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Abstract: Automatic climate management enables us to reduce repetitive work and share knowl-
edge of different experts. An artificial intelligence-based layer to manage climate in white button
mushroom growing hall was presented in this article. It combines visual data, climate data collected
by sensors, and technologists’ actions taken to manage climate in the mushroom growing hall. The
layer employs visual data analysis methods (morphological analysis, Fourier analysis, convolutional
neural networks) to extract indicators, such as the percentage of mycelium coverage and number of
pins of different size per area unit. These indicators are used to generate time series that represent
the dynamics of the mushroom growing process. The incorporation of time synchronized indicators
obtained from visual data with monitored climate indicators and technologists’ actions allows for
the application of a supervised learning decision making model to automatically define necessary
climate changes. Whereas managed climate parameters and visual indicators depend on the mush-
room production stage, three different models were created to correspond the incubation, shock,
and fruiting stage of the mushroom production process (using decision trees, K-nearest neighbors’
method). An analysis of the results showed that trends of the selected visual indicators remain similar
during different cultivations. Thus, the created decision-making models allow for the definition of the
majority of the cases in which the climate change or transition between the growing stages is needed.

Keywords: white button mushrooms; artificial intelligence; computer vision; climate control system

1. Introduction

White button mushrooms (Agaricus bisporus) are among the top cultivated mush-
rooms, and they are known for their culinary, medicinal and cosmetic values [1]. In the
beginning of the industrial production, they were grown in caves [2] and later the pro-
duction process was moved to climate-controlled growing halls. The growing process
can be divided into stages of mycelium development (homogenization) and body growth
(fruiting) [2,3]. In other sources, the growth process is subdivided to mycelium growth,
colonization, pinning, and flushes [4,5]. Each stage requires different environmental param-
eters of a specific range controlled in a timely and appropriate manner [3]. The process is
governed by a technologist who predefines the setpoints of the environmental parameters
and modifies them later in the process. Thus, the decisions to modify the environmental
parameters are subjective and depend on the expertise level and experience to evaluate
mushroom quality.

Industrialized mushroom production in closed halls is similar to greenhouse produc-
tion. The overview of the internet of things (IoT), artificial intelligence (AI), and big data
technologies in smart farming is provided in [6]. The authors emphasize the benefit of
intelligent systems as they enable the automatic management of the climate, the reduction
of the level of human interaction, and therefore the reduction of the expenses for human
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resources. The environment control problem is to create a favorable environment for mush-
rooms to get the predetermined results of high yield, high quality, and low production
costs. Appropriate climate control can also help to detect diseases [7] and minimize their
effects [8]. The problem is complex, as the environmental parameters have strong nonlinear
relations and display dynamic behavior. Moreover, there are some practical constraints
caused by a micro-climate in the growing hall, stages of the growing cycle, outside weather,
and others [3]. It was demonstrated that transforming a conventional greenhouse into a
mushroom house with the IoT system to control the environment contributes to creating
optimal growing conditions for the mushrooms despite the outside weather conditions [9].

The design of climate control systems is based on either conventional or optimal cli-
mate theory [10]. For the climate control systems based on the conventional theory, the goal
is to adjust the variable of interest as close to the set point as possible [11]. Systems based
on the optimal climate theory consider various parameters, including experts’ knowledge,
product response, and greenhouse behavior to create the best climate for the crop. Various
methods, such as fuzzy logic [3,8,12–14], evolutionary algorithms [15], artificial neural
networks (ANN) [16–18], linear programming [19], and other algorithms can be applied
to design both conventional and optimal greenhouse climate control systems [10]. Smart
agricultural systems deal with security issues and computational resources in the process
of handling a massive amount of data for the artificial intelligence model and storage from
the acquisition to decision-making [20]. The technical challenges of the smart greenhouses
include connectivity and recharge issues and the need to constantly use up-to-date tech-
nologies [21]. The authors also emphasize the need to incorporate experts’ knowledge
about the cultivation process into the intelligent greenhouse systems.

One of the most popular approaches is the application of fuzzy logic. It enables the
system to convert linguistic control strategy to automatic control strategy [8]. The fuzzy
logic was employed to control the greenhouse climate in the automatic climate control
system [12]. When taking sustainable development into account, the system considers
the energy consumption, efficiency, and correlation of variables. The multivariate fuzzy
controllers were designed to monitor and control environmental parameters (ambient
temperature, ambient humidity, CO2 concentration, temperature, and moisture of the
compost) in the mushroom house for the industrialized production of Agaricus bisporus [3].
In the application, the control system is combined with the growth of the mushroom
because different growth stages require different environmental parameters which directly
affect the quantity and quality of the mushroom body. Two systems based on fuzzy logic
and On/Off were developed to keep the preset temperature, relative humidity (RH), and
CO2 concentration in a mushroom growing hall [13]. The results showed that the system
based on fuzzy logic has higher accuracy and stability; therefore, results in lower energy
consumption. Fuzzy logic was employed to design a water control system in the open
oyster mushroom farm to adjust the amount of water with respect to the temperature,
humidity, and ventilation [22]. The ANN and fuzzy logic were applied to develop an
irrigation management system to prevent frost in the greenhouse [23]. The mentioned
systems employ the knowledge base of experts and do not improve their suggestions
in time.

The artificial neural network was applied to predict temperature variation in the mush-
room growing hall with input parameters such as ambient temperature, water temperature,
fresh air, and circulation dampers [16]. ANN-based control schemes for the predictive time
series modeling of the greenhouse climate control system were presented to control internal
temperature and humidity [18].

