IEEE Access

Multidisciplinary Rapid Review : Open Access Journal

Received 28 September 2022, accepted 12 October 2022, date of publication 4 November 2022, date of current version 9 November 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3219455

== RESEARCH ARTICLE

Exploring Natural Language Processing in
Model-To-Model Transformations

PAULIUS DANENAS ! AND TOMAS SKERSYS'2

I Center of Information Systems Design Technologies, Kaunas University of Technology, 51423 Kaunas, Lithuania
2Department of Information Systems, Kaunas University of Technology, 51368 Kaunas, Lithuania

Corresponding author: Paulius Danenas (paulius.danenas @ktu.edu)

ABSTRACT In this paper, we explore the possibility to apply natural language processing in visual model-
to-model (M2M) transformations. Therefore, we present our research results on information extraction from
text labels in process models modeled using Business Process Modeling Notation (BPMN) and use case
models depicted in Unified Modeling Language (UML) using the most recent developments in natural
language processing (NLP). Here, we focus on three relevant tasks, namely, the extraction of verb/noun
phrases that would be used to form relations, parsing of conjunctive/disjunctive statements, and the detection
of abbreviations and acronyms. Techniques combining state-of-the-art NLP language models with formal
regular expressions grammar-based structure detection were implemented to solve relation extraction task.
To achieve these goals, we benchmark the most recent state-of-the-art NLP tools (CoreNLP, Stanford
Stanza, Flair, Spacy, AllenNLP, BERT, ELECTRA), as well as custom BERT-BiLSTM-CRF and ELMo-
BiLSTM-CRF implementations, trained with certain data augmentations to improve performance on the
most ambiguous cases; these tools are further used to extract noun and verb phrases from short text
labels generally used in UML and BPMN models. Furthermore, we describe our attempts to improve
these extractors by solving the abbreviation/acronym detection problem using machine learning-based
detection, as well as process conjunctive and disjunctive statements, due to their relevance to performing
advanced text normalization. The obtained results show that the best phrase extraction and conjunctive phrase
processing performance was obtained using Stanza based implementation, yet, our trained BERT-BiLSTM-
CRF outperformed it for the verb phrase detection task. While this work was inspired by our ongoing research
on partial model-to-model transformations, we believe it to be applicable in other areas requiring similar text
processing capabilities as well.

INDEX TERMS Information extraction, relation extraction, acronym detection, process models, use-case
models, natural language processing, model-to-model transformation.

I. INTRODUCTION

As one of the most established topics in natural language
processing (NLP), information extraction is focused on
extracting various structures of interest from unstructured
textual information. Recent advances in deep learning and
NLP fields enable the development of high performing
models by using large amounts of data and wide contexts
to automatically extract relevant features, which can be
transferred and reused in other related tasks. Such techniques
enable complex context-driven detection of grammatical

The associate editor coordinating the review of this manuscript and

approving it for publication was Arianna Dulizia

116942

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

and semantic inconsistencies [1], extraction of relations,
aspects, or entities [2], [3], also, tagging entities of interest
in the text [4], deduplication, identifying similarities or
synonymous forms [5] and solve other similar problems.
Moreover, successful implementation of such tasks requires
fundamental knowledge about multiple techniques at the
intersection of information retrieval, computational linguis-
tics, ontology engineering, and machine learning.

This work is inspired by our previous research on
NLP-enhanced information extraction in model-to-model
transformations [6], [7]. However, the need for similar
solutions was also identified in other areas involving visual
modeling, such as business process modeling [8], [9], [10].

VOLUME 10, 2022

https://orcid.org/0000-0002-2054-0624
https://orcid.org/0000-0002-7565-5963

P. Danenas, T. Skersys: Exploring Natural Language Processing in Model-To-Model Transformations

IEEE Access

In this paper, we address the issue of relation extraction
from graphical models focused on the detection of semantic
relationships within the given text. More specifically, we aim
to extract subject-verb relations which can be easily extended
to triplets (subject, verb, object) using associative or composi-
tional relationships from the source model (for instance, Use
Case element is usually associated with one or more Actors
using Association relationship). Therefore, such relationships
will be defined between two or more entities and represent
certain connections between them. Many recent papers
address relation detection between entities of predefined
types (such as PERSON, ORGANIZATION, LOCATION)
and their semantic relations using supervised learning [11],
while we aim to perform more generalized extraction by
extracting all available verb and noun pairs. This is not
a trivial task, although it has been previously addressed
in document processing using pattern-based analysis [12],
distant supervision [13], [14] and rule-based extraction sys-
tems [15]. In addition to the extraction of verb/noun phrases
from the text labels, in this paper, we also study the problem
of identifying and properly interpreting abbreviations and
acronyms, which is a very relevant topic in model-driven
systems development, especially, in the field of automated
model transformations. While it may be handled using exter-
nal sources, like acronym databases, dictionaries, or thesauri,
real-world cases may be more complex to interpret due to
ambiguities, contextual dependency, or simply the lack of
proper text formatting (for instance, acronyms may be written
in lowercase if less formal communication or discourse
context is considered, such as chatbots or tweets). Finally,
we address the problem of processing conjunctive/disjunctive
statements, by parsing them into multiple ‘“‘subject-verb”
relations. In the context of our research, they can later be
combined with related elements to form valid associative
relations (triplets). This is also a sophisticated problem due
to the natural language ambiguities or inconsistency in the
underlying NLP technology. All the above-mentioned issues
are discussed in more detail in Section III.

The main objective of this paper is to evaluate the
capabilities of the most recent developments in NLP for
processing text labels in graphical models and to validate
their suitability by performing the extraction of noun/verb
phrases from the names of model elements under certain
real-world conditions and constraints which are usually
not addressed in more generalized NLP-related research.
To solve these problems, we first identify and enumerate
multiple anti-patterns for naming model elements extracted
from a real-world dataset which complicate this task and
should be handled separately by using additional techniques.
Further, we apply deep learning-based sequence tagging
models, pretrained with augmented data to address some of
these ambiguities and combine them with predefined formal
grammar-based extraction. In this paper, we specifically
consider the processing of text labels in graphical models
created using two prominent visual modeling standards,
namely, Business Process Model Notation (BPMN) [16] and

VOLUME 10, 2022

Unified Modeling Language (UML) [17]. To our knowledge,
this research is one of the first attempts to apply novel deep-
learning-driven techniques for the extraction of information
from such models. Additionally, we provide evaluations of
two related tasks, namely, conjunctive/disjunctive statement
processing and acronym detection, which may significantly
enhance the performance of our developed relation extractors
in this context. We consider our findings to be also
applicable to other NLP topics that involve the processing of
similar texts, such as process mining, aspect-based sentiment
analysis, or conversational intelligence.

Further in this paper, Section II gives a short introduction
to model-to-model transformations with their reliance upon
NLP functionality and provides a concise review of NLP
techniques that we consider to be relevant to our research
and model-to-model transformations in general. Section III
summarizes the main challenges, which must be addressed
when solving similar problems, and provides a structured list
of element naming anti-patterns, which provide additional
noise during automated text processing and illustrate the
complexity of this problem. Further, solutions for three
inter-related tasks are discussed: Section IV describes the
verb/noun extraction task and the experimental results on this
subject; Section V deals with the processing of conjunctive
and disjunctive statements; similarly, Section VI presents
abbreviation and acronym detection challenges together with
the corresponding experimental results. Section VII provides
a discussion of our experimental findings, the identified
issues, and possible improvements. Finally, the paper is
concluded with Section VIII providing certain insights on the
future work and conclusions.

Il. INTRODUCING NLP TO MODEL-TO-MODEL (M2M)
TRANSFORMATIONS

Let us assume that a system analyst has a valid UML use
case model, created either by himself or obtained from
external parties, which he intends to use as a part of some
system specification. Therefore, he wants to use it as a
source of knowledge to develop a conceptual data model
for that business domain in form of a UML class model.
Model-to-model transformations enable direct reuse of the
input model without the need to manually develop the
target model; they also provide the benefits of transferring
and reusing the whole logic of model transformations for
other instances. Unfortunately, existing solutions provide
only complete model transformations which are quite rigid
due to their solid formal foundations and are very limited
for integrations with complementary functionality, such as
natural language processing [18], [19]. Therefore, in this
section we will rely on our own development [7], [20] to
demonstrate use cases for NLP-based transformations, as our
solution provides the ability for the user to use intuitive drag
and drop actions on certain model source elements, as well
as provides relevant extension points to integrate required
functionality. These actions trigger selective transformation
actions to generate a set of one or more related target model

116943

IEEE Access

P. Danenas, T. Skersys: Exploring Natural Language Processing in Model-To-Model Transformations

B Conta.. | &9 Diagrams| % Inheri.. ‘ %3] Order Management &) Order Management X

Containment a8 IS W) S
B wa ¥ -
B Data | B
B[_Class Model Customer |_retum back o
[_Use Case Model = |]
-/} Relations an
'2/5 Ovder Managerient | 9728 & i N n fikin e
£ Clerk - e @ 7| sl — |
2 - El dass v
- Manager Signal
% Warehouse n
© Fillin complair [pDe=ppe %
O Issue invoice T Port
O Load items O Interface
O Replace item
© Return back item Collaboration

FIGURE 1. lllustrative example of a partial M2M transformation using
drag and drop action.

elements and represent those elements in the opened target
model diagram.

