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1 Preliminaries

This commentary is addressed to multidimensional discrete chaotic maps

discussed in [1]. The authors of the commented paper [1] note that the iterative

logistic map of matrices is introduced in [2, 3]. Then, the authors of [1] introduce a

multidimensional discrete chaotic map, define when this map is explosive, and prove

two theorems describing the conditions when the map is not explosive, and when a

chaotic behavior is observed for each scalar variable.

There are two issues commented in this commentary paper. The first one is related

to the fact that multidimensional discrete chaotic maps have been already introduced

in [4]. Secondly, both theorems describing the conditions when multidimensional

discrete chaotic maps are not explosive, and when a chaotic behavior is observed for

each scalar variable, do not hold true. Correct conditions when multidimensional

discrete chaotic map is explosive are given in [2, 3] (for 2-dimensional discrete chaotic

maps) and in [4] (for n-dimensional discrete chaotic maps). This commentary

demonstrates that a multidimensional discrete chaotic map can be explosive even

if the eigenvalues of the matrix of initial conditions are located in the convergence

domain of the corresponding scalar discrete map. Necessary and sufficient conditions

for a multidimensional discrete chaotic map to become explosive are discussed in [2,

Theorem 3.2, p. 935], [3, Definition 3.3, p. 4433], [3, Comment 3, p. 4433], [3,

Corollary 4, p. 4434], [4, Eq. 30, p. 7]. Moreover, a numerical example of a 2-

dimensional discrete chaotic map is used to illustrate the fact that theorems 1 and

2 in [1] are incorrect.
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2 2-dimensional discrete chaotic
maps

Let us consider an iterative map

x k+1( ) � f x k( )( ), k � 0, 1, 2, . . . , (1)

where x(k) ∈ C is a scalar variable and function f is an analytic

function that can be expanded into the power series

f z( ) � ∑∞
j�0

cj
zj

j!
; cj ∈ R. (2)

The scalar variable x(k) in Eq. 1 can be replaced by a square

matrix X(k) � x k( )
11 x k( )

12

x k( )
21 x k( )

22

[ ] of scalar variables x(k)
11 , x

(k)
12 , x

(k)
21 ,

x(k)
22 [2, 3]. The 2-dimensional discrete map then reads:

X k+1( ) � f X k( )( ), k � 0, 1, 2, . . . . (3)

It is shown in [2, 3] that the dynamics of the 2-dimensional

discrete chaotic map depends not only on the fact that the

eigenvalues of the matrix of initial conditions do (or do not)

belong to the basin of attraction of the corresponding scalar

map. A 2-dimensional discrete chaotic map can be explosive even

if both eigenvalues of the matrix of initial conditions do belong to

the basin of attraction of the corresponding scalar map.

Let us assume that the eigenvalues λ(0)1 , λ(0)2 of the matrix of

initial conditions X(0) are different. Then X(0) can be expressed

in the form of an idempotent matrix:

X 0( ) � λ 0( )
1 D1 + λ 0( )

2 D2, (4)

where D1, D2 are conjugate idempotents satisfying the following
relations: detD1 = detD2 = 0,D1 +D2 = I,D1·D1 =D1,D2 ·D2 =D2,

D1 ·D2 � D2 ·D1 � 0 0
0 0

[ ] (I denotes the identity matrix). In that

case, the matrix preserves the form of an idempotent matrix with the
same conjugate idempotents in every iteration [2, 3]:

X k+1( ) � λ k+1( )
1 D1 + λ k+1( )

2 D2 � f λ k( )
1( )D1 + f λ k( )

2( )D2, k � 0, 1, . . . .

(5)

Therefore, such a 2-dimensional discrete map splits into two

scalar maps of eigenvalues [2, 3]:

λ k+1( )
1 � f λ k( )

1( ),
λ k+1( )
2 � f λ k( )

2( ),
⎧⎨⎩ k � 0, 1, 2, . . . . (6)

Then, the 2-dimensional discrete map is not explosive if and

only if the eigenvalues λ(0)1 ≠ λ(0)2 do belong to the basin of

attraction of the corresponding scalar map (Eq. 1).

Otherwise, if the matrix of initial conditions X(0) has a single
recurrent eigenvalue λ(0)1 � λ(0)2 � λ(0)0 , then it can be expressed in

the form of a nilpotent matrix:t

X 0( ) � λ 0( )
0 I +N, (7)

where N is a nilpotent satisfying the following relations: N2 �
0 0
0 0

[ ] and detN = 0. If the matrix of initial conditions X(0) is a

nilpotent matrix, then thematrices produced by the iterative map

are also nilpotent matrices:

X k+1( ) � f X k( )( ) � ∑∞
j�0

cj
j!

