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A B S T R A C T   

This study developed an estimation routine for counting the viable cells in an in vitro fed-batch Chinese hamster 
ovary cultivation that relies on off-gas information and inlet gas mixture knowledge. We computed the oxygen 
uptake rate bound to the bioreactor exhaust gas outlet when the inlet gas mixture was stationary. Our 
mammalian biosynthesis analysis determined the stoichiometric parameters as a function of the average popu
lation age. We cross-validated an identical algorithm for mammalian and microbial cultivations and found that 
the’ 99% confidence band of the model generally overlapped with the error bars defined from observations. The 
resulting RMSE and MAE averages were 0.188 and 0.14e9cells L− 1, respectively, when estimating the viable 
mammalian cell count. The validation for the estimation of total bacterial biomass yielded an MAE and RMSE of 
1.78 g L− 1 and 2.53 g L− 1, respectively. Moreover, our proposed approach provides an online estimation of the 
average population age for both aerobically cultivated microorganisms.   

1. Introduction 

Over a decade ago, investigators showed that the cumulative oxygen 
uptake rate (OUR) is a reliable indicator of the cell viability repeatability 
in mammalian fed-batch biosynthesis [1]. In the same year, they showed 
that simple and efficient substrate-feeding control based on the OUR 
signal is a promising tool for validating the variability of viable cell 
counts using an off-gas analyzer [2]. Similarly, another team showed 
that gas analyzer information and bioreactor parameters can further 
help optimize the target product in mammalian fermentation [3]. Later 
efforts estimated the intermediate state variables of bioreactors; how
ever, no report on noninvasive viable cell estimation in fed-batch 
mammalian biosynthesis has yet to be published. Animal cells are the 
closest strain to human cells, producing many high-quality and specific 
proteins that are used in unique medical applications [4]; for example, 
the Chinese hamster ovary (CHO) is a well-known mammalian cell strain 
used to produce glycoproteins [5]. 

Cultivating bioprocesses with mammalian cells to complete target- 
product fermentation with high efficiency is challenging. Animal-cell- 
based biosynthesis is at a relatively higher risk than that based on mi
crobial cells [6] because of the longevity of the process, the seed of the 
strain, and the nutrition medium. To reduce the risks of this process, 
bioreactor control [7,8] must depend on reliable real-time estimations of 

the culture state. Thus, monitoring the main characteristic parameter, 
that is, the number of viable cells, is crucial; however, contemporary 
viable cell measurements are performed offline, which is 
time-consuming and human resource intensive. 

This paper presents a soft sensor (i.e., estimator) as a tool for esti
mating viable CHO cells using noninvasive off-gas [9] measurements 
that depend on oxygen consumption rate [10] information. The method 
is based on stoichiometric parameters and the Luedeking–Piret model 
with an aging term introduced [11–13]. The primary off-gas signal re
ported by the viable cell estimator defined the oxygen uptake rate input. 
Exhaust gas analyses have provided information about cultures in media 
that is indirectly related to oxygen-consuming viable cells [14]. 

Section 1 discusses the motives for using the noninvasive cell counter 
as a novel functionality of gas analyzers; Section 2 reviews literature 
related to this study; Section 3 describes the bioreactor system materials 
and the protocol conditions; Section 4 outlines the development of a 
viable cell-estimation algorithm; Section 5 lays out the hypothetical 
functional model, aging-specific parameters, and the motivation behind 
the assumptions; and the final section discusses the conclusions of this 
study. 
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2. Related work 

The Luedeking–Piret model was used to estimate the viable cells of a 
mammalian strain in a bioreactor. Earlier researchers have shown that a 
standard stoichiometric model is crucial for estimating the microbial 
biomass of Escherichia coli, as it provides acceptable results [15]. The 
main difference between microbial and mammalian cells is the specific 
growth rate, which is relatively low for the CHO strain. Consequently, 
the long cultivation time leads to instability in the oxygen consumption 
rate by viable cells. The average age of the cell population was used to 
describe its yield dynamics. At low ages, the potential specific growth 
rates of the cells were high, and the inhibition of the cell count had a 
negligible effect. Furthermore, cultures of more considerable ages have 
their cell growth inhibited. The maintenance of aging cells [16] de
termines excess oxygen intake. 