In our example, we use the UML use case model as
the source model, and UML class model as the target
model. Furthermore, we present the situation where it is
necessary to apply more advanced processing to produce a
semantically valid fragment of a target model. We assume
that the user dragged Actor element Customer from the
UML use case model onto the opened UML class diagram
Order Management (Fig. 1, tag 1), which triggered a
transformation action to execute the specific transformation
specification. This specification is visually designed and
is specified to be executed particularly after an action,
dragging an Actor element from the use case model onto
the UML class diagram, is triggered. The transformation
specification instructs the transformation engine to select
Customer element together with instances of Use Case
elements associated with this Acfor and transform them
into UML Class elements and a set of UML Associations
connecting those classes. Now, we assume that in the
exemplary use case model, Customer is associated with two
Use Case elements, particularly, Return back item and Fill-
in complaint form. This results in generation of a UML class
diagram fragment as presented in Fig. 1, tag 2.

While from the very first sight this would seem like a
straightforward and simple transformation, this particular
example illustrates a situation where certain NLP processing
is already required to acquire a correct result. The reason
behind this is that the conditions defining the extraction of
multi-word verb and/or noun phrases are non-trivial. In our
case, the association between the two classes Customer
and Item is named as the two-word phrase return back,
which is extracted from the name of the source element,
particularly Use Case element Return back item. Moreover,
actual verb phrases are not limited to one or two words,
like phrasal-prepositional verbs containing both particle and
preposition (come up with) or even distributed in the whole
phrase, e.g. when the particle is after the object (associate
the object with), although the such cases are observed less
frequently in the formal language used in modeling practice.

The above-mentioned examples are just sample cases
where a straightforward text chunking is not sufficient and
certain involvement of NLP technology is required to obtain
correct transformation results. Further, we provide more

116944

examples which may require additional steps for linguistic
preprocessing:

o Hierarchical relations created after one element is
dragged onto another if text labels of these elements
match some form of the semantic relationships (such
as generalization, synonymy, hyponymy, hypernymy or
holonymy)

o Entity deduplication when multiple entries have the
same meaning but different expressions. In some cases
they are not considered synonyms, for instance, acronym
and abbreviation resolution does not result in synony-
mous entries but rather in duplicate representations

o Processing of more complex phrasal structures like
conjunctions/disjunctions, or combinations of the above
(e.g. create invoice and send it to the manager).
This may also include mining of ternary associations
or relationships, as well as identifying possible co-
references

o Text normalization, such as having two sets of elements
that differ only in syntactic structures. For instance,
consider two sets of associated elements in the source
model, Actor Administrator and Use Case Monitors
instance, and Actor Administrator and Use Case Moni-
tor instance. The only difference here lies in the present
tense form of verb monitors, where normalization to
infinitive form monitor would result in deduplication of
output elements, and hence, more clarified and concise
output model. While this is a very straightforward
and less likely scenario, more sophisticated cases may
involve disambiguation of acronyms, or detection of
missing words as well as grammatical errors.

Furthermore, we list the main NLP fields which could

be applicable in this context in Table 1, together with
our insights on their further applications in improving the
quality of model-to-model transformations. Most of them
will not be considered in this research, yet, they are
proposed as additional extension points for improving the
final pipeline. Moreover, this table is also supplemented
with core techniques used to solve these problems; it is
clearly indicated that deep learning techniques are the most
widely researched and applied to solve these problems.
For more extensive reviews of the techniques, as well as
more discussions on their weaknesses or future prospects,
we refer to recent survey NLP papers such as [76], [77],
[78], [79], and [80]. Additionally, their performance can
be significantly boosted after applying transfer learning
with pretrained language models, such as BERT [39],
ELMO [41], RoBERTa [81], ELECTRA [82], XLNet (83),
T5 [84] or Microsoft’s DeBERTa [85]. Therefore, from the
technological point of view, one would need to consider the
integration of deep learning based techniques that require
to satisfy certain technological constraints. This is the first
work which tries to bridge these two fields by performing a
thorough evaluation of the existing NLP implementations for
processing short text labels, which is required in the context
of model-to-model transformations.

VOLUME 10, 2022

P. Danenas, T. Skersys: Exploring Natural Language Processing in Model-To-Model Transformations

IEEE Access

TABLE 1. Applicability of NLP techniques in M2M transformations.

Task Goal Application in M2M Core techniques
transformations
Tokenization Split a text into parts with Text preprocessing Lexical co-occurrence patterns [21], regular expression-
regards to separators residing based rules [22], extensible custom tokenizers [23] or deep-
inside the tokens learning driven implementations [24, 25]
Lemmatization | Obtain base and root word Text preprocessing Simple dictionary lookups, statistical classifiers [26] or neu-

& stemming

forms

ral techniques, such as bidirectional gated recurrent unit (Bi-
GRU) network [27] or deep GRU-based encoder-decoder
architecture [28]

Error Detect and correct Text preprocessing String distances like Levenshtein and Jaro-Winkler, phonetic
correction grammatical, typographical, Metaphone algorithm and its modifications [29], statistical
or even semantic errors (like machine translation [30] or neural machine translation prin-
accidental use of ciples, coupled with transformer architecture [31, 32]
homophones)
Part of speech | Assigns linguistic tags for Text tagging for extraction Maximum entropy [33], loglinear cyclic dependency net-
(POS) tagging | each token in the sentence works [34], conditional random fields (CRF) [35], con-
volutional networks [36] or bidirectional long-short term
memory (Bi-LSTM) combined with CRF [24, 37].
Semantic Capture synonyms, Extraction of hierarchical relations Lexical databases, such as WordNet [38], similarity mea-
analysis homonyms, antonyms, and like generalizations (hypernyms) sures applied on contextual representations, such as cosine
other semantic relations in Augment entity taxonomies distance [39, 40, 41]. Hypernym discovery enables the
the analyzed text Entity deduplication (synonyms) extraction of hierarchical relationships to form entity tax-
onomies and augment existing ontologies or vocabularies.
Rule-based [42, 43, 44], vector space-based [45] neural [46]
or hybrid [47] approaches are among the most prominent
Dependency Extract intra-sentence Advanced grammatical processing, Deep learning-based techniques, e.g., Stanford’s deep bi-
parsing linguistic relationships such as resolution of affine parser based on Bi-LSTM [48], extraction from pre-
between words conjunctive/disjunctive clauses trained language models [49]
Constituency Phrase-level grammatical Noun/verb phrase extraction Context-free grammars [50], TreeCRF [51], neural graph-

tree generation

processing

based learning [52, 53]

Acronym Detecting whether the given | Text normalization, deduplication, Alignment-based pattern-matching [54] and rule-based

detection word in the text is an concept mapping matching strategies [55], supervised machine learning [56],
acronym or abbreviation, unsupervised [57], semi-supervised [3] and deep learning
finding its proper meaning approaches, such as long-short term memory (LSTM) [58]
depending on the context or sequence-to-sequence architectures [59]

Acronym Finding the proper meaning | Text normalization, deduplication, Deep learning techniques, like LSTM [59], Bi-LSTM with

disambiguation | of an acronym depending on | concept mapping BioELMo embeddings as inputs [60], neural topic attention

the context

models [61], convolutional network models [62]

Named entity
recognition

Identify entity instances in
the given text and labeling
them using a predefined set of
categories, such as PERSON,
LOCATION, TIME,
ADDRESS, etc.

Generate different type of elements,
depending whether they represent
particular instance of the specified
class, or the whole class itself

Deep learning driven approaches [63, 64], their combina-
tions with CRF [41, 65, 66], self-attention-based latent CRF
[67]

Entity linking

Complements NER with
disambiguation and linking to
the correct entry in an
existing knowledge base

Perform deduplication and enhance
the quality of the output model

Deep learning techniques combined with with external
knowledge bases, such as Wikipedia, DBPedia, or knowl-
edge graphs [68, 69]

Relation
classification

Assign proper relationship
type between two given
entities from the given set of
choices

Refine (specialize) source model
elements for the generation of more
accurate subset of target model
elements, extract synonymous forms
(same as relation)

Various neural techniques [70]

Semantic role
labeling

Determine “who did what to
whom”, “when” and
“where” [71] by assigning
one of the predefined classes
to the roles of entities

Refine (specialize) source model
elements with focus to generate more
accurate subset of target model
elements

Deep learning techniques, such as bidiectional LSTM [72],
self-attentional deep network [73], graph convolutional net-
works [74], neural transitions [75]

IIl. RELATION EXTRACTION-RELATED TEXT LABELING
ANTI-PATTERNS

In this section, we enumerate a set of modeling and element
naming issues, which make the automated processing of
labels in graphical models rather intricate. While certain

VOLUME 10, 2022

modeling best practices are generally considered in model-
ing [86], [87], actual real-world cases tend to contain various
issues (such as linguistic or modeling ambiguities) making
it very difficult to be dealt with using automated tools.
Hence, if the processing of text labels created following

116945

IEEE Access

P. Danenas, T. Skersys: Exploring Natural Language Processing in Model-To-Model Transformations

TABLE 2. Anti-patterns for naming activity-like model elements.

