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Abstract: New derivatives of carbazole and diphenyl imidazole for potential multiple applications
were synthesized and investigated. Their properties were studied by thermal, optical, photophysical,
electrochemical, and photoelectrical measurements. The compounds exhibited relatively narrow blue
light-emission bands, which is favorable for deep-blue electroluminescent devices. The synthesized
derivatives of imidazole and carbazole were tested as fluorescent emitters for OLEDs. The device
showed deep-blue emissions with CIE color coordinates of (0.16, 0.08) and maximum quantum
efficiency of 1.1%. The compounds demonstrated high triplet energy values above 3.0 eV and hole
drift mobility exceeding 10−4 cm2/V·s at high electric fields. One of the compounds having two
diphenyl imidazole moieties and tert-butyl-substituted carbazolyl groups showed bipolar charge
transport with electron drift mobility reaching 10−4 cm2/V·s at electric field of 8 × 105 V/cm.
The synthesized compounds were investigated as hosts for green, red and sky-blue phosphorescent
OLEDs. The green-, red- and sky-blue-emitting devices demonstrated maximum quantum efficiencies
of 8.3%, 6.4% and 7.6%, respectively.

Keywords: imidazole; carbazole; luminescence; emitter; host; organic light-emitting diode; upcon-
version

1. Introduction

Organic light-emitting diodes (OLEDs) are used in displays and lighting devices
due to their low turn-on voltage, high power efficiency, mechanical flexibility and wide
range of colors [1]. Generally, electrons and holes injected from the respective electrodes
move through charge injection/transport layers into the emitting layer of a device. There,
electrons and holes recombine and form singlet and triplet excitons [2]. Fluorescent OLEDs
exploit only singlet excitons for light emission [3]. Organic fluorescent materials with high
emission quantum yield, restricted intermolecular interactions, and appropriate charge
injection/transporting properties are required for stable and efficient OLEDs [4,5]. Because
of the high stability of blue singlet emission-based OLEDs, they are still used in commercial
displays [6]. Therefore, development of stable, efficient and cost-effective fluorescent blue
emitters remains an urgent task. Phosphorescent OLEDs (PHOLEDs) can utilize both
singlet and triplet excitons for light emission. This property allows us to increase external
quantum efficiency of PHOLEDs [7,8]. Phosphorescent emitters normally have to be doped
in a suitable charge transporting host matrix due to their typically poor charge carrier
mobility [9]. Host materials with appropriate energy levels and triplet energies, balanced
charge carrier transport, as well as high thermal stability and morphological stability of
their layers, can enable excellent PHOLED performance [10–12].
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Many low-molar-mass electroactive compounds were synthesized for highly efficient
OLEDs [13]. The advantages of low-molar-mass compounds are their precise chemical
structure, and high purity [14]. Among the wide-bandgap materials, carbazole deriva-
tives are among the most widely studied due to their good hole-transporting properties,
high triplet energy and rigid molecular framework [15]. Carbazole ring can be easily
modified by attaching various electron-accepting units, such as imidazole [16]. Deriva-
tives of carbazole with benzimidazole [12,17] or -phenanthro [9,10-d]imidazole [18] sub-
stituents demonstrate suitable triplet energies, efficient bipolar charge transport and rel-
atively high photoluminescence quantum efficiencies. Blue OLEDs, based on such emit-
ters, demonstrate external quantum efficiency, reaching 3% [17,18]. Blue emitters can
sometimes be utilized also as hosts to generate green or white light by energy transfer
to an emissive compound [19–21]. Donor–acceptor derivatives of imidazole containing
diphenylimidazole [22,23], pyrene-imidazole [24–26], phenanthroimidazole [26–34], benz-
imidazole [35,36], and theobromine [37] exhibit specific localization of molecular orbitals
due to highly twisted molecular geometry and conformations. Consequently, these com-
pounds can form a hybridized local charge transfer state (HLCT) [22–37] that can be
exploited for practical electroluminescent applications, including blue-emitting OLEDs.
Recently, there has been a great deal of interest in the use of HLCT compounds includ-
ing imidazole derivatives [34,38] as hosts in systems utilizing prompt fluorescent [34],
TADF [39], phosphorescent [38,39] and HLCT [40] emitters. Such an approach results in
triplet harvesting via host similarly to the principle of hyperfluorescence involving TADF
host matrices [41,42].

The simple and efficient synthesis of materials intended for OLEDs to a great extent
contributes to the cost effectiveness of the devices [43]. Carbazole and imidazole derivatives
correspond to the criterion of cost effectiveness. Carbazole derivatives are susceptible to
various synthetic methods, including nucleophilic substitution, Suzuki, and Buchwald–
Hartwig coupling [44]. Imidazole derivatives can be easily obtained by one-pot cyclization
reaction from readily available starting compounds [45,46].

