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Abstract: The piezoelectric transduction mechanism is a common vibration-to-electric energy
harvesting approach. Piezoelectric energy harvesters are typically mounted on a vibrating host
structure, whereby alternating voltage output is generated by a dynamic strain field. A design
target in this case is to match the natural frequency of the harvester to the ambient excitation
frequency for the device to operate in resonance mode, thus significantly increasing vibration
amplitudes and, as a result, energy output. Other fundamental vibration modes have strain nodes,
where the dynamic strain field changes sign in the direction of the cantilever length. The paper
reports on a dimensionless numerical transient analysis of a cantilever of a constant cross-section
and an optimally-shaped cantilever with the objective to accurately predict the position of a strain
node. Total effective strain produced by both cantilevers segmented at the strain node is calculated
via transient analysis and compared to the strain output produced by the cantilevers segmented
at strain nodes obtained from modal analysis, demonstrating a 7% increase in energy output.
Theoretical results were experimentally verified by using open-circuit voltage values measured for
the cantilevers segmented at optimal and suboptimal segmentation lines.

Keywords: piezoelectric; optimal segmentation; vibration energy harvesting; resonant frequency;
strain node; numerical modelling

1. Introduction

Various different approaches exist for vibration energy harvesting via piezoelectric,
electromagnetic and electrostatic transduction mechanisms, which have been widely discussed and
compared by [1–3]. The piezoelectric transduction mechanism was extensively studied in recent
years [3] and proven to be a prime choice for MEMS energy harvesting from harmonic ambient
vibrations [4]. A piezoelectric energy harvester usually constitutes a cantilevered transducer with
single or multiple layers of piezoelectric material bonded on its surface. The transducer is mounted
on a vibrating structure for voltage generation via a direct piezoelectric effect. Vibration-based
energy harvesters are usually designed to exhibit natural frequencies that match ambient vibration
frequencies. Various authors have focused on modeling mechanical [5] and electronical [6] aspects
of piezoelectric energy harvesting, as well as on different optimization techniques to increase the
efficiency of the electromechanical conversion [7–10]. The qualitative factors of a vibration energy
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harvesting system have been recognized by [2,11]. A narrow bandwidth is a major issue for
transducers with a high quality factor, and this issue has been addressed by the authors of [12],
who developed a design of plate structures for vibration energy harvesting from two or more modes
of vibration to respond to variable frequency sources of base excitation. Different approaches to
multi-modal harvesters were further investigated by [13,14].

Mechanical-to-electrical energy conversion can be investigated based on piezoelectric
constitutive laws [4] and fundamental relations of mechanics of materials [15]. The electric charge
collected at the electrodes is the integral of the normal component of electric displacement over
the electrode area, and the electric displacement field generated in the piezoelectric layer during
vibration is a function of the strain distribution over transducer length. If the strain distribution
and the corresponding electric displacement component changes sign under full-sheet electrodes, a
cancellation effect manifests, leading to a substantial reduction in piezoelectric charge output [16–18].
In higher vibration modes (second and above), a certain strain node is present, where the strain
field changes sign, meaning that if a continuous electrode is applied on the surface, a significant
cancelation in collected charge occurs, resulting in losses in harvested energy. Several works were
published investigating the normal strain nodes in higher modes [19] and proper segmentation
techniques [16,17] for the maximization of harvested energy. Besides the conventional vibration
energy harvesting from harmonic vibrations in resonant or off-resonant mode, there were a series
of harvesters dedicated to impact energy harvesting [20,21]. Modeling of contact dynamics aspects
was thoroughly investigated in [22].

During an impact, not only the first natural vibration mode is excited, but also higher natural
modes, so the cantilever shape after the impact may be represented as a superposition of the first
and higher natural modes. The number of modes will participate in cantilever vibration as separate
components of periodic vibration [23]. Therefore, in practice, higher modes of the harvester can
be excited due to the random, varying frequency or impulse-type excitations generated by ambient
vibration sources [17]. Bearing in mind the latter, [24] focused on the dynamic efficiency of the
cantilever vibrating in its third natural mode. The authors proposed a few approaches of the
excitation of the third natural mode, namely vibro-impact or forced excitation. In [16,17,24], the
need for proper segmentation at the strain nodes of the cantilevers vibrating in higher natural modes
was highlighted. The authors of [10,25] proposed a multi-beam piezoelectric energy harvester that
exploits impact to transform low-frequency ambient mechanical vibrations toward higher resonant
frequencies of the piezoelectric transducers. The system consists of a steel driving beam that is
exciting two piezoelectric beams via impact. The authors of [26] proposed a mechanism for achieving
frequency up-conversion for low frequency harvesters exploiting impact between end-stop and a
cantilever beam: a seven-fold increase in the oscillation frequency of the transducer was induced if
compared to the base excitation frequency.