Anti-pattern Examples

Rules for anti-pattern detection in labels

Multinary associations

« Ask Charles to write down amount in member register

Pattern-based analysis

Acronym/abbreviation explanation

- Check Brisbane City Council (BCC) Decoration Guideline | The presence of acronyms and/or abbreviations

Condition . Check if the article is available

The presence of “if”” or “is” followed by a participle

Conjunctive clause
« Receive and review the request

. Adds incoming mail date, records letter, archives it

The presence of “and” or comma

Disjunctive clause
- Pass or Reject Prototype Test

- Communicates with teacher about adding or dropping

The presence of “or”
p

Verb phrase spans over whole text

. Select an item to process

« Mark the script as invalid and return to customer
here, the verb phrase is mark as invalid)

Morphosyntactic analysis

Association-like naming - Client makes order in eshop

« A new record is saved in patient’s medical record

Morphosyntactic analysis

Brackets
customers) and feelings

- Monitor advertising outcome (impact, financial, new

- Enable participation form (consent declaration

The presence of brackets

Additional comments
« booking completed — payment

- group travel - to be handled manually

The presence of hyphens, dashes, colons, etc.

Prefixes - SAP ET 2000: Order spare parts

« TL4: approve by signing

Regular expressions, the presence of colons, etc.

Mathematical expressions
« Accept (>12months)

- refuse request (request >20x income)

The presence of mathematical symbols

Invalid names « Available; Forward; Yes

The absence of a verb

Grammatical errors Missing letters, misspelled words, etc.

Grammatical error analysis

best modeling practices could be considered as a relatively
uncomplicated task (assuming that the tagging bias of the
underlying implementation is not considered), significant
deviations might easily complicate it.

To identify the most common text labeling issues in
graphical models, we used a large dataset provided by the
BPM Academic Initiative (BPMAI) [88], which contained
over 4100 real-world process models presented in BPMN
notation. We excluded instances that did not meet certain
requirements (e.g., all the elements in the models were named
using single letters without any semantic meaning, or the
text labels were not in English). Labels from the BPMN
Task elements were extracted from the remaining models as
one of the main objects of interest in our research. After
analyzing the extracted labels, a set of naming anti-patterns
for activity-like Task elements was formed (Table 2) together
with examples and some heuristic rules for detecting these
anti-patterns; in our opinion, the latter could be applied for the
initial screening and filtering tasks in other types of graphical
models as well.

The detection rules are not formal in any way but can
be used as guidelines to identify the cases of anti-patterns.
Also, the morphosyntactic analysis might have to be carried
out to properly detect sophisticated cases of element naming
anti-patterns in graphical models. Moreover, other elements
representing subjects or entities (such as BPMN Lane, Pool
elements) may contain invalid names as well, including
multiple subjects, phrases, or some of the anti-patterns from
Table 2.

It is worth noting that some of the observed naming
cases indicated invalid modeling practices, for instance,

116946

naming activity elements as conditions or decision points
(e.g., Available, Yes, Check if available). Naming activities
as whole triplets <actor-relationship-activity>
is yet another quite common bad modeling practice used
in modeling processes. The latter should be transformed
into a combination of a BPMN Lane or Pool element
with an activity-like element in it. One may also identify
cases that combine multiple anti-patterns, for instance, the
name of an activity may contain both conjunctive/disjunctive
clauses relating multiple verb phrases into one text rumbling
(e.g., Mark the invoice as invalid and return to customer),
which increases the complexity of NLP tasks to a whole
new level. Even though resolving conjunctive/disjunctive
clauses is a challenging task, it can still be processed by
using dependency parsing-based extraction, which is further
addressed in Section V.

IV. PHRASE EXTRACTION EXPERIMENT

In this section, we evaluate the capabilities of the existing
NLP tools to properly extract noun/verb phrases from the
given text labels. This task is closely related to the relation
extraction task, given its goal to extract tuples (verb phrase,
noun phrase) from the given chunk of text that can further
be used to construct semantic associative relations after
combining with semantics from the source models (e.g.,
associative relationships between UML Use Case and Actor
elements). Moreover, this task is important for successful
model-to-model transformations because the extracted tuples
are used to generate sets of elements for various target models
or augment the existing models with additional elements.

VOLUME 10, 2022

P. Danenas, T. Skersys: Exploring Natural Language Processing in Model-To-Model Transformations

IEEE Access

Further, we present basic aspects of our experimentation on
extracting noun/verb phrases from the text labels extracted
from the real-world dataset which contains BPMN process
models and UML use case models; both types of these models
contain activity-like elements which are subjects for specific
processing. Section IV-A describes the preliminaries and
setup of the experiment, while Section IV-B presents the
evaluation methodology; in its turn, Section IV-C elaborates
on the main findings in this experiment.

A. EXPERIMENT SETUP

Information extraction (and more specifically, relation extrac-
tion) is widely supported by multiple commercial and
academic engineering efforts that provided multiple options
for selecting the initial starting point for our research.
While new techniques emerge frequently, they are based
on the generally-available text corpora that do not provide
the flexibility and specificity required to fulfill our goals.
More specifically, our initial testing of such tools helped
us to recognize the possibility of confusion in verb/noun
recognition if the infinitive verb form is used — this is not
handled correctly by generic POS tagger tools. On the other
hand, the development of specialized datasets is usually
challenging and time-demanding.

Therefore, given the lack of specialized resources required
for successful implementation, we chose to adopt and
test existing tools by complementing them with additional
extraction functionality and applying certain enhancements
to the existing ones. Moreover, some of these toolkits
provide implementations for wide array of related problems,
such as such as tokenization, POS tagging, lemmatization,
syntactic analysis, dependency parsing, co-reference resolu-
tion, or relation extraction, which may significantly enhance
required pipelines. Additionally, some libraries provide other
interesting tools, for instance, Stanford CoreNLP [89] also
provides natural logic annotator that enables quantifier
detection and annotation, as well as CRF-based true case
recognition, which is also important for knowledge base
acquisition and normalization and relates to the problems
addressed in this work; while quantifier detection is not
among such issues, it can be tested and integrated into the
future pipelines as well.

Further, we list the set of implementations selected for our
experimental implementation and evaluation':

o Stanford CoreNLP toolkit [89] which relies on condi-
tional random field (CRF) implementations for perform-
ing both part-of-speech tagging and NER-related tasks.

o Spacy [23] framework, which applies convolutional
neural networks.

« Stanford Stanza [90] which uses Bi-LSTM to implement
components and pipelines for multiple NLP tasks
such as tokenization, lemmatization, POS tagging, and
dependency/constituency parsing.

I'The final datasets, experimental code and results are availableatht tps :
//github.com/paudan/m2m-nlp-experiment

VOLUME 10, 2022

o Flair [24] toolkit by Zalando Research, which applies
pooled contextualized embeddings together with deep
recurrent neural networks, as well as provides its
pretrained language models.

o AllenNLP [25] which relies on deeply contextualized
ELMo embeddings based on combined character-level
CNN and Bi-LSTM architecture.

o BERT [39] is one of the most dominant techniques in
NLP at the moment of writing this paper, based on trans-
former architecture and masked language modeling.

o« ELECTRA [82] which is an improvement over BERT
that applies token replacements with plausible alterna-
tives sampled from a generative network during model
training, instead of using masked tokens. The main
goal of the model is to predict whether the corrupted
input was replaced with a generator sample. ELECTRA
authors show that this task is more efficient than
BERT and the final model is capable of substantially
outperforming BERT model in terms of model size,
amount of computing and scalability [82].

The fact that these tools use different machine learning
or deep learning approaches to solve NLP tasks has also
motivated us to test their performance in the context of our
approach. In this work, we use the BERT? and ELECTRA?
implementations from the Hugging Face repository, which
are already fine-tuned for part-of-speech tagging tasks.