Cell fermentation is a complex process [17] that requires sophisti
cated control [18,19] and monitoring of biotechnological phenomena 
[20]; therefore, data collection and model management are critical [21], 
as they provide essential variables in real time with acceptable accu
racies [22] to identify the state of the process and its adaptive control 
[23]. Several developments have been made to obtain real-time mea
surements of the amount of viable cells using equipment installed in a 
bioreactor. One of these developments includes using image analysis, 
such as microscopy [24,25]. The equipment necessary to count the cells 
requires maintenance (recalibration), and image data might be 
disturbed owing to enriched media supplements or homogeneity-related 
effects. Furthermore, the predicted cell counts often deviate from the 
ground truth, even for simple test images [26]. 

Another way to indirectly estimate viable cell counts in culture is to 
use in situ mid-infrared spectrometry and online glucose concentration, 
which has been established [27]. Using a non-stationary growth yield 
parameter, viable cells can be computed from direct glucose concen
tration measurements; however, one major disadvantage of such an 
approach is the necessity for in situ equipment to obtain the glucose 
concentration online. Moreover, the function of glucose consumption 
faces accuracy challenges when determined in the culture death phase, 
that is, the decline of the cell population instead has steady-state prop
erties [27]. 

Soft sensors [28] are analytical tools for the online observation of 
in-situ parameters [10,29]. Many different models of soft biomass sen
sors have been proposed for microbial biosynthesis, such as dielectric 
spectroscopy [30]; however, their use for cell count estimation remains 
challenging in mammalian and stem cell bioprocessing [31,32]. 

Cultivation processes with animal cells are more complex than those 
with microorganism cells because of the meager specific growth rate and 
strict requirements for the composition of the medium and precise 
maintenance of environmental parameters [33]. The shallow specific 
growth rate of mammalian cells significantly prolongs the cultivation 
process, which can greatly disturb the in-situ data with relatively higher 
transient constants, and noise has a considerable influence on the signal 
[1]. 

To eliminate signal noise and resolve the complexity of estimating 
the viable cells of animal strains, a hybrid model with artificial neural 
networks (ANN) was proposed as a viable cell estimation tool [34], with 
a hybrid model that includes exhaust gas analyses and a base (NaOH for 
pH setpoint control) providing the most acceptable results; however, 
obtaining sufficient accuracy for ANNs requires considerable data for 
model calibration. Moreover, hybrid model approaches require signifi
cant performance trade-offs and design-space maintenance. Addition
ally, the resulting model applies exclusively to a specific bioprocess [34, 
35]. 

This study estimates cell counts based only on exhaust gas data and 
the OUR, which is closely associated with dissolved oxygen [36] and is 
crucial for aerobic cultivation (Table 1). 

The chosen viable cell estimation method is based on stoichiometry 
and aging theory [11,12] and avoids the use of a data-driven black box 

(ANN). The selected model was based on knowledge combined with 
off-gas analytics. 

3. Materials and methods 

3.1. Cultivation conditions 

The viable cell estimator for mammalian cell culture proposed in this 
study used data from the cultivation process of CHO–K1 (CHO–S, No. 
11619–012, Karlsruhe, Germany). Prior research [37] presents the 
Biostat B bioreactor cultivation processes, the information of which is 
presented in Table 2. 

An automated cell counter was used to measure offline viable and 
total cell concentrations (CASY TT; Roche Innovatis AG, Mannheim). 
Exhaust gas analyses were performed using a quadrupole mass spec
trometer (Balzers QMA 200; Balzers, Liechtenstein). 

Furthermore, data from bioprocesses with the Escherichia coli strain 
were used to estimate the biomass. The bacteria E. coli BL21 (DE3) 
pET21-IFN-alfa-5 (Table 3) were cultivated in a minimal-mineral me
dium [38]. 