In this work, we present multifunctional derivatives of carbazole and imidazole
obtained by simple one-pot condensation reaction. The appropriate properties of the
obtained compounds enable them to be used as emitters for doping-free blue OLEDs and
as hosts for green, red and sky-blue PHOLEDs, avoiding the photochemical oxidation of
the imidazole ring by the device fabrication in an inert atmosphere.

2. Materials and Methods

The 9H-carbazole (95%, Reachem Slovakia, Bratislava, Slovakia), benzil (98%, Aldrich,
St. Louis, MO, USA), 9-ethyl-9H-carbazole-3 carbaldehyde (98%, Aldrich), 9-ethyl-9H-
carbazol-3-amine (98%, Aldrich), ammonium acetate (98%, Fluka, Dresden, Germany),
acetic acid (99%, Reachem), anhydrous sodium sulfate (99%, Reachem), tert-butyl chloride
(99%, Aldrich), aluminum(III) chloride (99%, Aldrich), 2-ethylhexyl bromide (95%, Aldrich),
and tin(II) chloride (98%, Aldrich) were purchased as reagent grade chemicals and used as
received.

3,3′-(4,5-Diphenyl-1H-imidazole-1,2-diyl)bis(9-ethyl-9H-carbazole) (1)
A mixture of benzil (1 g, 4.8 mmol), 9-ethyl-9H-carbazole-3-carbaldehyde (1.1 g,

4.8 mmol), 9-ethyl-9H-carbazol-3-amine (1.2 g, 5.7 mmol) and ammonium acetate (3.7 g,
47.6 mmol) in acetic acid (5 mL) was heated at the reflux temperature for 1 h. The mixture
was poured into cold water and extracted with chloroform. The organic layer was dried
with anhydrous sodium sulfate, filtered and distilled. The product was purified by column
chromatography using a mixture of acetone and hexane at a volume ratio of 1:3 as an
eluent. The compound 1 was crystallized from acetone. The yield of pale-yellow crystals
was 2.38 g (82%), mp = 264–265 ◦C.

IR, cm−1: 3055 (ar. C-H), 2978 (aliph. C-H), 1599, 1470, 1444 (ar. C=C), 1332,
1230 (C-N).
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1H NMR (400 MHz, CDCl3-d, δ): 8.28 (d, J = 1.3 Hz, 1H, ar.), 7.84 (d, J = 7.8 Hz, 1H, ar.),
7.76–7.78 (m, 2H, ar.), 7.62 (d, J = 7.3 Hz, 2H, ar.), 7.37–7.44 (m, 2H, ar.), 7.30–7.33 (m 2H, ar.),
7.20–7.26 (m, 4H, ar.), 7.12–7.18 (m, 5H, ar.), 7.02–7.10 (m, 5H, ar.), 4.25 (q, J = 7.2 Hz, 2H,
CH2), 4.17 (q, J = 7.2 Hz, 2H, CH2), 1.34 (t, J = 7.2 Hz, 3H, CH3), 1.26 (t, J = 7.2 Hz, 3H, CH3).

13C NMR (101 MHz, CDCl3-d, δ): 140.54, 140.26, 139.13, 131.24, 131.18, 128.29, 128.21,
127.74, 126.82, 126.36, 126.11, 125.74, 123.07, 122.70, 122.49, 120.81, 120.67, 120.60, 119.23,
119.03, 108.82, 108.55, 108.49, 107.95, 37.78, 37.58, 30.89, 13.79.

MS (APCl+), m/z = 608 [M + H]+.
6,6′-(4,5-Diphenyl-1H-imidazole-1,2-diyl)bis(3-(tert-butyl)-9-ethyl-9H-carbazole) (2)
A solution of compound 1 (1 g, 1.7 mmol) and aluminum(III) chloride (0.8 g, 6.6 mmol)

in dichloromethane (10 mL) was cooled down using an ice bath. The solution of tert-butyl
chloride (0.4 mL, 3.6 mmol) in dichloromethane (5 mL) was added dropwise to the reaction
mixture. The mixture was stirred at room temperature for 1 h, then poured into water and
extracted with chloroform. The organic layer was dried with anhydrous sodium sulfate,
filtered and distilled. The product was purified by column chromatography using a mixture
of acetone and hexane at a volume ratio of 1:6 as an eluent. The yield of pale-yellow solid
was 0.82 g (69%).

IR, cm−1: 3053 (ar. C-H), 2963 (aliph. C-H), 1604, 1481 (ar. C=C), 1301, 1232 (C-N).
1H NMR (400 MHz, DMSO-d6, δ): 8.20–8.34 (m, 2H, ar.), 8.10–8.13 (m, 1H, ar.),

7.94–8.05 (m, 1H, ar.), 7.68–7.76 (m, 1H, ar.), 7.57–7.60 (m, 2H, ar.), 7.50–7.56 (m, 3H, ar.),
7.45–7.49 (m 2H, ar.), 7.33–7.42 (m, 4H, ar.), 7.16–7.31 (m, 6H, ar.), 4.25–4.43 (m, 4H, CH2),
1.18–1.38 (m, 24H, CH3).