In this paper, the ideas presented by [16,17,19] are further developed. The positions of strain
nodes of a cantilevered Euler–Bernoulli beam without a tip mass for second natural frequency is
calculated from modal analysis and compared to the strain node found from transient analysis.
During the transitional processes, higher transient vibration modes are excited in vibro-impact
harvesters. Therefore, in contrast to the conventional piezoelectric vibration energy harvester
(PVEH), the piezoelectric layer has to be segmented to maximize the energy output and avoid the
generated charge cancelation due to effects related to strain nodes. Two setups of segmentation
were investigated in this work: one obtained from modal analysis (in further sections, referred to
as suboptimal) and the other from transient analysis, further referred to as optimal segmentation.

2. FEM Modelling of PVEH Segmentation in Higher Vibration Modes

Two types of cantilevers were chosen for investigation: a conventional cantilever of a constant
cross-sectional area and a cantilever of optimized shape. The latter refers to a cantilever that has
a minimal volume and the same second transverse vibration Eigen frequency ω2 as the cantilever
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of a constant cross-section. The procedure for cantilever shape optimization is given in further
sections. Both setups had a pair of PVDF (polyvinylidene fluoride) layers attached on their top
surface. Cantilevers were modeled as uniform composite beams for linearly elastic deformations
and geometrically small oscillations based on the Euler–Bernoulli beam assumption.

The effects of shear deformations and rotary inertia are neglected, and this is a reasonable
assumption, since typical piezoelectric cantilevers are designed and manufactured as thin beams,
as described in [6]. The principal scheme of the cantilever of a constant cross-section is provided in
Figure 1. The mechanical properties and dimensions of both cantilevers are listed in Table 1. The first
PVDF layer is mounted from the fixed end to the strain node, the second from the strain node up to
the cantilever end. The properties of the PVDF are given in Table 2. The Eigen frequencies of both
cantilevers were obtained from the modal analysis.
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Figure 1. Piezoelectric cantilever under translational and small rotational base motions (adapted
from [17]). PVDF, polyvinylidene fluoride.

Table 1. Mechanical and geometrical properties of the considered cantilever setups.

Parameter Constant Cross-Section Area Cantilever Optimal Shape

ω1, Hz 86 66
ω2, Hz 541 534

Density, kg/m3 7850
Elastic modulus, N/m2 2 ˆ 1010

Poisson’s ratio 0.33
Length, m 0.1
Width a, m 0.01

Thickness b, m 1 ˆ 10´3 Varying from 4 ˆ 10´4

to 1 ˆ 10´3

Table 2. PVDF properties.

Parameter Name PVDF Units

d31 Piezoelectric strain constant 23 (pC/N)
g31 Piezoelectric stress constant 216 (10´3 Vm/N)

