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Abstract: To monitor and handle big data obtained from electrical, electronic, electro-mechanical,
and other equipment linked to the power grid effectively and efficiently, it is important to monitor
them continually to gather information on power line integrity. We propose that data transmission
analysis and data collection from tools like digital power meters may be used to undertake predictive
maintenance on power lines without the need for specialized hardware like power line modems and
synthetic data streams. Neural network models such as deep learning may be used for power line
integrity analysis systems effectively, safely, and reliably. We adopt Q-learning based data analysis
network for analyzing and monitoring power line integrity. The results of experiments performed
over 32 km long power line under different scenarios are presented. The proposed framework may
be useful for monitoring traditional power lines as well as alternative energy source parks and large
users like industries. We discovered that the quantity of data transferred changes based on the
problem and the size of the planned data packet. When all phases were absent from all meters, we
noted a significant decrease in the amount of data collected from the power line of interest. This
implies that there is a power outage during the monitoring. When even one phase is reconnected, we
only obtain a portion of the information and a solution to interpret this was necessary. Our Q-network
was able to identify and classify simulated 190 entire power outages and 700 single phase outages.
The mean square error (MSE) did not exceed 0.10% of the total number of instances, and the MSE
of the smart meters for a complete disturbance was only 0.20%, resulting in an average number of
conceivable cases of errors and disturbances of 0.12% for the whole operation.

Keywords: data integrity analysis; artificial neural network; Q-learning; power line; monitoring

1. Introduction

With the increasing expansion of society’s need for energy in recent years, the power
supply load pressure of the power system has also increased significantly. Transmission
lines provide extensive coverage as a critical piece of transmission infrastructure. Air
pollution, temperature conditions, and other environmental elements have a significant im-
pact on high-voltage transmission lines. Conductor motion, insulation pollutant flashover,
conductor freezing, wind skewed partial discharge, and other events occur on occasion,
frequently resulting in arcing, material and insulation damage, conductor burning, dis-
connecting, tower collapsing, and other problems [1]. It generates significant costs and
jeopardizes the safe functioning of high-voltage power lines. The omnipresent monitoring
and control intended for objectives such as frequency regulation, demand response, asset
management, and anomaly detection becomes a distinguishing and necessary feature of
power grids [2]. Identifying possible concerns and anticipating defects in working cables
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in a non-destructive way is an appropriate method for avoiding in-service failures [3]. It is
also becoming more common to monitor and explore the integrity of power sources and
manage distant systems, such as solar power plants [4,5], wind power plants [6–8], resi-
dential buildings [9], and smart homes [10,11]. On the other hand, there are an increasing
number of automated production systems and factories, which necessitate comparable
procedures [12–14]. One significant disadvantage of present cable diagnostics systems is
the need for specialized equipment to conduct the tests [15]. This necessitates the devel-
opment of remote data collecting and monitoring solutions. However, most of the time,
such platform performance is compared to some type of distributed network or presently
widespread Internet of Things (IoT) networks, where evaluation focuses on simplified data
transfer capabilities [16]. For the smart power line management implementation process,
the IoT edge agent device may perform the functions of a virtual switch, edge computing,
interface adaptation, and protocol analysis, as well as adopting terminal security authen-
tication techniques and data encryption designs [17], potentially benefiting from one of
the major aspects in the deployment of software defined networking (SDN) technology in
communications infrastructure—that is the balancing among real-time and flexibility [18].
As time granularity varies, active measuring methods in a ring network architecture were
investigated, while specific measurement intervals may be attributable to changes in mea-
surement frequencies, they discovered that the active approach was comparable with the
Polling measuring method for evaluating the very same data flow trend [19].

One of the primary causes of power grid failures is the collapse of overhead power
line towers, which expose electrical providers to significant, high-value fines. The proposed
architecture for remote monitoring of mechanical stresses in guyed towers was suggestd
in [20] work. The method includes a mesh network for data forwarding and artificial
neural networks to enhance the performance of Low-Power and Lossy Networks, as well
as the sensor fusion methodology, which takes into account the utilization of many sensors.
The breakdown of power line insulators leads to the another common failure of power
transmission systems; another frequently used approach is an insulator inspection system
based on an aerial platform. Paper [21] examines the automated identification of insulator
faults utilizing aerial photos, as well as properly localizing insulator problems occurring in
input photographs acquired from real-world inspection situations. The authors present a
unique deep convolutional neural network cascade architecture based on a region proposal
network to turn defect inspection into a two-level object identification issue for performing
localization and identifying flaws in insulators. Power grid frequency rises during periods
of overproduction and falls during periods of underproduction. Deep learning algorithms
can be used to anticipate grid stability eliminating constraining assumptions about input
values [22]. Erdem et al. [23] propose utilizing Layer-Wise Relevance Propagation to
determine the relevance scores of each input and make the system more understandable.

