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Abstract: Hydromorphology of rivers assessed through direct measurements is a time-consuming
and relatively expensive procedure. The rapid development of unmanned aerial vehicles and machine
learning (ML) technologies enables the usage of aerial images to determine hydromorphological
units (HMUs) automatically. The application of various direct and indirect data sources and their
combinations for the determination of river HMUs from aerial images was the main aim of this
research. Aerial images with and without the Sobel filter, a layer of boulders identified using Yolov5x6,
and a layer of direct measurements of depth and streamflow velocity were used as data sources.
Three ML models were constructed for the cases if one, two, or three data sources were used. The ML
models for HMU segmentation were constructed of MobileNetV2 pre-trained on ImageNet data for
the feature extraction part and U-net for the segmentation part. The stratified K-fold cross-validation
with five folds was carried out to evaluate the performance of the model due to the limited dataset.
The analysis of the ML results showed that the measured metrics of segmentation using direct
measurements were close to the ones of the model trained only on the combination of boulder layer
and aerial images with the Sobel filter. The obtained results demonstrated the potential of the applied
approach for the determination of HMUs only from the aerial images, and provided a basis for further
development to increase its accuracy.

Keywords: low-land rivers; hydromorphology; aerial mapping; segmentation; machine learning

1. Introduction

The main goal of water protection is the good condition of all water bodies. The
European Union (EU) Water Framework Directive [1] mandates that all water bodies must
reach good conditions in all EU member states. Good conditions are understood as a
well-functioning aquatic ecosystem that ensures suitable conditions for biodiversity to live.
Poor biodiversity is most often caused by hydromorphological changes in the water body,
by persistent pollution, or by a combination of both. In the Water Framework Directive
(WFD), hydrological regime, river continuity and morphological conditions were pointed
out as the three main elements of hydromorphological river quality.

In the WFD, hydromorphology is referred to as the “hydromorphological quality
elements which support biological quality elements”. Based on this, we can conclude that
hydromorphology can be defined as a field of study that includes measurements made
to monitor changes in water volume and flow, riverbed, substrate, riverbank, riparian
zone, aquatic and riparian habitats, and it can also be used to determine ecological status.
Accordingly, the hydromorphology is a multidisciplinary research field that studies and
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evaluates the physical, hydrological, and morphological characteristics of water bodies and
the processes that determine these characteristics.

The biggest hydromorphological impacts on water bodies are related to the impact
of anthropogenic activity and the operation of hydropower plants [2]. The installation of
hydropower plants and hydrotechnical structures of other purposes in riverbeds change
the hydrological regime of rivers and damage the integrity of rivers. The operation of such
hydrotechnical structures has a significant impact on aquatic organisms and sediment trans-
port, and simultaneously on the ecological conditions of rivers [3,4]. Disruption of river
integrity can significantly affect the ecological status of both upstream and downstream
river sections.

Numerous hydromorphological assessment methods were developed and applied in
the past few decades in different countries. One of these methods is the physical (in-field)
assessment of hydromorphological features. This method is still current and useful because
it does not require special knowledge; however, the understanding of basic principles
and processes is necessary. Depending on local conditions, this method was practiced
in Austria, France, Finland, Italy, Portugal, and Slovenia [5,6]. Field measurements for
hydromorphological unit data were used in earlier studies for Latvian [7,8], German [9,10],
Polish [11] and Greek [12,13] rivers as well. A review of assessment methods for river
hydromorphology was done by Belletti et al. [14], identifying their main strengths, lim-
itations, and the need for further improvements. Thus, these regular surveys for river
hydromorphology have certain limitations themselves; conducting them takes long time
and requires considerable manpower as well [10,15]. Hydromorphological data collection
can be facilitated by combining a laser rangefinder, geographic information system (GIS)
and remote sensing methods [16–18]. The use and convenience of these remote sensing
methods for hydromorphological monitoring were discussed by Entwisle et al. [19], Beißler
and Hack [20], and Hou et al. [21]. Comparison between field surveys and remote sensing
approaches, as well as growing accessibility of remote sensing data, suggest the develop-
ment of new methods for hydromorphological assessments of rivers to reduce the number
of field surveys [22].

The rapid development of unmanned aerial vehicles (UAVs) and advancements in
the miniaturization of instruments and data systems have led to the increasing use of
this technology in the environmental science community. The use of UAV data has also
become easier and more widespread because electronics were greatly improved over the
past decade, making the process user-friendly and at a lower cost [23]. The purpose of
some studies was to analyze changes in riverbed morphology using UAV aerial imagery,
where interaction of the researcher is still necessary for analysis of the photogrammetric
results [24–26]. Similarly, other authors identified photogrammetric methodologies based
on high-resolution UAV aerial imagery as the suitable tool of choice for reliable hydromor-
phological assessment [27,28], which were valid in specific environmental situations [29].
Modern UAVs (multi-rotor) could collect images of a 1 km-long and 200 m-wide mean-
dering river [30]. There are also many studies where both UAVs and automated data
processing were used for the identification of hydromorphological features in rivers with
improved image quality by capturing high-resolution photography [31,32]. For example,
the UAV and artificial neural networks (ANN)-based framework for the automated recog-
nition of hydromorphological features demonstrates a level of accuracy of up to 81% in the
classification of some features [31].