kt
Electromechanical coupling

factor 12%

C Capacitance 1.4–2.8 nF
Y Young’s modulus 4 109 N/m2

ε Permittivity 110 10´12 F/m
ρ Mass Density 1780 kg/m3

t Thickness 64 µm

2.1. Finite Element Model

The differential equations were solved numerically using the finite element method. The
cantilevers under investigation are considered to be thin, which is important, because in thin beams,
the shear deformations in the transverse direction are neglected. The PVEH model is composed of
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two piezoelectric layers of opposite polarities, covered on both sides by electrode layers, mounted
on top of a substructure and connected in a series configuration. The function of the electrode is to
provide uniform potential. Electromechanical modeling of cantilever-type piezoelectric transducers
has been studied by several authors in the past [4,5]. The cantilever was excited by harmonic base
movement with frequencies matching the second natural frequency of the cantilevers (see Table 1)
with an acceleration of 1.3 g. Equation (8) was used for modal analysis, while Equation (13) was used
to solve the transient analysis problem. Excitation parameters are varied by the frequency ωn of the
time-dependent force f(t). A 2D in-plane strain application was applied for modeling. The element
type that was used is a quadratic Lagrange element with second-order polynomial approximation.
FE mesh with 350 elements per length of the cantilever was implemented. The Structural Mechanics
module of COMSOL was adopted for the calculation of the Eigen frequencies and the strain nodes
of the cantilevers. Simulation results were obtained by deriving voltage output from piezo plane
strain analysis. The study was performed both for the cantilever of a constant cross-section and the
optimally-shaped cantilever (Table 1), which was obtained by solving the shape optimization problem
with the objective to obtain the cantilever of minimal volume for a fixed second natural frequency of
transverse vibrations.

2.2. Constitutive Equations for Substructure and Piezoelectric Layers

The structure is composed of a load-bearing material and two layers of piezoelectric material.
Under the linear elasticity assumption, the constitutive equation for the load-bearing material is given
as Equation (1):

T “ CHS (1)

where T is mechanical stress, CH is the elasticity matrix of the host layer and S is strain. The
electromechanical coupling effect of the piezoelectric material can be described by the following
constitutive Equations (2) and (3).

T “ CPS´ eE S (2)

D “ eTS` εSE S (3)

where CP is the elasticity matrix of the piezoelectric layer, D denotes the electric displacement, e and E
are the piezoelectricity matrix and applied electric field, respectively, and εS is the permittivity matrix.
Constitutive equations are further described by [27]. It can be assumed that the electric potential
varies linearly across the thickness of the piezoelectric layer. The electrical boundary condition is
open circuit, thus D “ 0. If an axial stress T1 is applied, it will deform, and hence, the charge will
displace toward the electrodes. Under open circuit conditions (D = 0), the voltage V is given by:

V “ g31hT1 (4)

As the substrate vibrates in its second natural frequency, the PVDF layers undergo dynamic
strain, thus generating alternating voltage output via direct piezoelectric effect.

2.3. Procedure for Cantilever Shape Optimization

The optimal shape of the cantilever was obtained by subjecting it to the optimization procedure
as follows: minimize the volume of the cantilever-type harvester.

Min Volume pxq (5)

defined by state equation:
K pxq v “ ω2

i M pxq v (6)
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Here, ωi is the natural frequency and v is the “mode shape” of the system. With a constraint of
the shape:

xmin ă x ă xmax (7)

and Eigen frequency:
w “ w˚ (8)

Here, x is the vector of the design parameters, w the Eigen frequency of the cantilever and w˚

the desired frequency. The application of this optimization procedure resulted in the optimal shape
of the cantilever for the second transverse vibration (Figure 2).
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Figure 2. Normalized shape of the optimally-shaped cantilever.

2.4. Determination of Strain Node Position for the Second Vibration Mode via Modal Analysis

For modal analysis, the cantilever is considered undamped and undergoing free vibrations; thus,
the governing equation as following.

M
..
u` Ku “ 0 (9)

Internal elastic forces Ku act as an offset to the internal forces M
..
u. In this case, K is the stiffness

matrix, and M is the mass matrix. Reducing Equation (9), assuming the solution of Equation (10) can
be derived and Eigen frequencies of the cantilever obtained.

Kv “ ω2
i Mv (10)

One end of the cantilever is fixed and the second end is free, as shown in Equation (11) for the
fixed end and Equation (12) for the free end, where Y pxq is displacement in the y direction at distance
x from the fixed end.

x “ 0, Y pxq “ 0,
dY pxq

dx
“ 0 (11)

x “ L,
d2Y pxq

dx2 “ 0,
d3Y pxq

dx3 “ 0 (12)

Figure 3a shows the second transverse vibration mode shape of both cantilevers obtained by
modal analysis. Meanwhile, Figure 3b illustrates the strain mode shape for the second natural mode
of the cantilever of the constant cross section and optimally shaped cantilever; rough estimation
of strain node locations is 0.216 L and 0.238 L, respectively. The location of strain node of a
cantilever of constant cross section complies well with [17] that predicted a strain node of second
natural mode to be at 0.2165 L. The slope of strain curve of optimally shaped cantilever in region
of strain node is higher. This means that interval of cantilever length with different sign strain
is shorter. Figure 4 shows the second normal mode shapes of both cantilevers with normal strain
distribution along their faces for cantilever of constant cross section and optimally shaped cantilever
in Figure 4a,b, respectively.
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It can be observed that the upper and lower faces of the cantilever are subjected to strain of
different signs; while the upper face is negatively strained (compressed) at x/L = 0, the lower face is
under tension.Sensors 2015, 15, page–page 
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Figure 4. The second transverse vibration mode of the cantilever and the field of normal strain
distribution: (a) cantilever of a constant cross-section; (b) optimally-shaped cantilever.