Solving the issues of inadequate transmission capacity at rush hour and power trans-
mission breakdown is a big task. Conventional manual inspection procedures are labor- and
material-intensive and cannot guarantee the correctness of the results. It does not offer real-
time continuous monitoring and cannot detect high-voltage transmission line safety issues
in a timely manner, and its efficiency is low. Because of the rapid advancement of informa-
tion technology, suitable technological conditions for remote monitoring and evaluation
of environmental factors and power transmission operating conditions are now available.
Remote monitoring of the state of the power line can be implemented in the power supply
system using sensor technology, network technology, and software development (deep
learning and other ways of machine learning), providing a decision-making foundation for
daily maintenance and line safety. To monitor and handle enormous volumes of data from
electrical, electronic, electro-mechanical, and other equipment linked to the grid effectively
and efficiently, it is important to monitor them continually [24,25] to gather information
on power line integrity. It is feasible to foresee the operating possibilities and failures of
the power line and execute timely maintenance and repair work using contemporary diag-
nostics and predictive maintenance approaches, as well as understanding the performance
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characteristics of the linked sources. As a consequence, significant human and financial
resources can be saved [26]. To build a platform based on industrial protocols [27] for
monitoring and predicting the operation of power lines and connected equipment, one
must first develop a system similar to IoT smart networks [28], then a complex distributed
data analysis system, and finally a platform that combines both approaches with machine
learning and deployment pipelines [29]. Even when constructed, such complicated systems
are difficult to test due to the vast amount of hardware and software development required.
Sometimes software emulators are employed as a partial solution, with the outcomes
heavily reliant on the principles governing the system simulation. This does not always
match to actual findings, but it is encouraged to do a primary validation in this manner [30].
Authors do similarly in the original work [31], except that the system is analyzed from the
standpoint of data Quality of Service (QoS). The authors of [32] laid some foundations in
the area by correctly observing that when simulating network flows, it is not always clear
how they can precisely determine the performance of the entire system, so they attempted
to investigate the issue of network load, with the clear result that the performance of the
system truly depends on network load conditions. This is understandable given that the
higher the network load, the greater the latency, data loss, and network adjustment to
such factors [33]. Similar findings are obtained by the authors of other publications [34,35],
although the authors were no longer able to give further study results previously indicated,
suggesting merely that random data flows have an affect. Such studies show that there is
always a danger since there may be an unlimited number of alternative circumstances in a
distributed system, and it is impossible to simulate them all, thus we frequently focus only
on the logical methods of how it can be done. It’s worth noting that, in many cases, system
scalability and manageability are also considered using QoS metrics [36], but in the case
of scalability, we must consider system capacity, or how much data we can process with a
fixed system size, and when to expand the system’s capacity as the amount of data grows.
To build a high availability and reliability platform pipeline, conditions must be provided
under which the system can still operate successfully in the event of system malfunction
or failure, and such cases must be reported to the user; in this case, the authors [37] rec-
ommend using backup devices and duplicating systems. Because nothing extra can be
done in the case of a failure such a solution is only appropriate for simple systems. Certain
analysis scenarios, however, may be transferred to some analytical engines for complicated
cases [38]. In this scenario, having backup data for neural network models and outcomes,
as provided in the works [39–41], or building a specific system maintenance mechanism
that independently monitors the condition of the entire platform [42,43], is sufficient. In
any case, using probability and mathematical models, such as graph networks and their
solution methods, are employed for the examination of these factors [44].

In this paper, we propose a hypothesis, that it is possible to perform predictive mainte-
nance on power lines through data transmission analysis and data gathering from devices
such as digital power meters, thus avoiding dedicated equipment like power line modems
and artificial data streams. The main goal of the work was to research and suggest viable
model that may successfully, securely, and reliably function in a power line integrity analy-
sis system, while potentially also usable with monitoring pools of alternative energy source
parks and major users such as factories.

The paper is further structured as follows: the Section 1 of the paper serves as an
introduction and presents the background context. Section 2 of the paper provides a
brief overview of what has been done in the power line failure classification and problem
formulation. Section 3 presents the methodology and proposed data analysis model.
Section 4 present an experimental setup, while Section 5 presents the measured data and
analysis of the results. Finally, Section 6 presents the discussion and conclusions.

2. Overview of Classification Approaches Based on Power Line Data Analysis

Methods for detecting, classifying, and locating faults in transmission lines and distri-
bution systems have been extensively researched throughout the years through analysis of
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the power line data [45]. With smart grid concepts gaining traction among academics, the
need of developing a smart fault monitoring and diagnostic system capable of identifying
and finding various sorts of faults cannot be stressed enough [46]. Even though the voltage
and current signals include all of the information, fitting the raw signals into another sets of
rules and criteria capable of intelligently deciphering the underlying messages provided by
the signals is exceedingly difficult [47], yet there have been devised numerous approaches
for building enhanced power line fault analysis and classification algorithms that might
serve to increase the reliability of the grid [48] and which this section aims to familiarize
the reader with.

Feature extraction techniques are valuable because they actively retrieve useful infor-
mation while reducing the influence of variance inside the examined system [49]. They
enable a better understanding of the nature of fault categorization or localization problems,
allowing them to be solved in a more cohesive and efficient manner [50]. Reduced data
dimensionality can occasionally improve the efficiency of certain methods used in classifiers
or locators, resulting in more accurate and robust findings as quickly as feasible [51]. Failure
classification is important in transmission line and power distribution system protection
relays [52]. Significant part of classification approaches employ statistics based classifier
models, while other studies use logic flows based on experience and data observation.
Hidden Markov Models has frequently been applied in power system fault diagnostics,
for example, to identify power problems that cause fault condition in a smart grid [53,54].
A categorization index was utilized to distinguish between double-phase to ground and
single-phase to ground faults in [55]. The investigation concentrated on the waveform cur-
rent and voltage sequences’ zero and negative sequence values. Bayesian Networks have
also been used to find faults in power line systems [56,57], as they are capable of dealing
with unclear or partial data from a power failure analysis system [58]. Godse et al. [59]
employed a combination of the major principle components and sequential component
analysis to characterize and locate the flaws. The properties of current signals are retrieved
and utilized to classify faults in [60] using Multi Resolution Analysis. The investigations
depended on an immutable feature, and the thresholds were generally preset arbitrarily
using a randomization procedure.

The advancement of research in this sector has been very significant to the advance-
ment of pattern recognition and machine learning and its current popular branch—deep
learning [61]. A fuzzy inference method was utilized by the authors of [62] to identify,
categorize, and pinpoint a fault section in integrated power lines and subterranean power
cables. Lopez et al. [63] employed a mix of self-organized maps and decision tree algo-
rithms to find transmission line issues. Professor Coleman [64] centered on the concept that
the deployment of supervised machine learning algorithms is dependent on the labeling
of all data utilized for categorization. Two-stage classification was employed in [65] by
adopting an unsupervised learning strategy to cluster the data, followed by a supervised
learning algorithm to perform the training and classification. When using an independent
technique for fault identification, the classifier and locator are activated once a secure fault
is discovered [66]. Setting certain thresholds for the extracted characteristics makes this
simple. Deep learning reduces the need to build additional fault detection methods if the
classifier or locator can discriminate between faulty and non-faulty states [67]. In this sce-
nario, one method for detecting faults is to utilize an individualized classifier to distinguish
between faulty and non-faulty state. The alternate technique is to include the non-faulty
condition in the output classes, and a fault is identified if the output is not in the non-faulty
state. Kathari et al. [68] employed the support vector machine (SVM) technique for fault
classification. The approach suggested in [69] employed a mix of this technique with fast
fourje transformation to extract signal characteristics. Kamaracha et al. [70] employed a
wavelet transform and an SVM classifier to identify power system issues, based on the
wavelet energy conversion coefficients, while Ren et al. explored the alternative based on
decision trees [71]. Fonseca combined this approach with neural networks, achieving better
accuracy [72]. The authors of [73] devised a deep learning-based approach in which data is