X k( )( )j � ∑∞
j�0

cj
j!

λ k( )
0 I + μ k( )

1 N( )j
� ∑∞

j�0

cj
j!

j

0
( ) λ k( )

0( )jIj + j

1
( ) λ k( )

0( )j−1μ k( )
1 Ij−1N(

+ j

2
( ) λ k( )

0( )j−2 μ k( )
1( )2Ij−2N2 +/ + j

j
( ) μ k( )

1( )jNj)
� ∑∞

j�0

cj
j!

λ k( )
0( )jI + j λ k( )

0( )j−1μ k( )
1 N( )

� ∑∞
j�0

cj
j!

λ k( )
0( )j⎛⎝ ⎞⎠I + ∑∞

j�0

cj
j!
j λ k( )

0( )j−1⎛⎝ ⎞⎠μ k( )
1 N

� f λ k( )
0( )I + μ k( )

1 f′ λ k( )
0( )N,

(8)

where k = 0, 1, . . ., μ(0)1 � 1; f′(λ(k)0 ) denotes the derivative of f
computed at λ(k)0 [2]. Therefore, the 2-dimensional discrete map

splits into two intertwined scalar maps [2, 3]:

λ k+1( )
0 � f λ k( )

0( ),
μ k+1( )
1 � μ k( )

1 f′ λ k( )
0( ),

⎧⎨⎩ k � 0, 1, 2, . . . , μ 0( )
1 � 1. (9)

Then, the 2-dimensional discrete chaotic map can become

explosive even if the recurrent eigenvalue does belong to the

basin of attraction of Eq. 1. The discrete chaotic map becomes

explosive if the Lyapunov exponent of the original scalar map is

positive and the matrix of initial conditions is a nilpotent

matrix [3].

The authors of [1] fail to observe the fact that a

multidimensional discrete chaotic map can be explosive even

if eigenvalues of the matrix of initial conditions do belong to the

basin of attraction of the corresponding scalar map (Figure 1).

For example, the 2-dimensional discrete logistic map X(k+1) �
3.6X(k)(I − X(k)) can be explosive even when the eigenvalues of

the matrix of initial conditions do belong to the basin of

attraction of the corresponding scalar logistic map

x(k+1) � 3.6 x(k)(1 − x(k)). The matrix of initial conditions X(0) �
0.8 0.4
−0.1 0.3

[ ] (λ(0)1 � 0.7; λ(0)2 � 0.4) results into 4 stationary

processes (Figure 1A). However, the 2-dimensional discrete

logistic map becomes explosive (Figure 1B) at X(0) �
−0.1 0.4
−0.1 0.3

[ ] (λ(0)1 � λ(0)2 � λ(0)0 � 0.1). The Lyapunov

exponent of the corresponding scalar logistic map is L =
0.197 > 0. The evolution of x(k)

11 , x
(k)
12 , x

(k)
21 , and x(k)

22 is depicted
by the black, the green, the blue, and the red line respectively.
In other words, Theorems 1 and 2 formulated in the
commented paper [1] do not hold true.
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3 N-dimensional discrete chaotic
maps

It can be noted that a scalar variable in Eq. 1 can be also

replaced by the nth order square matrix [4]. However, it appears

that the dynamics of n-dimensional discrete chaotic maps

becomes much more complicated compared to the dynamics

of 2-dimensional discrete chaotic maps [4].

3.1 Packing and divergence codes

Amultidimensional discrete chaoticmapmay become explosive

if at least two eigenvalues of the matrix of initial conditions do

coincide (even though all eigenvalues of thematrix are located in the

convergence domain of the corresponding scalar discrete map). The

multiplicity indexes of eigenvalues are directly related to the packing

codes due to the classical bin packing problem [4]. Therefore, the

study of packing codes becomes a topic of primary importance in the

analysis of the divergence ofmultidimensional discrete chaotic maps

[4]. Also, it is demonstrated in [4] that there exists a bijective

correspondence between the packing and the divergence codes. On

their turn, divergence codes define the rate of divergence of

multidimensional discrete chaotic maps [4]. Let us illustrate the

packing and the divergence codes for a 4-dimensional discrete

chaotic map.