Strain distribution over the length of the beam changes sign, and collecting the induced
piezoelectric charge with continuous electrodes results in an electrical cancellation effect accompanied
by a reduction in harvested energy.

2.5. Determination of Strain Node Position for the Second Vibration Mode via Transient Analysis

The transient analysis of the cantilever was conducted to verify the position of the strain node in
the cantilever during its base excitation with time varying force f(t) acting on it. The corresponding
equation of motion is given in Equation (13).

M
..
u ptq ` C

.
u ptq ` Ku ptq “ f ptq (13)

Here, C is the damping matrix. The time-dependent force f(t) is described as cantilever body
load in the vertical direction and is defined as force/volume using the thickness.

f ptq “ am sin ωnt (14)
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where a is acceleration, m is the mass of the system and ωn is the excitation frequency. The equation
of motion controls the linear dynamic behavior, and the dynamic response can be found by solving
this equation of motion.

The transverse displacement of the free end of the cantilever for a given interval of time can be
seen in Figure 5a. Figure 5b indicates that the period selected for further investigation is at the region
of steady-state vibrations. Half of the period is selected for the investigation of the normal strain
distribution along the face of the cantilever, as illustrated in Figure 5c.Sensors 2015, 15, page–page 
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Figure 5. Cantilever free end displacement in the transverse direction: (a) dynamical process;
(b) region of steady-state vibrations; (c) ½ T period of vibration for the analysis of the position of
the cantilever strain nodal point.

The first quarter of period (t1, t2) is colored in blue and the second (t2, t3) in red for the clarity of
the transition processes taking place in the face of the cantilever during the vibration.

The same coloring scheme is used in Figure 6, where the normal strain distribution along the
upper face of both cantilever setups is shown per ½ T of the cantilevers’ transverse vibration. The
number of curves in Figure 6 represent the number of interpolated time step values ∆ti between t1

and t3. Figures 6 and 7 clearly reveal that, overall, normal strain output amplitudes are higher in the
case of the cantilever of a constant cross-section. Meanwhile, the normal strain mode shape of the
optimally-shaped cantilever forms a steeper angle at the cantilever end and is close to the predicted
strain node, thus a higher strain density can be predicted. This forms strain mode curves that are
stable at high strain output zones. In Figure 8, strain distribution along the face of the cantilever
(Figure 8a: cantilever of a constant cross-section; Figure 8b: optimally-shaped cantilever) versus time
can be observed.
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Figure 7. Mode shape and total normal strain distribution of the constant cross-section area cantilever
at t1, t2 and t3: (a) cantilever of a constant cross-section; (b) optimally-shaped cantilever.

The horizontal axis of Figure 8 represents a normal strain distribution along the upper face of
the cantilever of a constant cross-section at time instant ti, while the vertical axis represents strain
change at any given point per time interval [t1, t3]. It can be observed that the cantilever of a
constant cross-section produces higher strain amplitudes though the optimally-shaped cantilever
exhibits larger average strain output with higher strain mode slopes.
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Figure 8. Normal strain distribution on the upper face of the cantilever in ½ T: (a) cantilever of a
constant cross-section; (b) optimally-shaped cantilever.
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Numerical analysis was performed in MATLAB in order to post-process results obtained from
the COMSOL environment. Figure 6a,b demonstrates that the strain node is not as exactly defined;
thus, a methodology has been developed to determine the strain node from transient analysis and to
compare the amount of normal strain output of the cantilever for both. As the cantilever is vibrating,
at any interpolated time step ∆ti, the cantilever is experiencing both compression and tension at
the same face; this produces a drifting strain node where the normal strain is equal to zero. ∆ti is
calculated as shown in Equation (15), where N is the number of integration steps.