Remote Sens. 2023, 15, 194 5 of 27

taken from a power control center and precompiled prior to deep learning network training.
The power line data can be processed using auto-encoders, and hidden characteristics
are examined to determine the nature of the issue. If a defect is found, the next step is to
categorize the fault type, which is done using learned stacking auto-encoders to train a
deep learning network [74]. Li et al. suggested a system for detecting short-circuit problems
in transmission lines based on a recurrent neural network with long-short term memory
units. In the redevelopment process, a minimal neighborhood sample set is chosen from
the huge samples based on their similarity, and the samples are subsequently trained using
the back—propagation learning technique over time [75]. One of the key fields remaining
to be addressed in power line classification scenarios is the coupling of sparse coding and
dictionary learning approaches with discriminative models. Sparse models can aid deep
learning algorithms reduce sample complexity and enable deep neural networks better
deconstruct, compress, and rebuild input data [76]. Edge based processing is a another
game-changing method that addresses security concerns about keeping sensitive data from
power systems in the cloud while simultaneously reducing burden on cloud networks
by processing data locally, providing real-time data processing [77]. It is also utilized to
overcome problems with the poor capacity of discovering fault characteristics for line-to-
ground or line-to-line faults, which have complex models due to their multiple modes [78],
aiding the difficult deployment of recently established power line monitoring technologies
to become more efficient [79].

Problem Definition

There are several hurdles to overcome when it comes to monitoring and troubleshoot-
ing the performance and integrity of electrical lines from data packet analysis. To begin
with, the data can originate from equipment used to gather power data that are often
positioned far away from their control centers, and sometimes even at large distances from
each other [80]. Continuous data collection from these sites is not always practicable, as
is the situation with offshore wind farms. However, monitoring and prompt diagnosis of
equipment failures would give great advantages, including effective resource usage and
timely maintenance, as well as a large decrease in maintenance costs and optimal material
utilization in order to create a sustainable operation [81].

Data transmission can be either unidirectional or bidirectional [82]. All necessary
monitoring and diagnostic work may already be performed in especially tough working
circumstances with at least one-way data communication. Two-way data transmission
would also allow for the control of emerging risks. For example, if the temperature of the
power converter or generator increases, it would be possible to turn off the corresponding
generator or voltage converter, stop the wind turbine by electromechanically breaking
the shaft, or activate more generators whose resistance force would slow down the shaft
rotation. Other management approaches described above enable for the efficient and
economical utilization of resources. In the event of solar power plants that generate little
electricity, automated cleaning and other operations may be necessary. To address the
issue of monitoring and diagnostics, numerous activities must be completed as well as
appropriate platform designs developed [83]. The following are the primary tasks that
must be completed:

• Data. How much and what data will be collected.
• Transfer of data. What technologies and how often data will be transferred.
• Data flow broker. Will a data flow broker be used, as for example is the case with IoT

power meters.
• Data collection. How data will be collected.
• Data pre-processing. How the data will be filtered and how often it will be submitted

for analysis.
• Data monitoring. Real-time or batch presentation of incoming data.
• System training. Annotating the collected data and training the neural network model.
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• Diagnostics of the situation. By applying the received data, diagnostics of the op-
eration of systems and their individual devices and identification of potential risks
are performed.

• Re-training of the system. Training with continuously augmented data and adjusting
the previously trained network.

Data transmission may be accomplished in a variety of methods, each with its own
cost and complexity. The most basic and least expensive method is to use ordinary power
ethernet technology or suing a power line modem, which sends data over a power line [84].
When there is a well-developed network of relays nearby, this strategy is convenient [85].
A new branch of such an existing network would be inexpensive to establish and run, and
it would allow substantial volumes of data to be transmitted at reasonable rates. Another
practical method is to employ the wireless mobile network of many monitoring devices
put at various places along the power line. This, like the wired enclosure, would be ideal
in a developed location. However, in remote places, it may soon become difficult due
to network availability or alternatives (e.g., satellite-based), and the cost of data transfer
may be slightly greater. In practice, specialized data transmission technologies such as
optical cables combined with power transmission cables, dedicated radio communication
equipment, and satellite communication are employed in distant and difficult-to-reach
places. Because technologies have been developed to carry data over great distances,
running optical fiber alongside energy lines is typically the most optimal solution for both
onshore and offshore power plants.

Another critical job is determining how we will manage the many data sources.
A variety of industrial data transmission protocols that are not dependent on the data
transmission interface have been developed for this purpose. Message Queuing Telemetry
Transport (MQTT), which is utilized in IoT applications, is now one of the most popular
protocols [86]. This strategy necessitates the use of a specialist broker who can manage
several data sources at the same time and communicate telemetry data from a power
meter [87]. If a MQTT broker is used for data gathering, it is sufficient to develop a MQTT
client that connects to the broker and sends, receives all data. All data transfers must be
encrypted using a specialized security protocol. All data transmission from one client to
the data collector would be safeguarded in this manner.

The first processing of data before it is given to the automatization pipeline for the
monitoring and artificial intelligence network is one of the most challenging parts of the
complete power line monitoring pipeline. This entails a number of questions that must
be addressed:

• Does the system work in real time;
• Does the system work with a certain time interval, accumulating data packets;
• If data is collected, how long the data must be collected;
• If data is collected, how much data needs to be collected;
• How to take into account if certain data will not be received for a certain period

of time;
• Whether data filtering or normalization is necessary.
• Does data collection on the server include all other processes of the full neural net-

work training and deployment pipeline, or is it more of web page front-end with
secure access to the internal resources of neural network analysis similar to the REST
based services?