Visual information can also be useful in greenhouse production. It enables the de-
tection of diseases [7,24] and the state of the plants [25], the determination of the picking
time and control strategy for the harvesting robot [26–28], the optimization of climate
control, the estimation of the growth rate, and the generation of a harvest reminder [29].
The number of mushrooms and size of the mushroom caps can be used as a parameter
in climate control systems [30]. A convolutional neural network (CNN) based algorithm
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to measure the size of white button mushroom caps through the entire fruiting period
was introduced in [30]. The algorithm to get a more accurate size by detecting circles
of round caps was proposed in [29]. The algorithm includes CNN, K-means, contour
detection, and regional analysis. During the growing process, mushrooms overlap with
each other, and the segmentation of mushrooms faces additional challenges. Image edge
gradient characteristics, filtering, morphological analysis, and least square ellipse fitting
algorithm were employed to segment overlapping Agaricus bisporus to use it as input for
the harvesting robot [31]. All algorithms can be applied if the images are taken from above
with the camera installed parallel to the ground.

In this paper, the approach to automatic climate control according to visual and climate
information in white button mushroom cultivation hall is presented. It combines computer-
vision and decision-making algorithms with human knowledge and experience. The paper
is organized as follows. In Section 2, the approach design, data collection procedure,
methods used in image preprocessing, and climate management algorithm are explained in
detail. Section 3 consists of an approach analysis including the overview of collected data;
results of morphological, Fourier, and object detection analysis through the cultivations;
and development of the decision-making model. The paper ends with a discussion of the
application of the approach in the real environment and conclusion sections.

2. Materials and Methods
2.1. Layer Design

The mushroom production process is based on a well-established procedure with
climate parameters selected from a specific range. A popular approach is to manage
climate automatically to adjust the parameters predefined by the technologist while during
the growing process, technologist performs climate correction to the process deviations.
However, this approach highly depends on the knowledge and experience of the single
technologist because there are no strict rules which describe optimal climate management
for each situation. In addition, manual monitoring of the growing process to take necessary
actions on time is a time-consuming process and has a high-risk level for human error,
especially if there are many halls at different growing stages under the technologist’s care.
In the presented approach, a new layer with an AI-based component is included, which
enables knowledge sharing and improves the decision-making process.

The general scheme of the process is presented in Figure 1. The currently used cli-
mate management system consists of a user interface, climate controllers, and sensors.
It enables us to remotely set the values for climate parameters and monitor and control
them in the mushroom growing halls. However, it adjusts the values to fit the predefined
set points and does not make decisions or suggestions on how the climate parameters
should be changed regarding the actual state of the mushrooms. The standard climate
management system (Figure 1, black components) is extended with the AI-based compo-
nent (Figure 1, blue components). The AI component combines a collection of structured
data and decision-making parts. The climate data about the cultivation is supplemented
with visual information: a series of images in different locations of the mushroom growing
hall. Visual data (images and results of the analysis), climate parameter values (determined
by the technologist and specific for each hall), and administrative data are stored in the
storage element. The features extracted from the images are used to identify the actual state
of the mushrooms and the dynamics of the cultivation. These features together with the
values of climate parameters from the standard climate management system are employed
to suggest the changes for the set points. In case changes are needed, they are transmitted
to the controllers through the standard climate management system.
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Figure 1. The architecture of the system. The components of the current climate management system
(black) are extended with the AI-based components (blue). The arrows represent the data flow
between the components.

Implemented schema with a collection of historical data enables not only its direct
use in the decision making model construction, but also the implementation of knowledge
sharing and the ability to evaluate the quality and management of the data during the
growth process. The changes made by the technologists are used as the ground truth
when developing the decision-making model. Such an option has been selected instead
of experimentally trying to define optimal scenarios for climate management due to the
risk that an experimental decision may damage the full growth cycle and waste the current
growth production. However, decisions made by humans are often subjective or can even
be qualified as human error. For example, the technologist’s decision to start shock too late
would result in an incorrect decision made by the model after training. Thus, to ensure the
quality of the data used for training, all changes made by the technologists, the visual data,
and the climate data are reviewed at the end of cultivation by removing the actions that
were not suitable for training.

2.2. Climate Data Acquisition

Climate data was acquired by analyzing the time series of climate parameters during
historical cultivations in which the changes were made by the experts. The time series
are generated from the values of the climate parameters observed in 10-min intervals.
Such a solution has been caused by the limitations of the main climate management
system to collect data about the transition between states and changes. In the analysis
of the historical time series of the climate parameters, the experts define rules to identify
transition moments between the stages and baselines of important climate parameters in
each stage. The summarized information is provided in Table 1. Thus, the termination time
of each stage was identified automatically with respect to the termination criteria defined
in Table 1. Each stage starts with the end of the previous stage.

The production cycle starts with inoculation (firstStage) during which the spawn is
introduced to the substrate and prepared for the further process by layering them on shelves
and watering. The incubation (secondStage) starts when the mycelium leaps-off the spawn
and starts growing on the substrate. After the mycelium colonizes the substrate, the shock
(shockStage) can be initiated. A seasonal change is simulated in this stage by lowering
the temperature and CO2 concentration, and it results in the formation of fruits. The
mushrooms are formed in the fruiting stage (growingStage) by adjusting the appropriate
values of room temperature, humidity, and CO2 concentration. The final stage (finalStage)
consists of mushrooms growing until harvesting and the fruiting of secondary flushes. The
full process lasts approximately 30 days.
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Table 1. Climate parameters observed in different stages of the production cycle and their termination
conditions.

