchain PIM profile contains
not only standard UML metamodel elements, but also the «SmartContract» stereotype,
an additional address type, and the «pay» stereotype, which denotes properties and opera-
tions concerning the cryptocurrency transactions. The profile also includes validation rules

Appl. Sci. 2023,13, 487

8 of 28

that validate the model’s conformance to the defined PIM structure for ensuring the correct

input to subsequent transformations.

Legend «Metaclass»
[Z] Blockchain PIM Operation ow nedOperation
attributes 0.*
" Aname : String [0..1]
«Metaclass» |OW nedParameter operation | ayisibiity : VisibilityKind [0..1] s
Parameter |0.* 0.1 |isQuery : Boolean [1] L :: ype»
Snbutes specification | /type : Type [0..1] accress datatype |0..1
Aname : String [0..1] 0..1
Mype : Type [0..1] ow nedOperation |0..* «Metaclass»
«Metaclass» DataType
ow nedParameter | 0.." EnumerationLiteral daiahvoerlB.
atatype |0..
0.1 0.1 ow nedLiteral [0..* i
method i
«Metaclass» s prrre— enumeration E«Ment‘a::z;st.s:n
) N 1 nu i
Behavior classifierBehavior Class
A a.rtgin_/teso 1 0.1 attributes
name : String [0..1] | +ow nedBehavior Aname : String [0..1] . «stereotype»
? 0.1 b7 SmartContract
0.1 -
| «Metaclass» nestedClassifier | 0..*
«Metaclass» BehavioredClassifier | | "estngciass 0.1
OpaqueBehavior
attributes «Metaclass» ow nedAttribute | 0..*
body : String [0.] StateMachine «Metaclass»
language) String [0.] Property ow nedAttribute
attributes 0.*
Aname : String [0..1] t t
avisibility : VisibilityKind [0..1] «stereotype»
Aype : Type [0..1] pay

Figure 3. Blockchain PIM. Extended UML metamodel.

The transition from Blockchain CIM to Blockchain PIM is performed by employing
a model-to-model (M2M) transformation that maps input model elements to the output
model elements, according to specified transformation templates. During this transforma-
tion (Figure 4), a smart contract structure is generated based on the CIM use case model.
First, the PIM «SmartContract» class is created, and the CIM use cases that were associated
with the «blockchain» actor are transformed to the PIM «SmartContract» class operations.

Additionally, if the CIM domain class model is defined and includes the domain
classes with the «on-chain» stereotype, these classes are directly transformed into the PIM
«SmartContract» contained classes representing data structures. Furthermore, the rest
of the domain class model is analysed, and if it is found that «on-chain» properties (or
association ends which are also properties) exist not in an «on-chain» class, such CIM
properties are transformed to the properties of the PIM contained class representing data
structure. If in CIM, associations exist between «on-chain» classes, they are transformed
to PIM associations between the PIM «SmartContract» contained classes representing
data structures.

Once the automated part of the transformation is complete, the developer can man-
ually extend the PIM according to the logic specified in the CIM business processes. In
terms of behaviour specification, the developer can define the smart contract state ma-
chines. The approach enables the specification of a smart contract behaviour as a classifier
behaviour, while also supporting state machines mapped to a data structure, specified as an
ownedBehavior. The state machine itself may include the states, transitions, and transition
triggers specified as either call events or time events, and have additional behavioural logic
included and specified as transition effects. Furthermore, the state machine outlines the
transitional behaviour between states, which locks specific operation usage depending on
the state the smart contract or data structure is in. The transitional logic may also include
conditions specified either as transition guards or using junction, choice pseudostates.

Appl. Sci. 2023,13, 487 9 of 28

[not all Use Cases transformed]

Get list of CIM Use
Cases associated
to blockchain Actor

Transform CIM Use
Case to PIM Class
Operation

Create PIM
Class

Get list of CIM
onchain

[all Use Cases transformed]

[Not all Classes have been transformed]

[list not empty] «structured»

I Transform Prop%geef

Transform CIM {all Properties | [all Classes
Cl toaPIM transformed have been
ass to a (J transformed

|

Contained Class

Get list of CIM
Class
Properties

[not all Properties transformed]

[list not
empty]

Transform CIM
Property to PIM
Property

«structured»
Transform Associations

[Association betw een
onchain Classes]

Transform CIM
Association to
PIM Association

[else]

All Association member
end Properties have
been transformed]

Get list of
Association
member end

onchain Properties

[list ntot fall

Associations
have been
transformed]

Transform CIM onchain
Property to PIM Property

[list not empty]

[Association
betw een onchain
and offchain Class]

[Not all Association member end
Properties have been transformed]

Association member end

Transform CIM onchain
to PIM Property

[else]

[not all Associations have been transformed]

Figure 4. Blockchain CIM to Blockchain PIM transformation.

The resulting Blockchain PIM contains the smart contract structure specification in
the UML class diagram and can also incorporate the behaviour specification in the UML
state diagram. This design model can be further transformed into Blockchain PSM for the
platform of choice.

3.3. Transformation from Blockchain PIM to Blockchain PSM

Our approach currently has two defined PSMs: Ethereum PSM and Hyperledger Fabric
PSM. We chose to demonstrate the multiplatform aspect of our approach by outlining these
two PSMs, but the set of PSMs can be further extended by defining the UML profile for other
platforms if such a need arises. Blockchain PSMs in MDAsmartCD have their own UML
profiles, encompassing platform-specific stereotypes, data types, and validation rules that
check model conformance to the required PSM structure. The stereotypes and datatypes of
both the Ethereum and Hyperledger PSMs are presented in Figure 5, which also defines
their relation to the standard UML metamodel. The profiles also include platform-specific—
Ethereum PSM and Hyperledger Fabric PSM—OpaqueBehavior library elements which
can be used as code embeddings and are based on the platform documentation examples
and ERC standard implementations outlined in [38,39].

The M2M transformation algorithms to generate Ethereum PSM or Hyperledger Fabric
PSM (Figures 6 and 7, respectively) are similar, as they both use the same Blockchain PIM as
an input. At the start, a PSM «contract» (in Ethereum PSM) or «chaincode» (in Hyperledger
Fabric PSM) class is created that is appended with model elements that were previously
outlined in the Blockchain PIM model. The main difference between the two platforms in
this step is the stereotypes applied, and the data types of these elements. In both cases, the
stereotype applied to an element denotes the specific structural concept implementation in
a particular technology.

Appl. Sci. 2023,13, 487

10 of 28

Legend l - T
oW ne: peraton e
[E] ethereum Psm «stereotype»
[E] Hyperledger Fabric PSM e constructor
P 9 constrainedElement Operation «dataType»
. . & 0z attributes «stereotype» i
_constraintOf ConstrainedBement | 0.. operation _|aname : String [0..1] function string
«Metaclass» 0.1 |Avisibility : VisibilityKind [0..1]
Constraint isQuery : Boolean [1] «stereotype» «da:’aoTy'pe»
A : .. Ol
attributes type : Type [0..1] event datatype | 0..1
“name : String [0..1]
specification : ValueSpecification [1] specification|0..1 «stereotype» «Metaclass» «dat?:type»
0..*| ow nedOperation function DataType !
ow nedParameter | 0..* «dataType»
T «Metaclass» CEEEEE «Metaclass» datatype | 0..1 bytes
«stereotype» view EnumerationLiteral
Parameter
modifier ow nedLiteral | 0..* " «Metaclass»
- mgi-”"sﬁﬁ/ifgs - «stereotype» enumeration | enymeration «dataType»
«stereotype» Mype : Type [0..1] parameter 1 T address
argument . : «dataType»
ow nedParameter |0..* «stereotypen | [«stereotypen | | ¢StErecyPe» bool
0.1 chaincode || structure enim
«dataType»
«Metaclass» «Metaclass» method «Itletacla . v «ster:totyp:» uin{p
StateMachine > Behavior 0." 0.1 COMIEAc
F—" attributes +ow nedBehavior 7 Class ster «dataType»
«Metaclass» Aname : S{ring [0.1] R attributes « etsotyse» ufixed
Interaction ,—D o 0.. o name : String [0..1] struc
classifierBehavior |0..1 h p..1 X «d:"tar-_:z;e»
o «Meta;la:s»_ «Metaclass» 0.1 nestedClassifier
paquebehavior 0.1 | BehavioredClassifier || nestingQlass
attributes «stereotype»
body : String [0..*] f . N
language : String [0..] variable ow nedAttribute |0..
«stereotype» «Metaclass» ow nedAttribute
«stereotype» bepe Property 0.*
variable mempber attributes «stereotype»
“name : String [0..1] payable
«stereotypen | | || ¢Stereotype» avisibilty - VisibilityKind [0..1] | qualifier
field B Mype : Type [0..1] o

T associationEnd | 0..1

Figure 5. The extended UML metamodel with stereotypes and datatypes for both Hyperledger Fabric
Blockchain PSM and Ethereum PSM.