Rivers’ hydromorphology is determined not only by the morphological characteristics
of the riverbed but also by the in-stream natural impediments. Boulders are one of the most
widespread natural obstacles that cause the turbulence distribution across the river flow.
The large-size boulders affect hydrodynamics and morphodynamics of the surrounding
area [33]. The effects are especially highly expressed along both sides of the boulder where
the acceleration of the flow is induced [34] and behind the boulders or their groups [35].
The latter area is described by the decelerated flow and emergence of the vortexes. The lon-
gitudinal impact of the boulders on the river flow is quantified by the decreased velocity up
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to one boulder’s diameter upstream and up to five boulders’ diameter downstream [35,36].
The mentioned flow distortions under the influence of boulders create unique microhabitats
that are essential for the maintenance of biodiversity, since the different hydraulic patterns
and pulsations are found and can change in spatial and temporal scales depending on
the discharge situation [37]. Moreover, natural obstacles play an important role in the
spawning migratory patterns and detailed monitoring of them by applying drones could
expand not only the understanding of how to manage the barriers [38], but also how to
involve those data for hydromorphological assessment.

The artificial intelligence (AI) algorithms allow one to automatically process a large
amount of data, extract hidden patterns, and establish relationships between variables.
AI includes a subset called machine learning (ML) which consists of algorithms based on
learning from data without explicit programming [39]. The ML algorithms are applied
in various river research topics, namely the environment, ecology, hydrology, sanitation,
human health, and socioeconomics [39]. The aerial or satellite images are used as in-
put to classify fluvial scenes in a pixel level to water, sediments and vegetation [40], to
identify hydromorphological units [32], to monitor aquatic vegetation [41], and to pre-
dict bathymetry [42] and other issues. The chosen AI methods and input pre-processing
approach depend on the problem, data collection possibilities and costs, as well as compu-
tational resources.

The variety of colors of the river, irregular boundaries and lack of structure make
it difficult to identify the river region from the aerial image with RGB channels. Thus,
hyperspectral [43] or near infrared [44,45] bands in the images are used for the remote
sensing analysis of river. The input aerial image is modified by transforming it to the
different color space [31,32], or extending the number of channels in aerial images by
generating additional bands of information. The features extracted from the 2D orthomosaic
maps and 3D digital elevation model (DEM) were added to the RGB image as supporting
layers, therefore used as an input to classification model to detect and map fluvial forms,
such as gravel accumulation, bank erosion, and others [30]. Supplementing the input
with the supporting layers resulted in higher accuracy of the model. The satellite image
and DEM were used to extract geomorphic variables, such as active channel width, slope
gradient, and others, which were used in river scene segmentation with support vector
machine (SVM) and random forest (RF) models [46]. The SVM and RF algorithms were also
applied in multilevel ML classification of riverscape morphological units and in in-stream
mesohabitats [45]. The unsupervised learning approach to group pixels on their reflectance
properties in combination with the supervised learning model of ANN was applied to
automatically identify river hydromorphological features from aerial images [31]. The two-
phase convolutional neural network (CNN) classification was used to segment aerial RGB
images of fluvial scenes to water, sediment, green vegetation, senescent vegetation, and
paved roads, in combination with multilayer perceptron (MLP) [40]. Using this approach
demonstrated that a relatively small amount of labelled data is needed for model training.
The fuzzy CNN model trained on UAV-derived labels was proposed to classify fluvial
scenes in aerial images as a cost-effective approach to monitor vegetation growth and
investigate geomorphology. The connected component segmentation, Bayesian likelihood
classification, and central line analysis were used to detect and map a stretch of river in the
UAV images with RGB and near infrared bands [44].

Existing studies in Lithuania are not concentrated on the usage of UAVs in the as-
sessment of hydromorphological features. There are some studies which used satellite
data, but they focused more on the determination of snow characteristics [47], river ice
detection [48] or biophysical classification of Lithuanian lakes [49]. The deficiency of the
studies on the hydromorphological assessment applying remote sensing and automated
ML techniques was found in the study area and a similar geographical zone. The properties
of relatively slow streamflow of low-land rivers create new underestimated challenges
for the evaluation of hydromorphology. Accordingly, it motivates the development of
new approaches that would allow the delineation of the target hydromorphological units
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(HMUs) with acceptable accuracy and the lowest amount of human resources. Based on
the listed insights, the main goal of this research was to evaluate various combinations of
data sources collected thorugh direct and indirect measurements for the determination of
river HMUs only from aerial images.