Stage Observed Parameters Criteria for Stage Termination in
Historical Analysis

Inoculation
(firstStage)

Set point of compost temperature
Moment of the first observed CO2 set point valueSet point of CO2

Out air flow

Incubation
(secondStage)

Set point of CO2

Moment of the sharp decrease of CO2 valueSet point of room humidity
Set point of room temperature

Out air flow

Shock, initiation of fruiting
(shockStage)

Set point of CO2
Moment the CO2 value changes from gradually

decreasing to constant
Set point of room humidity

Set point of room temperature
Out air flow

Fruiting (pinning)
(growingStage)

Set point of CO2 The end of flush formation (does not exceed 18 days
of cultivation process)Set point of room humidity

Set point of room temperature

(finalStage) - 10 days after the end of flush formation

The automatic management process was focused on incubation, shock, and fruiting
stages. Aside from state transition actions (provided in Table 1), actions of climate correc-
tions may be performed in each stage. The set of possible actions and criteria to identify
them is provided in Table 2.

Table 2. Criteria to identify actions in different stages of production cycle.

Stage Action Criteria

Incubation Correction of parameters Any change of observed parameters

Shock Correction of parameters Any change of observed parameters

Fruiting
Stimulate pinning Decrease CO2 level and (or) temperature

Slow down pinning Increase CO2 level and (or) temperature

Other correction Change which does not meet criteria for actions of stimulate and slow
down pinning

The example of managed parameters including stage transition and actions taken
during the single cultivation process is provided in Figure 2.
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Figure 2. Example of parameters (relative humidity (RH), temperature, and CO2) managed during
the cultivation process. Red vertical lines represent termination moments of Incubation and Shock
stages. Dashed green lines represent technologists’ actions to change the values of parameters. The
photos provided on top visually represent the process on the 4th, 10th, 17th day of the process. The
labels in the horizontal axis represent the number of days passed from the start of the cultivation.

2.3. Image Acquisition

The images for the system were taken in the active production hall. During the
cultivation process, white button mushrooms grow in the substrate which is placed on the
shelves. The height of the substrate is approximately 20 cm with a 5 cm casing layer. There
are 4 shelves stacked vertically. The distance between two parallel shelves is ~25 cm. The
distance is too short to place a camera between the shelves to take images vertically. Thus,
it was decided to take pictures at an angle from the side of the stack of the shelves.

The progress of the mycelium spread, and mushroom growth speed depends on the
microclimate, which is created because of location in the mushroom growing hall and level
of the shelf. For example, the distance to ventilation sources, the gap between the ground,
and the lowest shelf compared to the gap between the two lowest shelves can cause a
difference in the actual values of the climate parameters and, therefore, impact the growth
progress. Thus, it is not enough to make climate change decisions based on the visual
information extracted in one location. Using multiple stationary cameras limits the number
of observed locations by the number of camera devices, requires ensuring an internet
connection, and requires additional steps in preparing data for the decision-making model.
Thus, it was decided to construct a system that enables the movement of one camera device
vertically (between the shelves) and horizontally (along the shelf) and the observation of
a predefined number of locations (Figure 3a). The images are taken at 4 positions on one
shelf. The top shelf is not monitored due to a different microclimate emerging because
of the significantly longer distance from the shelf to the ceiling of the growing hall. To
sum up, 12 images are generated during one cycle which is repeated every 4 h during
cultivation process. The light needed for mushrooms to grow is too dim to get images
of a good enough quality for the analysis. Thus, the bright light was used while images
were taken. Due to the vibrations during camera motion, the camera stops at a slightly
different position and takes a photo of a slightly different area in every cycle of taking
photos. It is important to monitor the dynamics of the mycelium growth, so the markers
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from the dictionary of CHARUCO library are applied to define the position identifier.
Another dictionary from the same library is used to define the identifier of the mushroom
growing hall. The monitored area is detected during the analysis of every image based
on the positions of the yellow part of the yellow-blue sticks. Only the upper part of the
sticks is used for calibration because the lower blue part is partly covered with mushrooms
in late growth stages. The sticks are in the corners of a square, and each part of the stick
(blue or yellow) is 5 cm long. The distance between the sticks can be defined dynamically;
30 cm was used in the examples. The known distance between the markers is also applied
to estimate the size of the mushroom caps. The results of the calibration for the images
taken on the 6th, 10th, and 15th days of the cultivation process for the same position are
shown in Figure 3b–d.
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Figure 3. System for visual monitoring (a) in the mushroom growing hall, examples of calibrated
images taken on the 6th (b), 10th (c) and 15th (d) days of cultivation process.

There are images that cannot be used in the decision-making due to various irregular-
ities that occurred in the image acquisition process. A few examples of such images are
provided in Figure 4:

• Images were calibrated incorrectly due to bad camera positioning (Figure 4a,b), and
such calibration leads to distorted images that cannot be used in the numerical analysis.
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• The external light source caused a significant change in the environment, and it was
not possible to define room and position identifiers (Figure 4c).

Agriculture 2022, 12, 1921 8 of 25 
 

 

   
(a) (b) (c) 

Figure 4. Examples of images collected during image acquisition which cannot be used in the anal-
ysis because of bad calibration (a,b), external light source (c). 

2.4. Image Preprocessing 
Various parameters, such as the mycelium coverage percentage, number of myce-

lium components, number of detected mushrooms of a different size, and others are used 
to determine the dynamics of mycelium and mushroom growth in different stages of the 
mushroom production process. The features extracted using the image analysis methods 
are discussed in the further sections. For the morphological and Fourier analysis, the mon-
itored area is transformed to a square gray image (Figure 5a). To detect mushrooms in the 
monitored area, the image of it is divided in two parts (Figure 5b). This prevents the sys-
tem from using computational resources to detect objects in irrelevant areas of image and 
enables the maintenance of high resolution in the images under analysis. 

 
 

(a) (b) 

Figure 5. Image preprocessing scheme for Fourier and morphological analysis (a) and for the object 
detection model (b). 