Most significantly, consideration must be given to security. Security may be interpreted
in several ways, such as whether the system is fault-tolerant if the system can be expanded
at the correct moment without losing data, and whether third parties can use or harm the
platform maintenance [88,89]. Hu et al. [90] stated in their work, that it is not feasible to
assure security in a single approach, thus it is required to monitor how security may be
achieved in each case of a new system. Decoupling of data devices from the network layer,
secure data storage, and lastly, secure data processing are all of importance [91]. In actuality,
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security strategy must be executed all of the time because each of the aforementioned
levels operates on distinct principles and can be treated in entirely different ways, making
it impossible to unilaterally specify what security must be provided in each area of the
system [92]. It should be noted that there has not been much study on power integrity
data pipeline themes to explain how the pipeline would appear and how the data would
be handled. For example, Ref. [93,94] studied machine learning pipelines, but both do
not consider the system’s subsequent work in real-time. In addition, only little studies of
the changing amount of data for the pipelines are frequently conducted [95]. During the
evaluation of the problem, we feel it is advisable to isolate the system of data collecting
and/or early data analysis with monitoring from the system of data diagnostics and
accumulation also preventing false data injection [96,97]. It is more difficult to explain
where the initial data integrity monitoring should be placed along the length of the power
line, reducing the opportunity to employ specialized devices to infiltrate the network [98]
or by evading MQTT security standards. For example, if we want the system to function
in real time, we must consider that data may arrive at irregular intervals and without
particular details. Furthermore, it is possible to state that no data has been received for a
specific length of time or to utilize previously obtained data until new ones are received, as
well as to inform users of a probable failure of a specific cable branch after a particular time.

More issues occur when we attempt to use deep learning for data analysis [99]. To
begin with, it is always more convenient to utilize time-accumulated and annotated data
for training, and we are not concerned with real time here. It is also critical to consider data
submission to the artificial intelligence network for obtaining anomalies [100], predictive
maintenance and diagnostic results [101], as well as investigate what the impact will be
when the data is incomplete, as well as what size and interval of the data packet will
allow the maximum realization of real-time execution, in order to obtain results in a timely
manner when needed. The model’s training must be ongoing. It may be implemented based
on the amount of fresh data or the anticipated timetable, and if data is unavailable due to
faults, none or previously gathered data can be utilized. The artificial neural network would
be trained with fresh data, allowing it to adapt to the current condition of the acquired data
and network, as well as any potential faults. Furthermore, power line parameters vary
somewhat over time owing to changes in the environment or breakdowns, and measured
parameters change slightly as well. The constant retraining of a network allows for some
ongoing improvement of the previously developed diagnostic model.

3. Methodology
3.1. Proposed Data Analysis Model

First, we recommend employing the MQTT protocol broker to regulate and manage
the data flow. Of course, there are other options, but the OASIS group recognizes MQTT
as an industrial protocol for IoT devices that can operate on an untrusted and unreliable
network and deliver brief informative messages. This is useful when we do not receive
data and does not prevent the platform from functioning normally. Tasks may be balanced
and dispersed based on complexity, platform server load, working time, and other similar
characteristics, resulting in a completely devoted and intelligent data analysis platform
(the idea is illustrated in Figure 1).

Figure 1. Data analysis flow model.
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A separation feature between the internal analysis and diagnostics system and the
power network is also required. It enables preliminary data processing and data filtering.
Incorrect data can be discovered and erased, or, owing to the neural network’s peculiarities,
extra data can be introduced to ensure the neural network’s proper operation. It is also
feasible to synchronize data between various data processing servers. This could clearly
have been done with the prior architecture as well. Our proposed data pipeline concepts are
divided into two parts: deep neural network model training and model service deployment.
These are important components that cannot be replaced with today’s technology. The key
distinction may be in how the resulting data is produced, as it can be processed outside
of the analytics server. Furthermore, where and how the acquired data, trained neuron
network models, and obtained diagnostic prediction findings are kept may differ. This
process is illustrated in Figure 2.

Figure 2. Proposed data analysis block.

In this case, network training and subsequent model deployment are fairly comparable
operations. During them, the data is modified so that it can be processed by the chosen
neural network. In the case of online training, the data is also annotated throughout the
data preparation process. Annotating the data is not required for basic model functioning.
The examination and processing of data characteristics occurs during network training.
Following validation and review of each result, the most correct outcome is chosen and
validated against the trained network with the previously deployed model. If the outcome
is superior, it is replaced, and the new model is employed in real time in the pipeline. If it
is worse, it can be rejected, and retrained. Because the data is in basic form, this pipeline
is incredibly quick in practice, with a measured latency of milliseconds (values from the
power meters). The learning and data analysis operations take place concurrently and are
not disrupted during regular operation.

3.2. Q-Learning Based Data Analysis Network

We describe a deep learning system for power line diagnostics that is inspired by [29,99]
and also builds on signal quality measurements, reusing the communication channel state
information, data integrity (packet loss, jitter) to gradually detect, analyze, and pinpoint
probable cable degradation. Our technique begins by assessing the sort of deterioration
that the cable is experiencing, whether it is limited to a segment of the cable or spreads
uniformly over its length. We determine the degree of either form of deterioration to avoid
a potential cable in-service failure that might occur if a cable beyond the usual service
condition is left untreated. The network aims to identify the presence of a deterioration,
analyze the type of damage, and estimate the degree and/or location of the degradation
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based on whether it is homogenous or isolated along a part of the cable, while identifying
and finding cable damage can aid in the deployment of targeted repair measures, measuring
the level of deterioration is crucial in determining the cable’s remaining life expectancy and
anticipating an impending in-service breakdown.

To that purpose, we apply unsupervised machine learning (Huo’s approach [29,99]
used supervised) for both classification and regression tasks, retraining model for the job of
each diagnostic ahead of time. We also employ channel transfer functions modeled using
the bottom-up technique as part of the training procedure, suggested by [102]. This enables
us to simulate signal travel over any part of the wire while introducing deterioration of
adjustable degree. The total transfer function may then be calculated by concatenating
these separate parts. When certain sparse restrictions are applied to self-encoding, the
sparseness of learning features indicates that it will perform better in network learning
as was determined in the work of [103], by altering the goal function and adding the
penalty factor. If the sparse parameter is set to predetermined value v, the neuron’s j sparse
constraints in the hidden layer can be set after learning. The input layer may be rebuilt
using the self-encoding principle and the hidden layer. If the dimension of the encoded
signal n the limited hidden network layer becomes less than the dimension of the input
signal (data packets from the power meter), it is discovered that the encoded signal may be
represented by compressed raw data. When the number of hidden neurons is considerable,
sparse restrictions are applied to the self-encoding neural network, where the specific
structure of hidden input data may also be discovered.

A topology control system based on the Q-Learning algorithm is proposed, together
with the self-adaptive window method. The combination of Q-Learning and self-adaptive
windows is used to predict the robust topology of neighbor nodes (power meters) as was
implied by [104]. The connection robustness of each neighbor node may be anticipated
by real-time learning values from neighbor nodes. Each node in this suggested approach
will store a Q-value matrix and a self-adaptive learning window. Each data node may be
viewed as one Agent in the Q-learning algorithm-enabled topology control scheme, and
each modification to the power line data network becomes a distributed multiple Agent
corporation systems.