The BlueSens BlueInOne Ferm gas analyzer (oxygen concentrations 
from 0 to 100%) and airflow information from Applikon BioBundle 
bioreactor enabled the oxygen uptake rate assessment. 

3.2. Development of the viable cells estimation algorithm 

Off-gas analysis is founded on the basis that its information source is 
cumulative. The entire bioreactor medium, with an inevitable time 
delay, determines the gas mixture content at the condenser outlet, that 
is, accumulated carbon dioxide needing to be removed from nutrient 
media explains the reason that off-gas analysis with the oxygen uptake 
rate signal is a rational intuitive candidate invariant to the homogeneity 
of the bioreactor medium. A typical off-gas-based candidate for the 
stoichiometric relationship between the total OUR and the biomass 
growth and maintenance is the Luedeking–Piret-type model [11,12]. 

OUR(t) = α⋅X ′

(t) + β⋅X(t); (1)  

where X is the total count of viable cells, t is the time, and α and β are 
parameters that determine the corresponding stoichiometric relation
ship with the growth and maintenance of viable cells. To introduce a 
generic estimator for the number of viable cells, the time dependence of 
both kinetic parameters indicates a general inhomogeneous first-order 
differential equation [39]. 

Table 1 
Comparison between proposed mammalian viable cells estimation.  

Source Inputs Model-based Equipment 

Joeris et al. [24], 
Shah et al. [25] 

Visual material Image processing 
software 

Microscope 

Ducommun et al. 
[27] 

Glucose 
concentration 

Parametric 
optimization 

Mid-infrared 
spectrometry 

Aehle et al. [34] OUR, CPR, Base Data-driven 
(ANNs), recurrent 
model 

Exhaust gas 
analyzer, balance 
for base 

This study OUR Functional 
optimization 

Exhaust gas 
analyzer  

Table 2 
Mammalian cell cultivation details.  

Condition State Condition State 

Bioreactor volume 2 L Broth volume 1 L 
Temperature 37 ◦C PH 7.15 
pO2 20% airflow 0.1 L min− 1 

Stirrer 60-400 RPM Feeding start at 75 h  
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X
′

(t) +
β(t)
α(t)⋅X(t) =

OUR(t)
α(t) . (2) 

The generic solution to 2 is as follows: 

X(t) =
c +

∫ OUR(t)
α(t) e

∫
β(t)
α(t) dtdt

e
∫

β(t)
α(t) dt

, (3)  

where integration constant c must account for the boundary condition. 
Specifically, the exact form of the answer with initial condition X(0) ≡
X0 is as follows: 

X(t) =
X0 +

∫ t
0

OUR(t1)
α(t1)

e
∫ t1

0

β(t2)
α(t2)

dt2 dt1

e
∫ t

0

β(t3)
α(t3)

dt3
. (4)  

3.3. Maintenance component 

Previously, the authors [15] demonstrated that the boundary con
dition has to be computationally resolved when the maintenance term is 
negligible prior to the induction phase of biosynthesis during microbial 
bioprocesses. As there is no induction in mammalian upstream devel
opment, the age-related threshold of viable cell populations serves as the 
rational hypothesis to assume the start of the cell maintenance effect. In 
the interim, the verge is defined as follows: kcX ≡

∫ tcX
0 X(t) dt, where the 

time instant tcX and its biomass (XcX ≡ X(tcX)) are unknown in advance. 
However, the approximate value of kcX was assessed or estimated in the 
model training phase. Then, 1 generalizes to the following: 

{
OUR(t) = α(t)⋅X ′

(t); if ​
∫ t

0
X(t1) dt1 ≤ kcX

OUR(t) = α(t)⋅X ′

(t) + β(t)⋅(X(t) − XcX), otherwise,
(5)  

where the second equality, similarly to 2 has an alternative arrangement 

X
′

(t) +
β(t)
α(t)⋅X(t) =

OUR(t) + β(t)⋅XcX

α(t) . (6) 

The solution of 6 is the extended form of 4. Then, 
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

X(t) = X0 +

∫ t

0

OUR(t1)

α(t1)
dt1; if ​

∫ t

0
X(t1) dt1 ≤ kcX

X(t) =
X0 +

∫ t

0

OUR(t1) + β(t)⋅XcX

α(t1)
e
∫ t1

0

β(t2)
α(t2)

dt2 dt1

e
∫ t

0

β(t3)
α(t3)

dt3
, otherwise.