2.5. Methods for Image Analysis 
2.5.1. Fourier Analysis 

The concept of the Fourier analysis is to decompose signals into harmonic functions. 
An image is a 2D signal from the mathematical point of view. In the Fourier analysis, the 
image is transformed into frequency data, and the intensity represents the amplitude of 
the function. Low frequencies correspond to areas of low variation in intensity. High fre-
quencies represent fine details and edges. The images were reconstructed using only those 
values from the magnitude spectrum that pass the respective filter. The examples of Fou-
rier analysis are displayed in Figure 6 for the images taken with a 96-h gap between the 
adjacent images. The three types of filters (low-pass, medium-pass, and high pass) are 
used to define the numerical parameters of an image. The results of the Fourier analysis 
used as derived input features in AI-based system are as follows: 

Figure 4. Examples of images collected during image acquisition which cannot be used in the analysis
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2.4. Image Preprocessing

Various parameters, such as the mycelium coverage percentage, number of mycelium
components, number of detected mushrooms of a different size, and others are used to
determine the dynamics of mycelium and mushroom growth in different stages of the
mushroom production process. The features extracted using the image analysis methods
are discussed in the further sections. For the morphological and Fourier analysis, the
monitored area is transformed to a square gray image (Figure 5a). To detect mushrooms in
the monitored area, the image of it is divided in two parts (Figure 5b). This prevents the
system from using computational resources to detect objects in irrelevant areas of image
and enables the maintenance of high resolution in the images under analysis.
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2.5. Methods for Image Analysis
2.5.1. Fourier Analysis

The concept of the Fourier analysis is to decompose signals into harmonic functions.
An image is a 2D signal from the mathematical point of view. In the Fourier analysis,
the image is transformed into frequency data, and the intensity represents the amplitude
of the function. Low frequencies correspond to areas of low variation in intensity. High
frequencies represent fine details and edges. The images were reconstructed using only
those values from the magnitude spectrum that pass the respective filter. The examples of
Fourier analysis are displayed in Figure 6 for the images taken with a 96-h gap between
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the adjacent images. The three types of filters (low-pass, medium-pass, and high pass) are
used to define the numerical parameters of an image. The results of the Fourier analysis
used as derived input features in AI-based system are as follows:

• the mean intensity value of reconstructed image based on the filtered frequencies;
• the standard deviation of the reconstructed image based on the filtered frequencies.
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Figure 6. Grayscale images (a,e,i) and Fourier analysis results, that is, respective images of recon-
structed based on low frequency (b,f,j), medium frequency (c,g,k) and high frequency filter (d,h,l) on
the 5th, 9th, and 13th days of the mushroom production cycle.

The mean intensity values represent the mean brightness of the reconstructed image.
As the mushrooms grow, the images constructed of low frequencies become brighter and,
therefore, the mean intensity value increases. Similarly, the levels of intensity become more
diverse as the different mushroom sizes and forms appear. This results in an increase in the
standard deviation of the intensity values. These features enable the identification of the
change in the dynamics of the mushroom growing process.

2.5.2. Morphological Analysis

During the early stages of mushroom production, it is important to evaluate the
dynamic of the mycelium growth, especially in the early stages of cultivation (before the
pinning). The number of components represents the number of separate areas where the
mycelium appears on the surface of the compost. A morphological analysis is used to
process pixels in their neighborhood to find the connected components of a significant
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size. A threshold value is selected to filter out noise components. The examples of the
morphological analysis results are provided in Figure 7d–f) for the respective grayscale
images in Figure 7a–c). There is a 48-h time gap between the moments two adjacent images
were taken. In the earliest image (Figure 7d), the number of components is high, and
the average size is small compared to the later examples. As the time passes, separate
components connect in between and form the components of large areas (Figure 7e,f).
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Figure 7. Grayscale images (a–c) and connected components of the respective images (d–f) on the
5th, 7th, 9th days of the mushroom production cycle.

The results of the morphological analysis are used as features in the AI-based system:

• number of all components;
• number of the components filtered by size;
• coverage coefficient (the ratio of summed pixels of filtered components and the number

of image pixels);
• average size of the filtered components;
• standard deviation of the size of filtered components.

Obviously, the absolute numbers of the parameters depend on the monitored area and
change in parameters is applied to evaluate the quality of the cultivation process and to
make suggestions.

2.5.3. Object Detection

In later stages of mushroom production, it is important to monitor the dynamics of the
mushroom growth. Faster R-CNN is employed to detect the mushrooms. The architecture
of the Faster R-CNN combines a convolutional neural network, regional proposal network,
and fully connected neural network (20). After preparing two images to represent different
sides of the monitored area, Faster R-CNN is applied to detect bounding boxes of the
mushrooms (Figure 8). The results are aggregated to show the detected objects in the initial
image. The diameter of each object is estimated proportionally to the known distance
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between the markers of the monitored area. Object detection results used as features in
AI-based system are as follows:

• Number of objects with diameter <5 mm;
• Number of objects with diameter of 5–10 mm;
• Number of objects with diameter of 11–20 mm;
• Number of objects with diameter of 21–30 mm;
• Number of objects with diameter of 31–40 mm;
• Number of objects with diameter >40 mm;
• Total number of objects.
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2.6. Automatic Climate Management Approach

It is well known that climate parameters in the mushroom growing hall depend on the
production stage. The appropriateness of the visual data cannot be guaranteed in the first
and final stages as the hardware used to take images is not compatible with the watering
process at the inoculation stage and production harvesting at the final stage. Moreover,
during the inoculation stage, the mycelium development appears inside the compost, and
visual analysis of the compost surface is not informative. Thus, in the proposed approach,
the modifications of the climate parameters are suggested during the incubation, shock,
and fruiting stages. By taking into account that different actions are performed based on the
production stage, the different models are used to make suggestions in each stage. Finally,
the implementation of the automatic climate management consists of the following steps:

1. decide if the modification of climate values is needed at the current moment;
2. choose values for climate parameters if so.