13C NMR (101 MHz, DMSO-d6, δ): 149.73, 148.06, 142.30, 141.90, 140.55, 139.59, 138.90,
138.74, 138.51, 136.92, 136.83, 135.43, 132.06, 132.03, 131.64, 131.48, 128.84, 128.59, 126.96,
126.70, 126.31, 125.89, 124.90, 124.83, 124.13, 123.04, 122.95, 122.17, 122.13, 121.88, 121.85,
121.80, 120.63, 120.19, 119.96, 119.79, 117.33, 116.04, 109.58, 109.43, 109.33, 109.03, 108.88,
106.02, 37.64, 37.48, 37.21, 35.48, 35.42, 34.86, 34.53, 32.17, 32.02, 14.27, 14.20, 14.15.

MS (APCl+), m/z = 720 [M + H]+.
3,3′-(1,1′-(9-(2-Ethylhexyl)-9H-carbazole-3,6-diyl)bis(4,5-diphenyl-1H-imidazole-2,1-

diyl))bis(9-ethyl-9H-carbazole) (3)
Compound 3 was synthesized from benzil (1.35 g, 6.4 mmol), 9-ethyl-9H-carbazole-

3-carbaldehyde (1.59 g, 7.1 mmol), diaminocarbazole 2 (1 g, 3.2 mmol) and ammonium
acetate (4.98 g, 64.6 mmol) by the same procedure as compound 1. The product was purified
by column chromatography using the mixture of acetone and hexane at a volume ratio of
1:4 as an eluent. The yield of white solid was 2.63 g (74%).

IR, cm−1: 3054 (ar. C-H), 2932 (aliph. C-H), 1602, 1475 (ar. C=C), 1333, 1231 (C-N).
1H NMR (400 MHz, CDCl3-d, δ): 8.16 (s, 2H, ar.), 7.69 (d, J = 7.7 Hz, 2H, ar.), 7.60–7.50

(m, 6H, ar.), 7.43 (d, J = 8.5 Hz, 2H, ar.), 7.33 (t, J = 7.6 Hz, 2H, ar.), 7.26 (d, J = 8.2 Hz, 2H,
ar.), 7.18 (t, J = 7.5 Hz, 6H, ar.), 7.14–7.07 (m, 7H, ar.), 7.07–7.00 (m, 7H, ar.), 6.89–7.00 (m,
4H, ar.), 4.10–4.24 (m, 4H, CH2), 3.94–4.02 (m, 2H, CH2), 1.84–1.91 (m, 1H, CH), 1.35–0.98
(m, 14H, CH2, CH3), 0.73 (t, J = 7.4 Hz, 3H, CH3), 0.68 (t, J = 6.9 Hz, 3H, CH3).

13C NMR (101 MHz, CDCl3-d, δ): 148.33, 140.50, 140.24, 139.62, 137.94, 134.87, 131.25,
131.16, 131.05, 129.32, 128.14, 127.50, 126.88, 126.77, 126.41, 125.73, 123.06, 122.64, 122.31,
121.63, 121.44, 120.66, 120.44, 119.01, 109.46, 108.51, 107.87, 57.27, 47.85, 39.16, 37.69, 30.91,
28.51, 24.37, 22.87, 13.90, 10.89.

MS (APCl+), m/z = 1103 [M + H]+.
6,6′-(1,1′-(9-(2-Ethylhexyl)-9H-carbazole-3,6-diyl)bis(4,5-diphenyl-1H-imidazole-2,1-

diyl))bis(3-(tert-butyl)-9-ethyl-9H-carbazole) (4)
Compound 4 was synthesized from compound 3 (1 g, 0.9 mmol), AlCl3 (0.48 g,

3.6 mmol) and tert-butyl chloride (0.22 mL, 2 mmol) by the same procedure as compound
2. The product was purified by column chromatography using the mixture of acetone and
hexane at a volume ratio of 1:5 as an eluent. The yield of pale-yellow solid was 0.62 g (57%).

IR, cm−1: 3052 (ar. C-H), 2958 (aliph. C-H), 1605, 1480 (ar. C=C), 1300, 1234 (C-N).
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1H NMR (400 MHz, CDCl3-d, δ): 8.36 (s, 2H, ar.), 7.85 (s, 2H, ar.), 7.56 (d, J = 7.6 Hz,
4H, ar.), 7.50 (s, 2H, ar.), 7.42 (d, J = 8.5 Hz, 2H, ar.), 7.23–7.15 (m, 8H), 7.07–7.15 (m, 8H,
ar.), 7.02–7.07 (m, 4H, ar.), 6.89–7.01 (m, 6H, ar.), 4.07–4.17 (m, 4H, CH2), 3.95–4.02 (m, 2H,
CH2), 1.83–1.92 (m, 1H, CH), 1.30 (s, 18H, CH3), 1.27–1.11 (m, 11H, CH2, CH3), 0.99–1.09
(m, 3H, CH3), 0.77 (t, J = 7.4 Hz, 3H, CH3), 0.67 (t, J = 6.5 Hz, 3H, CH3).