(7) 

Equation (7) indicates that, as time approaches infinity, the initial 
value of the biomass is negligible. Second, because the aging effect is 
noticeable in OUR(t), at least for fed-batch bioprocesses, such an integral 
form has potential benefits for estimators based on finite differences. 

3.4. Hypothetic functional model of kinetic parameters 

Generally, both kinetic parameters (α(t) and β(t)) of the Luede
king–Piret model are functions of time 7; however, we hypothesized, 
based on previous research results [12,40,41], that in prolonged 
fed-batch aerobic bioprocesses, such as mammalian cell cultivation, 
kinetic parameters are functionals that depend on the average age of the 
cell population. 

Age(t) =
X0⋅t +

∫ t
0(t − t1)⋅X

′

(t1)dt1

X(t)
. (8) 

The main drawback of this expression, when used for continuous 
biosynthesis analysis, is that it is time-dependent. It is more suitable to 
make it more generalizable so that both fed-batch and continuous 
biosynthesis use the same form. The arrangement and integration give 
the following: 

Age(t) =
X(t)⋅t −

∫ t
0 t1dX(t1)

X(t)
. (9) 

After applying the integration by parts formula to the numerator, it 
becomes the following: 

Age(t) ≡ Age(t) =
∫ t

0 X(t1)dt1

X(t)
, (10)  

which is equally convenient for non-invasive estimation in both fed- 
batch and continuous biosynthesis. The age expression depends on the 
state rather than time. Such an assumption is relevant for perfusion 
bioprocesses [42], when the biomass concentration (microbial) or 
number of viable cells (mammalian) might be age-invariant. 

The choice was to introduce a parametric hypothesis for fed-batch 
mammalian cultivation. The following functionals served as the model 
fitting classes to enable non-invasive online estimation of the kinetic 
coefficient (α(t)) at runtime: 

α(t) ≡ αmax

1 − e−
t

Lagtime
⋅
Age(t)

t
, (11)  

where the maximal growth-based oxygen consumption yield (αmax) for 
cells represents the theoretical aerobic oxidative capacity and the lag 
time (Lagtime) is related to exponential decay [43] and defines the 
moment when the lag phase approaches the end and cells enter the 
exponential growth phase. The rightmost multiplier 11 also has a 
physical meaning of the relative time ratio, designated for the last stage 
of biosynthesis. The oxygen consumption yield (β(t)) allows cells to 
remain alive 

β(t) = β⋅
Age(t)

Age(t) + kage
, (12)  

where aging-specific coefficient kage is “half-age-constant” if the main
tenance coefficient β is treated as the maximal maintenance value. 

3.5. Online numeric estimation of viable cells count 

Finite differences allow integral routines to be simplified; however, 
the computational inertia of accumulating errors and algorithmic per
formance challenges must be avoided. The first biomass value could be 
zero if the fed-batch bioprocess is considerably longer, similar to 
mammalian cultivation. Moreover, the initial biomass, that is, the 
number of viable cells, is typically known after bioreactor inoculation in 
industrial installations. The initial count of viable cells is the result of 
offline analyses in this study and serves as the initial estimate. In this 
work, the age estimate is a function of the prior viable cell estimates, as 
follows: 

Âgei ≡

∑n
i=1 X̂ i⋅△ti,i− 1

X̂ i
, (13)  

where n denotes the total number of discrete observations (estimates). 
The critical time at which maintenance starts is defined as follows: 

tcX ≡

(∫ tcX ​ or ​ the ​ total ​ duration ​

0
X(t)dt

)− 1

(kcX), (14)  

Table 3 
Recombinant E. coli cultivation details.  