Additionally, we developed our own taggers that were
biased towards the recognition of conflicting verb forms by
performing augmentations of the original text inputs with
their copies containing infinitive verb forms as replacements
for the original ones; a similar approach was successfully
applied in our previous work to improve performance for base
CRF-based tagger [6]. OntoNotes corpus [91] was used as the
base data source due to its resemblance to the communication
cases observed in graphical process and system models.
For the reference implementation, we selected Bi-LSTM-
CRF architecture [37] which has been proven to be the
best performing one at the time of writing. It consists of a
single input embeddings layer, a bidirectional LSTM hidden
layer to process both past and future features, and CRF
layer at the output, which helps to improve tagging accuracy
by learning and applying constraints over sentence level to
simultaneously optimize the labeling output and ensure its
validity. For our experimental purposes, we implemented two
versions of our customized taggers:

o BERT-BiLSTM-CRF that uses original pretrained

BERT embeddings at the input layer,

o ELMo-BiLSTM-CRF that relies on ELMo embeddings
at the input layer.

For training these models, CRF (also known as Viterbi)

loss, based on the maximization of the conditional proba-
bility, was used; for more details on its derivation, we refer

2https://huggingface.co/vblagoie/
bert-english-uncased-finetuned-pos

3https://hquingface.co/danielvasic/en_acnl_
electra_pipeline

116947

https://github.com/paudan/m2m-nlp-experiment
https://github.com/paudan/m2m-nlp-experiment
https://huggingface.co/vblagoje/bert-english-uncased-finetuned-pos
https://huggingface.co/vblagoje/bert-english-uncased-finetuned-pos
https://huggingface.co/danielvasic/en_acnl_electra_pipeline
https://huggingface.co/danielvasic/en_acnl_electra_pipeline

IEEE Access

P. Danenas, T. Skersys: Exploring Natural Language Processing in Model-To-Model Transformations

NP: <ADV|ADJ>#<NOUN>+<PART>?<NUM>?)+(<ADP>*<DET>?<ADV | ADJ><NOUN | PROPN>+<PART>?<NUM> ?) :

VP: <VERB>+<ADP>?
PNP: <PROPN>+

Listing 1. Formal grammar for extraction used with Spacy, Flair and Stanza.

ADP: <RBIRBRIRPITOIIN |PREP>

ANP: <JJ | ADJ>%<NNI|VBGIRBS |[FW|NNS>+<POS>?<CD>?
NP: (<ANP>)+({ADP}?<DT>?<ANP>)

VP: <VBx>+<ADP>?

PNP: <NNPI|NNPS>+

Listing 2. Formal grammar for extraction used with CoreNLP and
ELECTRA implementations.

to [37] and [92]. Moreover, learning rate was set to 0.1,
the hidden layer size was set to 128, and the early stopping
parameter for termination, if no convergence is further
observed, was set to 10. SimpleNLG library [93] was used
to normalize tense for verb phrases, while NLTK [22] toolkit
was used to implement text chunking with POS tags obtained
as an output from the above-mentioned tools.

Listing 1 represents formal grammar, based on regular
expressions (regex) over part-of-speech tags, which was used
for noun/verb phrase extraction. It relies upon the Universal
Dependencies scheme [94], which is used by Spacy, Flair,
and Stanza tools. Here, NP defines a noun phrase, VP
defines a verb phrase, and PNP defines a proper noun
phrase. As Stanford Core NLP and ELECTRA pretrained
implementations use Penn Treebank notation for its POS
tagger output, the grammar is adjusted for their cases
(Listing 2); here, additionally, ADP defines an adposition, and
ANP — a partial noun phrase, which is further used as a block
in NP extraction.

The datasets used during experimenting were obtained
after pre-processing a relatively large number of BPMN
process and UML use case models, obtained from various
sources. The final experimentation set of such models
consisted of:

o 32 BPMN process models and 25 UML models that were

collected freely from the Internet;

o A large sample of preprocessed and cleansed BPMN
process models, which were selected from a large set of
Signavio BPMN models provided by BPM Academic
Initiative [88].

The acquired final set of models was processed, and the
names of Task elements (for BPMN process models) and Use
Case elements (for UML use case models) were extracted
for experimentation. It was expected that Task and Use Case
elements would contain at least one verb or verb phrase,
and one noun or noun phrase. The extracted elements were
cleaned from semantic inconsistencies, grammatical errors,
invalid names, and common modeling errors, as well as
filtered to exclude invalid practices listed in Table 2. In this
stage, we also excluded entries containing multiple verb
phrases in their names (e.g., conjunctive/disjunctive clauses),
as the recognition of such structures was not a part of this

116948

experiment (this is later addressed in Section V). However,
having a single verb phrase with multiple noun phrases
in conjunctive or disjunctive form could be considered
processable and would result in multiple valid tuples of target
transformation outputs.

After performing the aforementioned steps, we obtained
a dataset of 4044 valid entries that were then used to
manually extract verb phrase and noun phrase pairs. The
whole extraction procedure was performed by the authors of
this paper. These pairs were set as a ‘“‘golden standard” to
validate the outputs acquired from the automatic extraction
using selected extractors. Hence, the final dataset included
328 instances having no verb phrases, and 3716 instances
containing both verb and noun phrases.

B. EVALUATION METHODOLOGY

The developed extractors were evaluated in terms of accuracy,
precision, recall, and F-measure, which measured the ability
to match the acquired outputs to the “golden standard”
outputs. In our experiment, two different aspects were taken
into consideration:

o Whether the extractor successfully determined that the
phrase contained one or more noun/verb phrase that
must have been extracted. In case there is no particular
phrase found, the output would be empty.

o Whether the extractor successfully extracted the
required verb phrases or noun phrases. Note, that it
was required to evaluate if both verb phrases and noun
phrases were successfully extracted. In cases, where
multiple phrases were marked as an output, it was
considered that strictly all of them had to be present in
the output for it to be marked as correct.

Extraction accuracy is defined as the ratio of correctly
extracted verb/noun phrase instances (together with empty
outputs when such instances were absent) to a total number
of entries:

number of correctly extracted instances

accuracy = -
number of total instances

Precision is defined as the ratio of correctly extracted
concepts to the number of total extracted concepts, whereas
recall is a ratio of correctly extracted concepts to the number
of correct concepts:

concepts correctly identified

(@)

precision - —
concepts identified total

concepts correctly identified
recall = 3)
gold standard concepts

VOLUME 10, 2022

P. Danenas, T. Skersys: Exploring Natural Language Processing in Model-To-Model Transformations

IEEE Access

TABLE 3. Results of the extraction of noun/verb phrases from the names of activity-like elements.

Extractor CoreNLP Flair [24] Spacy [23] Stanza BERT [39] ELMO ELECTRA | ELMO- BERT-
[89] [90] AllenNLP [82] BiLSTM- BiLSTM-
[25] CRF CRF
Detection if a source text contained a verb phrase
Accuracy 0.728 0.817 0.816 0.82 0.857 0.686 0.743 0.818 0.860
F1-Score 0.827 0.89 0.89 0.892 0.916 0.797 0.838 0.891 0.918
Detection if a source text contained a noun phrase
Accuracy 0.844 0.988 0.983 0.99 0.988 0.98 0.935 0.921 0.961
F1-Score 0.914 0.994 0.991 0.995 0.994 0.99 0.966 0.958 0.980
Proper extraction of noun phrases in cases containing only noun phrases
Precision 0.67 0.883 0.848 0.918 0.875 0.818 0.741 0.753 0.817
Recall 0.591 0.878 0.832 0.915 0.872 0.79 0.640 0.698 0.777
F1-Score 0.628 0.88 0.84 0.917 0.873 0.804 0.687 0.724 0.797
Proper extraction of both noun phrases and verb phrases in cases containing both
Noun phrases
Precision 0.645 0.736 0.707 0.745 0.768 0.569 0.727 0.694 0.750
Recall 0.551 0.733 0.703 0.745 0.766 0.568 0.691 0.646 0.727
F1-Score 0.594 0.735 0.705 0.745 0.767 0.568 0.709 0.669 0.738
Verb phrases
Precision 0.594 0.639 0.621 0.648 0.693 0.5 0.630 0.655 0.718
Recall 0.587 0.639 0.617 0.649 0.692 0.5 0.608 0.648 0.707
F1-Score 0.591 0.639 0.619 0.648 0.692 0.5 0.619 0.651 0.713

F1-measure (also referred to as F1-score) is defined as a
harmonic mean of these two measures:

_ (1 + B?) x (precision x recall)’ B=1 @)

Fg

precision + recall

C. EXPERIMENT RESULTS

The results of the experimental extraction of verb phrases
and noun phrases from the names of activity-like elements
are presented in Table 3. It depicts both results of detecting
whether the given entry had particular types of phrases,
as well as the performance of extracting these phrases from
the respective entries.