Packing and divergence codes at n = 4 are depicted in

Table 10 [4, p. 9]. The set of packing codes does represent the

classical bin packing problem since 4 × 1 = 1 × 2 + 2 × 1 = 2 × 2 =

1 × 3 + 1 × 1 = 1 × 4 = 4.

Firstly, let us consider the case when all four eigenvalues of

the matrix of initial conditions are different

(λ(0)1 ≠ λ(0)2 ≠ λ(0)3 ≠ λ(0)4 ). The multiplicity index of all four

eigenvalues is 1. Thus, the packing code reads: [0 0 0 4] (0 ×

4 + 0 × 3 + 0 × 2 + 4 × 1) [4, Table 10, p. 9].

Analogous derivations to those performed for the 2-

dimensional discrete chaotic maps yield four uncoupled scalar

discrete maps of eigenvalues (Eq. 10). Note that multiplicity

indexes of the iterated matrix variable do remain unchanged

from the initial set of multiplicity indexes given by the matrix of

initial conditions [4]. None of those four maps in Eq. 10 do

comprise the auxiliary parameter μ. Therefore, the divergence

code in Table 10 [4, p. 9] comprises four zeros [4].

λ k+1( )
3 � f λ k( )

3( );
λ k+1( )
4 � f λ k( )

4( ); k � 0, 1, 2, . . .

⎧⎨⎩ (10)

Secondly, let us investigate the scenario when only two

eigenvalues do coincide but other two are different

(λ(0)1 � λ(0)2 � λ(0)0 ≠ λ(0)3 ≠ λ(0)4 ). The packing code now reads

[0 0 1 2] (0 × 4 + 0 × 3 + 1 × 2 + 2 × 1 = 4). This packing code

yields the divergence code [0 0 0 1] because Eq. 11 comprises a

single map (the fourth scalar iterative map) with the auxiliary

parameter μ(k)1 . Note that the value of μ(0)1 is always equal to 1 in

the first iteration [4].

λ k+1( )
0 � f λ k( )

0( );
λ k+1( )
3 � f λ k( )

3( );
λ k+1( )
4 � f λ k( )

4( );
μ k+1( )
1 � μ k( )

1 f′ λ k( )
0( ); k � 0, 1, 2, . . . ; μ 0( )

1 � 1.

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(11)

FIGURE 1
The 2-dimensional discrete logisticmap can be explosive even when the eigenvalues of thematrix of initial conditions do belong to the basin of

attraction of the corresponding scalar logistic map. The matrix of initial conditions X(0) � 0.8 0.4
−0.1 0.3

[ ] (λ(0)1 � 0.7; λ(0)2 � 0.4) results into 4 stationary

processes [part (A)]. However, themap becomes explosive when X(0) � −0.1 0.4
−0.1 0.3

[ ] (λ(0)1 � λ(0)2 � 0.1) [part (B)]. The evolution of x(k)11 , x
(k)
12 , x

(k)
21 , and x(k)22

is depicted by the black, the green, the blue, and the red line respectively.
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Next, let us consider the packing code [0 0 2 0] (0 × 4 + 0 ×

3 + 2 × 2 + 0 × 1 = 4) [4, Table 10, p. 9]. This situation corresponds

to two pairs of identical eigenvalues (λ(0)1 � λ(0)2 ; λ(0)3 � λ(0)4 ).
Eq. 12 contains two scalar iterative maps of parameters μ(k),11 and

μ(k),31 interrelated with eigenvalues λ(k)1 and λ(k)3 respectively. Eq. 12

yields the divergence code [0 0 1 1] [4].

λ k+1( )
1 � f λ k( )

1( );
λ k+1( )
3 � f λ k( )

3( );
μ k+1( ),1
1 � μ k( ),1

1 f′ λ k( )
1( );

μ k+1( ),3
1 � μ k( ),3

1 f′ λ k( )
3( );

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
k � 0, 1, 2, . . . ; μ 0( ),1

1 � 1; μ 0( ),3
1 � 1.

(12)

Let us consider the fourth packing code in Table 10 [4, p. 9].

It describes the case when three eigenvalues do coincide but the

fourth is different (λ(0)1 � λ(0)2 � λ(0)3 � λ(0)0 ≠ λ(0)4 ). Eq. 13

comprises two scalar iterative maps, one iterative map with

the auxiliary variable μ(k)1 , and one map with auxiliary

variables μ(k)1 and μ(k)2 [4]. Thus, the packing code [0 1 0 1]
(0 × 4 + 1 × 3 + 0 × 2 + 1 × 1 = 4) results into the divergence code

[0 0 1 2] [4, Table 10, p. 9].