2. Study Area and Methods

Lithuania is a county in Eastern Europe near the Baltic Sea which covers an area of
about 65,300 km2. Under the Köppen climate classification, it has a humid continental
climate. Thanks to its hydroclimatic conditions, the study area consists of a dense river
network, since evaporation is less than the precipitation amount in the yearly balance.
Accordingly, the area consists of around 4400 rivers longer than 3 km and an average
density of 1.18 km/km2 [50]. Lithuanian rivers are classified as low-land rivers because
the average river slope rarely reaches a 1 m/km longitudinal gradient. Consequently,
these rivers are usually distinguished by the even flow. Despite the dominating low
gradients, there are many river sites where the slope increases and forms a diversity of river
hydromorphology. Those sites did not remain unnoticed and the best river segments were
used for dam-building purposes. Thus, around 102 hydropower plants (HPPs) and more
than 1200 dams without HPPs have been built on Lithuanian rivers. These hydrotechnical
structures highly affect the most valuable river stretches from a hydromorphological point
of view. Therefore, four river catchments (Verknė, Širvinta, Jūra and Varduva rivers)
affected by HPP activity were selected for this research (Figure 1). Case study river sites
consisted of stretches downstream Jundeliškiai HPP on Verknė River, Širvinta HPP on
Širvinta River, Balskai HPP on Jūra River, and Renavas and Vadagiai HPPs on Varduva
River.
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Figure 1. Study area and selected case study river catchments in the context of Lithuanian hydropower
plants (HPPs) and dams without HPP, the inundated area of reservoirs of which is 50 ha and more.

The research consisted of several main blocks that covered: (i) collection of ground
truth data during the field surveys; (ii) processing of input data for ML model; (iii) simula-
tion of ML model including its creation, training, and validation; and (iv) interpretation
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of the results (Figure 2). Each of the listed blocks had its individual subdividing, which,
together with the detailed scheme of ML model, is described in the following sections.
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2.1. Direct Measurements of Hydraulic Parameters and HMU Mapping

The survey of river hydromorphology consisted of discharge measurements in the
studied river stretches, determination and mapping of HMUs at certain water discharge
situation, and measurements of riverbed depths and streamflow velocities in delineated
HMUs. Straight river segments without surface vegetation, boulders, and wood debris were
selected for discharge measurements. The streamflow velocity in the selected cross-sectional
profiles was measured using Valeport 801 Electromagnetic Flowmeters. The cross-section of
the river was divided every 1 m, and streamflow velocity measurements were made at 0.2,
0.6 and 0.8 of the depth at each point.

The HMUs types, such as GLIDE, POOL, RIFFLE and RAPID, were identified in the
studied river sites (Figure 3). The classification of HMUs was determined considering the
riverbed morphology and hydraulic properties described in [51,52]. GLIDE is characterized
by a low local slope and has a regular longitudinal bed profile, with a smooth or sometimes
slightly rippled water surface due to low turbulence. POOL unit is characterized by
topographic depression of the riverbed with a relatively slow flow velocity. The main
difference between GLIDE and POOL is that the riverbed is not parallel to the water surface.
RIFFLE is distinguished by a relatively shallow and fast flow and uniform sediments of
riverbed armoring. These fractions rarely protrude out of the flow. RAPID is defined as a
river channel unit that is mainly formed by boulders with a relatively steep riverbed. Such
conditions create uneven flow with high turbulence zones around the stable boulders [51].

The mapping of boundaries of selected HMUs was performed using GeoMax Zenith 40
GNSS GPS (GeoMax AG, Widnau, Switzerland) receiver and X-PAD Ultimate Survey soft-
ware (GeoMax AG, Widnau, Switzerland). The riverbed depths and streamflow velocities
were measured in the identified HMUs. The mentioned parameters were measured at at
least 10 points per delineated HMU polygon. All spatial data collected during the field
surveys were processed and systematized using ArcGIS 10.5.
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2.2. Aerial Mapping with UAV

The aerial imagery of the selected case studies area was collected using a DJI Phantom 4
Pro RTK UAV (DJI, Shenzhen, China). Firstly, five ground control points were placed on the
site of the selected river stretch (four in the corners and one in the center) and their precise
coordinates were measured with a GeoMax Zenith 40 GNSS GPS receiver. Photography was
done automatically using a flight mission in native DJI software. The flight mission was
conducted at a height of 35 m above the ground for getting the original ∼1–2 cm2 per pixel
(px) resolution with an overlap of 80%.

The post-processing of the collected data (generation of orthomosaic maps) was done
using Pix4Dmapper (Pix4D S.A., Prilly, Switzerland) photogrammetry software. First, the
point cloud of each river stretch was created based on images from UAV. In the second
step, the point cloud and corresponding photographs were tied to ground control points
for georeferencing and assigned a specific coordinate system. The final orthomosaic of the
study area was created based on the georeferenced point cloud.