Finding appropriate sub-windows of different widths during incremental training
is computationally difficult; it calls for a thorough comprehension of the complete data
stream that has been received so far and simultaneous examination of underlying patterns
and the intercorrelations of each sub-window. The size of the segmented sub-window
can be divided into several intervals. Variable interval division is preferred over equal
interval division in the first stage of our method because it can reveal a better distribution
of underlying patterns than equal interval division does. This is because our proposed
method is self-adaptive, which means that it can automatically find the best combination of
all those sub-windows under a whole sliding window. The general formula for variable
size sub-window division is as follows:

n

∑
i=1

swi = W,

where, in a sliding window, swi is the width of the i-th sub-window. Note that due to
variable division, each swi is not always the same. W is the length of the sliding window,
and n is the number of split sub-windows with a range of 1 ≤ n ≤W.

Over a full sliding window, we divide it into sub-windows. By generating both the
length and the number of sub-windows beneath a single sliding window at random, it
can provide a prospective and effective decomposition of the anticipated patterns. Addi-
tionally, by repeated random segmentation, a pool of candidates for different sub-window
combinations is created that is totally sufficient. As a result, these candidates can serve as
the search space’s population as input for further processing. A variable sub-window has
the benefit of offering a wider range of possible sub-window combinations. The optimal
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sub-window lengths and numbers that fit the underlying pattern distribution are sought
after from the combinations.

Here we adopted ADWIN [105] method for calculating adaptive sliding windows.
The method maintains a sliding window W with the most recent instances read in it.
ADWIN discards the older part of the window, if two big enough subwindows of W
show separate enough averages, which indicates that the associated predicted values
are different. This entails responding to a statistical question: Has the median “W with
confidence” been constant? The definition of a cutting value εcut and the employed test
are crucial components of the method. Allow n to represent the size of W, and n0 and
n1 to represent the sizes of W0 and W1, respectively, so that n = n0 + n1. Let Ŵ0 and Ŵ1
represent the averages of W0 and W1’s values. The value of εcut is set as follows:

εcut =

√
1

2m
· ln4n

δ

where m = 2
1/n0+1/n1

and δ ∈ (0, 1) is a confidence parameter that is set to 0.2.
According to [105], a change is detected when:∣∣∣µ∧W0

− µ∧W1

∣∣∣ ≥ εcut

then the oldest parts of W are progressively dropped until obtaining:∣∣∣µ∧W0
− µ∧W1

∣∣∣ < εcut

Once the self-adaptive sequence of sliding windows are constructed, we apply the
Q-learning algorithm as follows.

The process involves specifying the 4-tuple, where < S, A, P, R > is a transition
matrix that may or may not be stochastic and S and A are sets of states and actions. The
Markov decision process (MDP) defined by S, A, and P is si+1δ(si, ai). The reward function
that assigns a state transition value is called R : S× A× S→ R. The rewards themselves
may or may not be deterministic. A technique to compute a global reward V is also required
since the rewards are gained from a single state change, yet the agent is expected to generate
an efficient sequence of activities. Finding the ideal policy π : S→ A is therefore a way to
solve the Q-learning problem. Choosing the optimal course of action in a situation so as to
maximize the total return Vπ : S→ R, where S is the beginning state for implementing the
policy. Iteratively assessing using the available actions in each moment must result in the
sequence of states assessed by V. The reward is calculated as the discounted cumulative
benefit from the created series of states, beginning with a state s0, as follows:

Vπ(s0)→
∞

∑
i=0

γiri

Let Qx(d, y) is defined as the node x’s estimation of the latency from node y to desti-
nation d. The method’s procedure works as follows:

• Initialize Qx(d, y) arbitrary (∀d, y).
• For t = 0, 1, 2, . . . Choose the action yt for the current state dt. Take action yt, observe

R(dt), dt+1 Q(dt, yt)← (1− αt)Q(dt, yt) + αt[R(d) + γ max
y

Q(dt+1, y)]

where α is a learning parameter controlling the convergence speed.
Up until the maximum number of iterations is achieved, this procedure is repeated.

The algorithm updates the Q table after learning the Q value of carrying out various actions
in various environmental situations through this iterative computation. The optimal policy,
or the best scheduling plan may be found by looking up the final Q table once the iteration
of the Q model is finished. can be written as:

π∗== arg max
a∈A

Q(d, y).
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The neural network’s function is to implement supervised learning. The stochastic gra-
dient descent method (SGD) is used to calculate the gradient, which updates the parameter
W and the bias b. The general method builds two Q networks, in which the experience pool
provides training samples, the target Q value and the calculated Q value determine the loss
function, and the gradient is calculated. We build two networks with identical structures
but different parameters. The Q value is calculated and predicted by one network using
the most recent parameters, and updated by the other network using values from earlier in
time. This guarantees the intended Q value’s stability throughout time.

The experience pool provides learning examples in addition to finding a solution to
the data correlation issue. At the start of the training and learning process, a memory bank
is created. The experience pool stores the state, the action, the reward, and the state of the
subsequent time slot once the current action has been completed. A specific quantity of
memory data is randomly collected in batches from the experience pool each time a neural
network is trained. The original data’s order will be disturbed when the experience pool is
full, further reducing the data’s relevance. At the same time, the new memory will replace
the old memory.

The proposed PowerQNet model uses two full connection layers and three convolu-
tional layers in a convolution neural network (CNN) architecture (see Figure 3). Although
the design is straightforward, convolution neural networks’ characteristics significantly
increase training time and computation requirements. Additionally, convolution kernels
are unable to extract useful features at the early stages of the algorithm training, which
significantly extends the training period of PowerQNet.

The model’s hidden layer neurons behave as activation functions for the input data’s
nonlinear transformation. The nonlinear sigmoid function that we apply has a good impact
on the feature space mapping of the signal since it has a strong signal gain in the center and
relatively small signal gains on either side. Here Loss stands for the loss function during
the training procedure (W, b).