Decision making is applied based on a dataset constructed of historical data with
changes made by technologists, known visual data, and climate parameter values. To
evaluate the dynamics of the parameters used in the decision tree model, the difference
between the values in 4-, 12-, and 24-h intervals are considered as input features. Finally, the
decision tree is used to define whether the climate change is needed at the current time in
combination with K-nearest neighbors employed to obtain what parameter values should
be used after change. The values of ongoing cultivation were compared with historical
cultivations and averaged values of the 3 most similar ones with time offset considered
were suggested as recommendations.
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Although in the Results section the data collection, trends of visual indicators, and
performance of decision model is analyzed, the automatic climate management mushroom
growing hall must be implemented with the following:

1. A notification system about data collection disturbance so that technologist would
take over the climate management in case the appropriate data for making automatic
decision cannot be guaranteed.

2. A model update system to review the data collected during the cultivation after it is
finished and refitting the decision tree model with available new data.

The generalized scheme of the automatic climate management process is provided in
Figure 9.
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3. Results
3.1. Technologist’s Interface and Overview of Collected Data

During the data collection stage, the growing process from the technologist perspective
continues as usual while a created layer collects visual data, climate data, and information
about the actions performed by the technologist during the growing process. After the
growing process, the technologist reviews the growing process and evaluates the applied
decisions based on the historical data using a created WEB-based interface. Several user
interface screens are provided in Figure 10 to demonstrate how the technologist can follow
the growth process and perform action evaluation by analyzing the full growth process
information. Here, the technologist can access all the information before deciding about
action assessment for the selected cultivation for each stage (Figure 10a, part 1), see all
changes (Figure 10a, part 2), and (Figure 10a, part 3) provide an assessment of the change
in the evaluation form. To help the technologist make a decision, photos at the different
positions closest to the time of the change are provided in the evaluation form. They can
also access a detailed analysis of each photo (Figure 10a, part 4) or check the dynamics
of the climate or visual parameter during the growth process as a time series graph. An
example of the dynamics of mycelium coverage percent in a range of 3–12 days is shown in
Figure 10b. The change of the total number of pins normalized per m2 for 12–16 days is
provided in Figure 10c. It also demonstrates the disturbance in data collection on the 15th
day as there were no photos collected. Aside from the screens provided in Figure 10, the
technologist can use the interface to access other information related to the growth process,
such as administrative data about the substrate; watering process information; graphs
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of the visual indicators’ changes; and the setting and monitoring of values of different
climate indicators such as compost/room temperatures, CO2, and other. The values of
the observed parameters were collected in 10-min intervals without the disturbance for all
cultivations. It makes the review of the actions more convenient for the technologist and
lets them evaluate the action to change the climate as accurately as possible.
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Figure 10. Parts of technologist interface to access the data related to the past growth process.
(a) workflow of evaluating the performed changes; (b) example of dynamics of mycelium coverage
percent in the selected monitored positions; (c) dynamic of total number of pins in the selected
monitored positions.

Finally, in order to create the initial decision-making model, data of 16 historic cultiva-
tions were reviewed by the technologist and used as the training dataset. The production
process was carried out in two cultivation halls in the north of Lithuania. The amounts of
collected valid photos based on the cultivation number and growing day are provided in
Figure 11. All selected cultivations had more than 1500 photos each to ensure the diversity
of locations during the training process. The number of images taken per growth period
(Figure 11a) can vary due to the different time the stages lasted in different cultivations,
the interference of the image-taking process because of technical issues, and other reasons.
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The variance of stage duration results in a small number of images to represent the 3rd, 4th,
and 17th days of cultivation (Figure 11b), but there are more than 1500 photos to represent
the 5th–16th days (that is, for the period where changes are suggested).
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Figure 11. Valid photos collected during 16 cultivations (a) number of photos for each growth;
(b) distribution of photos by growth day.

In the mushroom growing process, there is a time range when certain actions are
assumed to be suitable to perform. During the process of evaluating the changes, the
technologist defines the time range. Based on this data, the final dataset was created by
iterating all growing processes per hour period. Only the climate changes confirmed by the
experts and having the corresponding visual information were used to construct decision
tree models. It is assumed that visual data is valid if the gap between two sequential images
was not longer than 2 h in a 24-h period up to the moment in consideration. Such an
approach allows the simple elimination of growth periods in which collection disturbances
occurred (i.e., Figure 10c, gap of visual information on 15th day) or actions marked as not
correct by the technologist. A summary of the collected data is provided in Table 3 (here
“do nothing” is also an action).

Table 3. Distribution of the prepared dataset instances by growth stage and stage actions.

Stage Action Valid Data Instances

Incubation
No changes 381

Correction of parameters 77
Start shock stage 480

Shock
No changes 1410

Correction of parameters 75
Start fruiting stage 359

Fruiting

No changes 1274
Stimulate pinning 108

Slow down pinning 48
Other change 17

The detailed analysis of the managed climate parameters for the decision to stimulate
pinning in the fruiting stage is provided in Table 4. This action was analyzed because it had
the highest number of instances (108). The analysis shows that in a majority of the cases,
the action of pinning stimulation resulted in reducing the CO2 set point by 500 and room
temperature set point by 0.5. In all cases, the managed parameters (CO2 set point, room
relative humidity (RH) set point, and room temperature set point) remained the same or
were reduced.



Agriculture 2022, 12, 1921 15 of 25

Table 4. Changes of climate parameters for the action to stimulate pinning.