The obtained results indicate that the extractor based
on the RNN-based Stanza tagger outperformed CNN-based
and CRF-based tools (Spacy and CoreNLP respectively) in
solving our problem. Extraction using Stanza’s Bi-LSTM-
based tagger showed the best performance in 2 tasks, while
Flair tagger use resulted in the second-best. Extractor based
on our custom BERT-BiLSTM-CRF tagger outperformed
other implementations while detecting verb phrase presence
and verb phrase extraction. Moreover, both custom taggers
also showed improvements over their generic versions, i.e.,
ELMo-BiLSTM-CREF resulted in a better performance than
the original AllenNLP ELMo, and BERT-BiLSTM-CRF
proved to be better performing compared to the BERT-based
POS tagger. This is quite optimistic, considering the size
and specificity of the dataset. However, some caution should
be taken while interpreting these results, given that our
custom-trained tagger was biased towards the identification
of infinitive forms of conflicting verbs. This implies that in

VOLUME 10, 2022

some other cases it could fail to correctly tag other words
that were handled correctly by the tagger trained using
conventional corpora, and was initially confirmed in our
previous research applying similar principles to train custom
POS taggers [6]. Therefore, more attention should be given to
improving and tuning custom taggers applied in the research,
as well as finding an optimal balance between an increase
in performance for verb detection and a possible decrease
in other tasks that are performed better using generic POS
taggers.

Nevertheless, the results of the leading extractor (based
on the Stanford Stanza toolkit) are quite encouraging —
the achieved F1-Score was more than 0.8 in most of the
performed evaluation tasks, especially given the limitations
and the level of unavoidable ambiguity in the testing dataset.
One of the main challenges in this particular case is
the fact that corpora currently available for training, like
OntoNotes [91] or English Web Treebank [95], are better
accustomed to working with whole documents rather than
the analysis of short text and, therefore, do not represent the
specificity addressed in this paper. We tried to mitigate this
issue with additional augmentations of the input text, which
resulted in certain performance improvements; developing
text corpora, which are better adjusted for this specific task,
would certainly help to improve its performance even further.

V. PARSING CONJUNCTIVE/DISJUNCTIVE STATEMENTS

The techniques described in Section IV proved their effi-
ciency during the extraction of verb phrases and noun phrases,
the tools we experimented with in the phrase extraction

116949

IEEE Access

P. Danenas, T. Skersys: Exploring Natural Language Processing in Model-To-Model Transformations

task are not capable of processing more complex examples
discussed in Section III when applied directly — here, the
conjunctive/disjunctive statements are a good example of
that. The complexity can be illustrated with the following
examples which depict multiple cases of conjunctive state-
ments (disjunctive statements may be formulated almost
identically):

o check dates and suggest modifications — the statement
includes the conjunction “and”.

o consult project, check progress — the statement does not
include direct conjunction, but it is inferred.

o receive invoice, packing slip, and shipment from supplier
— multiple nominal subjects are related to the single verb
receive.

o calculate and send price offer — contains a single
nominal subject that has dependencies on multiple
verbs.

Obviously, the presented examples are not the most
sophisticated text labels one could find in real-world models.
This is not surprising due to the well-known fact that natural
language is one of the most complex objects there is for
automated machine processing. It is worth noting that the
topic of processing conjunctive/disjunctive statements is not
widely researched, although it has received some attention
from researchers working on sentence simplification [96] or
detecting boundaries of the whole conjunction span [97].
Also, many works on sentence simplification rely upon parse
trees [15], [98], [99], which is in line with our research.

In Section V-A, we provide an algorithm based on depen-
dency parsing, which is used to extract pairs of noun/verb
phrases from conjunctive/disjunctive statements. Section V-
B describes an experimental setup using a real-world dataset
consisting of conjunctive/disjunctive phrases that are then
processed using the proposed solution. Finally, Section V-C
provides the evaluation results, a discussion, and some ideas
for our future research.

A. ALGORITHM FOR EXTRACTING NOUN/VERB PHRASES
FROM CONJUNCTIVE/DISJUNCTIVE PHRASES

Further, we briefly describe a dependency parsing-based
algorithm for extracting pairs of noun phrases and verb
phrases from conjunctive/disjunctive phrases (see Algorithm
1). The input is the parsed and tagged document D; hence,
it requires a part-of-speech tagger and a dependency parser as
part of its processing pipeline. We define Drok as the set of
tokens that constitute document D, together with the parsing
and tagging output. Further, this document is also processed
to create noun phrase spans (further denoted as SNP) and
verb phrase spans (denoted as SVP) by using predefined
grammars (such as presented in Section IV-A). Later, we use
correspondence indexes Indyp and Indyp to map each token
in the document to a corresponding noun phrase or a
verb phrase. These indexes enable traversing dependency
relationships at a phrase level and at the same time
reduce the ambiguity that is observed after using different
dependency parsers. We denote the head of the dependency

116950

relationship from the token tok as Deppeqq(tok), and the
end as Depgy,q(tok). Finally, we denote GET operation as
the operation, which enables retrieving an entry from the
index, given its indexing value. The syntactic dependencies
are expected to be labeled using Universal Dependencies
format [94], particularly DOBJ as the dependent object, OBJ
as the object, POBJ as the object of the preposition, CONJ
as the conjunction.

The output of this algorithm is a collection of tuples of
verb phrases and noun phrases. It is expected that the input
contains both nouns and verbs, otherwise, tuples with empty
values instead of the verb or noun phrases can be returned as
a result.

B. EXPERIMENT SETUP
To evaluate our approach, we extract a dataset of 410 entries
acquired from the same set of process models which was
used in our phrase extraction experiment. The final dataset
comprised only those text labels that included at least
one conjunctive or disjunctive clause. Then we manually
extracted all available verb/noun phrase parts to create a
“gold standard” dataset to be used as a reference point for
our evaluation.

The algorithm presented in Section V-A was implemented
as a separate module without any text normalization capa-
bility. To perform comparative testing, we implemented the
module in Python, using Spacy, and extended it to use
Stanford Stanza, due to its flexible integration with the
Spacy framework, to enable comparing the performance of
dependency parsing capabilities of these toolkits.

Again, for the evaluation, we used metrics like the ones
described in Section IV-B, that is, accuracy, precision, recall,
and F1-Score. Here, accuracy is defined as the ratio of the
entries processed correctly and the total number of entries.
Note, that this is a very strict measure as it considers a valid
extraction only if all noun/verb phrase pairs were extracted
correctly. However, this technique is capable to generate a
larger or smaller number of entries compared to the actual
outputs. To address this issue and provide an evaluation of
partially correct outputs, we defined two additional metrics to
evaluate the performance in terms of the number of generated
output instances:

o The mean deviation between the number of extracted

outputs and benchmark output results:
1o |#

actual

MeanDiff = - Z -

i=0 actual

‘_ #lextracted | (5)

o The mean Sgrensen—Dice coefficient, which is used to
evaluate the average similarity between the actual and
extracted instance sets:

n i i
MeanSDC — l Z 2 x |0actual N Oextracted | (6)
i i
n i=0 |0actual U Oe
Here, n is the total number of processed entries in the

dataset; Oiwmal is the benchmark set of verb phrase/noun

xtracted |

VOLUME 10, 2022

P. Danenas, T. Skersys: Exploring Natural Language Processing in Model-To-Model Transformations

IEEE Access

Algorithm 1 Processing of Conjunctive/Disjunctive Statements

Require: parsed sentence Drog, mapping indexes Indyp and Indyp

1: results < 0
2: for all rok € Drox do
3: if DEPgnp(tok) € (DOBJ, OBJ, POBJ) then

4: results <— results U (Ger(Indyp, Depstarr (tok)), GEr(Indnp, Deprnp(tok)))
5: else if DEPgyp(tok) = CONJ then
6: Indpps < index of POS tags and tokens for conjuncts in DEPEgnp(tok)
> Assume pattern <VERB>, <VERB> and <VERB> <NOUN>
7: if |Ger(Indpos, NOUN)| = 1 and |Ger(Indpps, VERB)| > 1 then
8: noun <— Get(Indpos, NOUN)
9: for all verb € Ger(Indpos, VERB) do
10: results <— results U (Ger(Indyp, verb), Ger(Indyp, noun))
> Assume pattern <NOUN> <VERB>, <VERB> and <VERB>
11: else if ||Ger(Indpos, VERB)|| = 1 then
12: verb < Ger(Indpos, VERB)
13: for all noun € Ger(Indpps, NOUN) do
14: results <— results U (Ger(Indyp, verb), Ger(Indyp, noun))
15: else if ||Ger(Indpos, NOUN)|| > 1 then
16: for all noun € Ger(Indpos, NOUN) do
17: results < results U (Ger(Indyp, LErrmostVERBnoun), Ger(Indyp, noun))

Output: the set of (verb phrase, noun phrase) tuples results

phrase pairs extracted for the i-th dataset entry; 02xtmcted
is the set of output elements extracted for the i-th dataset
entry; #Z ctual @04 #izxtra 1eq TEPIEsent the number of elements
in 0}, and O, . .. respectively.