After the transformation to either of the two Blockchain PSM variants, the speci-
fied models can be extended by additional logic. Such an extension can be executed by
specifying interactions (in the form of UML sequence diagrams) or opaqueBehaviors for
specific functions, or by incorporating the opaqueBehaviors from the provided curated
library of code embeddings based on the platform documentation or community-based
ERC application-level standards.

The final version of Blockchain PSM encompasses UML class diagrams for smart
contract structure and can also encompass a combination of several types of behaviour
specifications: UML state machine diagrams, UML sequence diagrams, and embedded code
as opaqueBehaviors. The resulting Blockchain PSM is validated for conformance to the PSM
structure and can then be transformed into smart contract code for the selected platform.

3.4. Transformation from Blockchain PSM to Smart Contract Code

The Ethereum PSM or Hyperledger Platform PSM is further transformed into a smart
contract in Solidity or Go programming language, respectively. Model-to-text transfor-
mations (M2T) are employed in this process and the produced smart contract code can
be used for deployment on a specific platform as is or can be manually extended by the
developer if needed. Metamodels for both implementation languages were developed (the
Solidity metamodel in Figure 8 and the Go metamodel in Figure 9) and were used to define
transformations from PSM elements to Solidity or Go language concepts.

Appl. Sci. 2023,13, 487

11 0f 28

Transform PIM Class
to PSM contract class

«structured»
Transform PIM contained classes

[Not all contained classes transformed]

[Not all properties transformed]
[Contains

[All properties L [All COnlai?ed 5
transforme: asses transforme
q_f >@

Get I(I:T;so; PIM Transfrom properties| T:gn:::: "tTtlJ
ted class to PSM property
containe struct class PSM member
classes property

[Does not contain properties]
[Does not contain classes]

«structured»
Transform PIM Enumerations

[Not all enumerations transformed]

[Not all literals transformed]

Get list of PIM [Contains [Transfro.m - _Transform
Class numeratlon] enumeration itera literal to PSM
enumerations to PSM enum enum member
enumeration property

[All literals
transformed]

All enumerations
transformed

«structuredy
Transform PIM Class Properties

[Not all properties transformed]

[All properties

Get list of PIM [Contains Transform

Class properties property to transformed] o
Properties PSM variable
property

[Does not contain properfies

«structured»
Transform PIM Class Operations

[Not all operations transformed]

[Not all parameter transformed]

Contains
Get list of PIM o[perations Transform [Contains(Transform
Class operation to parameter$] parameter to
Operations PSM function PSM
operation parameter

[Does not contain parameters]

[Does not contain operations]

(Al

parameters [All operations
transformed)] transformeg](.)

[Not all state machines transformed]

[All state

machine
[else] % transformed] :
[Contains state “7
machines]
________________________________ ~
«structured»
Transform PIM State Machine I
% |
Create PSM enum [TimeEvent trigger |
State and append H Get list of all Transitions } exists]
literals Create timedTransitions |
) Constraint modifier and I
: o 2 apply to relevant functions
Gf“ I'?': of Tra"s.'ft.'o;s [non-reccuring Trigger Operation or 2 |
aving a specitie reccuring Trigger Operation having &

single source State exists] 2 |
[reccuring Transition |

p—

list not empty]

Create PSM
contract events
and constructor

modifier and apply to
= relevant PSM functions

Create atState COnstraint}

[else]

Figure 6. Blockchain PIM to Ethereum PSM transformation.

guards exists]

modifiers and apply to

(Create Constraint

relevant functions

s

>

©

-

Q

“not classified % @
: behavior] C

Appl. Sci. 2023,13, 487

12 of 28

Get list of PIM
Class nested
classes

Get list of PIM
Class
Properties

|

|

|

| Get list of PIM
| Class

| Operations

|

l

Transform PIM Class
to PSM chaincode
Class

«structured»
Transform PIM contained classes
[Not all contained classes transformed]

[Contain Transfrom [Contains
classeg] class to PSM properties)[~ Transform
structure property to
class field property

[Not all properties transformed]

<> transformed]

[All contained
classes
transformed|

[All properties

«structured»
Transform PIM Class Properties

[Not all prop

[Does not contain properties] [Al
[Contains Transform properties
< psope ie property to transformed
PSM variable
property

erties transformed]

«structured»
Transform PIM Class Operations
[Does not contain operations]

[Does not contain parameters]

[Contain_ Transform [Contains Transform
operations] operation to parameter to
PSM function PSM argument
operation parameter

[Not all parameter transformed)]

[Not all operations transformed]

[All [All
parameters operations
ransforme transformed

[Not all state machines transformed]

machines]

variable

effect

Create PSM
string State

Get list of Transitions
having a specified

[has specified state

«structured»
Transform PIM State Machine
[Not all effects transformed]

empty.

[Not all parameter transformed]

[else]

) Transform effect [Contain
[list not OpaqueBehavior rs] Transform
to PSM structure parameter to
class PSM field
property

[Does not contain parameters]

[All parameters | [All effects

transforme:

Figure 7. Blockchain PIM to Hyperledger Fabric PSM transformation.

*

]

1

«Metaclass» «Metaclass»
1 1 * Maboin Struct «Metaclass»
«Metaclass» «Metaclass» pping u Member
i attributes attributes *
Enum - 1| «Metaclass» " Variable name : String | |name : String 1 atm/l)uslte.s
attributes Contract | ! attibutes type : Type name : Siring
name : String pT— «Metaclass» ?arremg ,TStrleng key : Type ype @ Typ
1 1 name : String Interface ype - yp
1.* header : String attributes «Metaclass» "
«Metaclass» name : String 1 0+ Function p
Enum Member 1 1 name - Sring attributes .
a“""g“_fes * stateMutability : MutabilityKind [0..1] «Metaclass»
name : String Function Call
0.1 . 1 1 1
«Metaclass» «Metaclass» Metaclassy 0.1 «Metaclass» «Metaclass» «Metaclass»
«Metaclass» Constructor Event «Metaclass» While For If
e 17 * | Parameter
Modifier attributes Returns
attributes 1 1 name : String narf\g,:’bsﬁerf 1.1 attributes «Metaclass» «Metaclass» || «Metaclass»
name : String type : ;ryple 9 type : Type Variable declaration Emit Expression
. * g [[[
A I
Metaclass» «Metaclass»
Block 1 B Statement
1

modifierinvocation

Figure 8. Ethereum Solidity smart contract metamodel.

Appl. Sci. 2023,13, 487

13 of 28

-ow nedStructure Metaclass» -ow nedField Metaclassy
* Structure 1 * Field
attributes attributes
11 -name : String -type : Type
«Metaclass» -ownedFunction| \etaclass» -ow nedExpression | «Metaclass»
Chaincode 1 * Function 1 * Expression
attributes * attributes 4
-name : String -name : String 1 l
- -ow nedVafiables | *
1 «Metaclass» «Metaclass» «Metaclass»
*_|-importedPackage 1 ¥) Statement Variable FunctionCall
«Metaclass» «Metaclass» «Metaclass» «Metaclass» A
Package Interface Return Argument [I]
attributes attributes attributes attributes «Metaclass» «Metaclass» «Metaclass»
-name : String -name : String -type : Type -type : Type Else For If

Figure 9. Hyperledger Fabric Go chaincode metamodel.

During the Blockchain PSM transformation to smart contract code, a specific platform
smart contract code file (Solidity file for Ethereum PSM, or a Go file for Hyperledger
Fabric PSM) is created. The file is then appended line by line based on the specified
Blockchain PSM structure and behaviour as the PSM stereotypes are directly related to
the Ethereum Solidity smart contract (Figure 8) and Hyperledger Fabric Go chaincode
(Figure 9) metamodels.