13C NMR (101 MHz, CDCl3-d, δ): 148.53, 146.00, 142.10, 140.54, 139.93, 138.43, 138.01,
134.94, 133.67, 131.24, 131.14, 130.85, 129.39, 129.36, 128.14, 128.09, 127.50, 127.48, 126.40,
126.27, 123.98, 123.66, 123.17, 123.04, 122.99, 122.75, 122.68, 122.40, 121.68, 120.64, 116.79,
109.30, 107.99, 107.39, 38.97, 37.67, 34.38, 31.95, 24.58, 22.64, 13.90, 10.91.

MS (APCl+), m/z = 1216 [M + H]+.

3. Results and Discussions
3.1. Synthesis

The synthetic routes for preparation of derivatives of carbazole and diphenyl imidazole
are presented in Scheme 1. The target compound 1 was synthesized using the commercial
reagents. During the condensation reaction, a tetra-substituted imidazole ring was obtained.
Tert-butyl groups were attached to carbazole moieties to obtain compound 2. Compounds
3 and 4 were prepared by the same methods as 1 and 2, respectively.
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Scheme 1. Synthesis of derivatives of carbazole and diphenyl imidazole.

The yields of derivatives 1 and 3 were of 82% and 74%, respectively, whereas the
Friedel–Crafts alkylations gave compounds 2 and 4 in 69% and 57% yields, respectively.
All the compounds were found to be soluble in common organic solvents. Their structures
were confirmed by 1H NMR, ATR-IR, and mass spectrometry.

3.2. Thermal Properties

The behavior of compounds 1–4 under heating was studied by TGA and DSC. The
obtained results are summarized in Table 1.
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Table 1. Thermal and photophysical characteristics of compounds 1–4.

Compound TD, ◦C Tm, ◦C Tg, ◦C Tcr, ◦C λab, nm λfl, nm ET, eV

1 399 270 134 236 299 398 3.18
2 400 - 147 - 303 398 3.16
3 477 - 151 - 303 402 3.08
4 487 - 172 - 304 403 3.05

TD—5% weight-loss temperature; Tm—melting point; Tg—glass transition temperature; Tcr—crystallization
temperature, λab—lowest energy band of absorption; λfl—wavelength of maximum intensity of fluorescence of
the solutions in THF; ET—triplet energy determined from phosphorescence spectrum.

The synthesized compounds showed high thermal stability confirmed by TGA. The
5% weight-loss temperatures (TD) of the compounds with one imidazole ring (1 and 2)
were found to be ca. 400 ◦C, while compounds with two imidazole units (3 and 4) showed
TD higher than 477 ◦C (Figures 1a and S1a). Compound 1 was obtained as a crystalline
substance. In the first DSC heating scan of 1 (Figure 1b), an endothermic melting signal
was observed at 270 ◦C. The second heating scan revealed glass transition temperature (Tg)
at 134 ◦C and further heating showed crystallization and melting signals. Compounds 2,
3 and 4 were isolated after the synthesis and purification as amorphous substances with
Tg of 146 ◦C, 151 ◦C and 172 ◦C, respectively, observed in the heating and cooling scans
(Figure S1b–d). DSC results demonstrate that increased molecular weight by attachment
additional carbazole–imidazole moiety or tert-butyl groups results in an increase of Tg.
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3.3. Photophysical Properties