C. EXPERIMENT RESULTS

The results of the experiment are presented in Table 4.
They summarize the performance of both Spacy and Stanza
models. The obtained results prove the influence of the
underlying dependency parser. Here, the implementation
based on the Stanza toolkit significantly outperformed the
Spacy-based implementation. Unfortunately, the extraction
accuracy score for both implementations was very low
proving that those implementations failed to extract all the
expected verb/noun phrase pairs from each given input text;
this is also reflected in relatively high values of MeanDiff and
MeanSDC. Moreover, precision, recall, and F1-Score scores,
which are calculated on a macro-level, show that results at the
macro level are not disappointing, yet, both implementations
of the algorithm and the underlying technology could still be
improved in the future.

Here, the performance of experimental implementation
resulted in F-Score = 0.631, although we must also take
into consideration the influence of a sample bias. The
significance of the underlying parse model was also obvious,
as the Stanza-based processor significantly outperformed the
implementation based on Spacy. Again, all the mandatory
pipeline steps — text tagging, text chunking into noun/verb
phrases, and dependency parsing — have proven to be crucial
to the overall quality of phrase processing. A failure in any of
these steps inevitably translates into errors in the further steps

VOLUME 10, 2022

TABLE 4. Performance of processing the conjunction/disjunction
statements.

Model Spacy | Stanza
Accuracy 0.124 | 0.195
Precision 0.632 | 0.748
Recall 0.413 | 0.531
F1-Score 0.5 0.621
MeanDiff 0.589 | 0.477
MeanSDC 0.449 | 0.554

of the developed pipeline. Therefore, we safely conclude that
the dependency parser plays the most important role of all.
This was extremely well visible in the experimental cases
when insignificant changes to the input entry (e.g., adding an
adjective to one of the nouns) resulted in completely different
parse trees compared to the initial ones; it complicated the
analysis significantly or even resulted in cases not covered
by the used formal grammar. This indicates the need for
more extensive research and improvements in both extraction
and dependency parsing areas. We believe that it could be
achieved by integrating and testing recent developments in
dependency parsing, based on neural techniques as described
in [51] and [52] among the others.

Vi. ACRONYM/ABBREVIATION DETECTION

Acronym/abbreviation detection is an issue in text normal-
ization which deals with multiple issues and ambiguities
while detecting whether the given word in the text is an
abbreviation or an acronym. While many cases can be
handled by simply performing a search for a particular

116951

IEEE Access

P. Danenas, T. Skersys: Exploring Natural Language Processing in Model-To-Model Transformations

candidate’s expansive form in the text or performing a search
in dictionaries and word lists, this is not trivial when it
comes to widely used acronyms. The first issue is that these
acronyms/abbreviations might be present in dictionaries and
at the same time overlap with some general words (e.g.,
acronym /7 overlaps with pronoun if); another common issue
is omitting the expanded form of an acronym/abbreviation
due to its widespread use, which makes it almost impossible
to automatically identify it as an acronym/abbreviation of
some particular phrase with simple backtracking in the input
(the aforementioned acronym I7" can be seen as an example
in this context as well). Acronym/abbreviation expansion is
yet another similar task aiming to solve the problem when
a given abbreviation or acronym should be replaced by its
expansive form, which is the most appropriate in the given
context. This task is not a trivial one either - for instance,
EM could be referred to as entity matching; however, it could
also be expectation maximization or entity model, with all
these expansive forms coming from a single computer science
domain. Unfortunately, current research tends to focus on
long text passages, which highly reduces their applicability
in the context of our research.

In model-to-model transformation, as well as in other
relevant topics, the acronym/abbreviation (A/A) detection
task helps one to properly match full concept names with
their abbreviated forms, thus adding to greater consistency
of the models being developed. The A/A detection task itself
comprises two interrelated subtasks:

e PA/A detection seeks to detect candidate A/A, which

must be expanded (what must be replaced?);

o A/A expansion is focused on finding the right expansion

for the given A/A (what is the replacement?).

Acronym/abbreviation (A/A) expansion is often consid-
ered as a simple expansion of entries that are identified as
A/A due to their writing style or absence in relevant sources,
like thesauri or dictionaries. While simple A/A mapping
lists are generally applied for common text normalization
tasks, they may not always provide the correct result, unless
they are restricted to having single meanings in specific
or even multiple contexts. Therefore, real-world use cases
may easily complicate his seemingly uncomplicated task.
The complexity of the task may rise depending on the
diversity of corpus or data required to properly train one’s
implementation to resolve models. The expansion problem
will not be further addressed in this paper due to certain
limitations of the dataset.

While recent developments in acronym detection tend to
apply state-of-the-art deep learning techniques (as stated
in Table 1), they are not applicable in our context due to
relatively short text input. Therefore, we will model this
problem in a more traditional yet efficient way by applying
context-based classification techniques within a space of
contextual, morphological, and linguistic features. While a
similar approach was successfully tested in [56] and [100],
we propose using a different set of features that are preferred
due to data limitations. The target variable of the classifier is

116952

simply an indicator of whether the particular word represents
an acronym or abbreviation.

Further in this section, we provide an empirical evaluation
of A/A detection in BPMN element names. To make it more
consistent with other experiments presented in this paper,
we will use the same initial set of the BPMN process and
UML use case models as in the experiment presented in
Section IV. Hence, Section VI-A describes the preliminaries
and setup of the experiment, while Section VI-B presents and
briefly discussed the results obtained during that experiment.

A. EXPERIMENT SETUP

The initial dataset of process models was used as the source
for developing the feature dataset for our A/A detection
experiment. The feature dataset was created from all the
available words in the extracted text by applying simple
heuristic rules:

¢ Acronym or abbreviation must contain at most 5 char-
acters. It can be observed that the longer the word is,
the smaller is the probability of it being an acronym.
Therefore, words with more than the predefined number
of characters are not considered to be acronyms and are
excluded from further analysis.

o The word representing an acronym or abbreviation is
not available in the dictionary. Since WordNet does
not contain all the English words and their forms,
we used Enchant* library, which is generally used for
grammatical error correction, to check for the word
existence.

The first rule helped to identify the candidate entries for
the feature dataset, and the entries longer than the predefined
length threshold were not considered as candidates for
acronyms and abbreviations. The second rule helped to
perform its primary labeling. After the automated generation
of the dataset, some manual adjustments were performed
fixing automated labeling errors and ambiguities, removing
redundant and duplicate entries, as well as identifying
situations that were not covered by the above-listed heuristics
and could not be handled automatically — all this was done
to make the feature dataset more consistent and suitable
for the development of our detection classifier. The feature
dataset examination also helped to identify that most of the
acronyms were written in uppercase, which also helped to
simplify the semi-automated labeling task. To avoid feature
leakage, we removed the feature of the uppercase word as it
would serve as a proxy for the label otherwise (in practical
applications, it might serve as a very strong indicator for
acronym presence). To perform POS tagging required for
the POS-based feature generation, we used Stanford Stanza
tagger that showed the best performance in our previous
experiment presented in Section I'V-C.

After performing the feature generation procedure, a fea-
ture dataset with a total of 16579 entries was created. Each
entry in the dataset was a vector of 16 features extracted

4https://github.com/pyenchant/pyenchant

VOLUME 10, 2022

https://github.com/pyenchant/pyenchant

P. Danenas, T. Skersys: Exploring Natural Language Processing in Model-To-Model Transformations

IEEE Access

TABLE 5. Features used for the A/A detection.

Feature Description

has.vowels The word has any vowels

@

has.special The word has characters like “&” (ampersand) or *“.

just.letters The word has only lowercase/uppercase letter charac-

ters

english.word | The word exists in English dictionary or other refer-

ential sources

long.char.seq | The word has at least one of sequences of 3 consecu-

tive identical characters

starts.with.two | The word start with 2 consecutive identical characters
Pos Part-of-speech (POS) of the word

prev.pos

POS of the word, which is before the current word

prev.pos.2 POS of the word, which is before the previous word

next.pos POS of the word, which is after the current word

next.pos.2 POS of the word, which is after the next word

dep Dependency parse label, associated with the word

prev.dep Dependency parse label of the word, which is before
the current word

prev.dep.2 Dependency parse label of the word, which is before
the previous word

next.dep Dependency parse label of the word, which is after
the current word

next.dep.2 Dependency parse label of the word, which is after

the next word

from the text labels in the BPMN process and UML use case
models, together with the label indicating whether a word
represents an acronym or an abbreviation. The full set of
features is presented in Table 5. The features has.special and
long.char.seq were excluded from further analysis as the final
dataset did not contain any such entries. Nonetheless, these
features could be useful while performing further research
with more extensive datasets and/or contexts, and thus they
are included in Table 5 along with other features as a reference
for future consideration. This left us with 14 features that
were further used as the inputs for the classifier.