Parameter Climate Parameter Change/Total Instances

CO2 set point

0 (no change): 19 instances; −200 ppm: 4 instances;
−300 ppm: 7 instances; −500 ppm: 45 instances;
−700 ppm: 5 instances; −1000 ppm: 13 instances;

−1500 ppm: 15 instances;

room RH set point 0 (no change): 73 instances; −1%: 30 instances;
−2%: 5 instances;

room temp set point 0 (no change): 38 instances; −0.5 ◦C: 47 instances; −1 ◦C:
18 instances; −1.5 ◦C: 5 instances;

3.2. Visual Information

The features extracted from the visual data using different technologies are important
indicators to define the dynamics of the growing process. The results of extracting features
from the visual data using morphological analysis, Fourier analysis, and convolutional
neural networks for object detection are provided in this section.

3.2.1. Morphological Analysis

The results of the morphological analysis are provided in Figure 12 for each monitored
area. The percentage of mycelium coverage increases significantly in 4–6 days. During
the same period, a decrease in the number of filtered components is observed; thus, larger
segments are formed. On days 8–12, these values change slightly. Subsequently, a large part
of the image is covered in mushrooms, which form large, combined segments (increasing
the overall coverage percentage and decreasing the number of components).
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Other results of the morphological analysis are provided in the Appendix A.

3.2.2. Fourier Analysis

The results of the Fourier analysis are provided in Figure 13 for each monitored area.
The largest change is observed in the medium frequency filter images on days 4–6 of the
growth (Figure 13b).
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On the one hand, the number of valid photos and number of data instances provided 

in Figure 11 and Table 3 are quite solid (more than 20K valid photos can be used for the 
analysis). On the other hand, there were only 16 distinct cultivations that can be used in 
the analysis. This research focused on demonstrating that the AI model based on visual 
criteria can be used to make reasonable decisions, as it can analyze the performance of the 
model as the amount of training data increases (see bottom part of generalized proposed 
algorithm provided in Figure 9) and the importance of the visual indicators for making 
decisions in each stage. Due to the limited data, the tuning of the hyperparameters was 

Figure 13. Results of Fourier analysis for low pass mean (a) and, medium pass mean (b) filter intensity.
The brown line represents the medium value, the green line represents standard deviation.

Other results of Fourier analysis are provided in Appendix A.

3.2.3. Object Detection

The results of the Fourier analysis are provided in Figure 14 for each monitored area.
The presented figures show that the number of objects with a diameter of 5–10 mm changes
steadily), reaches its highest value on days 14–15, and begins to decrease. During that
period, the number of objects with a diameter of 11–20 mm starts to increase.
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Other results of object detection analysis are provided in Appendix A.

3.3. Model Development

On the one hand, the number of valid photos and number of data instances provided
in Figure 11 and Table 3 are quite solid (more than 20K valid photos can be used for the
analysis). On the other hand, there were only 16 distinct cultivations that can be used in
the analysis. This research focused on demonstrating that the AI model based on visual
criteria can be used to make reasonable decisions, as it can analyze the performance of the
model as the amount of training data increases (see bottom part of generalized proposed
algorithm provided in Figure 9) and the importance of the visual indicators for making
decisions in each stage. Due to the limited data, the tuning of the hyperparameters was
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out of the research scope. To create the decision-making model, only features extracted
from the visual data were used. Obviously, sensor-based parameters such as the compost
temperature or time elapsed since the start of cultivation can improve the accuracy of the
model. To ensure a proper amount of training samples of each class, a threshold of 100 data
samples for the action was set for the class to be included with the training data. Thus,
based on Table 3, there were three decision making models for each stage: incubation
(no action, start shock stage), shock (no action, start fruiting stage), and fruiting stage (no
changes, stimulate pinning).

Because of the small amount of data, a bootstrapping sampling technique has been
selected to evaluate the performance of the decision-making model. In each experiment,
data from 5 random cultivations was selected as the validation set. To analyze the trend
of the model performance as the amount of training data increases, 5 to 11 cultivations
were used for training. The model was implemented in the Python programming language
using a Random Forest classifier from the scikit-learn library. To avoid model overfitting,
the max depth of the trees was limited to 3. The loss function with balanced class weights
was employed to deal with disbalance of class instances. Thus, 50 experiments of creating
a decision-making model with each number of cultivations selected as training data were
performed. The results of the analysis are presented in Figure 15 (that is, weighted accuracy
for the models and true positive (TP) rates of classes in incubation (Figure 15a), shock
(Figure 15b), and fruiting (Figure 15c) stages). The averaged importance of the variables if
the data of 11 cultivations is used for training is provided in Figure 15d–f for incubation,
shock, and fruiting stages, respectively. The Fourier mean low/medium/high corresponds
to the mean intensity value after applying low/medium/high frequency filter, respectively.
Similarly, the Fourier std corresponds to the standard deviation of the intensity value
after filtering. To monitor the dynamics of mushroom growth, the difference between
the number of pins of various sizes is calculated in the 4-, 12-, and 24-h period. For
example, the parameter “pins 11 20 24” means a 24-h difference in the number of pins that
had a diameter from 11 mm to 20 mm. The analysis results show that as the amount of
training data increases, the weighted accuracies of the models increase as the models better
predict the class other than taking no action. Simultaneously, the decision to take no action
becomes less accurate for the models in shock and fruiting stages, whereas no significant
difference was noticed for the true positive value of taking no action class in the model of
the incubation stage. The analysis of parameter importance shows that features extracted
using morphological and Fourier analysis have high importance in the incubation stage
since the number of pins is usually close to zero in the beginning of the growth process.
In the model of the shock stage, features extracted using the Fourier analysis and object
detection approach have high importance. In the fruiting stage, the most important features
are related to the number of pins of various diameters.
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Figure 15. Boxplots of experimental distribution of weighted accuracy and true positive (TP) rates
for each class of the decision-making models in incubation stage (a), shock stage (b), and fruiting
stage (c), and averaged importance of variables in training with 11 cultivations for incubation (d),
shock (e), and fruiting (f) stages.