In both cases, for the transformation to the Solidity smart contract (Figure 10) or
the Go chaincode (Figure 11) source code, the file is appended with the Solidity or Go
Variables (Figures 8 and 9) based on the Blockchain PSM «variable» properties. Additionally,
depending on the PSM property stereotype, in the case of the Ethereum PSM, a Solidity
mapping may also be appended to the code. Based on «struct» from Ethereum PSM and
«structure» from the Hyperledger Fabric PSM classes, the data structs or structures are
appended to Solidity or Go code, respectively, together with their Member or Field Elements
based on PSM «member» or «field» properties. Next, in the case of the Ethereum PSM,
the enumerations are transformed into Solidity «enums» and have their literals appended
as «enum» members. Afterwards, the Solidity file is appended with the modifiers, based
on the PSM «modifier» constraints. The enumeration and constraint transformation steps
are not present in the case of the Hyperledger Fabric PSM, as the Go chaincode does not
support such concepts (Figure 9).

Afterwards, for both the Ethereum PSM and Hyperledger Fabric PSM, the PSM oper-
ations transformation starts during which functions based on «function» operations that
are not utilised in the state machines are appended to the smart contract or chaincode.
Additionally, in the case of Ethereum PSM, if any operations exist with an applied «con-
structor» or «event» stereotype, instead of Solidity function, a constructor or an event is
created instead. As the concepts of constructor and event are not supported in Go, this step
is skipped in the Hyperledger PSM transformation. Additionally, in any Blockchain PSM,
provided that the specific «function» operations have a behaviour specified in a form of in-
teraction or the opaqueBehavior, this behaviour is also included as a function body (blocks
or expressions). Otherwise, if the behaviour was not specified, such a step is skipped,
which results only in a function header that includes the function name, parameters or
arguments, platform-specific data types, and modifier invocations (in Solidity).

Next, state machines are analysed, and any functions based on the PSM «function»
operations that are used in state machines as transition call events are appended to the
smart contract or chaincode. The appended function header includes the function name,
parameters, data types, and (only in Solidity) modifier invocations. Afterwards, based
on PSM state machine, the function body code is extended with conditional statements
or expressions which ensure that functions are only called when a contract is in a specific
state. It is worth mentioning that during the transformation, the conditional statements
or expressions are appended at the start of the function body, and the state variable
declarations are included before the specific function return statement.

Appl. Sci. 2023,13, 487 14 of 28

[Does ot contain Ciasses]

«structured»
| Transform Struct class

[Does not contain properties]
propertiesly

[Does not contain
________________ «structured»

4 «structured» Transform Constraints

| Transform Enumeration

[Contains|
umerations]

| [Does not contain properties]

Il properties
appended]

Create file for
smart contract

4 Get list of !&ma' Append ‘
Append Append enum owned <Copstraigfs] constraint
| enum literal constraints >

| [Not all literals appended]

[Notall Enumerations transformed] — ~ ~ —]\ _ _ _ _ _ _ _ _ _ _

[Operation is not used in a
State Machine]

«structured»
Transform non-extendable Operation

Determine
Operation
stereotype [Does not have a specified Behavior]
[Has a
specified

[Does not contain Parameters]

: Transform
Interaction
Fragment Set

[Contains

rarne(er f1 Append L
Transform
Opaque

[Not all Parameters appended]
Behavior

[Allnon-extentable Operations transformed] &_}
{Not all ow ned State Machine behaviors transformed}

[Not all Modifiers

«structureds
Transform State Machine [Not all Transitions transformed]
[Does not have a specified CallEvent]

[CallEvent] Get list of all

Get list of Determine lis I
Transiti Trigger Event Tm:‘:eltlsoa"; :Vﬂh
Triggers tye Operation

[Does not contain Modifiers]

(Al

[All Transitions

: Transform
extendable
Operation

append:

>

Append
Modifier

Append
Parameter

Figure 10. Ethereum PSM to Solidity smart contract code transformation.

[Not all ow ned classes transformed]

- astructureds
Transform struct class |
|
i |
|
|
|

[Does not contain properties]

|
! [Does not contain properties]
|

m[&mtains [Contains
Cr::le fc:d:or ~propertie Append <> Create b properie:
structure property

property
[Not all properties appended]

[Not all properties appended]

[All ow ned classes transformed]

[Not all ow ned operations transformed]

| «structured»
Transform non-extendable Operation

[Does not contain parameters] [Does not have a specified Interaction]

[Contains

|

Interaction

Append
Fragment Set

parameter
[Not all parameters appended]

Transform
Opaque
Behavior

{Has specified State machine]
| T T T T T T T T T T T T T Tetweweds . T T T T T T T T \I
| Transform State Machine [Not all Transitions transformed] |9§>>©
| [Does not have a specified CallEvent] |
I Get list of Get list of Determine [CalEvent] |
| Transitions Transition Trigger Event Get list of all

Triggers type Transitions with |
| the same |
| [Does not contain Parameters] Operation |
| [Contains [All Transitions |

Parametersl (" Apoend) : Transform transfor
| Parameter extendable |
| [Not all Parameters appended] Operation |
N e - -
[Does not have a specified State Machine]

Figure 11. Hyperledger Fabric PSM to Go chaincode code transformation.

Appl. Sci. 2023,13, 487

15 of 28

The result of this final transformation is the executable code of the smart contract in Solid-
ity (as sol file) or chaincode in Go (as Go file), which can be deployed on a selected platform.

4. Application of the MDAsmartCD Method for Development of Hackathon
Certificate Issuing Solution

For the purposes of method validation, MDAsmartCD was applied in the development
of a smart contract-based solution for hackathon certificate issuing, named HackChain.
Following the development guidelines, the Blockchain CIM, Blockchain PIM, and Ethereum
and Hyperledger Fabric PSMs were defined for the HackChain. The resulting diagrams for
each model are presented in this section, and the generated smart contract code in Solidity
and chaincode in Go is available at https://github.com/m-jurgelaitis/ MDAsmartCD
(accessed on 26 December 2022).

All models were developed using the MagicDraw UML modelling tool and exported
in XMI file format as input for further model transformations. The Eclipse ATL tool was
used for transformations between models (M2M), which processed the input provided
using the implemented transformation templates and produced another XMI file as output.
The generated XMI file was then successfully imported back to MagicDraw and extended
according to the Blockchain PIM (and later Blockchain PSM) extension step rules. For the
last transformation from PSM models to code (M2T), the Eclipse Acceleo tool was used,
which also processed the input XMI file using the implemented transformation templates
and produced smart contract code in Solidity and Go languages. The generated code was
deployed on Ethereum and Hyperledger Fabric blockchains: the generated HackChain.sol
file was deployed on the Goerli test network and the generated HackChain.go file was
deployed on a private Hyperledger Fabric network consisting of two peers.

4.1. Blockchain CIM for HackChain

As the proposed MDAsmartCD method includes the definition of business processes in
the first step of Blockchain CIM development, the activity diagrams for business processes
were outlined as a basis for the subsequent model specification.

Specifically, two relevant business processes have been identified, one that deals with
the certificate issuing (Figure 12), and the other with the evaluation of submitted participant
solutions (Figure 13). The certificate issuing process starts with the participant requesting
a certificate from an organiser, which can occur at any point in time, after or even during
the hackathon. The organiser, depending on the hackathon timeline, may choose to issue
a certificate for joining the event, or, if the hackathon results have been announced, to
issue a certificate for participation or solution. The issuing process when the hackathon
results have been announced depends on the participants” involvement in the event and
the evaluation of the submitted solution. The evaluation is performed after the hackathon
event has ended, and the solutions are collected and assessed by the judges. Later, the
assessments for each solution and all judges are collected, and the final evaluation by the
organisers is made. During the solution evaluation, it is determined whether the submitted
participant solution meets the outlined hackathon criteria, and the hackathon results are
announced. In practice, the evaluation results are shared with the participants and include
feedback from the judges and organisers.

In the next step, a use case model was specified that contained two use cases (cov-
ering the functionality of certificate creation and evaluation results confirmation) based
on previously defined business processes. As can be seen in Figure 14, both use cases
were associated with the «blockchain» actor, thus denoting that the use cases are to be
decentralised using blockchain.