2.3. Automatic Detection of Boulders and HMU Determination from Aerial Imagery and Direct
Measurements Data

In this study, the automatic detection of boulders and river segmentation to HMU
types from the collected aerial images, their decomposition layers, and direct measurements
data were performed. For the ground truth data, the experts mapped the bounding boxes
of boulders and labelled HMU types for the range of rivers under the investigation.

Boulders can be the cause of streamflow turbulence or roughness of the river surface,
which are the characteristic features of RIFFLE or RAPID HMU types. Thus, the number
of boulders and their geospatial positions can help to determine the HMU type. The
automatically detected boulders under and above the water surface may be used as an
additional channel to the initial input data from aerial images for the river segmentation
models. This channel contains the derived features and may, therefore, require less data for
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the training models. Other image decomposition techniques and direct measurements data
such as streamflow velocities and riverbed depths may be added to the model in same way
as the detected boulders. In this study, the analysis on how the accuracy of the ML model
to determine HMU depended on different data sources and their combination for selected
models was performed. In addition to RGB orthomosaic images (data source 1, DS1), the
interpolated data of depth and velocities (data source 2, DS2), layer of detected boulders
under and above water surface (data source 3, DS3), and results of Sobel filter applied on
RGB orthomosaic images were used (data source 4, DS4).

Manual boulder labelling is a time-consuming process. Thus, the layer that represents
boulders (DS3) should be created automatically without manual labelling. To create DS3
layer, an additional Yolov5x6-based model for object detection problem has been imple-
mented with training dataset, which contained bounding boxes of the boulders under and
above water mapped by the experts. To avoid usage of the same geospatial area for model
training and evaluating its results, different models have been constructed in a K-fold cross
validation procedure. After selecting the model architecture with the best performance,
final DS3 layer was created for the images that were not used in training. The results of
the boulder detection problem were used as one of the input features in the analysis of the
HMU segmentation problem.

In this study, the analysis of HMU determination results by the means of accuracy was
performed for the models trained with various input combinations. The cases of input data
combinations were considered using only direct measurement data, only aerial images,
and a combination of direct measurement data, aerial images and the output applying the
Sobel filter or boulder detection to them. After training the model, the post-processing step
was performed to reduce the output noisiness. In this step, the final decision of the HMU
type of the pixel was made by taking the mode of the predicted HMU types in the square
environment centered on the analyzed pixel. A generalized scheme of the applied data
sources, ML model for segmentation, and output is provided in Figure 4. The structure of
the ML model is described below.
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direct and indirect measurements.

The ten generated scenarios with combinations of different data sources are provided
in Table 1. Firstly, the models were trained on separate data sources, that is, the aerial
images without any transformations (Scenario No. 3), the aerials images after application
of Sobel filter (Scenario No. 2), and the maps of depths and velocities (Scenario No. 1).
To meet the conventional number of channels, the blank channel was added with equal
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values for all the elements. Secondly, the combinations of two data sources were used.
The direct measurement data was combined with aerial image data using aerial images
directly (Scenario No. 4), aerial images with Sobel filter (Scenario No. 5), and boulder
mask (Scenario No. 6). The boulder mask was used in combination with original aerial
images (Scenario No. 7) and the ones with Sobel filter (Scenario No. 8). Finally, the direct
measurement data and boulder mask were combined with either aerial images (Scenario
No. 10) or aerial images with Sobel filter (Scenario No. 9). All data sources were presented
in the form of an image with three channels. For the DS4, the depth and velocity were
stored in different channels, leaving the third channel filled with zeros.

Table 1. Scenarios of models with combinations of input data sources (DS).

Scenario No. Aerial Imagery Data Direct Measurements Data Label

1 - DS4 depth-vel
2 DS3 - photo-only (Sobel filter is ON)
3 DS1 - photo-only
4 DS1 DS4 depth-vel-photo
5 DS3 DS4 depth-vel-photo (Sobel filter is ON)
6 DS2 DS4 depth-vel-boulder
7 DS3 + DS2 - photo-only-boulder (Sobel filter is ON)
8 DS1 + DS2 - photo-only-boulder
9 DS3 + DS2 DS4 depth-vel-photo-boulder (Sobel filter is ON)
10 DS1 + DS2 DS4 depth-vel-photo-boulder

Using different data sources results in different number of channels in input and,
therefore, different model architectures. The architectures of segmentation models of
different input size are demonstrated in Appendix A (Figures A1–A3). Segmentation model
network architecture consists of two parts. The first part is dedicated to feature extraction.
MobileNetV2 [53] architecture has been chosen due to its small footprint and low resource
requirements [54] compared to other models, such as ResNet [55]. The MobileNetV2 pre-
trained on ImageNet dataset was used in this research. ImageNet is a large dataset and
using the model pre-trained on it enables the extraction of a large variety of patterns [56].
The second part of the segmentation model was dedicated to the classification of the pixels.
The U-net [57,58] model with MobileNetV2 for connecting into U-net was implemented.
The U-net model has a unique feature to exploit context information from an image due to
its architecture. It was performed by processing input in multiple contracting layers and
then up-sampling results, thus creating the U shape of model. The direct connection (called
skip connection) between the contracting and up-sampling layers enabled one to fill the
gaps of information and exploit the broader context.