The ANOVA analysis for the model accuracy with the training data of 5 and 11 cul-
tivations for the incubation, shock, and fruiting stages are provided in Table 5, Table 6,
and Table 7, respectively. All statistics were calculated with α = 0.05. The p-value for the
incubation stage shows that the hypothesis about the equal means of the groups cannot
be rejected at the significance level of 0.05. However, for the other stages, the p values are
significantly lower than the significance level. The calculated least significant difference
(LSD) for the shock and fruiting stages are 0.037643 and 0.029743. It is obvious that the
mean difference of the groups exceeds the LSD with a difference of 3.2294 and 5.21556 for
the incubation and fruiting stages, respectively.
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Table 5. ANOVA analysis of the model accuracy for models trained with 5 and 11 cultivation data for
the incubation stage.

Groups Count Sum Average Variance

5 50 42.52598 0.85052 0.002383

11 50 43.46301 0.86926 0.002113

Source of variation Sum of squares Degrees of freedom Mean squares F p-value F-crit

Between Groups 0.008780279 1 0.008780279 3.905938712 0.050926745 3.938111078

Within Groups 0.220297187 98 0.00224793

Table 6. ANOVA analysis of the model accuracy for models trained with 5 and 11 cultivation data for
the shock stage.

Groups Count Sum Average Variance

5 50 37.45403134 0.749080627 0.012167794

11 50 40.68343016 0.813668603 0.005823261

Source of variation Sum of squares Degrees of freedom Mean squares F p-value F-crit

Between Groups 0.104290167 1 0.104290167 11.59355723 0.000960477 3.938111078

Within Groups 0.881561729 98 0.008995528

Table 7. ANOVA analysis of the model accuracy for models trained with 5 and 11 cultivation data for
the fruiting stage.

Groups Count Sum Average Variance

5 50 27.47229322 0.549445864 0.005562777

11 50 32.68785236 0.653757047 0.005669442

Source of variation Sum of squares Degrees of freedom Mean squares F p-value F-crit

Between Groups 0.272020571 1 0.272020571 48.4357684 3.89436 × 10−10 3.938111078

Within Groups 0.550378715 98 0.005616109

Although the set of samples used for training and testing is small, the models ade-
quately define the situations that make up the largest part of the training set: when the
current climate does not need to be changed and when it transitions to the next stage.

Finally, if the predicted action requires modification of the climate parameters, the
changes in the values of the climate parameters are obtained using the method of K-nearest
neighbors (KNN). Thus, for each such action, a separate dataset of vectors with standard-
ized and normalized features has been prepared. As in the decision-making model, only
visual indicators and their changes in time were investigated as features. A decision is
made after calculating the Euclidian distance of the existing data instances and selecting
K closest ones. The number of neighbors K used in the model was equal to 3 due to the
limited number of samples. Then, for each managed parameter, the averaged change value
is calculated. In this case, the change of the parameter is defined as the difference of value
instead of the absolute value of the parameter. The action to stimulate pinning in the
growing stage was selected as an investigation object because it had the largest number
of samples (108 in total) for an action, which requires change in the climate parameters.
The decision to stimulate pinning can result in changes in the CO2 set point, room RH set
point, and room temperature set point. In the dataset, changes for this action vary from
0 to −1500 ppm for the CO2 set point, from 0 to −2% for the room RH set point, and from
0 to −1.5 ◦C for the room temperature set point (see Table 4).

The same bootstrapping sampling methodology was used to separate data instances
by cultivation and, therefore, to construct training datasets for the analysis of the perfor-
mance of the KNN method as the number of training samples increases. The results were
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demonstrated for the changes of CO2 because of the largest number of distinct values of
change (see Table 4, there are 7 distinct values for the changes for CO2, 3 for the RH set
point, and 4 for the room temperature set point). The boxplots of experimental mean square
and absolute errors of CO2 set point values with a different number of cultivations used
for training are provided in Figure 16. The results show that the performance of the model
improves as the larger number of cultivations are used for the training.
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In conclusion, although the set of samples used for training and testing is rather
small, the models adequately define the situations that make up the largest part of the
training set: when the current climate does not need to be changed and when it transitions
to the next stage. The suggested AI-based climate management process demonstrates
promising results. Increasing the number of instances used for training would result in a
model with higher accuracy. In addition, including additional variables could improve the
decisions of the models. For example, in the current models, the time series of parameters
extracted from the visual data are analyzed in the periods of 4, 12, and 24 h. More frequent
points of time series better represent the dynamics of the mushroom growing process and
lead to more accurate decisions. At the current moment, the AI-system is used in the
mushroom growing process under the supervision of the technologists, and its components
are modified according to the experts’ feedback.

4. Discussion

In this study, the actions performed by the technologists were used as examples of
good practice and, thus, used to generate a training dataset. In general, the climate changes
in the specific environment depend on the physical properties of each mushroom growing
hall. Thus, different values of the climate parameters can be assigned by the technologist
to get similar results in different environments. Moreover, in some cases the actual values
of the parameter cannot meet the prescribed ones due to the physical restrictions. The
suggested approach to use monitored and evaluated technologists’ actions as a training
set and later make decisions on the action level enables the reuse of the methodology in
different halls where the climate management procedure may differ and ultimate optimal
climate management cannot be guaranteed due to physical restrictions.

In addition, the climate management procedure depends on the objective of the culti-
vation. For example, it is important to adjust the cultivation process to human resources
available for harvesting, or the objective is to have the production of the specific size pre-
pared for the agreed date. If the final objective differs, model tuning should be performed
to obtain suitable decision-making models, and the model for predefined objective should
be used in the cultivation process.
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On the one hand, implementation of such a layer and collection of fully structured
data is expensive due to the preparation of the physical infrastructure for the acquisition of
synchronized visual and climate data, human resources, and the time necessary to review
collected data. On the other hand, besides implementing automatic climate control, such
an approach simplifies knowledge sharing between the technologists working in the same
growing halls or using collected data for the new technologist as learning materials.