λ k+1( )
0 � f λ k( )

0( );
λ k+1( )
4 � f λ k( )

4( );
μ k+1( )
1 � μ k( )

1 f′ λ k( )
0( );

μ k+1( )
2 � μ k( )

2 f′ λ k( )
0( ) + μ k( )

1( )2
2!

f″ λ k( )
0( );

k � 0, 1, 2, . . . ; μ 0( )
1 � 1; μ 0( )

2 � 1.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(13)

Finally, let us discuss the largest divergence code when all

eigenvalues are equal (λ(0)1 � λ(0)2 � λ(0)3 � λ(0)4 � λ(0)0 ). The

packing code [1 0 0 0] (1 × 4 + 0 × 3 + 0 × 2 + 0 × 1 = 4)

results into Eq. 14 which yields the divergence code [0 0 1 2] [4]:

λ k+1( )
0 � f λ k( )

0( );
μ k+1( )
1 � μ k( )

1 f′ λ k( )
0( );

μ k+1( )
2 � μ k( )

2 f′ λ k( )
0( ) + μ k( )

1( )2
2!

f″ λ k( )
0( );

μ k+1( )
3 � μ k( )

3 f′ λ k( )
0( ) + 2μ k( )

1 μ k( )
2

2!
f″ λ k( )

0( ) + μ k( )
1( )3
3!

f‴ λ k( )
0( );

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(14)

where k = 0, 1, 2, . . .; μ(0)1 � μ(0)2 � μ(0)3 � 1.

Packing and divergence codes for the n-dimensional

discrete chaotic map are given in [4]. It is interesting to

observe that the sequence of the packing codes does

comprise the paradigmatic sequence A061196 from the

OEIS (the Online Encyclopedia of Integer Sequences [5]),

while the sequence of the divergence codes introduced in [4]

does represent a new integer sequence.

3.2 The divergence of the 4-dimensional
logistic map

The largest divergence code for the 4 × 4 matrix [0 1 2 3]
yields iterative equations Eq. (30) [4, p. 7]. The

multidimensional logistic map reduces those iterative

equations because higher derivatives of the logistic

mapping function do vanish:

λ k+1( )
0 � aλ k( )

0 1 − λ k( )
0( );

μ k+1( )
1 � aμ k( )

1 1 − 2λ k( )
0( );

μ k+1( )
2 � aμ k( )

2 1 − 2λ k( )
0( ) − a μ k( )

1( )2;
μ k+1( )
3 � aμ k( )

3 1 − 2λ k( )
0( ) − 2aμ k( )

1 μ k( )
2 ;

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(15)

where μ(0)1 � μ(0)2 � μ(0)3 � 1.

All four eigenvalues of X(0) are set to 0.1 and fit into the

convergence domain of the scalar logistic map. The positive

Lyapunov coefficient (0.197 at a = 3.6) and the non-zero

divergence code [0 1 2 3] yield the explosive divergence of

the 4-dimensional logistic map [4, Figure 2, part (A), p. 15].

It is interesting to observe, that the divergence rate of the

auxiliary parameters do depend not only on the Lyapunov

coefficient, but also on their indexes. Detailed discussion of

the rate of explosive divergence of multidimensional logistic

maps is given in [4, p. 11].

4 Concluding remarks

This commentary paper demonstrates that a

multidimensional discrete chaotic map can become

explosive even if the eigenvalues of the matrix of initial

conditions are located in the convergence domain of the

corresponding scalar discrete map. The explosive

divergence of the multidimensional discrete chaotic map

does occur if the divergence code of the matrix of initial

conditions is larger than zero (at least two eigenvalues of X(0)

do coincide), and the Lyapunov exponent of the

corresponding scalar map is positive [4]. In other words,

Theorems 1 and 2 given in the commented paper [1] are

incorrect.

This fact has important implications for the study of

discrete chaotic systems when the nodal complexity of the

system is increased by expanding the dimension of the scalar

variable [6–9]. Complex fractal patterns representing spatio-

temporal divergence in the extended Kaneko model in [6], the

development of a novel image hiding scheme in [7], spiral

waves of divergence in [8], intermittent bursting in fractional

logistic map in [9] are all based on divergence codes greater

than zero. In other words, all these effects could not be

observed if theorems 1 and 2 in [1] would hold true.
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