2.4. Validation and Analysis of Results

The dataset used in this research was limited because of the complicated and expensive
data collection procedure. Thus, training the ML model and evaluating its performance
became a complex task. In order to validate the model’s performance, stratified K-fold
validation technique was used. Such an approach enabled the interpretation of the stability
of the results even for this relatively small dataset. To avoid similar data in training
and validation datasets, the data were grouped according to the river segments. Firstly,
the central line of the river region was constructed using morphological skeletonization
algorithm. Then, it was divided into K equal pieces, and river region divided into segments
by a line perpendicular to the central line. The folds were composed by including one
segment of each analyzed river region in each fold. Based on the problem (boulder detection
or HMU segmentation), the final dataset has been prepared for each selected piece in the
following way:

• Boulder detection problem—taking N random points from the area under investiga-
tion and crop squared images around it. If a warped image contained no boulders, it
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was dropped from the dataset. Standard data augmentation procedure from YOLOv5
has been used, where a mosaic of original and three random images was loaded in
training procedure.

• HMU segmentation problem—to apply augmentation in dataset preparation phase
(different data source for model training requires same data transformation), the
dataset was formatted by sliding 240 × 240 px window with a vertical and horizontal
stride of 80 px. Only the areas which have at least 50% of actual data (visible water
area with mapped HMU types) were included in the final dataset. Then, rotation
augmentation was applied with image rotated by the step of 60◦, that is, angles equal
to 0◦, 60◦, 120◦, 180◦, 240◦ and 300◦. The final 240 × 240 image has been cropped after
rotation of a twice-larger image to avoid cases with no-data at squared image corners.

Precision, recall, and mAP-50 (mean average precision with 50% threshold for the
intersection over union) were selected as model performance metrics in boulder detection
task and the sum of mean squared error, binary cross entropy, and cross entropy as training
loss function. For HMU type segmentation, the mean intersection over union (mIoU) was
used as metric and the cross entropy as training loss function.

3. Results
3.1. Distribution of the Hydromorphological Units

The mapping of HMUs and measurements of hydraulic parameters were done in four
rivers at the discharge of the current situation (Figure 5). Only one discharge situation was
measured in Verknė River downstream Jundeliškiai HPP and in Širvinta River downstream
Širvinta HPP. For the Varduva River, two different river stretches downstream, Renavas
HPP and Vadagiai HPP, were studied, since this river is affected by more than one HPP.
The stretches downstream Vadagiai HPP and in Jūra River downstream Balskai HPP were
distinguished by the two discharge situations measured, which highlighted the changes in
hydromorphological units depending on the amount of water.
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The length of mapped stretches varied from 164 m (Varduva River downstream
Vadagiai HPP) up to 345 m (Širvinta River). The low-land rivers are characterized by
monotonous streamflow and the absence of rapid changes. Therefore, the selected rivers
segments were relatively abundant in diversity and quantity of hydromorphological units
compared to the remaining stretches. In total, 16 to 21 HMUs were indicated per each case
study segment; only at higher discharges below Balskai HPP (Jūra River) and Vadagiai
HPP (Varduva River) did the quantity of HMUs reduce to 11 and 13, respectively. The
most frequent HMU type across studied segments was GLIDE, which is common for the
studied type of the rivers. The number of POOL polygons accounted for half of all GLIDE
units, and they were distinguished by deeper properties. Units of RIFFLE and RAPID
were identified less against the previous ones because only one to three units per stretch
were found. Only one RIFFLE and no RAPID polygons were determined downstream
of Renavas HPP. For the rivers with several discharges, the number of HMUs with more
turbulent properties increased together with the increase in discharge.

The selection of HMUs type was done not only on the visual morphological indica-
tors, but also based on the hydraulic features determined by the morphological changes.
Information about the area and number of HMU polygons in each analyzed river stretch is
provided in Appendix B (Table A1). The analysis of hydraulic parameters, such as depth of
the riverbed and streamflow velocity, disclosed the main differences between determined
hydromorphological units and similarities across the selected case studies (Table 2). A
relative change in depth and streamflow velocity, together with the water surface roughness
due to the turbulence, were important parameters for HMU type indication in selected
river stretches. The increasing discharge significantly affected depth and velocity values to
the higher side. Depending on the measured discharge situation, GLIDE was described
by the unit where average streamflow velocity fluctuated between 0.140 and 0.216 m/s,
and average depth did not reach 0.48 m for the discharge situations of less than 1 m3/s.
For higher discharges, the observed parameters increased up to 0.540 m/s in streamflow
velocity and 0.94 m in river depth. The hydromorphological unit of POOL represented the
relatively deepest places of the studied stretches because, despite the obtained discharges,
the average depths ranged between 0.65 m and 1.05 m. The velocities were the smallest in
POOLs and fluctuated between 0.055 and 0.141 m/s for small discharges and more than
0.200 m/s for higher discharges. Since RIFFLE and RAPID HMUs were quite similar in
terms of streamflow velocity, the main difference between them was not only different
patterns of surface roughness, but also the fact that RIFFLE was shallower than RAPID.
Accordingly, the average depth of RIFFLE was around 0.17 and 0.30 m. Exclusively in
Verknė River, the average depth was 0.50 m. Meanwhile RAPID units were 4 to 10 cm
deeper on average comparing with the RIFFLEs.