Absorption spectra of dilute solutions of compounds 1–4 are presented in Figures 2a
and S2a–S5a. Optical characteristics of the compounds are collected in Table 1. The dilute
THF solutions of 1–4 absorb UV radiation up to 380 nm. The attachment of additional
fragments of carbazole and diphenyl imidazole did not contribute to the extension of the
systems of conjugated π-electrons (cf. UV spectra of THF solutions of 1 and 2 with those
of the solutions of 3 and 4). The investigation of absorption and emission spectra of 1–4
dissolved in solvents of different polarity was carried out (Figures S2–S5). No depen-
dence of the wavelengths of absorption peaks on the polarity of solvents was observed
(Figures S2a–S5a). THF solutions of 1–4 emitted blue light with the photoluminescence
(PL) intensity maxima in the range of 398–403 nm (Figure 2a, Table 1).
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Figure 2. (a) Absorption and PL spectra of the dilute THF solutions of 1–4; (b) the Lippert–Mataga 
plots for 2; (c) PL spectra of the dilute DCM, MeOH and chloroform solutions of 2; (d) phosphores-
cence spectrum of the dilute THF solution of compound 4 recorded at 77 K. 
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appropriate value of errors. For example, the toluene and THF solutions of 1–4 exhibited 
local excited (LE) state emission solely despite of the different polarity of the solvents rep-
resented by the different values of orientation polarizability. Additionally, the batho-
chromic shift of charge transfer (CT) bands of 1–4 appeared with the increase in polarity 
of the solvents without a strict order. These observations point to the fact that the Lippert–
Mataga approach is not applicable for the description of compounds 1–4 in terms of dipole 
moment change [51]. The interaction of the solvent and the solute is ongoing in an indi-
vidual manner for the particular solvent, resulting in the different distribution of LE and 
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Figure 2. (a) Absorption and PL spectra of the dilute THF solutions of 1–4; (b) the Lippert–Mataga
plots for 2; (c) PL spectra of the dilute DCM, MeOH and chloroform solutions of 2; (d) phosphores-
cence spectrum of the dilute THF solution of compound 4 recorded at 77 K.

The aspecific electrostatic interactions between molecules of the solvent and the ma-
terials in the context of Onsager interpretation [47] is in the core of the Lippert–Mataga
approach [48–50] used for the description of the solvatochromic effect. The Lippert–Mataga
plots were built for solutions of 1–4, which demonstrated the correlation of the Stokes shift
and orientation polarizability (Figures 2b and S6a–c). It was established that the Lippert–
Mataga plots cannot be sufficiently fitted linearly for the solutions of 1–4 with appropriate
value of errors. For example, the toluene and THF solutions of 1–4 exhibited local excited
(LE) state emission solely despite of the different polarity of the solvents represented by the
different values of orientation polarizability. Additionally, the bathochromic shift of charge
transfer (CT) bands of 1–4 appeared with the increase in polarity of the solvents without a
strict order. These observations point to the fact that the Lippert–Mataga approach is not
applicable for the description of compounds 1–4 in terms of dipole moment change [51].
The interaction of the solvent and the solute is ongoing in an individual manner for the par-
ticular solvent, resulting in the different distribution of LE and CT components. Apparently,
the emission of 1–4 in solutions is affected by HLCT, which is characterized as combined
transition of the LE and CT states. The observed LE, CT and mixed LE and CT states of
the solutions of compounds 1–4 in different solvents may originate from the twisting of the
angles between the carbazole and imidazole moieties (Figure 2c) [45].

The wavelengths of intensity maxima of phosphorescence spectra of THF solutions
of the compounds recorded at 77 K ranged from 533 nm to 537 nm (Figures 2d and S7a–c).
The triplet energies (ET) of the compounds were estimated from the onset of the phos-
phorescence spectra (Figure 2d). Compound 1 exhibited the highest ET of 3.18 eV, while
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compounds 2, 3 and 4 exhibited slightly smaller triplet energy levels 3.16 eV, 3.08 eV and
3.10 eV, respectively (Table 1).

The emission spectra of the layers of compounds 1–4 had two peaks at ca. 400 nm and
a wide red-shifted emission peak at ~550 nm (Figure 3a). It is known that an imidazole ring
in the presence of oxygen under UV-irradiation is subjected to the ring-opening reaction,
which results in the formation of new materials [52,53]. The PL spectra of 1 wt.% solid
solution of compound 1 in ZEONEX 480 were recorded after different periods of UV
irradiation. They showed consistent increase in intensity of emission band, peaking at
550 nm (Figure 3b). The small concentration of compound 1 in ZEONEX 480 ensures
absence of intermolecular interactions as well as formation of intermolecular excimers. PL
decay curves of the layers of 1–4 recorded at the different wavelengths of ca. 410 nm and
ca. 550 nm exhibited prompt fluorescence (Figure S8). The observed difference between PL
lifetimes demonstrates the different origin of emission. Thus, PL decay curves recorded at
550 nm have a biexponential character. The slightly longer-lived component of the prompt
fluorescence is attributed to the oxidized product. Thus, these experiments prove the
photochemical process occurring in the layers of compounds 1–4 [54]. The photochemical
process was also detected for the THF solutions of the compounds (Figure S9a–c). It was
manifested by substantial decrease of intensity and the redshift of the peak after continuous
UV irradiation.
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Figure 3. (a) PL of the dilute THF solutions and the layers of 1–4; (b) PL spectra of the solid solution 
of 1 in ZEONEX 480 after UV-irradiation for 10 min after every measurement. 
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3.4. Electrochemical and Photoelectrical Properties

The values of ionization potential (IP) estimated by cyclic voltammetry (CV) and
UV photoelectron (PE) spectroscopy are presented in Table 2. The IPCV values of the
compounds were estimated from the half-wave potential of the first oxidation relative to
ferrocene (Figure S10a–d). The electron affinity (EACV) values were obtained from the IPCV
values and the optical bandgaps, which were deduced from the edges of the absorption
spectra of the dilute THF solutions of 1–4. The IPCV and EACV values of 1–4 are in the
small ranges of 5.21–5.26 eV and 1.81–1.94 eV, respectively. The comparable values of the
IPCV and EACV observed for all the studied compounds demonstrate the same oxidation
and reduction sites.