Loss(W, b) =
1
N

N

∑
i=1

l(W, b)

where N denotes the overall number of input samples, loss(W, b) denotes the loss function
for a single sample, and the calculation expression for loss(W, b) is as follows:

l(W, b) =


1
2 (qeval − qt)

2,
∣∣∣qeval − qt

∣∣∣≤ 1∣∣∣qeval − qt

∣∣∣− 1
2 , otherwise

where qeval denotes the calculated Q value and qt denotes the target Q value. The gradient
descent method is used to update the parameter W and the bias b after forward.

The proposed architecture employs two neural networks with the same structures.
The Target Q-parameter is θ+, whereas the trained network’s Q-parameter is θ−. Only the
Q-parameters are modified during each training session as follows:

Loss = ∑
[(

R + γmaxa′Q
(
S′, A′, θ−

)
−Q

(
S, A, θ+

))2
]
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Figure 3. The architecture of the proposed PowerQnet model.

4. Experimental Setup

In the VILNIUS TECH area in the city center, 6 smart Sagem T211 3 Phase Power Meter
power meters were [106] installed as data sources. Data was collected on a 32-kilometer
distance to our primary facility in the Sauletekis neighborhood. This style of power meters
is also one of the more common meters put in Lithuanian user houses, demonstrating
the practicality of our study. Several tests were carried out in order to determine the
dependability of the offered solutions. We analyzed the continual transmission of messages
consisting of power meter information.

An MQTT server was built using an ASUS Tinker Board 2 embedded microcontroller
running Linux and the open source Mosquito MQTT software [107]. The data collecting
computer was linked to the power ethernet router and the 6 analysis servers, which were
outfitted with NVIDIA GTX 1080 graphics cards for data analysis and continuous network
retraining. The open software Mosquitto MQTT equipment we used can transport up to
268435455 bytes (about 260MB) of data in a single message, which is more than adequate
for our configuration. In the experiment standard RS485 to Ethernet converters such as
EPROMA PKZ397WEB are used for conversion from RS485 to Ethernet, and DEVOLO
Magic 2 LAN DINrail module is used for transmission over 3-phase electrical networks.
Transmission possible up to 500 m and in any case, it is necessary to connect to an internet
network because it is not possible to transmit data up to a distance of 32 km without
a repeater. In our case it is not a problem, because we are in the urban area and each
transformer station now has internet equipment. The block diagram is presented in Figure 4.
The experiment made no use of elaborate and expensive automation sensors or monitored
electrical energy converters since it makes no sense in light of the data acquired.
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Figure 4. Block diagram of the deployed equipment and communication network.

5. Results

The results were obtained by using the 6 available power meters and by creating sev-
eral scenarios and simulating certain cases of operation and data transmission. Additional
fault simulation was necessary because during the experiments only a couple of power
failures occurred due to ongoing repairs and upgrades of the power grid with prior notifi-
cation from the grid management company. The experiments were designed to investigate
the impact on the transmission of data packets of the load on the data network or simply
on the Internet and the resulting delay and possible loss of data packets, as well as the
impact on the delay in receiving packets of different sizes of data packets. The authors
aimed to test the reception of a large number of meters by simulating the transmission
of data over a similar time interval, identical to a real city, and to determine how long it
would take to receive the data and the amount of traffic that would be generated in the
network. Accordingly, we aimed to determine how long it would take to receive the data
at the collection server and how much computing resources would be required to receive
the data as efficiently as possible for further analysis in relation to the quality of the power
line integrity.

5.1. Analysis of Real Data in Small Scale Scenario

128 bytes, 16 kB, 32 kB, and 64 kB data chunks (in different circumstances) were
delivered every 1 s during from the power meters Each power meter device also created
random blank data, although the beginning of each message array is similar. The array
message had an ID number, sensor data NTP time values, and random data. The experiment
lasted three hundred thirty hours. The goal of this experiment was to establish a realistic
data flow for simulation in experiment number two. The results of analysis are presented
in Figures 5–8, respectively, at 128 bytes, 16 kB, 32 kB, and 64 kB.

During the ongoing experiment, the time of all data transfer, regardless of size, did
not surpass 300 ms using the available equipment. It should be mentioned, however, that
the experiment was carried out in a reasonably controlled context with no extra data flows.
Because of the lack of NTP precision, the authors were unable to catch less than 100 ms.
Such a time is perfectly appropriate because, in actuality, it is a period of time that has no
bearing on the user. It would be fascinating to test a high number of client connections in
real time, but this is difficult to achieve and is only doable through simulation.
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Figure 5. The circumstances 128 bytes.

Figure 6. The circumstances 16 kB.
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Figure 7. The circumstances 32 kB.

Figure 8. The circumstances 64 kB.

5.2. Analysis of Simulated Full Data Flow of a Whole District

In experiment two, we produced artificial data traffic to imitate from 10 to 6000 power
meters, in order to realistically load the data transmission network with as much of a typical
power line branch as feasible (potential data of a whole city district power meters). In this
scenario, 10 GB and 50 GB data stream was produced and repeatedly broadcast during the
trial. Data had to pass over the same power network during testing. There were no delays
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or any changes in the transfer of our data, indicating that its integrity was not jeopardized,
and the system also responded during high peak hours.

The experiment presented in Figure 9 illustrates a continuous download of 10 GB
of data from the Smart meter devices. The resulting data (Graph 1) shows how long it
took to transmit a data set from one device and from all devices. The results show that
it takes approximately up to 22 min to receive data from a single sender. We see a ripple
in the time when sending one data packet. This ripple indicates that a large amount of
instantaneous time is required to send the first data packet, but the time decreases slightly
as the number of smart meters increases. A larger drop in the data sending time occurs
when the data from the first smart meter devices is finished being received, but the sessions
are not yet fully freed up to initialize new connections. Then the time starts to increase
again and a similar kind of surge occurs until all devices have transmitted data. As the
number of Devices increases, even though the data transfer happens at the same time,
memory space is required to store the data and for this reason we observe the time taken by
the receiver to collect all the data increases (Graph 2 and Graph 3 in Figure 9). This occurs
because it is not possible to collect the amount of data used in the study at the same time
and to manage all the connections to the senders. Therefore, requests for new connections
are put on hold in a buffer until the existing sessions are completed and the server has
freed up the necessary memory to create a new session. It should be mentioned that a
multi-session/multi-threaded TCP/IP server written in the Python programming language
was used for the test year. Comparing the time of receipt (graph 3) with the time of sending
(graph 2), we see that the sender finishes the tasks slightly earlier than the receiver. This is
natural, since even after the sender has sent an acknowledgement that the transmission is
complete, the server software can still process the received data in order to allocate it in the
server memory.