For the development of acronym detection classifier, the
following techniques were considered:

o CatBoost [101] is a high-performing gradient boosting
classifier. One of its most exceptional features is the
ability to efficiently work directly with the categorical
feature variables, which helps to improve performance
when numerous categorical features are used.

o XGBoost [102] is one of the best performing gradient
boosting-based ensemble classifiers, widely used to
solve various classification tasks.

« Random Forest [103], [104] is a widely used decision
tree ensemble technique based on bagging and random
feature selection.

To handle the high level of class distribution imbalance
of the input dataset, weighted classification was applied
to improve detection performance. Also, grid search was
used to optimize the performance of CatBoost and XGBoost
by selecting their optimal hyperparameters. Random Forest
classifier was run with default parameters, but using 200 esti-
mators. All the classifiers were implemented in Python using

VOLUME 10, 2022

\ 1 0.73
CatBoost | | 0.68

l] 0.78

\ 1 0.72
XGBoost | | 0.68

l | 0.77

\ 1 0.71

Random Forest | | 0.76
l 1 0.67

FIGURE 2. A/A detection performance and feature importance.

TABLE 6. Feature importance computed with CatBoost.

Feature Importance
pos 13.86
next.dep 13.50
next.pos 11.55
english.word 9.91
prev.dep 8.91
prev.pos 8.67
next.dep2 8.60
next.pos2 8.47
prev.dep2 7.45
prev.pos2 5.29
has.vowels 3.65
starts.with.two 0.07
just.letters 0.04

scikit-learn, catboost and xgboost libraries. Similar to the
experiments presented in Section IV-B, for performance
measuring, the measures of accuracy, precision, recall, and
F1-score were used.

B. EXPERIMENT RESULTS
Figure 1 presents the results obtained using the classifiers
described in Section VI-A. They show that CatBoost
significantly outperformed Random Forest and slightly -
XGBoost classifiers in terms of precision and F1-Score. This
is not surprising, due to the design of the CatBoost tool
and its ability to work directly with categorical variables. Its
superiority over the XGBoost classifier was also confirmed
by the McNemar’s test that resulted in p < 0.05 (p = 0.029).
Table 6 also provides an insight into the feature importance
obtained using CatBoost classifier. The results indicate that
morphological features of tokens next to the target word were
identified as the most important, whereas the presence of a
particular word in an English dictionary or similar referential
source played a less influential role as expected. One of
the reasons for this is the fact that usually abbreviations are
created by the people, who create models and write documen-
tation (e.g., business/system analysts). And so, those people
create various acronyms and abbreviations by themselves,
or they use already established A/A to make the text more
compact (compact text labels are particularly relevant in
visual modeling). Contextual part-of-speech features seem to
play an important role as well because they capture acronym

116953

IEEE Access

P. Danenas, T. Skersys: Exploring Natural Language Processing in Model-To-Model Transformations

usage patterns in spoken or written language; this is also
proved by the high importance of the features of preceding
tokens, as well as more distant contextual features. This
prompts for testing wider context features (like prev.pos3,
next.pos4, etc.); however, such features are not considered in
this paper due to the limited size of the processed text phrases.

Alternatively, one might consider sequence-tagging mod-
els (such as Markov models or recurrent neural networks) that
directly apply such context, yet their training would require
larger datasets and the inclusion of an even greater number
of additional features (lexical and morphological). Emerging
deep learning approaches, such as [58] or similar, seem to be a
viable solution as well, although their training might require
a significant amount of labeled data, and their applicability
for the given problem must be verified.

VII. DISCUSSION

With the experiments described in this paper, we explored
the capabilities of the advanced NLP tools to process
short text fragments (text labels) which are required to
enable advanced capabilities in processing our model-to-
model transformations. While this is inspired by our previous
research [6], [7], we believe that the presented research
results could be applicable in other relevant fields as well.
Similar text normalization is required for practical process
mining where the names of the composing elements need
to be unified from multiple data sources while reducing the
number of duplicates to a minimum. It is also applicable
in conversational intelligence when intent processing is
required to identify the responsive action for the inquiry. The
experiments prove that the recent developments in the field
of NLP and deep learning could provide the needed tools to
solve such and other similar problems.

Overall, the experiments presented in this paper revealed
several issues, which should be addressed and might be
required to handle separately:

« Bad modeling (in particular, element naming) practices
were not considered in the extraction activities. During
the initial dataset screening, we observed many such
cases that were summarized in Table 2. Detecting the
most common bad modeling practices and introducing
an automated resolution of such cases into the developed
solution could provide even greater automated process-
ing results.

o A more thorough analysis of the outputs showed that
some tagging tools, like Spacy, were quite sensitive
to the letter casing, which is also significant for the
practical application of NLP technology in model-to-
model transformations as well as in other relevant fields.
While this is less relevant when processing long text
passages or whole documents, the importance increases
when more specific text processing is considered. This
is stipulated by different modeling styles used by
practitioner modelers who prefer starting each word with
a capital letter while naming model elements such as
activities, tasks, use cases, etc. (this is verified by the

116954

analysis of the BPMAI dataset used in our research,
as well as our personal experience), and some tools may
fail to tag such labels correctly. For example, return
invoice could be tagged as <VERB><NOUN>; however,
Return Invoice might as well become <NOUN><NOUN>,
which would be an incorrect tagging result. Again,
in our related experiments, we reverted all text labels to
lowercase to mitigate this problem. Unfortunately, such
normalization might remove relevant features that could
be used to detect abbreviations.

o The previous issue is also relevant for other related
problems. While such cases could be normalized to
lowercase, doing so increases the risk of failure in the
other tasks like named entity recognition where capital
letters play a crucial role. Moreover, NLP tools may
face difficulties detecting named entities within fully
lowercase entries (e.g., United States was identified as
LOCATION, while united states was not).

o Detection performance can be negatively affected by
the presence of non-alphanumeric symbols (e.g., dashes,
commas, apostrophes) within words. It is advisable to
remove such symbols from the model element names
wherever possible. This issue might be mitigated using
more advanced tokenizers capable of handling most of
these cases, but the risk of failing to properly handle
them still exists.

o Generally, using conjunctive/disjunctive clauses in
activity-like element names indicates a bad modeling
practice as such instances should be refactored to two or
more atomic elements. As stated previously, processing
such statements appeared to be a very challenging
task requiring the support of several advanced NLP
techniques, such as dependency or constituency parsing.
In its turn, this would bring in other kinds of errors from
the underlying parser model.

o In our experimentation, we observed general ambi-
guity in detecting abbreviations. The A/A detection
experiment confirmed the applicability of a machine
learning-based approach to handling this problem. Yet,
A/A expansion is a more complicated task as full forms
of concepts designated by A/A might not be present
in models under the scope, especially if those A/A are
well-known and heavily used (e.g., IT, USA). External
sources, such as domain vocabularies and linked data
can be applied by matching them contextually to
each model instance containing cases of acronyms and
abbreviations. Again, this requires additional sources of
input data, together with a more extensive dataset, and
could be considered as one of the directions for our
future research.

VIil. CONCLUSION

NLP discipline has seen impressive advancements and
improvements during the last several years, with the number
of NLP applications increasing dramatically. Also, the
progress in deep learning has resulted in a significant increase

VOLUME 10, 2022

P. Danenas, T. Skersys: Exploring Natural Language Processing in Model-To-Model Transformations

IEEE Access

in the performance of solving different linguistic tasks. In this
paper, research on applying the recent developments for
processing small text phrases is discussed. While the need for
this research originated from our recent research on model-
to-model transformations [6], [7], we may identify several
other areas that could benefit from similar text processing
capabilities, such as process mining, aspect-based sentiment
analysis or conversational interfaces with command-like
short text processing capability. At the same time, all these
areas share the same NLP-related issues that have to be dealt
with to ensure satisfactory performance of the underlying
NLP technology (e.g., identical representation of verbs and
nouns, lack of context required for the automated processing).

In this paper, we addressed the problem of extracting
relation tuples from the process and system requirements’
models containing elements expressing activity-like state-
ments. As it is stated in Section III, it is not an easily solved
problem, due to multiple ambiguities, applied modeling
practices, and many other issues that are not addressed in
common NLP processing toolkits. Among such issues, one
may emphasize the processing of disjunctive or conjunctive
statements (which is considered to be a bad modeling
practice), the presence of shortened forms, like acronyms or
abbreviations.