Table 2. Electrochemical and photoelectrical characteristics of compounds 1–4.

Compound IPCV
1, eV EACV, eV IPPE

2, eV µh, cm2/V·s 3 µe, cm2/V·s 3

1 5.25 1.81 5.35 2.9 × 10−4 -
2 5.21 1.87 5.18 3.8 × 10−5 -
3 5.26 1.92 5.29 1.1 × 10−4 -
4 5.25 1.94 5.22 6.3 × 10−5 1.2 × 10−4

1 Determined by cyclic voltammetry; 2 measured by UV photoelectron spectrometry in air; 3 charge mobility at
6.4 × 105 V/cm.
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The photoelectron emission spectra of the solid samples of 1–4 are presented in
Figure 4a. The IPPE values of the compounds are in the slightly larger range of 5.18–5.35 eV
comparing with that of IPCV. This observation can be explained by the different environ-
ments in solutions and solid layers of the compounds. IPCV and IPPE values of compounds
2 and 4, bearing tert-butyl groups, are slightly lower than those of their counterparts 1 and
3, respectively. This trend can be explained by the σ donor effect of tert-butyl groups [55]
which reduce the ionization potential values.
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The TOF technique was used to study charge transporting properties of the com-
pounds. TOF current transients for holes and electrons for vacuum deposited films of
the compounds 1–4 were recorded at different electric fields (Figure S11). When the tran-
sit times were well recognized from the TOF current transients in log–log scales, charge
mobilities were calculated. The electric field dependence values of hole and electron mo-
bilities of the layers of compounds 1–4 are shown in Figure 4b. The layers of compounds
demonstrated hole drift mobilities ranging from 10−5 cm2/V·s to 10−4 cm2/V·s at electric
field of 6.4 × 105 V/cm (Table 2). Electron mobility was detected only in the layer of
compound 4, which reached 10−4 cm2/V·s at high electric fields (>8.1 × 105 V/cm). Thus,
the difference between hole and electron mobilities in the layer of compound 4 is only one
order of magnitude. To achieve high efficiency of PHOLED, host materials with a balanced
charge transport are required [56]. This allows generation of a broad charge recombination
zone in the emissive layer.

3.5. Performance in Fluorescent OLEDs

To investigate electroluminescent properties of compounds 1–4 as materials for doping-free
light-emitting layers (EML), OLEDs A–D were fabricated using device structure ITO/MoO3
(1 nm)/NPB (55 nm)/EML (40 nm)/TSPO1 (5 nm)/TPBi (65 nm)/LiF (0.5 nm)/Al. A diagram
of energy levels of devices A–D is shown in Figure 5a. The electroluminescent characteristics
are summarized in Table 3.
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Figure 5. Diagram of energy levels of OLEDs A–D (a); electroluminescence spectra of OLEDs A–D 
recorded at applied voltage of 10 V; inset shows CIE 1931 color diagram with the corresponding 
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ciency versus current density (d). Arrow denotes the correspondence of data to axis. 
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Table 3. Electroluminescent characteristics of devices A–M.

OLED Emitting
Layer (EML) λem, nm CIE, xy Von, V

Max.
Brightness,

cd/m2

Max.
Current

Efficiency,
cd/A

Max.
Power

Efficiency,
lm/W

Max.
EQE, %

Doping-free blue fluorescent devices ITO/MoO3/NPB/EML/TSPO1/TPBi/LiF/Al

A 1 420 (0.17, 0.09) 4.0 840 0.7 0.38 0.9
B 2 418 (0.16, 0.08) 4.1 1030 0.8 0.42 1.1
C 3 431 (0.17, 0.15) 4.8 1350 0.9 0.43 0.8
D 4 437 (0.17, 0.14) 4.0 1430 0.8 0.41 0.6

Green phosphorescent devices ITO/m-MTDATA/EML/Bphen/LiF/Al

E Ir(ppy)3:1 422 (0.21, 0.17) 5.2 5580 2.7 1.1 2.5
F Ir(ppy)3:2 510 (0.27, 0.58) 3.7 4630 3.5 1.6 0.97
G Ir(ppy)3:3 510 (0.29, 0.60) 3.1 24,600 31.1 13.7 8.3
H Ir(ppy)3:4 510 (0.25, 0.39) 3.9 5800 1.9 1.1 0.74