3.2. Construction of Folds for Cross-Validation

The river features, light, and colors depend on the season the images were captured
in. The stratified 5-fold validation was performed to include all examples of the analyzed
rivers. In this research, the dataset was created for five river stretches (two of them were
measured twice in different seasons and under noticeably different discharges). Thus,
seven sets of aerial images and direct measurements were used. All seven river stretches
were split into segments to prepare a dataset for 5-fold cross-validation. Skeletonization
was performed to obtain the central river line for each analyzed river. Therefore, the river
stretch was divided into five approximately equal parts (Figure 6) and all segments were
assigned to different folds.
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Table 2. Average values of depth and streamflow velocity for different hydromorphological units in
studied river stretches.

River
Discharge Parameter

Hydromorphological Unit

GLIDE POOL RIFFLE RAPID

Verknė
3.31 m3/s

Depth (m) 0.62 1.05 0.50 0.54
Velocity (m/s) 0.422 0.260 0.609 0.757

Širvinta
0.522 m3/s

Depth (m) 0.38 0.73 0.25 0.35
Velocity (m/s) 0.216 0.132 0.405 0.362

Jūra
1.98 m3/s

Depth (m) 0.54 0.85 0.35 0.44
Velocity (m/s) 0.210 0.206 0.630 0.579

7.08 m3/s
Depth (m) 0.94 - - 0.77
Velocity (m/s) 0.540 - - 0.873

Varduva
Renavas HPP
0.162 m3/s

Depth (m) 0.32 0.65 0.24 -
Velocity (m/s) 0.144 0.078 0.385 -

Vadagiai HPP
0.163 m3/s

Depth (m) 0.29 0.68 0.17 0.21
Velocity (m/s) 0.140 0.055 0.483 0.478

0.967 m3/s
Depth (m) 0.48 0.80 0.30 0.40
Velocity (m/s) 0.235 0.141 0.540 0.577
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Figure 6. The scheme of data preparation for cross validation (the Verknė River example).

Different river segments were used in boulder detection and HMU segmentation
models for training and validation. An overview of the generalized data of HMU areas
and the number of boulders in each fold is provided in Table 3.

Table 3. Composition of folds according to the mean of HMU area, number of HMU polygons and
number of boulders.

Fold Total Area (m2)
HMU by Type

Area (Number of HMU Polygons) Number of Boulders

GLIDE POOL RIFFLE RAPID Under Water Above Water

1 4117.1 (38) 2790.8 (22) 491.1 (7) 441.5 (3) 393.7 (6) 175 102
2 4279.3 (38) 2080.4 (20) 555.0 (9) 522.2 (3) 1121.6 (6) 531 457
3 4233.9 (23) 2298.8 (15) 439.5 (4) 495.2 (1) 1000.4 (3) 169 99
4 4621.6 (32) 3189.4 (16) 531.9 (9) 0.0 (0) 900.3 (7) 204 239
5 4244.4 (23) 1291.2 (8) 1361.3 (9) 832.9 (2) 759.1 (4) 389 200

3.3. Boulder Detection and Formation of DS3 Layers

The results of boulder detection were used as the pre-processed data in the model
training. The object for investigation in the boulder detection task were two different
classes labelled as boulders under water (BUW) and boulders above water (BAW). Object
loss and precision curves for validation datasets during training are given in Figure 7. All
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folds in cross validation demonstrated the same trends during the training. The values
of the loss function decreased as the epochs pass (Figure 7a). For all cases, the precision
values did not change significantly after the 20th epoch (Figure 7b).
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For validation datasets after training, the precision, recall, and mAP-50 metrics of both
classes are shown in Table 4. The results demonstrated that all metrics were better for BAW
class in all datasets. Obviously, the detection of BUWs was more complicated because of
the water layer above the boulder, vegetation, water surface roughness, and other features.

An example of the original image and boulder inference result is provided in Figure 8.
The red and green bounding boxes represented the expected result, i.e., the manually
labelled bounding boxes of BAW and BUW classes. The cross and diagonal patterns
indicated the inference results of the BAW and BUW classes, respectively. The example
in Figure 8 illustrated the tendency towards detection errors due to small boulders in the
area of larger ones. Accordingly, the automatic detection was difficult, as well as labelling
manually.