Condition State Condition State 

Bioreactor volume 7 L Broth volume 3.7 L 
Temperature 37 ◦C PH 6.8 
pO2 20% Feeding start at 5–7 h  
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where the notation “-1′′ is an inverse function or tcX is such that the 
cumulative biomass equals the threshold kcX. The discrete formula is 
expressed as follows: 

t̂cX ≡

(
∑n

i=1
X̂ i⋅△ti,i− 1

)− 1

(kcX), (15)  

where the cumulative biomass X̂cX is the boundary value for the iterative 
routine. The stoichiometry parameters depend on the most recent esti
mates. Then, the kinetic coefficient (α(t)) at runtime, 

αi ≡
αmax

1 − e−
ti

Lagtime

⋅
Agei− 1

ti− 1
, (16)  

βi = β⋅
Agei− 1

Agei− 1 + kage
, (17)  

which does not degrade the convergence of the overall algorithm. 
Therefore, it is recommended that the sampling interval △ti ≡△ti,i− 1 be 
noticeably smaller than the expected transient constant of the popula
tion age dynamics. One minute (0.167 h) represented a discretization 
step during the experiments because of the dependency on the off-gas 
OUR observations. Moreover, the algorithm is sufficient for varying 
sampling intervals, that is, when measurements are temporarily lost, 
because the aging state of the culture does not change abruptly in fed- 
batch cultivations. 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

X̂i = X0 +
∑i

j=1

OURj

αj
△tj; if ​

∑i− 1

j=1
Xj△tj ≤ kcX

X̂i =

X0 +
∑i

j=1

OURj + βj⋅X̂cX

αj
e
∑tj

k=1

βk
αk

△tk
△tj

e

∑i

j=1

βj
αj

△tj

, otherwise,

(18)  

where Algorithm 18 did not show convergence issues when the time 
variable t approached higher values than the microbial analysis. Non- 
invasive online observations decrease over time in fed-batch cultiva
tion when nutrient medium perfusion is absent. 

4. Results and discussion 

Viable CHO cells and the biomass of the recombinant E. coli strain 
were selected to determine the reliability and performance of the esti
mation. The stoichiometric parameters of the cell culture (α, β) were 
assumed to be independent of the experimental analysis in which they 
lie. The discrete check compares the offline and online analysis results 
using the mean absolute error (MAE) and root mean square error 
(RMSE). The MAE is defined as [44]: 

MAEi =

∑n
j=1

⃒
⃒
⃒ŷi − yi,j

⃒
⃒
⃒

n
, (19)  

where the average ŷi is the total number (n) of observations yi obtained 
through offline sampling. The RMSE formula is defined as [44]: 

RMSEi =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

j=1

(
ŷi − yi,j

)2

n

√

. (20) 

Overall, ten cross-validation steps returned ten estimation sets. Next, 
the ensemble averaging [45] scheme inferred a single optimal set of 
parameters for the estimation. The principal purpose of the chosen 
technique was to acquire a result from the submitted candidates by 
averaging them according to a weight that depends on the relevance of 
the item. Specifically, the weights of ten candidate sets were dependent 

on RMSE by applying the ensemble averaging equation: 

ŷ =
∑n

i=1
wiyi(x), (21)  

where the final guess of parameter ŷ and the weight wi of parameter yi 
are RMSE-based functions resulting from the parameters listed in 
Table 5: 

wi =

∑n
j=1RMSEj − RMSEi
∑n

j=1RMSEj⋅(n − 1)
. (22) 

In Equation (22), the number of parameter sets n = 10 leads to the 
final and optimal parameter sets presented in Table 4. 

4.1. Estimation of mammalian cells viability 

Experimental data on viable CHO cells and oxygen consumption are 
presented in detail in Ref. [37]. Every 12 h, manual offline sampling was 
used to quantify the count of viable cells using an automated cell counter 
(CASY TT). 