The suggested approach is based on the manual review of the technologists’ actions.
The decisions made by the technologists are subjective and depend on the technologists’
experience. However, it is always possible that the decision was incorrect. In general, if
the training dataset is large enough, incorrect decisions may be detected using statistical
analysis in relation to the outcomes of the cultivation. As the dataset in this research was
limited, the identification of unsuitable changes and automatic determination of the period
in which the action is appropriate need further investigation.

The main objective of this approach was to show that monitoring visual information
may be useful in the decision making process. Of course, the proposed solution is still
in the stage of proof of concept, and there are many options to improve the automatic
decision-making process, such as the use of more visual indicators; the inclusion of values
measured using sensors, such as compost temperature and room temperature; the use of
changes of the indicators as timeseries instead of several selected time points; and similar
actions. However, such improvements require more structured data and are the objects for
further research.

5. Conclusions

The additional AI-based layer for the existing climate management system in the
white button mushroom growing hall was presented in this article. The layer combines
technologists’ experience, climate management data, and indicators extracted from visual
information. The experts’ knowledge and shortage of training data for the complete
cultivations led to three different AI models, which represent different stages of mushroom
cultivation (that is incubation, shock, and fruiting). Due to variety of data formats, the
AI-based layer employs various AI methods. Moreover, the application depends on the
cultivation stage. For example, in the early stages, the features extracted conventional
signal processing methods; a Fourier transformation and morphological analysis were
identified as most important. In the later stages, object detection using convolutional neural
networks had a stronger influence on the model results. The AI-based layer provides
recommendations on what changes should be made for the climate parameters. The state
of required climate change was detected using a decision tree, and the recommended
parameters were chosen using a method of K-nearest neighbors.

It should be noted that the dimensions and constructional material of the hall can
have an impact on what climate is considered optimal for mushroom cultivation. Thus,
the models should be fitted according to the mushroom growing hall properties if they
change significantly.

The standard climate management in the white mushroom growing process depends
on the technologist’s level of expertise and skills to evaluate various parameters related to
the mushroom growing state. The suggested AI-based layer enables experts’ knowledge
sharing and helps to move the mushroom growing process towards the unified climate
management rules.
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P.P. and V.D.; visualization, D.Č. and A.K.; supervision R.B., V.D. and R.M.; project administration
R.B., R.M. and V.D.; funding acquisition, R.B., R.M. and V.D. All authors have read and agreed to the
published version of the manuscript.



Agriculture 2022, 12, 1921 22 of 25

Funding: This research project is funded by European Regional Development Fund according to
the 2014–2020 Operational Programme for the European Union Funds’ Investments under measure
No. J05-LVPA-K “Intellect. Joint Science-Business Projects”. The APC was funded by Kaunas
University of Technology.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Due to the confidentiality agreement requirements data is not available.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

Appendix A

Agriculture 2022, 12, 1921 22 of 25 
 

 

and V.D.; funding acquisition, R.B., R.M. and V.D. All authors have read and agreed to the pub-
lished version of the manuscript. 

Funding: This research project is funded by European Regional Development Fund according to 
the 2014–2020 Operational Programme for the European Union Funds’ Investments under measure 
No. J05-LVPA-K “Intellect. Joint Science-Business Projects”. The APC was funded by Kaunas Uni-
versity of Technology. 

Institutional Review Board Statement: Not applicable. 

Informed Consent Statement: Not applicable. 

Data Availability Statement: Due to the confidentiality agreement requirements data is not availa-
ble. 

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the 
design of the study; in the collection, analyses, or interpretation of data; in the writing of the manu-
script, or in the decision to publish the results. 

Appendix A 

  
(a) (b) 

Figure A1. CO2 (a) and compost temperature (b) for cultivations used in the training. The brown 
line represents the medium value, the green line represents standard deviation. 

  

(a) (b) 

Figure A2. Results of morphological analysis: total number of components (a), mean area of com-
ponents in pixels (b). The brown line represents the medium value, the green line represents stand-
ard deviation. 

Figure A1. CO2 (a) and compost temperature (b) for cultivations used in the training. The brown
line represents the medium value, the green line represents standard deviation.

Agriculture 2022, 12, 1921 22 of 25 
 

 

and V.D.; funding acquisition, R.B., R.M. and V.D. All authors have read and agreed to the pub-
lished version of the manuscript. 

Funding: This research project is funded by European Regional Development Fund according to 
the 2014–2020 Operational Programme for the European Union Funds’ Investments under measure 
No. J05-LVPA-K “Intellect. Joint Science-Business Projects”. The APC was funded by Kaunas Uni-
versity of Technology. 

Institutional Review Board Statement: Not applicable. 

Informed Consent Statement: Not applicable. 

Data Availability Statement: Due to the confidentiality agreement requirements data is not availa-
ble. 

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the 
design of the study; in the collection, analyses, or interpretation of data; in the writing of the manu-
script, or in the decision to publish the results. 

Appendix A 

  
(a) (b) 

Figure A1. CO2 (a) and compost temperature (b) for cultivations used in the training. The brown 
line represents the medium value, the green line represents standard deviation. 

  

(a) (b) 

Figure A2. Results of morphological analysis: total number of components (a), mean area of com-
ponents in pixels (b). The brown line represents the medium value, the green line represents stand-
ard deviation. 

Figure A2. Results of morphological analysis: total number of components (a), mean area of com-
ponents in pixels (b). The brown line represents the medium value, the green line represents
standard deviation.
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Figure A3. Results of Fourier analysis for high pass mean (a), low pass standard deviation (b),
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