Table 4. The precision, recall, and mAP-50 for the validation datasets.

Fold Class Objects Precision Recall mAP-50

Train
2345-valid1

BAW 809 0.851 0.710 0.731

BUW 1025 0.666 0.443 0.454

Train
1345-valid2

BAW 2453 0.766 0.797 0.805

BUW 3091 0.578 0.339 0.361

Train
1245-valid3

BAW 664 0.798 0.664 0.719

BUW 823 0.567 0.408 0.434

Train
1235-valid4

BAW 1670 0.669 0.764 0.773

BUW 924 0.620 0.360 0.393

Train
1234-valid5

BAW 1673 0.798 0.515 0.579

BUW 2485 0.734 0.404 0.462
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Figure 8. The original image (a) and the results of boulder detection (b). Red and green borders
represent manually labelled bounding boxes BAW (red) and BUW (green). The patterns of cross and
diagonal lines indicated inference results of BAW and BUW classes, respectively.

3.4. HMU Segmentation Results

K-fold cross-validation with five folds was performed to evaluate HMU segmentation
results for all the generation scenarios of input data sources. The mIoU curves for the
validation datasets are presented in Figure 9. The lines represented the mean value of
mIoU in all the folds, whereas the area showed the minimum and maximum value of mIoU
of the validation dataset in the folds. The performance results were provided from the
perspective of the model architecture, i.e., the number of data sources used as the input. The
calculations were done using TensorFlow software with NVIDIA A100 GPU. The training
was set to 200 epochs, but with an early stopping condition of no improvement of validation
mIoU in 32 epochs to prevent overfitting. In the results, the number of epochs was chosen
with respect to the smallest value of epochs between the folds trained under the same
scenario (combination of data sources). The results showed that the best performance was
reached in approximately the 10 first epochs. The mIoU value did not change significantly
for all the models. Analysis of the results showed that the best values of the measured
metrics were given by the models, which were created using only DS4, combinations of
DS2 with DS3, DS2 with DS4, and DS1 with DS2 (Figure 9a,b). Although averaged mIoU
values of all scenarios did not exceed 0.4, the performance of scenarios with either DS1 or
DS3 was significantly worse and did not exceed 0.3 (Figure 9a).
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The line represents the mean value of mIoU of all validation cases, and the colored area presents the
difference between minimum and maximum values in different folds.



Water 2022, 14, 4114 14 of 22

In the inference procedure, the ML model predicted the class of each pixel. In some
cases, several pixels of one class were in the environment of the pixels which were assigned
to another class. It should be noted that HMU polygons covered areas larger than several
pixels. Thus, it was highly probable that such noisy cases represented the misclassified
pixels. The post-processing step was added to the analysis. The final decision of the HMU
type of the pixel was made by assigning the mode value of the inference results bounded by
the 21 × 21 square centered on the analyzed pixel. The example of the inference results and
results after post-processing are provided in Figure 10. Although the noise was reduced
after the post-processing step, there were still small regions of the same class (blue region
in Figure 10b). These small regions resulted in relatively low performance metrics.
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Figure 10. Example of inference results by the ML model (a), and post-processed results (b). Green,
blue, red, gray colors represent GLIDE, RIFFLE, RAPID, and POOL HMU types, respectively. The
region out of interest is black.

To demonstrate the benefit of the post-processing step, the mIoU values for model
output before and after the post-processing step are provided for all the scenarios in
Table 5. The results showed that the mIoU values increased by approximately 3–6% after
the post-processing step was applied. After the post-processing step, the mIoU values
exceeded 0.4 for scenarios No. 1, 6, 7, and 9. Of these, only scenario No. 7 did not include
direct measurement data (DS4). This case demonstrated that direct measurements were
important features in HMU segmentation. However, similar segmentation metrics can also
be achieved without the usage of direct measurement data.

Table 5. The mIoU value for the model output and post-processed model output.

Scenario No. Data Sources mIoU of Model Output mIoU of
Post Processed Model Output

1. DS4 0.394 0.409
2. DS3 0.243 0.254
3. DS1 0.262 0.271
4. DS1 + DS4 0.348 0.360
5. DS3 + DS4 0.357 0.374
6. DS2 + DS4 0.397 0.416
7. DS3 + DS2 0.405 0.421
8. DS1 + DS2 0.383 0.395
9. DS3 + DS2 + DS4 0.382 0.405