Red phosphorescent devices ITO/MoO3/NPB/EML/TSPO1/TPBi/LiF/Al

I (piq)2Ir(acac):1 625 (0.56, 0.29) 4.4 5700 2.7 0.9 3.0
J (piq)2Ir(acac):2 625 (0.59, 0.29) 4.0 4800 2.6 1.4 2.7
K (piq)2Ir(acac):3 632 (0.67, 0.32) 3.2 8400 4.4 3.3 6.4
L (piq)2Ir(acac):4 629 (0.63, 0.31) 3.3 4700 3.9 1.7 4.5

Sky-blue phosphorescent device ITO/HAT-CN/NPB/EML/TSPO1/TPBi/LiF/Al

M FIrpic:3 475 (0.15, 0.36) 3.2 3300 17.9 17.6 7.6
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In OLEDs, the layers of MoO3 and LiF were used as the charge injections layers.
The layer of N,N′-di(1-naphthyl)-N,N′-diphenyl-(1,1′-biphenyl)-4,4′-diamine acted as the
hole-transporting layer. The layers of diphenyl [4-(triphenylsilyl)phenyl]phosphine ox-
ide (TSPO1) and 2,2′,2′ ′-(1,3,5-benzinetriyl)-tris(1-phenyl-1-H-benzimidazole) (TPBi) were
utilized as the hole/exciton blocking and electron transporting layers, respectively.

Electroluminescence (EL) spectra of OLEDS A–D are shown in Figures 5b and S12.
Electroluminescence intensity maxima of devices A–D were observed in the range of
418–437 nm. According to the CIE color coordinates, A, B and C, D emitted deep-blue and
blue light, respectively (Figure 5b inset, Table 3). The shapes and positions of the peaks of
electroluminescence spectra of the devices were very similar to those of the fluorescence
spectra of the solutions of compounds 1–4 in THF (Figures 2a and 5b). The shapes of EL
spectra were practically the same at different applied voltages (Figure S12). The emission
peaks of devices C and D were wider and slightly red-shifted compared to those of devices
A and B. It was also observed that during operation of the devices at various electrical
voltages, no additional emission peak appeared in the longer wavelength region.

All OLEDs showed relatively low turn-on voltages (Von) of 4.0–4.8 V (Figure 5c).
This observation confirms that injection and transport of holes and electrons towards the
emission layer was efficient. Device D showed maximum brightness of 1430 cd/m2 and
minimum turn-on voltage of 4.0 V. Device B, with emissive layer of emitter 2, demonstrated
the best electroluminescence properties (Figures 5b,c and S13). Maximum current efficiency
(0.8 cd/A) and maximum energy efficiency (0.42 lm/W) of device B were similar to those of
devices A, C and D. However, the maximum external quantum efficiency (EQE) of device B
was the highest one (1.1%) (Figure 5d). This observation can be attributed to the narrowest
EL spectrum of device B (Figure 5b).

The obtained results show that the synthesized derivatives of carbazole and diphenyl
imidazole (1–4) are suitable for the formation of functional layers of OLED. The photo-
oxidation process of the imidazole ring can be successfully suppressed by fabrication of
the devices in an inert atmosphere. This is confirmed by the absence of the additional
low-energy peaks in the electroluminescence spectra.

3.6. Performance in Phosphorescent OLEDs

To study the performance of compounds 1–4 as hosts, the simple PHOLEDs E-H and I-
L were fabricated using green or red phosphorescent emitters, i.e., tris [2-phenylpyridinato-
C2,N]iridium(III) (Ir(ppy)3) or bis [2-(1-isoquinolinyl-N)phenyl-C](2,4-pentanedionato-
O2,O4)iridium(III) ((piq)2Ir(acac)), respectively. The concentration of emitters in the hosts
was of 10 wt.%. The device structures and energy levels of the materials used in the devices
are schematically shown in Figures 6a and S14. The electroluminescence and efficiency
characteristics of the devices E–H are given in Table 3 and Figures 6 and S15.