Furthermore, a domain model was specified that contains relevant domain classes
(Figure 15). The Certificate class had the «on-chain» stereotype applied, again depicting that
the Certificate and its data should be relocated to the blockchain. Several other class proper-
ties (Participants’ name and surname, Solutions’ validity, Hackathons’ title) and association ends

https://github.com/m-jurgelaitis/MDAsmartCD

Appl. Sci. 2023,13, 487 16 of 28

(participant, hackathon, solution) were specified as having an «on-chain» stereotype. This
design decision depicts additional Certificate properties to be relocated to the blockchain.

Recieve
Certificate

Participant = Organizer —ie
are
hackathon
results
announced?
Request yes participant
Certificate submitted valid
solution? yes
Issue no
Certificate for
Joining
hackathon Issue Issue
Certificate for Certificate for
Participation Solution
J

Provide
Certificate

Figure 12. Blockchain CIM certificate issuing business process: activity diagram.

Judge

* Organizer

* Participant =%

at (hackathon
event end)

Collect hackathon

problem solutions

Analyse hackathon
problem solution

Collect solutions
assessments
from all judges

yes

Announce

Assess hackathon Subm
problem solution

assessments

hackathon

it solutions
results

X yes

7

all solutions assessed?

Confirm solution
evaluation results

all solutions
evaluated?

View hackathon
results

Figure 13. Blockchain CIM evaluate solutions business process: activity diagram.

package HackChain[Blockchain CIM])

]

Orga%nizer<

HackChain

Create certificate

Confirm evaluation
results

\%

| ___——«blockchain»
Blockchain

Figure 14. Blockchain CIM HackChain use case model: use case diagram.

Appl. Sci. 2023,13, 487

17 of 28

package HackChain[%) Blockchain CIM])
Hackathon Organizer
attributes
-organization : String
-organizer (1 1
organizes ¥
< issues
«on-chain» N .
Certificate .
. «on-chain»
receives B> attributes Hackathon Judge
. -hackathon
* «on-chain»-start date : date T attributes attributes
«on-chain» «on-chain»-end date : date 1 «on-chainy-title : String -name : String
_nartin -description : String -surname : String
participant |1 1 -start : date
Participant -end : date 1
attributes -address : String submits ¥
«on-chain»-name : String 1
«on-chain»-surname : String
- «on-chain» « *
* -solution Soluti Solution
o1 olution has B | Assesment
Team . ” attributes
provides B> . 1 * attributes
attributes - <<on—chal1n»-valld : Boolean _creation : date
-name : String | -url : String -assessment : Real

Figure 15. Blockchain CIM HackChain domain model: class diagram.

4.2. Blockchain PIM for HackChain

The M2M Blockchain CIM to Blockchain PIM transformation result is outlined in
Figure 16. During the transformation, a created SmartContract class was appended with
two operations (createCertificate and confirmEvaluationResults) based on the CIM use cases
Create Certificate and Confirm Evaluation Results that were associated with the «blockchain»
actor. Furthermore, the specified Blockchain CIM domain model classes were analysed,
based on which the SmartContract class was appended with a contained Certificate class,
representing the data structure. The Certificate class also includes all properties from
Blockchain CIM that had the «on-chain» stereotype applied. Additionally, the Certificate
class also includes the properties based on the Blockchain CIM «on-chain» association ends;
these properties are outlined as references to the Blockchain CIM Hackathon, Participant,
and Solution classes’ unique identifiers, and are of Integer type.

package HackChain[Blockchain PIM])

«SmartContract»
SmartContract

operations
+createCertificate()
+confirmEvaluationResults()

Certificate

attributes
-name : String
-surname : String
-title : Integer
-startDate : date
-endDate : date
-valid : Boolean
-hackathon : Integer
-solution : Integer
-participant : Integer

Figure 16. Blockchain CIM to Blockchain PIM transformation result: class diagram.

Appl. Sci. 2023,13, 487

18 of 28

After the transformation was complete, as supported by the method, the SmartContract
class was manually updated. Specifically, the operations had their parameters specified,
because this specification step requires additional input from the developer and cannot
be fully automated. Furthermore, two class properties tokenCounter and certificates were
created, as well as the Certificate class properties owner and tokenlID, to better keep track of
unique certificate records and the certificate token ownership. Additionally, changes to
improve readability were made to the naming of elements of the «SmartContract» class: the
SmartContract class was renamed to HackChain; the Certificate properties title and valid were
renamed to hackathon and solutionValid, since before the transformation, these properties
belonged to Solution and Hackathon classes, respectively. The resulting extended Blockchain
PIM class diagram is presented in Figure 17. Furthermore, a behaviour was outlined for the
Certificate class using the state machine diagram (Figure 18). The behaviour specification is
based on the Issue certificate and Evaluate submitted solutions business processes specified in
the Blockchain CIM. As outlined in the state machine (Figure 18), the Certificate is created
in an Issued state, denoting that the Certificate was issued to a participant, and can later
transition to the Issued for participation state or Issued for a solution state. As the naming
implies, the Issued for participation Certificate is awarded to a participant for joining the
hackathon but not having a solution submitted during the hackathon or having submitted
an invalid solution, and the Issued for a solution Certificate is awarded to a participant who
submitted a valid solution.

package HackChain [Ej Blockchain PIM]J

«SmartContract»
HackChain

+certificates : Certificate [*]
-tokenCounter : Integer

attributes

+createCertificate(_name : String, _surname : String, _hackathon : String, _startDate : date, _endDate : date, _participantld : Integer, _hackathonld : Integer, _solutionld : Integer, _solutionValid : Boolean)
+confirmEvaluationResults(tokenld : Integer, _solutionld : Integer, _solutionValid : Boolean)

operations

Certificate

attributes
+tokenld : Integer
+name : String
+surname : String
+hackathon : String
+startDate : date
+endDate : date
+solutionValid : Boolean

+solutionld : Integer
+hackathonld : Integer
+ow ner : address

+hackathonParticipantld : Integer

Figure 17. The extended HackChain Blockchain PIM: class diagram.

(state machine HackChain[HackChain]) h
createCertificate(_name : String, _surname : String, _hackathon : String,
_startDate : date, _endDate : date, _participantld : Integer, _hackathonld : Integer,
_solutionld : Integer, _solutionValid : Boolean) / CertificateCreated
confirmEvaluationResults(tokenld : Integer,
solutionld : Integer, _solutionValid : Boolean) [else] -/ ISSUED FOR PARTICIPATIONJ
=4 _FOR_|
solutionValid==true &&
_solutionld!=0]
[ISSUED_FOR _SOLUTION)
- J

Figure 18. The extended HackChain Blockchain PIM: state machine diagram.

Appl. Sci. 2023,13, 487

19 of 28

4.3. Ethereum PSM for HackChain

During the transformation from HackChain Blockchain PIM to Ethereum PSM, the PIM
smart contract structural elements were mapped to Solidity concepts and specific UML
stereotypes were applied to model elements. Based on the «SmartContract» HackChain
class in the Blockchain PIM, a «contract» HackChain class was produced in the Ethereum
PSM (Figure 19), and the transformed structural class elements had Ethereum PSM profile
stereotypes applied. Furthermore, based on the PIM containing class Certificate, a «struct»
Certificate class was created in PSM, and an additional «enum» CertificateState enumeration
and a state «variable» property were created in the Certificate «struct» class. The «enum»
CertificateState lists all the states from the PIM state machine as enumeration literals. Each
outlined operation had a «function» stereotype applied and based on the state machine
diagram, an additional «event» CertificateCreated operation was also appended (based on
the PIM transition trigger effect CertificateCreated). The state machine was also transformed
from PIM to Ethereum PSM (Figure 20). The behaviour of the state machine between
the Ethereum PSM (Figure 20) and the Blockchain PIM (Figure 18) differs slightly; the
only difference is that the operation call events refer to the transformed «contract» class
«function» operations createCertificate and confirmEvaluationResults.

package HackChain| Eg Ethereum PSM])