Figure 9. The produced artificial data traffic, when 10 GB data stream was produced and repeatedly
broadcast during the trial, when 1—transmission time of one power meter, 2—transmission time
of all power meters selected, 3—receiver time in system of all power meters selected. Black circles
shows y axis.

Another data analysis experiment was carried out with 50 GB of data (see Figure 10)
to analyze a case of more smart meters connected. In this case, it can be seen that the
download time per data packet approaches 1.02 h. Afterwards, the sending time decreases
slightly in time as the data volume is spread out and the experiment settles down to a
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slightly steady rate as the number of IoT devices increases. Wave fading here indicates that
a very large amount of data is being used and when one data transmission session is over,
other sessions are still processing a very large amount of data, which does not allow for
a faster initialization of a new pending session in the queue. As was noticed in the case
of previous scenario (Figure 9), in this case (Figure 10) the sender and server data transfer
times are slightly different. As the number of smart meter devices increases, the sending
and receiving times change linearly and the results are similar to those seen previously,
with only a slight difference in the slope of the curves, either to the left or to the right.

Figure 10. The produced artificial data traffic, when 50 GB data stream was produced and repeatedly
broadcast during the trial, when 1—transmission time of one power meter, 2—transmission time of
all power meters selected, 3—receiver time in system of all power meters selected.

5.3. Analysis of Real Data in Power Line Failure Scenarios

We have used a T211 3 Phase Power Meter within the input installation of our building
as well as adding power consumers to get real data, when one phase was disconnected,
as well as when the network failed due to high load. The goal of this experiment was to
establish realistic reference data for simulation in experiment number four. The analysis
results of experiment three are presented in Figure 11.

During our investigation we found, that data was not obtained from certain meters
during the duration of experiment because they were “unplugged” by turning off sections
of the input line (scheduled maintenance or installations). In this situation, the MQTT
broker and server client ceased receiving data for an extended period of time, if at all. The
developed system can alert users to possible difficulties as long as the MQTT broker is
active and the server may listen for data but not accept it. There are two types of situations
based on the projected waiting time:

1. Due to network issues, data from the meter is arriving with a larger delay than
intended and at irregular intervals.

2. The data does not reach the broker for an extended length of time, indicating a
malfunction in the system.
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Figure 11. The results of size of transmitted data related to the transmissions failures.

This experiment was carried out to collect data every 15 min for 60 days from
6 three-phase smart voltage and power meters. It simulated the frequency of power grid
failures. The nature of the disturbances was assumed to be as follows: when one of the
three phases of the meter goes down, or the meter stops working altogether, due to a lack of
power supply, and the data transmission fails. Such results were obtained 116 times during
the simulation (Figure 11). This can occur due to lightning discharges during storms, short
emergency and power grid failures or repairs and upgrades, and careless behaviour of
consumers that triggers the protection of the power transmission grid. For similar prob-
lems, but only for one phase, a simulated disconnection occurred 728 times, while normal
operation was foreseen 1439 times. According to this distribution, data collection was
carried out using the MQTT protocol and the transmission of data from 6 m was monitored.

5.4. Classification of of Power Line Failures

Finally we have validated how the developed and built platform reacts to data loss
from our T211 3 Phase meters, classifying potential power line failures. In other words, if
data is not received at a specific time or if it is received incompletely, as well as tolerance
for jitter and ping. Such an experiment informs us about the reliability, fault-tolerance
capabilities, and flexibility of power lines in various living conditions, and what is crucial
is what it reveals about our pipeline dependability and fault-tolerance. The analysis results
of experiment are presented in Figure 12.

The results of the experiment are plotted in Figure 12a, which shows how the number
of meters (left side) and the number of transmitted data (right side) vary over time. As
very few disturbances were noticed in the real environment monitoring as Lithuanian
grid is one of the most stable in the Baltic sea region, therefore we manually introduced
failure simulations, operating the circuit breaker boxes at university facilities throughout
the city. Figure 12b. Figure 12a shows the results varying and showing a clear decrease in
the number of meters and the amount of data flow if any meter experiences a power failure
or a meter malfunction. Figure 12a clearly shows a small drop of 200 kB if a single phase
failure occurs in one of the meters, resulting in a minimum value of 530 for the data rate. In
turn, if a meter fails to send data for a longer period of time, the number of meters “visible”
and the data throughput were reduced, as for example can be seen in Figure 12a when 4 m
were down between 690 and 787 h.
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Figure 12. The analysis of network integrity by a)—number of power meters related to their data
transmission and b)—number of failures, c)—Mean square error rate of failures and d)—data packets
delay time through the experiment period

As was already mentioned, the power supply to the meters in Figure 12b was addition-
ally disrupted as there were only a couple of outages during the monitoring period, making
it difficult to predict how the system would work. In this case, an additional 190 cases of
total power loss and 700 cases of single phase loss were created. Observing the number of
possible disturbances from the classification results shown in Figure 12c, it can be seen that
the mean square error (MSE) of the 6 monitored meters did not exceed 0.1% of the total
number of cases, and that the MSE of the meters for a complete disturbance was only 0.2%,
which is why the average number of possible cases of errors and disturbances during the
entire operation did not exceed 0.12%.

Figure 12d shows how the data delay varies with time. From Figure 12d we can see
that a power line outage affects data transmission, as the meters are unable to provide
data in the event of a complete loss of power, and in the event of a connection failure and
a glitch, the receiver reserves resources and waits for the data that does not arrive. This
results in data being received after the scheduled time or in bursts. The ping used indicates
how long it can take to transmit data in a system with interference. In the general case,
with additional simulated meter failures or power failures, it did not exceed 0.06 s for the
whole test.

5.5. Computational Performance

The graph in Figure 13 shows that the recipient, the server software that collects the
data of all devices, requires about 88 MB of private memory at initialization, but this is
reduced and settles. This is related to the monitoring of modern operating system resources
and the reduction of memory, provided that memory is not used for an extended period of
time. The demand on the private memory of the process being used does not increase any
more when the data being sent is 10 GB in size. In addition, the transfer is spread over time,
so that the actual size of the data transfer at a given point in time is smaller and does not
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affect or increase the amount of memory space occupied. This result is highly dependent
on the available server hardware and processing speed.

Figure 13. Computational performance, when 10 GB data stream was produced.