10. DS1 + DS2 + DS4 0.362 0.385

4. Discussion

The evaluation of river HMUs [51,52] is a complex task that requires several compo-
nents for comprehensive estimation. Local physico-geographical features create unique
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conditions that should be considered as well. In terms of this research, the dominant
low-land rivers common across Lithuania and neighboring countries were selected. The
ML applications to predict HMU types with aerial images involving direct measurement
data were analyzed. Ten scenarios with different combinations of input data sources were
applied to train ML models. The findings of the research revealed that the best perfor-
mance was demonstrated by using only direct measurement data if one input source was
considered, which is significantly worse than using direct measurements data when only
aerial images were applied (with or without Sobel filter). The areal images of RGB chan-
nels, despite the good visual properties in expert evaluation, have their own limitations
when tasks become more comprehensive and the training of ML algorithms steps into the
development of object recognition approaches. To eliminate complex disturbances and
accurately identify all available information from orthophoto images, multispectral images
are used [59]. Then, a wider range of color bands is captured in comparison with the RGB
scale and we have more information that helps accurately determine pattern differences
that are invisible to the eye. For example, Wright et al. [60] were some of the first researchers
to use multispectral images for mapping hydrogeomorphic units, and found out that it
could be done at a fine scale.

Additionally, the scenarios with two input sources were tested and it was found that
their performance metrics of all models were quite similar. However, using the boulder
layer with either a layer of direct measurements or aerial images with a Sobel filter resulted
in slightly higher (2–15%) mIoU value. This demonstrated that the direct measurements
could be changed by the combination of boulder layer and aerial images with the Sobel
filter. Accordingly, the remote measurements based on the analysis of aerial images enable
one to determine the HMU types without measuring depth and velocity directly. The
findings also showed that using three input sources consisting of boulder layer, direct
measurements, and aerial images with or without the Sobel filter did not improve the
HMU segmentation. However, the post-processing step led to 3–6% higher mIoU values
compared to the mIoU values for the ML model inference results. These effects require
further investigation, as it could be possible that the features in input layers contradicted
each other and the higher number of input therefore resulted in worse performance. Some
reasons could be related to the certain turbidity of low-land rivers. The selected rivers
are characterized by relatively high turbidity depending on the hydrological conditions
as a result of which optical properties of water transparency suffer. It is much easier to
optically recognize the objects in “crystal clear” water [32], but based on the analysis of
more than 80 media and high spatial resolution satellite images, the turbidity patterns of
the Danube Delta waters [61] showed the complexity of such a task, and the application of
MODIS satellite data for the long-term analysis of turbidity patterns confirmed that [62]. In
addition, a certain layer of bottom sediments that changes in spatial and temporal scale
characterizes the selected low-land rivers. The color spectrum of the bottom changes not
only between seasons, but also during the course of the day due to different lighting and
weather conditions. The purely visual recognition is reliant on good visibility, while the
water quality becomes a critical limiting factor [28]. Therefore, the development of new or
the improvement of current methods is essential for very turbid areas, with a special focus
on the involvement of areal imagery with high spectral properties [25].

This research highlighted the importance of a higher number of data sources as input,
which leads to a higher number of features and subsequently requires more data for
training. A larger dataset of aerial images and direct measurements for various river
stretches should be created to make the model more general. However, data collection
is a complex procedure, and the aerial image data is sensitive to seasonal vegetation and
weather conditions. It should also be noted that the ML model inference results are noisy
and the noise reduction step should be included in the post-processing step.
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5. Conclusions

The analysis of various scenarios of different inputs to construct an ML model that
determines HMU types from the aerial images and direct measurement data was performed.
The proposed approach was based on the supervised learning with the HMU types as
labels determined by the experts. The results showed that models trained on the direct
measurement data and on the combination of boulder layer and image demonstrated
similar accuracy after applying the Sobel filter.

Two main directions were identified for future research. Firstly, the variety of inputs
for the ML model can be expanded by using multi-spectral images or various methods
for feature extraction and image decomposition. The second direction is based on the
combination of ML model with aerial images as input and the validation of its results using
physically based hydraulic models.
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Appendix B

Table A1. Area and numbers of HMU polygons at the analyzed river stretches.

River
Discharge

Parameter Analyzed River
Stretch

Hydromorphological Unit

GLIDE POOL RIFFLE RAPID

Verknė
3.31 m3/s

Area (m2) 4632.1 2236.2 548.4 1104.2 743.2
HMU polygons 16 7 4 2 3

Širvinta
0.522 m3/s

Area (m2) 2277.1 1288.4 695.4 216.7 76.5
HMU polygons 21 10 8 2 1

Jūra
1.98 m3/s

Area (m2) 4851.8 2420.8 792.9 720.0 918.2
HMU polygons 17 9 2 2 3

7.08 m3/s
Area (m2) 4848 3044.2 0.0 0.0 1803.8
HMU polygons 11 6 0 0 5

Varduva
Renavas HPP
0.162 m3/s

Area (m2) 1733.2 1208.4 487.8 37.1 0.0
HMU polygons 17 10 6 1 0

Vadagiai HPP
0.163 m3/s

Area (m2) 1576.9 872.1 453.6 81.0 170.3
HMU polygons 17 10 4 1 2

0.967 m3/s
Area (m2) 1583.8 583.7 402.1 132.9 465.2
HMU polygons 13 6 3 1 3
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