«contract»
HackChain

«variable» «mapping»certificates
«variable»tokenCounter : uint

attributes

«function»createCertificate(_name : string, _surname : string, _hackathon : string, _startDate : uint, _endDate : uint, _participantld : uint, _hackathonld : uint, _solutionld : uint, _solutionValid : uint)
«function»confirmEvaluationResults(tokenld : uint, _solutionld : uint, _solutionValid : bool)
«event»CertificateCreated(name : string, surname : string, hackathon : string, startDate : date, endDate : date, solutionld : uint)

operations

«struct»
Certificate

attributes
«member»tokenld : uint
«member»name : string
«member»surname : string
«member»hackathon : string
«memberystartDate : uint
«member»endDate : uint
«member»hackathonParticipantld : uint
«member»hacaktonld : uint
«member»solutionld : uint
«member»solutionValid : bool
«member»state : CertificateState
«member»ow ner : address

«enum»
Certificate State
enun
ISSUED
ISSUED_FOR_PARTICIPATION
ISSUED_FOR_SUBMISSION

ration literals

ERC721 Implementation Openzeppelin

Figure 19. HackChain Ethereum PSM: class diagram.

rstate machine HackChain [@ HackChain]J

createCertificate(_name : string, _surname : string, _hackathon : string,
_startDate : uint, _endDate : uint, _participantld : uint, _hackathonld : uint,
_solutionld : uint, _solutionValid : uint) / CertificateCreated

onfirmEvaluationResults(
tokenld : uint, _solutionld :

uint, _solutionValid : bool) [else] [1SSUED FOR PARTICIPATION]
=\ _FOR_

[_solutionValid==true &&
_solutionld!=0]

(ISSUE)_FOR _SOLUTION)

Figure 20. HackChain Ethereum PSM: state machine diagram.

Appl. Sci. 2023,13, 487

20 of 28

After the transformation, the transformed Ethereum PSM was extended by specify-
ing the smart contract inheritance from the ERC 721 standard implementation based on
the included Ethereum PSM OpaqueBehavior library. Such an extension is specified as
a generalisation between the classes, and thus the «function» behaviour implementations
provided by the standard are inherited as well.

4.4. Hyperledger Fabric PSM for HackChain

The Hyperledger Fabric PSM is composed of a chaincode structure specification
(Figure 21) and the behaviour specification outlined using the state machine diagram
(Figure 22). During the transformation to Hyperledger Fabric PSM, a HackChain «chain-
code» class was created based on the HackChain PIM «SmartContract» class. The trans-
formed «chaincode» class includes two «structure» classes: Certificate, based on the PIM
contained class Certificate; and CertificateCreated, based on the PIM state machine transition
trigger effect CertificateCreated. The «chaincode» class also contains previously outlined
operations from PIM and every transformed operation has a «function» stereotype applied
and additional parameters ctx TransactionContextInterface and err error, as these parameters
are required for all functions querying the blockchain. The name of each class feature is
based on its visibility in Blockchain PIM (PIM public visibility features are named starting
with a capital letter in Hyperledger Fabric PSM). Additionally, the Hyperledger Fabric PSM
state machine was transformed from PIM having the transition trigger call event operations
referencing the «chaincode» class «function» CreateCertificate and ConfirmEvaluationResults
operations. Furthermore, the state «field» property (of the string type) of the Certificate
«structure» class is used to denote the state machine states, since the enumerations are not
supported in Go.

Like in the Ethereum PSM case, the Hyperledger Fabric PSM was extended manually:
the HackChain «chaincode» class was specified to inherit the functionality of the ERC 721
standard implementation, and the opaqueBehavior implementations were selected from
the Hyperledger Fabric PSM OpaqueBehavior library.

package HackChain [j‘: Hyperledger Fabric PSM])

«chaincode»

«variable»tokenCounter : uint

Hack Chain

«function»CreateCertificate(_name : string, _surname : string, _hackathon : string, _startDate : uint, _endDate : uint, _participantld : uint, _hackathonid : uint, _solutionld : uint, _solutionValid : uint, ctx : TransactionContextinterface, err : error)
«function»ConfirmEvaluationResults(tokenld : uint, _solutionld : uint, _solutionValid : bool, ctx : TransactionContextinterface, err : error)

«structure»
Certificate

Tokenld : uint
Name : string
Surname : string

Hackathonld : uint

«field»StartDate : uint
EndDate : uint

State : string

«f SolutionValid : bool

«field»Ow ner : string

Sol
HackathonParticipantld : uint

«structure»

CertificateCreated

olutionld : uint
tate : string

I

ERC721 Implementation Golang

«structure»
Approval

«structure»
Transfer

«structure»
Nft

" ner" string
i»Operator : string
«field»Approved : bool

«field»Tokenld : string
«field»Ow ner : string
TokenURI : string
«field»Approved : string

Figure 21. HackChain Hyperledger Fabric PSM: class diagram.

Appl. Sci. 2023,13, 487 21 of 28

(state machine HackChain [\E\ HackChain])

CreateCertificate(_name : string, _surname : string, _hackathon : string,
_startDate : uint, _endDate : uint, _participantld : uint, _hackathonld : uint,
_solutionld : uint, _solutionValid : uint, ctx : TransactionContextinterface, err :

error) / CertificateCreated

ConfirmEvaluationResults(tokenld : uint, _solutionld :
uint, _solutionValid : bool, ctx :

TransactionContextinterface, err : error) [else] \(ISSUED FOR PARTICIPATION)
A _FOR_

[_solutionValid==true &&
_solutionld!=0]

[ISSUED_FOR_SOLUTION)

&

Figure 22. HackChain Hyperledger Fabric PSM: state machine diagram.
4.5. The Metrics of the Developed HackChain Models and the Generated Code

The model-to-model transformation results are presented in Table 2, where the quan-
titative model metrics and the differences between the Blockchain CIM, the transformed
Blockchain PIM, and the extended Blockchain PIM are outlined. For each model, the UML
model element counts that were directly utilised during the transformation or are a result
of the transformation are presented.

Table 2. HackChain Blockchain CIM to Blockchains PIM transformation metrics.

Element Element Count
BlockchainCIM
Business process (activity) 2
Actor 2
«blockchain» actor 1
Use case 2
Association between actor and use case 4
Class 6
Property 13
«on-chain» property 6
Association between classes 8
«on-chain» association member end 4
Blockchain PIM (Transformation Result)
Class 2
«SmartContract» class 1
Operation 2
Operation parameter 0
Property 9
BlockchainPIM (after Extension)
Class 2
«SmartContract» class 1
Operation 2
Operation parameter 12
Property 13
State 3
Transition 4
Effect 1
Guard 2

Based on the two use cases in the Blockchain CIM use case model, the generated
Blockchain PIM for HackChain has a single «SmartContract» class with two operations. Fur-

Appl. Sci. 2023,13, 487

22 of 28

thermore, there is a single contained class in Blockchain PIM that encompasses in total nine
properties based on six «on-chain» properties and three «on-chain» association member end
properties defined in the Blockchain CIM domain class model. After the transformation to
the Blockchain PIM, this model was manually extended with additional 16 model elements,
the majority of which (12) were operation parameters. When considering the main struc-
tural model elements (classes, properties, and operations), 14 out of 18 Blockchain PIM
elements were automatically transformed from Blockchain CIM; thus, PIM was extended
with four additional elements, all of them being properties. In contrast to structure specifi-
cation, the behaviour in PIM was specified manually; therefore, the state machine elements
are present only in extended Blockchain PIM. The operations of the «SmartContract» class
were used in the specification of the smart contract behaviour, represented using the state
machine diagram, the logic of which was based on the Blockchain CIM business processes.

The resulting Blockchain PIM was used during the transformations to the Ethereum
PSM and Hyperledger Fabric PSM and the quantitative metrics of both PSMs are presented
in Table 3. The differences between the metrics of the two Blockchain PSMs are directly
related to the supported Solidity and Go metamodel concepts.

Table 3. HackChain Blockchain PSM metrics.