∆t “
t3 ´ t1

N
(15)

The aim of this optimization problem is to determine the exact strain node position along the
cantilever by using transient analysis, where the average strain output per ½ T is equal to zero.
The strain node from the transient analysis is estimated by integrating the area bounded by each
interpolated time step (or curve) over an increment of the length of the cantilever L. The Simpson
method was used for integration; the approximation is given in Equation (16).
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where u is displacement in the axial direction along the cantilever. Numerical results obtained
from COMSOL simulations were exported to MATLAB for further post-processing. To calculate
the amount of normal strain at each time step ∆ti, the normal strain curve integration along the
length of the cantilever was performed from both ends of the cantilever, as depicted in Figure 9a,b
for a cantilever of a constant cross-section and an optimally-shaped cantilever, respectively. The
blue curve represents the integration from the fixed end to the free end, red the integration of the
opposite direction.

The curves represent the accumulation of the normal strain over an increment of length L of
the cantilevers. Total strain per ½ T is negative at the fixed end and increases until it reaches the
maximum at 0.216 L. The square marker in Figure 9a denotes the calculated maximum of the curve
with the strain node obtained from the transient analysis, while the round marker denotes the normal
strain output at the strain node obtained from the modal analysis (from Figure 3b).
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Table 3. Comparison of normal strain amount.

Strain Node Amount of Normal
Strain-Left (Dimensionless)

Amount of Normal
Strain-Right (Dimensionless) Gain, %

Cantilever of a constant cross-section

Modal solution 0.216 6.53 ˆ 10´10 ´9.7 ˆ 10´10

Transient solution 0.238 6.73 ˆ 10´10 ´9.9 ˆ 10´10 +5.5%

Optimally-shaped cantilever

Modal solution 0.239 6.3 ˆ 10´10 ´9.6 ˆ 10´10

Transient solution 0.259 6.5 ˆ 10´10 ´9.85 ˆ 10´10 +5.2%

Table 3 summarizes the comparison of the effective total normal strain output integral for
cantilevers segmented in strain node, determined via modal analysis, and a strain node obtained from
the transient analysis. The total effective strain output consists of two components: strain produced
by the region to the left of the strain node and the region to the right of the strain node, as illustrated
in Figure 9a for the cantilever of a constant cross-section and Figure 9b for the optimally-shaped
cantilever. Table 3 indicates that per ½ T, the left side of the cantilever of a constant cross-section
(representing the first segment of the harvester) segmented at the strain node obtained from the
modal solution undergoes strain equal to 6.53 ˆ 10´10, while the cantilever segmented at the strain
node obtained from the transient solution underwent 6.73 ˆ 10´10, which is equal to a 3% increase in
strain output. The right-hand side (representing the second segment) underwent 2.5% more strain;
thus, the total gain of the transient versus modal solution was 5.5% more effective strain per ½ T of the
second transverse vibration mode. Accordingly, the optimally-shaped cantilever segmented at the
strain node obtained from the transient solution produced 5.2% more strain if compared to the strain
output from a cantilever segmented at the strain node obtained from modal analysis.

Figure 10 illustrates the importance of the correct selection of the strain node for the
segmentation of a piezoelectric cantilever subjected to ambient harmonic excitation that matches the
second natural frequency of transverse vibrations of the cantilever. The red and black vertical lines
in Figure 10 represent the location of segmentation lines at strain nodes obtained from modal and
transient analysis, respectively. Table 3 indicates that the difference between two lines is 2.2 ˆ 10´2 L
for the cantilever of a constant cross-section and 2 ˆ 10´2 L—for the optimally-shaped cantilever.
Transferal of the segmentation line to the strain node obtained from transient analysis produced
5.5% and 5.2% more strain from the cantilever of a constant cross-section and the optimally-shaped
cantilever, respectively, if compared to the modal solution. The period of vibration was chosen as
½ T because full transition from maximum negative to maximum positive strain output values can
be observed.
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3. Theoretical and Experimental Results: Open Circuit Voltage Outputs

Further, open-circuit voltage output generated by the cantilever of a constant cross-section and
the optimally-shaped cantilever was compared to the experimentally-obtained open-circuit voltage
values. The experimental setup and scheme are illustrated in Figures 11 and 12.
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Figure 12. Scheme of the experimental setup.