The development of a method for estimating CHO viable cells and 
stoichiometric and inhibition parameters passed cross-validation using 
data from 12 cultivations of a CHO mammalian strain [46]. The 12 
presented experiments were unique in terms of growth profile similarity. 
In the cross-validation method, 80% of the process data points helped in 
model fitting (training stage), and the remaining 20% concluded trials. 
Uniform Random indexes to skip in the model calibration originated 
from the “Random” function (C#) with default seed values. The exper
iment consisted of ten random data sets. Table 5 contains the model 
calibration and validation results using RMSE and MAE; Table 4 lists the 
optimal parameter values. 

During parameter identification, the interference from signal noise 
and device calibration inaccuracy of the exhaust gas analysis sensors had 
a significant impact. The specific growth rate of mammalian cells is 
meager; thus, the signal-to-noise ratio is sufficiently high to cause issues 
in estimation precision [47]. To increase the parameter estimation ac
curacy, the choice was to introduce an offset for the oxygen concen
tration signal at the gas mixture inlet of the bioreactor. Such an 
improvement considers practical experience and knowledge of how the 
volumetric oxygen transfer coefficient (kLa) varies in the bioreactor. It 
was assumed that the acceleration of oxygen consumption could not 
exceed the dynamics of the pO2 signal, considering that the airflow and 
stirrer values were stationary [48] (Fig. 1). 

In conclusion, an abrupt change in the oxygen consumption rate 
results in the quality of sensor calibration in this specific context. Hence, 
the offset values (Table 6) were re-fitted for all 12 experiments to in
crease confidence in the proposed approach. 

Overall, the estimation of viable mammalian cells provided accurate 
predictions. The average RMSE and MAE values were 0.188 and 0.14, 
respectively. 

The average RMSE and MAE validation values were 0.158 and 0.139, 
respectively. Table 7 compares ‘our results with a hybrid model. Figs. 2 
and 3 represent the performance of the model estimations and the 
confidence band with α = 0.01. Classification of the error values be
tween the measured and calculated points for all data from the 12 ex
periments over a range of viable cell concentrations was sufficient to 

Table 4 
Final and optimal values of model parameters.  

Parameter Value Unit 

Lagtime 20.489 h 
αmax 0.727 g e9cells− 1 

β 0.034 g e9cells− 1 h− 1) 
kcX 29.99 e9cells⋅h L− 1 

kage 102.05 h  
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determine the confidence band of the method. The statistical histogram 
and degrees of freedom are presented in Table 8. The error classification 
method shows the error dependence of the viable cell concentration 
(VC) as a model fit: 

ê(VC) = 0.0068VC2 + 0.0604VC. (23) 

The purple shadow depicts the confidence band α = 0.01 in Figs. 2 
and 3. This area has a high (pessimistic) bound to the error statistics. The 
error bars were assumed to result from applying a systematic error of 
0.19 cells L− 1 and a random error of 4%. These errors consisted of 
experimentation-related additive errors and device characteristics. 

4.2. Biomass estimation on E. coli bacteria 

The chosen method also evaluated the biomass estimation of the 
bacterial strains to verify the ‘versatility of the algorithm. Half of the 12 
experiments contained a growth-limiting substrate feed. Offline biomass 
concentration values helped to identify the parameters of the estimation 
model for E. coli bacteria and evaluate the validation results. The offline 
measurements consisted of optical density (OD) (in o.u.) samples 
(Eppendorf BioSpectrometer basic) multiplied by the coefficient of the 
biomass concentration (approximately 0.4 g L− 1 o.u.− 1) [49]. 

Table 9 presents the parameter set for the bacterial strains. Param
eter identification results in 1.67 g L− 1 MAE and 2.87 g L− 1 RMSE. The 
validation process produced 1.78 g L− 1 MAE and 2.53 g L− 1 RMSE. Fig. 4 
represents an analogical methodology applied to microbial analysis, and 
the confidence band relationship for bacterial examination is identical to 
that for mammalian analysis. 

The histogram statistics are presented in Table 10 and the obtained 
prediction error dependencies by biomass (X) are as follows: 

ê(X) = 0.00172X2 + 0.03431X + 0.56058. (24) 

In Fig. 4, the purple shadow indicates the confidence band α = 0.01 
in Fig. 4. The error bars consisted of a systematic error of 0.2 g L− 1 and a 
random error of 4%. These errors reflect the bounds of experimentation- 
related errors and device characteristics. 