Transformation Result: Ethereum PSM Transformation Result: Hyperledger Fabric PSM

Element Element Count Element Element Count

Smart Contract Structure

«contract» 1 «chaincode» 1
«variable» 2 «variable» 1
«mapping» 1 «structure» 2
«struct» 1 «field» 18
«member» 12 «function» 2
«enump» 1 «argument» 16
«function» 2 inherited «function» 18
«parameter» 12 inherited «structure» 3
«event» 1 inherited «variable» 5
inherited «function» 27
inherited «variable» 6
inherited «event» 3
Smart Contract Behaviour
State 3 State 3
Transition 4 Transition 4
Effect 1 Effect 1
Guard 2 Guard 2

The produced Blockchain PSMs differ in terms of the smart contract structure: due to

the platform specifics, the Ethereum PSM has an additional mapping property, while the
Hyperledger Fabric does not need it; based on the PIM state machine transition effect, the
Ethereum PSM has an additional «event» operation, while the Hyperledger Fabric PSM has
a CertificateCreated «structure» class; for denoting the certificate state, the Ethereum PSM
has state «member» property and «enum» CertificateState with literals, while Hyperledger
Fabric PSM has a state «field» string property. Additionally, for implementing the NFT
standard functionality (minting of tokens), both Blockchain PSMs were specified to inherit
the ERC 721 standard implementations from the OpaqueBehavior library: Ethereum PSM
«contract» HackChain inherits in total 36 elements and the Hyperledger Fabric «chaincode»
HackChain inherits 26 additional elements.

The defined Ethereum PSM and Hyperledger Fabric PSM were used to generate the
HackChain Solidity smart contract and Go chaincode, respectively. To evaluate whether the
generated smart contracts meet the requirements defined in Blockchain CIM, both the Go
chaincode and the Solidity smart contract were tested using the same test scenarios (test

Appl. Sci. 2023,13, 487

23 of 28

cases are provided in the https:/ /github.com/m-jurgelaitis/MDAsmartCD accessed on
26 December 2022). Furthermore, the generated smart contracts were unit tested using the
supplied smart contract unit tests to the ERC721 standard.

Furthermore, both generated smart contracts were analysed for vulnerabilities. The
generated Go chaincode was evaluated using HFCCT [41], a framework for the detection
of Hyperledger Fabric smart contracts. The framework enables the detection of 17 types of
common vulnerabilities, and no issues were detected during the HackChain Go chaincode
evaluation. The generated Solidity HackChain smart contract was evaluated with the
Slither [42] static code analysis tool, which is used for automated vulnerability detection,
optimisation detection, code understanding analysis, and assisted code review. Slither
checks 80 vulnerabilities, and no high, medium, or low issues were found in the generated
Solidity smart contract.

The HackChain smart contract Solidity and Go chaincode metrics were calculated using
the Lizard [43] code complexity analysing tool and are presented in Table 4. The presented
analysis results encompass metrics such as the NLOC (normalised lines of code), CCN
(cyclomatic complexity number), token (token count which refers a number of code blocks,
expressions, annotations, methods, and object access), and parameters (parameter count
of functions). For both smart contract and chaincode, the code metrics do not include the
inherited elements from the ERC 721 standard. The HackChain Go chaincode functions
have a higher cyclomatic complexity number compared to the HackChain Solidity smart
contract functions (Figure 23). A higher CCN means more complex code, which is more
difficult to read and understand. In HackChain.go, a higher complexity can be attributed to
language specifics, as in Go, for querying the ledger data, additional calls to ctx Transaction-
ContextInterface are required, which also come with additional error handling wrappers.

Table 4. Smart contract code metrics for Ethereum and Hyperledger Fabric platforms.

HackChain Solidity Smart Contract

Executed Function NLOC CCN Token Parameters
createCertificate 7 1 109 9
confirmEvaluationResults 10 4 74 3
HackChain Go Chaincode
Executed Function NLOC CCN Token Parameters
CreateCertificate 16 3 154 10
ConfirmEvaluationResults 24 7 142 4
24

16
7 7
l : : l
1
—]
NLOC CCN NLOC CCN
createCertificate confirmEvaluationResults

mHackChain.sol mHackChain.go

Figure 23. HackChain.sol and HackChain.go code complexity comparison.

https://github.com/m-jurgelaitis/MDAsmartCD

Appl. Sci. 2023,13, 487

24 of 28

For evaluation purposes, the Solidity smart contract was hosted on the Goerli test
network. The Go chaincode was deployed on a local Hyperledger Fabric network consisting
of two peers. For hosting this network, a server having an Intel Xeon Silver 4114 CPU
featuring 16 GB of RAM with data stored on the SSD storage was used. The server was
running on an Ubuntu 18.04 operating system and using Docker containers as a Peer
environment for Hyperledger Fabric 2.2 with CouchDB 2.3.1 as the state database.

The deployed smart contracts were experimented upon by imitating the certificate
issuing processes. For both the Ethereum and Hyperledger Fabric smart contracts, the same
data set was used to execute smart contract functions in the same workflow and record the
execution metrics. In both cases, 18 certificates were created (state machine state ISSUED)
for hackathon participants. To cover all transitions specified in the state machine, three
different situations were included in the workflow of the experiment:

e Nine participant certificates were confirmed to have submitted valid solutions, the solution
references were updated, and the certificates were updated to the ISSUED_FOR_SOLUTION
state.

e Sixhackathon participant certificates were updated to the ISSUED_FOR_PARTICIPATION
state, as they were determined to have submitted an invalid solution (the reference to
a solution was also updated).

e Theremaining three participant certificates were updated to the ISSUED_FOR_PARTICIPATION
state, as participants have not submitted a solution.

Additionally, the Solidity of the smart contract execution costs were recorded once the
smart contract was hosted on a Goerli testing network. The transaction fees were recorded
(Table 5), which represent the total amount of ETH (Ethereum cryptocurrency) paid to
the block producers for processing all transactions, the total amount of GAS usage per all
transactions, and the average function GAS usage cost. When compared, the createCertificate
function execution costs are higher, as during the execution, a new Certificate data record is
created and an NFT token is minted, as opposed to the confirmEvaluationResults when only
the specific Certificate data record values are updated.

Table 5. Smart contract execution metrics for Ethereum and Hyperledger Fabric platforms.

HackChain Solidity Smart Contract

. Transaction Transaction Fee Average GAS
Executed Function Count (ETH) GAS Usage Usage
Deployment 1 0.03998626 2,843,533 2,843,533
createCertificate 18 0.07700459 4,931,184 273,955
confirmEvaluationResults 18 0.01756643 845,160 46,953

HackChain Go Chaincode

Executed Function Transaction Count Execution Time (ms)
Deployment 3 427
CreateCertificate 18 1715
ConfirmEvaluationResults 18 1583

Similarly, the generated HackChain chaincode was hosted on a Hyperledger Fabric
network. For each Hyperledger Fabric chaincode function evaluated, a total execution
time for all transactions was calculated (Table 5), which includes the duration of state
validation, committing data to CouchDB storage and committing data to the blockchain.
The difference between functions is marginal because both functions require multiple calls
to the TransactionContextInterface, to which most of the execution time is attributed.

Although the code execution metrics are too different to be compared directly, both
HackChain.sol and HackChain.go were successfully compiled, deployed, and executed using
the outlined workflow. In the Hyperledger Fabric, a total of 38 blocks (39 transactions)
were created during the experiment, while in the Ethereum Goerli test network, a total of
37 blocks (37 transactions) were produced. The difference between the number of blocks
can be attributed to the mechanism that the networks use to deploy smart contracts. In

Appl. Sci. 2023,13, 487

25 of 28

conclusion, during the execution of the workflow, both implementations demonstrated
analogous behaviour and recorded the same data in their respective blockchain data
storages.

5. Discussion and Conclusions

The paper presents an MDA-based method for smart contract development (MDAs-
martCD) which, when compared to other MDA-based methods, covers the complete set of
MDA proposed models, uses Unified Modeling Language (UML) through all the models;
utilises not only smart contract structure definition but also behaviour specification using
a state machine, interaction specification, and opaqueBehavior code embeddings; and
produces smart contract code for two implementation platforms. The model-driven devel-
opment principles prominent in the proposed method support requirement specification,
design, and code production activities, thus placing a heavier focus on earlier development
phases than straight-up implementation.