The experimental setup shown in Figure 12 consists of a piezoelectric vibration energy harvester
and two systems connected to it, the excitation system and the data acquisition system. The harvester
clamp is mechanically mounted onto an electromagnetic shaker, which excites the PVEH. The
substrate layer of the PVEH (with dimensions of 100ˆ 10ˆ 1 mm) is made of structural steel (Table 1),
and two PVDF layers (transducers DT1-028K by Measurement Specialties Inc., Hampton, VA, United
States) are mounted on top. The substrate layer was fabricated from structural steel by using
water jet cutting. Function generator AGILENT 33220A is used to control the harmonic excitation
signal transmitted to the electromagnetic shaker. Single-axis miniature piezoelectric charge-mode
accelerometer METRA KS-93 (with a sensitivity of k = 5 mV/(m/s2)) is attached at the bottom of
the electromagnetic shaker for acceleration measurements. The experiments were performed with
constant 1.3 g acceleration. Figure 13 provides the measured open-circuit voltage outputs for the
cantilever of a constant cross-section that was excited at the second natural frequency of 551 Hz.
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Figure 14 presents the open-circuit output of the left-hand side electrode (Channel 1 from
Figure 11) and the right-hand side electrode (Channel 2 from Figure 11). The blue and red curves
represent the voltage output of the optimal and suboptimal setups, respectively. The average voltage
output at Channel 1 is 0.287 V for optimal segmentation and 0.264 V for the suboptimal segmentation
(8.7% difference). Channel 2 produced 0.389 V for the optimal segmentation and 0.351 V for the
suboptimal segmentation (10.2% difference).

Figure 14 provides the corresponding results for the optimally-shaped cantilever excited at its
second natural frequency of 545 Hz. The average voltage output at Channel 1 is 0.275 V for the
optimal segmentation and 0.261 V for the suboptimal segmentation (5.1% difference). Channel 2
produced 0.369 V for the optimal segmentation and 0.353 V for the suboptimal segmentation (4.6%
difference). It can be observed that the optimally-shaped cantilever produces slightly lower voltage
output than the cantilever of a constant cross-section, and the optimized segmentation produces
higher voltage output in all cases.Sensors 2015, 15, page–page 
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Figure 14. Open-circuit voltage output of the optimally-shaped cantilever at ω2 = 545 Hz: (a) first
segment; (b) second segment.

These results comply with the theoretical calculations of the normal strain distribution presented
in the previous section and total voltage output plots. Figure 15 provides a comparison of the
theoretical and experimental total voltage outputs for the cantilever of a constant cross-section and
the optimally-shaped cantilever. In every case, the theoretical predictions for the voltage output has
good agreement with the experimentally-obtained voltage values. The results demonstrate that the
largest voltage output was reached by the optimal setup of the cantilever of a constant cross-section
(segmentation line at 0.0238 m): 0.676 V. The suboptimal setup (segmentation line at 0.022 m) of
the same cantilever produced 0.615 V. The optimally-shaped cantilever with optimal segmentation
(segmentation line at 0.026 m) produced 0.536 V, while the suboptimal segmentation (segmentation
line at 0.024 m) 0.511 V.
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4. Conclusions

For vibro-shock energy harvesters vibrating in higher modes, the segmentation of piezo-active
layers is required due to the presence of strain nodes. Segmentation of the piezoelectric layers
at the strain node obtained from modal analysis does not necessary guarantee the highest energy
output. The paper presented the methodology for determining the optimal segmentation points of
the piezoelectric layer vibrating in its second transverse mode.

1. The optimal segmentation point was determined by means of transient analysis for the two
setups of the harvesters, the cantilever of a constant cross-section and the optimally-shaped,
cantilever by integrating the strain distribution along the face of the cantilever during the ½
T period and then comparing to the total normal strain amount obtained from the cantilevers
segmented at the strain node obtained from modal analysis.

2. Theoretically-obtained results indicating the superiority of the transient analysis versus modal
analysis for finding the strain node for segmentation were verified experimentally.

3. The adjusted segmentation line increased the generated open-circuit voltage output per period
of vibration by 7.2% for the optimally-shaped cantilever and 6% for the cantilever of a constant
cross-section.
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