Despite the exploitation of the green phosphorescent emitter Ir(ppy)3, most of the
PHOLEDs of the series E–H were not characterized by green emission (Figure S16). Low-
intensity violet emission bands were observed in EL spectra of PHOLEDs E–H. The wave-
lengths of these emission bands were close to those of fluorescence bands of pure 1–4.
Thus, the recombination of excitons occurred not only in the emitter but also in hosts. This
observation can be attributed to inefficient host–guest energy transfer. Device G containing
compound 3 as a host was characterized by green emission with the intensity maximum at
ca. 510 nm, confirming the radiative recombination of excitons mainly on Ir(ppy)3. Thus,
device G was characterized by the most efficient host–guest energy transfer. PHOLEDs
E–H were characterized by the relatively low values of Von (3.1–5.2 V), confirming the very
efficient injection from the electrodes and transport of holes and electrons to the emitting
layer. The highest brightness of 24,600 cd/m2 and the lowest Von of 3.1 V observed for
device G compared to those recorded for the other devices shows more effective exciton
recombination and radiative transition in the emitting layer with host 3. Thus, compound
3 can be regarded as the effective host for PHOLEDs. Device G with host 3 exhibited
the maximum current, power, and external quantum efficiencies of 31 cd/A, 13.7 lm/W,
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8.3%, respectively, in the absence of light outcoupling enhancement. It has to be noted
that the simple and unoptimized PHOLED based on host 3 was fabricated. Therefore, the
maximum efficiency of device was lower compared to those reported for other PHOLEDs
containing Ir(ppy)3 [57].
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Similarly, the highest maximum EQE of 6.4% was obtained for the red PhOLED (device
K) based on host 3. In contrast to other red PhOLEDs fabricated in this work, emission
from the host was not observed in EL spectra of device K recorded at the different voltages.
This observation demonstrates perfect host–guest energy transfer from 3 to (piq)2Ir(acac)
(Figures 6a and S17). Red PHOLEDs I–K also showed low turn-on voltages of 3.2–4.4 V
(Figure 6c, Table 3). Maximum brightness of 8400 cd/m2 was observed for device K. This
device exhibited maximum quantum efficiency of 6.4 % (Figure 6d).

Taking into account that 3 showed the best performance among the compounds of the
series, PHOLED M was fabricated with the same structure as that of the red PHOLEDs
except the layer of hexaazatriphenylenehexacarbonitrile (HAT-CN) and the layer of FIrpic
doped in 3 as an emitting layer (Figure 7). The Von of 3.2 V (Figure 7c) and appropriate
spectral properties show complete electronic excitation energy transfer from 3 to FIrpic.
Device M with a sky-blue EL reached of maximum EQE of 7.6% (Figure 7d).
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4. Conclusions

Four new derivatives of carbazole and diphenyl imidazole were synthesized and
characterized. Optical, photophysical, electrochemical, and photoelectric properties of
the compounds were found to be similar, indicating that attachment of the additional
carbazole–diphenyl imidazole fragment has no significant impact on these properties.
Compounds with two imidazole rings demonstrated higher thermal stability and glass
transition temperatures compared with those of the derivatives having one imidazole
ring. OLEDs fabricated using the synthesized compounds as emitters showed deep-blue
and blue emissions with maximum quantum efficiency ranging from 0.6% to 1.1%. The
suitable values of energy levels, triplet energies and charge carrier mobilities allowed the
use of the synthesized compounds as hosts for green and red phosphorescent OLEDs. The
devices showed sky-blue, green or red emissions, confirming the radiative recombination
of excitons in phosphorescent emitters. Maximum quantum efficiencies of 7.6%, 8.3%, and
6.4%, respectively, were observed without optimization of the structures.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ma15238495/s1. Figure S1. (a) TGA curves of compounds 2
and 4; (b–d) DSC curves of compounds 2–4. Figure S2. Absorption (a) and PL (b) spectra of 1
solutions. Figure S3. Absorption (a) and PL (b) spectra of 2 solutions. Figure S4. Absorption (a) and

https://www.mdpi.com/article/10.3390/ma15238495/s1
https://www.mdpi.com/article/10.3390/ma15238495/s1
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PL (b) spectra of 3 solutions. Figure S5. Absorption (a) and PL (b) spectra of 4 solutions. Figure S6.
Lippert–Mataga plots for 1 (a), 3 (b) and 4 (c). Figure S7. (a–c) Phosphorescence spectrum of dilute
solutions of 1–3 in THF at 77 K. Figure S8. PL decay curves of solutions of 1–4 in THF. Figure S9.
PL spectra of THF solutions of 1 (a) and 3 (b), normalized PL spectra of 3 (c) before and after
40 min photoexcitation by the UV light. Figure S10. (a–d) Cyclic voltammograms of compounds 1–4.
Figure S11. TOF signals for holes/electrons in vacuum-deposited layers of compounds 1–4 at different
electric fields. Figure S12. EL spectra of non-doped devices A–D at different voltages. Figure S13.
Electroluminescence characteristics of OLEDs A–D: (a) current efficiency versus current density, (b)
power efficiency versus current density. Figure S14. Diagram of energy levels of green PHOLEDs.
4,4′,4′ ′-tris[phenyl(m-tolyl)amino]triphenylamine (m-MTDATA) and bathophenanthroline (Bphen)
were used as hole and electron transporting layers, respectively. Figure S15. Electroluminescence
characteristics of PHOLEDs E–H: (a) current density and luminance versus voltage, (b) current
efficiency versus current density, (c) power efficiency versus current density, (d) external quantum
efficiency versus current density. Figure S16. Electroluminescence spectra of PHOLEDs E–H recorded
at applied voltage of 10 V. Figure S17. EL spectra of devices I–L at different voltages. Refs. [58,59] are
cited in supplementary materials.
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