In MDAsmartCD, the Blockchain CIM, PIM, and PSM definitions are based on the
UML, and transitions between different abstraction levels are automated by model-to-
model transformations. The transformation from Blockchain PIM to Blockchain PSM is fully
automated and capable of producing a model that not only directly maps the Blockchain
PIM defined elements with implementation platform concepts, but also appends additional
elements based on the specified behaviour or the implementation platform specifics. In
order to produce a more comprehensive smart contract, the definition of models requires
manual extensions by the developer, as is the case of Blockchain PIM definition, but moving
forward, the transformations from the Blockchain PIM to two different Blockchain PSMs,
and ultimately to two different implementation languages, are capable of producing smart
contract code with little to no developer intervention. Code generation using model-
to-text transformation is fully automated and can be used to generate compilable and
executable code ready for deployment on Ethereum and Hyperledger Fabric blockchains.
As demonstrated by the experiment, when following the same workflow scenario, the
deployed smart contracts behave identically and record analogous results in blockchain
data storage.

While the presented model-driven development approach can automate the design
and implementation of smart contracts, the method and its evaluation have several limita-
tions. The application of the method was demonstrated by creating HackChain, a hackathon
certificate issuing solution; still, the method implementation could additionally undergo
a usability study as the method requires additional efforts in terms of model specifica-
tion. The evaluation of generated code is also limited, as a single static code analysis tool
cannot be used for analysis of both smart contracts. Although the Slither tool performs
an extensive analysis, it only supports the Solidity programming language. For that reason,
an additional static code analysis was performed for Go chaincode using the HFCCT tool,
which is capable of analysing Go chaincode but detects only a limited set of common types
of vulnerabilities and issues.

Although the process of modelling is not as straightforward as implementation, it
allows the development of a generic model that can be used to generate multiple platform-
specific models. Furthermore, smart contract model specification at different abstraction
layers also encourages the developer to validate the smart contract design at several
key points in the development process, thus facilitating the development of more robust
smart contracts. Modelling also encourages the reusability of models not only when the
blockchain technology is updated but allows development to pivot to an entirely different
platform if it is supported by the method. The multiplatform aspect was demonstrated
using two different platforms, but the set of platforms can be extended further following
the guidelines provided by the method.

Currently, the scope of the MDAsmartCD method deals with the smart contract
code production starting from requirement specification, design, and proceeding to the
implementation, but it can be extended to cover even more development phases. In the

Appl. Sci. 2023,13, 487 26 of 28

future, we plan not only to extend the set of supported implementation platforms of
the method, but also to cover automation of other development phases such as testing
and deployment.

Author Contributions: Conceptualization, M.]. and LC; Methodology, M.]. and L.C.; Software, M.].,
K.B. and V.D.; Validation, M.]., L.C.and RB; Writing—original draft, M.].; Writing—review & editing,
MlJ., L.C., K.B., R.B. and V.D.; Visualization, M.].; Supervision, R.B. All authors have read and agreed
to the published version of the manuscript.

Funding: This research received no external funding.
Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.

Data Availability Statement: No new data were created or analysed in this study. Data sharing is
not applicable to this article.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Monrat, A.A.; Schelén, O.; Andersson, K. A Survey of Blockchain From the Perspectives of Applications, Challenges, and
Opportunities. IEEE Access 2019, 7, 117134-117151. [CrossRef]

2. Metcalfe, W. Ethereum, Smart Contracts, DApps. In Blockchain and Crypto Currency; Yano, M., Dai, C., Masuda, K., Kishimoto, Y.,
Eds.; Springer: Singapore, 2020; pp. 77-93, ISBN 978-981-15-3376-1.

3. Zou, W, Lo, D.; Kochhar, PS.; Le, X.B.D.; Xia, X.; Feng, Y.; Chen, Z.; Xu, B. Smart Contract Development: Challenges and
Opportunities. IEEE Trans. Softw. Eng. 2019, 47, 2084-2106. [CrossRef]

4. Berdik, D.; Otoum, S.; Schmidt, N.; Porter, D.; Jararweh, Y. A Survey on Blockchain for Information Systems Management and
Security. Inf. Process. Manag. 2021, 58, 102397. [CrossRef]

5. Sanchez-Goémez, N.; Torres-Valderrama, J.; Garcia-Garcia, J.A.; Gutiérrez, J.J.; Escalona, M.]. Model-Based Software Design and
Testing in Blockchain Smart Contracts: A Systematic Literature Review. IEEE Access 2020, 8, 164556-164569. [CrossRef]

6. Fahmideh, M.; Grundy, J.; Ahmad, A.; Shen, |J.; Yan, J.; Mougouei, D.; Wang, P.; Ghose, A.; Gunawardana, A.; Aickelin, U.; et al.
Engineering Blockchain-based Software Systems: Foundations, Survey, and Future Directions. ACM Comput. Surv. 2022, 55, 1-44.
[CrossRef]

7. Miraz, M.H.; Ali, M. Blockchain Enabled Smart Contract Based Applications: Deficiencies with the Software Development Life
Cycle Models. Baltica 2020, 33, 101-116.

8. Zheng, Z.; Xie, S.; Dai, HN.; Chen, W.; Chen, X.; Weng, J.; Imran, M. An overview on smart contracts: Challenges, advances and
platforms. Future Gener. Comput. Syst. 2020, 105, 475-491. [CrossRef]

9. Vacca, A.; Sorbo, A.D.; Visaggio, C.A.; Canfora, G. A systematic literature review of blockchain and smart contract development:
Techniques, tools, and open challenges. J. Syst. Softw. 2021, 174, 110891. [CrossRef]

10. Sebastian, G.; Gallud, J.A.; Tesoriero, R. Code generation using model driven architecture: A systematic mapping study. J. Comput.
Lang. 2020, 56, 100935. [CrossRef]

11. Levasseur, O.; Igbal, M.; Matulevicius, R. Survey of Model-Driven Engineering Techniques for Blockchain-Based Applications. In
Proceedings of the Forum at Practice of Enterprise Modeling 2021, Riga, Latvia, 2426 November 2021.

12. Hsain, Y.A,; Laaz, N.; Mbarki, N.L. Ethereum’s Smart Contracts Construction and Development using Model Driven Engineering
Technologies: A Review. Proc. Comput. Sci. 2021, 184, 785-790. [CrossRef]

13. Object Management Group. Model Driven Architecture (MDA) MDA Guide rev. 2.0. 2014. Available online: https://www.omg.
org/cgi-bin/doc?ormsc/14-06-01 (accessed on 13 November 2022).

14. Pastor, O.; Molina,].C. Model-Driven Architecture in Practice; Springer: Berlin, Heidelberg, 2007; ISBN 978-3-540-71868-0.

15. Curty, S.; Hérer, F; Fill, H.G. Blockchain Application Development Using Model-Driven Engineering and Low-Code Platforms:
A Survey. In Proceedings of the International Conference on Business Process Modeling, Development and Support, International
Conference on Evaluation and Modeling Methods for Systems Analysis and Development, Leuven, Belgium, 67 June 2022;
pp. 205-220.

16. Skotnica, M.; Klicpera, J.; Pergl, R. Towards Model-Driven Smart Contract Systems—Code Generation and Improving Expressivity
of Smart Contract Modeling. In Proceedings of the 20th CIAO! Doctoral Consortium, and Enterprise Engineering Working
Conference Forum 2020, Bolzano, Italy, 28 September-19 October 2020, 9-10 November 2020; pp. 1-15.

17. Hu, K; Zhu, J.; Ding, Y,; Bai, X.; Huang, J. Smart Contract Engineering. Electronics 2020, 9, 2042. [CrossRef]

18. Boogaard, K. A Model-Driven Approach to Smart Contract Development. Master Thesis, Utrecht University, Utrecht,

The Netherlands, 2018.

http://doi.org/10.1109/ACCESS.2019.2936094
http://doi.org/10.1109/TSE.2019.2942301
http://doi.org/10.1016/j.ipm.2020.102397
http://doi.org/10.1109/ACCESS.2020.3021502
http://doi.org/10.1145/3530813
http://doi.org/10.1016/j.future.2019.12.019
http://doi.org/10.1016/j.jss.2020.110891
http://doi.org/10.1016/j.cola.2019.100935
http://doi.org/10.1016/j.procs.2021.03.097
https://www.omg.org/cgi-bin/doc?ormsc/14-06-01
https://www.omg.org/cgi-bin/doc?ormsc/14-06-01
http://doi.org/10.3390/electronics9122042

Appl. Sci. 2023,13, 487 27 of 28

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.
39.
40.

41.