5. Conclusions 

This study proposes a model for estimating viable cells in a 
mammalian CHO strain to indirectly monitor the crucial state variable of 
the cultivation process. The proposed method was developed using 
functional optimization, including aging information and off-gas ob
servations, based on the OUR at the outlet of the bioreactor. Experi
mental cross-validation was performed for both microbial and 
mammalian strains. A total of 12 experiments for each strain allowed the 
same model training and validation procedures to pass through. The 
final average MAE of the viable cell estimation (mammalian scenario) 
result was 0.139e9cells L− 1 and the overall mean RMSE result was 
0.158e9cells L− 1. These numerical precision results match the original 
hybrid findings [37] but with additional benefits. First, the number of 
parameters used in the functional approach was minimal. Second, these 
parameters have physiological implications, allowing optimal planning 
control for future digital twin technology. 

Furthermore, a universality check was performed on the experi
mental data of the Escherichia coli recombinant strain. The procedure 
was identical except that the microbial stoichiometry parameters did not 
directly depend on the average aging of the bacterial population. The 
results were satisfactory: the final mean MAE was 1.78 g L− 1, and the 
overall RMSE was 2.53 g L− 1. 

A comparison of the results for CHO and E. coli cells shows that the 
aging-specific formulation has a considerable influence on modeling 
when the longevity of the bioprocess is demonstrative, that is, in 
mammalian biosynthesis. 
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Table 5 
Individual model fitting the cross-validation results.  

Iteration Model calibration, (e9cells L− 1) Validation, (e9cells L− 1) 

No. MAE RMSE MAE RMSE 

1 0.137 0.191 0.154 0.169 
2 0.145 0.198 0.122 0.135 
3 0.141 0.189 0.154 0.166 
4 0.142 0.189 0.123 0.146 
5 0.149 0.198 0.105 0.122 
6 0.143 0.19 0.129 0.158 
7 0.14 0.173 0.18 0.202 
8 0.144 0.193 0.12 0.132 
9 0.14 0.188 0.131 0.146 
10 0.14 0.176 0.178 0.199  

Fig. 1. The steep oxygen concentration drop at the exhaust gas outlet. The 
unique identity of this experiment was No 9. 

Table 6 
The oxygen consumption signal characteristics at the gas mixture inlet.  

Exp. No. Inlet O2(%) Offset ((%) Exp. No. Inlet O2(%) Offset ((%) 

1 20.584 0.143 7 19.327 − 0.045 
2 19.785 0.034 8 21.546 − 0.12 
3 19.689 0.11 9 21.195 0 
4 19.773 0.415 10 21.757 − 0.030 
5 19.476 0.043 11 21.698 − 0.022 
6 19.353 − 0.102 12 21.776 − 0.028  

Table 7 
Compression of CHO viable cells estimation techniques.  

Author Estimation 
technique 

RMSE of training 
(e9cells L− 1) 

RMSE of validation 
(e9cells L− 1) 

Aehle et al. 
[34] 

Hybrid model 0.16 0.154 

This study Functional 
optimization 

0.188 0.158  
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Fig. 2. CHO viable cell estimation results from experiments No 1–6. Vertical error bars indicate a total error. The purple shadow represents the prediction band. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 3. CHO viable cell estimation results from experiments No 7–12. Vertical error bars indicate a total error. The purple shadow represents the prediction band. 
(For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 

Table 8 
Numbers of freedom at a specific range of viable cell concentration.  

Range, e9cells L− 1 0–1 1–2 2–3 3–4 4–5 5–6 6–7 7–8 

No. of freedom 36 35 13 8 13 5 4 4  

Table 9 
The model parameters for E. coli bacteria biomass estimation.  

Parameter Value Unit 

Lagtime 0 h 
αmax 0.75 g g− 1 

β 0.16 g g− 1 h− 1) 
kcX 17 g h L− 1 

kage 0 h  
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