In the case of Figure 14 the situation changes slightly with memory allocations as in
this case 5 times more data is transferred. In this case, the memory provided in the server
is no longer sufficient and it is necessary to provide considerably more memory to be able
to receive a considerably larger amount of data. In this case, the server software uses as
much memory as the operating system allows per process (during the tests, the server’s
32 RAM was used to its maximum and additional SWAP memory was used).

Figure 14. Computational performance, when 50 GB data stream was produced.
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The data transfer is never identical and therefore the amount of memory used decreases
by a small amount of about 10 GB after the first data packets are transferred. The decrease
is in the form of a staircase, where the duration of the staircase is continuously decreasing
as the amount of data remaining to be received decreases and the amount of RAM used
decreases accordingly.

Looking at the microprocessor load from the first graph, it can be seen that the
microprocessor is heavily involved in the data fetch and distribution operations and even a
small amount of data transfer and multiple Power Meter devices, almost to a maximum of
90% load on the Intel i7-12700K microprocessor. A similar characteristic was obtained in
the second test with a significantly higher data load. However, the second test showed a
significantly more pronounced variation in the microprocessor load and a more uniform
decrease in the same way as in the case of memory utilisation. This can be explained by the
fact that modern microprocessors try to distribute the tasks over several microkernels, so
that when some cores become free, a change of about 10% occurs. In the general case, the
microprocessor used has 8 fast computing cores and 4 efficient cores, which are reserved
for smaller tasks and the variation is similar to the number of cores in the microprocessor.

In the first case, the significantly smaller amount of data did not require the use of
a larger number of microkernels, so that in practice the end-of-run graph variation was
abrupt, as in the second test, from 60 to 30% at 320 min.

After concurrent connections to the senders, and completion of the operations, the
resources used by the server software stabilize, as seen in test 2 at 320 min.

6. Discussion and Conclusions

The developed approach was successful in indicating potential power line break-
downs. Essentially, this would only effect the real-time monitoring system because the
data would be less frequently updated. Because the data is often provided on a time scale,
the subsequent result can simply be displayed in another period with some information
about other probable faults. Because we could potentially simulate any stationary device
using the IoT paradigm installed at different points over power line for data management
and seamlessly adapt solutions developed for this area to data transmission and large data
management, the proposed architectures have the potential to make excellent reuse of IoT
solutions already developed.

During the experimental evaluation, the distance of the devices was varied by simu-
lating the delay of data packets (as the distance increases, more routers appear that delay
the packets), and at high interference and delay, data losses (max up to 20%) are possible.
With a small packet of data, as can be seen from the results, the 128 B Internet TCP/IP
protocol is able to successfully transmit data on time within a 1 s interval, and delays do
not occur that exceed 1 s. Even with high packet losses, data is received on time. In the
general case, 100 data packets are sent with an interval of 1 s during the test. As the size of
the data packets increases, it can be seen that the total delay of the data packets starts to
increase at lower latency. At a packet size of 16 kB, somewhere around 210 ms, a delay of
more than 1 s starts to appear, resulting in an increase in the transmission time of all data
packets. In turn, for a 32 kB packet, the latency is at 180 ms and for a 64 kB packet at 150 ms
and increases very significantly.

Our Q-network properly detected and classified simulated 190 incidents of total
power loss and 700 cases of single phase loss. The mean square error (MSE) did not exceed
0.10% of the total number of instances, and the MSE of the smart meters for a complete
disturbance was only 0.20%, resulting in an average number of conceivable cases of errors
and disturbances of 0.12% for the whole operation.

We see that the amount of data sent varies depending on the fault and the intended
data packet size. The maximum number of data sent in a packet is 256 kB. When one phase
is disconnected, the number of data sent decreases in time slightly. There are two possible
cases. The first one is when the meter sees that there is no data and therefore sends slightly
less information than when all 3 phases are active. The second case is when it is possible to
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control programmatically how much data should be transmitted in the case where only
one phase is used. Since we know that this is not the case in our experiment, we do not
discuss the programmatic disconnection. The reduction of the single phase monitoring
data reduces the data size from 1523 kB to 1123 kB and in this case the 3 m did not have
1 phase. In the case where all phases are missing from all meters we see a sharp drop in the
amount of data received to 0 kB. During the monitoring this indicates that there is a loss
of power supply to all 6 m. When even one phase appears we again get only part of the
information. Of course, such situation does not provide information when all phases occur,
because at that point we would see the data volume return to normal operation. Therefore
we did not consider the possibility to control each source individually, because in this case
the data would change for an individual sensor and at then end we would see a differently
graded result.

In future works, the authors will try to evaluate how monitoring and diagnostic by
using artificial intelligence models will work taking into account expected data delays or
losses. Would the loss or delay of a small amount of data meet the possibilities of real-
time monitoring and diagnostics, and how would the situation be improved by creating a
digital twin of a 3-phase power supply grid, combining the received telemetry data with a
digital twin.

In this work, unlike others, we implement the data transmission using the part of
real electrical network. In this case, we have an advantage because we no longer need to
use a more expensive mobile connection. Of course, when transmitting data over longer
distances, it is necessary to use digital signal amplifiers or repeaters, but it would be difficult
to integrate them without the intervention of the power grid operator. Currently, there is no
way to get those that work with 3-phase networks by conventional means, so in any case you
have to connect to a wired or mobile Internet network only significantly later than directly
from the distribution box of the electricity supply. Of course, broadband over power lines
has already been used, but it still uses signal amplifiers. Electricity network operators also
always try to connect data to the Internet network as early as possible. Another important
aspect is that many of the discussed studies conduct experiments only through simulation
or based on mathematical logic. In this work, a large part of the experiments was performed
with real equipment, and in order to test a large amount of equipment, corresponding
computer equipment was connected to the measuring equipment and additionally the data
of new simulated devices was sent using real physical electrical networks.
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Abbreviations
The following abbreviations are used in this manuscript:

SDN software defined networking
MQTT Message Queuing Telemetry Transport
SVM Support Vector Machine
DL Deep learning
QOS Quality of Service
ADWIN Adaptive Windowing approach
MDP Markov decision process
Q-learning model-free reinforcement learning algorithm
Sagemcom T211 Model of Smart Power meter
TCP/IP Transmission Control Protocol/Internet Protocol
Mosquitto MQTT Open source (EPL/EDL licensed) message broker software
NTP Network Time Protocol
MSE Mean Square Error
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