Syahputra, H.; Weigand, H. The Development of Smart Contracts for Heterogeneous Blockchains. In Enterprise Interoperability VIII.
Proceedings of the I-ESA Conferences; Popplewell, K., Thoben, K.D., Knothe, T., Poler, R., Eds.; Springer: Cham, Switzerland, 2019;
ISBN 978-3-030-13692-2.

Sousa, V.A.; Burnay, C. MDE4BBIS: A Framework to Incorporate Model-Driven Engineering in the Development of Blockchain-
Based Information Systems. In Proceedings of the 2021 Third International Conference on Blockchain Computing and Applications
(BCCA), Tartu, Estonia, 15-17 November 2021; pp. 195-200.

Jurgelaitis, M.; Drungilas, V.; Ceponiené, L.; Vai¢iukynas, E.; Butkieng, R.; Ceponis, J. Smart Contract Code Generation from Plat-
form Specific Model for Hyperledger Go. In Proceedings of the 9th World Conference on Information Systems and Technologies
(WorldCIST’21), Terceira Island, Azores, Portugal, 30 March-2 April 2021; pp. 63-73.

Jurgelaitis, M.; Ceponiené, L.; Butkiené, R. Solidity Code Generation from UML State Machines in Model-Driven Smart Contract
Development. IEEE Access 2022, 10, 33465-33481. [CrossRef]

Gorski, T.; Bednarski, J. Transformation of the UML Deployment Model into a Distributed Ledger Network Configuration.
In Proceedings of the 2020 IEEE 15th International Conference of System of Systems Engineering (SoSE), Budapest, Hungary,
2—4 June 2020; pp. 255-260.

Gorski, T.; Bednarski, J. Applying Model-Driven Engineering to Distributed Ledger Deployment. IEEE Access 2020, 8, 118245-118261.
[CrossRef]

Gao, Z,; Jiang, L.; Xia, X.; Lo, D.; Grundy, J. Checking Smart Contracts with Structural Code Embedding. IEEE Trans. Softw. Eng.
2020, 47, 2874-2891. [CrossRef]

Antal, C.; Cioara, T.; Anghel, I.; Anta, M.; Salomie, I. Distributed Ledger Technology Review and Decentralized Applications
Development Guidelines. Futur. Int. 2021, 13, 62. [CrossRef]

Pierro, G.A. Smart-Graph: Graphical Representations for Smart Contract on the Ethereum Blockchain. In Proceedings of
the 2021 IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER), Honolulu, HI, USA,
9-12 March 2021; pp. 708-714.

Hamdaqa, M.; Met, L.A.P;; Qasse, I. iContractML 2.0: A domain-specific language for modeling and deploying smart contracts
onto multiple blockchain platforms. Inf. Softw. Technol. 2022, 144, 106762. [CrossRef]

Kim, H.M.; Laskowski, M. Toward an ontology-driven blockchain design for supply-chain provenance. Intell. Syst. Account.
Financ. Manag. 2018, 25, 18-27. [CrossRef]

Zupan, N.; Kasinathan, P.; Cuellar, J.; Sauer, M. Secure Smart Contract Generation Based on Petri Nets. In Blockchain Technology
for Industry 4.0. Blockchain Technologies; Rosa Righi, R., Alberti, A., Singh, M., Eds.; Springer: Singapore, 2020; pp. 73-98,
ISBN 978-981-15-1137-0.

Rocha, H.; Ducasse, S. Preliminary Steps Towards Modeling Blockchain Oriented Software. In Proceedings of the 2018 IEEE/ACM
1st International Workshop on Emerging Trends in Software Engineering for Blockchain (WETSEB), Gothenburg, Sweden,
27 May=3 June 2018; pp. 52-57.

Garamvolgyi, P.; Kocsis, I.; Gehl, B.; Klenik, A. Towards Model-Driven Engineering of Smart Contracts for Cyber-Physical
Systems. In Proceedings of the 2018 48th Annual IEEE/IFIP International Conference on Dependable Systems and Networks
Workshops (DSN-W), Luxembourg, Luxembourg, 25-28 June 2018; pp. 134-139.

Mavridou, A.; Laszka, A.; Stachtiari, E.; Dubey, A. VeriSolid: Correct-by-Design Smart Contracts for Ethereum. In Proceedings
of the Financial Cryptography and Data Security 23rd International Conference, FC 2019, Frigate Bay, St. Kitts and Nevis,
18-22 February 2019; pp. 446—465.

Kasinathan, P.; Martintoni, D.; Hofmann, B.; Senni, V.; Wimmer, M. Secure Remote Maintenance via Workflow-Driven Security
Framework. In Proceedings of the 2021 IEEE International Conference on Blockchain (Blockchain), Melbourne, Australia,
6-8 December 2021; pp. 29-37.

Marchesi, L.; Marchesi, M.; Tonelli, R. ABCDE—Agile block chain DApp engineering. Blockchain Res. Appl. 2020, 1, 100002.
[CrossRef]

Huning, L.; Iyenghar, P.; Pulvermdiller, E. UML-based Model-Driven Code Generation of Error Detection Mechanisms. In
Proceedings of the ICSEA 2020: The Fifteenth International Conference on Software Engineering Advances, Porto, Portugal,
18-22 October 2020.

Lu, Q.; Binh Tran, A.; Weber, I.; O’Connor, H.; Rimba, P.; Xu, X.; Staples, M.; Zhu, L.; Jeffery, R. Integrated model-driven
engineering of blockchain applications for business processes and asset management. Softw. Prac. Exp. 2021, 51, 1059-1079.
[CrossRef]

ERC | Ethereum Improvement Proposals. Available online: https://eips.ethereum.org/erc (accessed on 13 November 2022).
Hyperledger Fabric Samples. Available online: https://github.com/hyperledger/fabric-samples (accessed on 13 November 2022).
Amaral de Sousa, V.; Burnay, C.; Snoeck, M. B-MERODE: A Model-Driven Engineering and Artifact-Centric Approach to Generate
Blockchain-Based Information Systems. In Advanced Information Systems Engineering. CAiSE 2020; Dustdar, S., Yu, E., Salinesi, C.,
Rieu, D., Pant, V., Eds.; Springer: Cham, Switzerland, 2020; pp. 117-133, ISBN 978-3-030-49435-3.

Li, P; Li, S;; Ding, M.; Yu, J.; Zhang, H.; Zhou, X,; Li, J. A Vulnerability Detection Framework for Hyperledger Fabric Smart
Contracts Based on Dynamic and Static Analysis. In Proceedings of the International Conference on Evaluation and Assessment
in Software Engineering 2022, Gothenburg, Sweden, 13-15 June 2022.

http://doi.org/10.1109/ACCESS.2022.3162227
http://doi.org/10.1109/ACCESS.2020.3005519
http://doi.org/10.1109/TSE.2020.2971482
http://doi.org/10.3390/fi13030062
http://doi.org/10.1016/j.infsof.2021.106762
http://doi.org/10.1002/isaf.1424
http://doi.org/10.1016/j.bcra.2020.100002
http://doi.org/10.1002/spe.2931
https://eips.ethereum.org/erc
https://github.com/hyperledger/fabric-samples

Appl. Sci. 2023,13, 487 28 of 28

42. PFeist,].; Grieco, G.; Groce, A. Slither: A Static Analysis Framework for Smart Contracts. In Proceedings of the 2019 IEEE/ACM 2nd
International Workshop on Emerging Trends in Software Engineering for Blockchain (WETSEB), Montréal, Canada, 27 May 2019.
43. Yin, T. Terryyin/Lizard: A Simple Code Complexity Analyser without Caring about the C/C++ Header Files or Java Imports,
Supports Most of the Popular Languages. Available online: https://github.com/terryyin/lizard (accessed on 12 December 2022).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://github.com/terryyin/lizard

	Introduction
	Related Work
	MDA-Based Smart Contract Development Method
	Blockchain CIM Definition
	Transformation from Blockchain CIM to Blockchain PIM
	Transformation from Blockchain PIM to Blockchain PSM
	Transformation from Blockchain PSM to Smart Contract Code

	Application of the MDAsmartCD Method for Development of Hackathon Certificate Issuing Solution
	Blockchain CIM for HackChain
	Blockchain PIM for HackChain
	Ethereum PSM for HackChain
	Hyperledger Fabric PSM for HackChain
	The Metrics of the Developed HackChain Models and the Generated Code

	Discussion and Conclusions
	References