To solve the issues addressed in this paper, we evaluated
several current state-of-the-art implementations from the
perspective of our research, while combining them under
our custom formal grammar-based extraction to derive
prototype implementations. Additionally, we implemented
and tested our custom tagging tools, based on input corpora
augmentations and bidirectional LSTM-CRF architecture
with BERT and ELMO embeddings at the input layer.
In the first experiment, the Stanza-based implementation
showed the best performance results in noun/verb extraction
tasks. Yet, we showed that implementation based on our
custom BERT-BiLSTM-CRF tagger helped to improve the
detection of verb phrase presence and verb phrase extraction
as compared to the generic tagger implementations, including
generic BERT-based tagger. This was expected as bias
towards proper tagging of verbs could reduce the ability to
correctly tag nouns in short text statements. Hence, balancing
between biased and unbiased tagging still requires further
research.

Our second experiment with processing disjunctive and
conjunctive statements showed this task to be more chal-
lenging than expected, due to the dependence of our imple-
mentation on the performance of underlying dependency
parser toolkits. Unfortunately, while such statements are also
considered to be bad modeling practice, they are widely
used in real-world cases (this is also verified from the
initial analysis of BPMALI dataset) and need to be addressed
carefully. This is an important topic relevant for multiple
information extraction and other NLP-related areas, such as
relation extraction or aspect-based sentiment analysis. It has
been proven to be a complicated task due to the generally
unstructured nature of natural language texts. Handling

VOLUME 10, 2022

of these issues is also discussed in this paper providing
additional insights for further improvements in this area.
Results obtained after applying our technique described in
Section V-C indicate that there is still a lot of potential for
further improvements. While at this stage, we did not consider
training custom parsers, we hope to achieve more progress
in the future after carrying out more extensive studies
and taking advantage of the improvements in dependency
parsing, constituency parsing, and general relation extraction
algorithms.

Finally, in the third experiment, we tested a machine
learning-based approach for the acronym/abbreviation detec-
tion issue. While this issue is widely discussed in multiple
papers (see Table 1 for more details on that), these works tend
to focus on processing longer text statements or even whole
documents, which is not suitable for our particular case. Due
to limitations discussed in previous sections, we approached
this issue by applying context-based classification using
token-level and text label-level features. We found out that
our trained classifier was able to obtain a precision of 0.78 and
F1-Score of 0.73, which we consider to be a rather positive
result due to multiple constraints and limitations. In the
future, we might as well test the developed solution in other
settings by expanding our developed dataset to include more
specific cases. The results are expected to be improved after
applying the classifier to a more extensive and comprehensive
dataset, which would lead to exploiting additional token-
level, phrase-level, or even whole model-level features, and
is still subject to our further research. In this paper, we did
not consider acronym/abbreviation expansion, due to certain
limitations and requirements discussed in Section VI. Yet, itis
an interesting challenge that will be addressed in our future
developments.

While our research presents a certain amount of contri-
bution in text processing for the system modeling domain,
there is still a lot of space for future research. In this paper,
we experimented with text labels of activity-like elements
acquired from the BPMN process models and UML use
case models. However, other models, like UML activity
models, state machines (or other kinds of statechart models)
could also be successfully tested. Moreover, applying these
techniques to larger and more elaborate datasets might
reveal other cases that could be addressed by tuning the
formal grammars or processing algorithms discussed in
this paper. Additionally, one could also resort to creating
specialized datasets or text corpora which would enable
the development of even-more specialized extraction tools.
Complementary, several technological constraints should be
addressed, particularly optimization of the final models for
deployment due to the requirement of a significant amount
of resources needed to run larger deep learning models. This
may require investigation of model reduction techniques such
as distillation or quantization.

Finally, it is safe to state that in model-to-model transfor-
mation (as well as in other areas involving the processing of
graphical models), one could also benefit from other existing

116955

IEEE Access

P. Danenas, T. Skersys: Exploring Natural Language Processing in Model-To-Model Transformations

NLP capabilities, such as the extraction of semantic rela-
tionships (synonymy, hyponymy, hypernymy, etc.), analysis
and correction of grammatical errors. Indeed, fully automated
processing requires significant input and capabilities from
multiple fields of linguistic processing to ensure the high
performance of the developed NLP applications, as discussed
in Table 1. This paves the road for our next near-future
developments and experimentation.

REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]

[71

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

C. Ru, J. Tang, S. Li, S. Xie, and T. Wang, “Using semantic similarity
to reduce wrong labels in distant supervision for relation extraction,” Inf.
Process. Manage., vol. 54, no. 4, pp. 593-608, Jul. 2018.

H. Fei, Y. Ren, and D. Ji, “Boundaries and edges rethinking: An end-to-
end neural model for overlapping entity relation extraction,” Inf. Process.
Manage., vol. 57, no. 6, 2020, Art. no. 102311.

D. T. Vo and E. Bagheri, “Self-training on refined clause patterns for
relation extraction,” Inf. Process. Manage., vol. 54, no. 4, pp. 686-706,
Jul. 2017.

D. Nozza, P. Manchanda, E. Fersini, M. Palmonari, and E. Messina,
“LearningToAdapt with word embeddings: Domain adaptation of named
entity recognition systems,” Inf. Process. Manage., vol. 58, no. 3,
May 2021, Art. no. 102537.

Y. Jiang, W. Bai, X. Zhang, and J. Hu, “Wikipedia-based information
content and semantic similarity computation,” Inf. Process. Manage.,
vol. 53, no. 1, pp. 248-265, Jan. 2017.

P. Danenas, T. Skersys, and R. Butleris, ‘“Natural language processing-
enhanced extraction of SBVR business vocabularies and business rules
from UML use case diagrams,” Data Knowl. Eng., vol. 128, Jul. 2020,
Art. no. 101822.

P. Danenas, T. Skersys, and R. Butleris, “Extending drag-and-drop actions-
based model-to-model transformations with natural language processing,”
Appl. Sci., vol. 10, no. 19, p. 6835, Sep. 2020.

H. Leopold, F. Pittke, and J. Mendling, “‘Ensuring the canonicity of process
models,” Data Knowl. Eng., vol. 111, pp. 22-38, Sep. 2017.

H. Leopold, R.-H. Eid-Sabbagh, J. Mendling, L. G. Azevedo, and
F. A. Baido, “Detection of naming convention violations in process models
for different languages,” Decis. Support Syst., vol. 56, pp.310-325,
Dec. 2013.

F. Pittke, H. Leopold, and J. Mendling, ‘“When language meets language:
Anti patterns resulting from mixing natural and modeling language,” in
Proc. Bus. Process Manage. Workshops, F. Fournier and J. Mendling, Eds.
Cham, Switzerland: Springer, 2015, pp. 118-129.

S. Kumar, “A survey of deep learning methods for relation extraction,”
2017, arXiv:1705.03645.

E. Agichtein and L. Gravano, ‘““Snowball: Extracting relations from large
plain-text collections,” in Proc. 5th ACM Conf. Digit. Libraries, New York,
NY, USA, 2000, pp. 85-94.

M. Mintz, S. Bills, R. Snow, and D. Jurafsky, “Distant supervision for
relation extraction without labeled data,” in Proc. AFNLP, Singapore,
Aug. 2009, pp. 1003-1011.

V.-T. Phi, J. Santoso, V.-H. Tran, H. Shindo, M. Shimbo, and
Y. Matsumoto, ““‘Distant supervision for relation extraction via piecewise
attention and bag-level contextual inference,” IEEE Access, vol. 7,
pp. 103570-103582, 2019.

A. S. White, D. Reisinger, K. Sakaguchi, T. Vieira, S. Zhang, R. Rudinger,
K. Rawlins, and B. Van Durme, ““Universal decompositional semantics on
universal dependencies,” in Proc. Conf. Empirical Methods Natural Lang.
Process., Austin, TX, USA, 2016, pp. 1713-1723.

Business Process Model and Notation (BPMN), Version 2.0.2, Object
Management Group (OMG), Needham, MA, USA, Dec. 2013.

Unified Modeling Language (UML), Version 2.5.1, Object Management
Group (OMG), Needham, MA, USA, Dec. 2017.

E. Jakumeit, S. Buchwald, D. Wagelaar, L. Dan, A. Hegediis,
M. Herrmannsdorfer, T. Horn, E. Kalnina, C. Krause, K. Lano, M. Lepper,
A. Rensink, L. Rose, S. Witzoldt, and S. Mazanek, “A survey and
comparison of transformation tools based on the transformation tool
contest,” Sci. Comput. Program., vol. 85, pp. 41-99, Jun. 2014.

N. Kahani, M. Bagherzadeh, J. R. Cordy, J. Dingel, and D. Varr6, *“Survey
and classification of model transformation tools,” Softw. Syst. Model.,
vol. 18, no. 4, pp. 2361-2397, Aug. 2019.

116956

(20]

[21]

[22]

(23]

(24]

[25]

[26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

[35]

(36]

(37]

(38]

(39]

(40]

(41]

T. Skersys, P. Danenas, and R. Butleris, “Model-based M2M transfor-
mations based on drag-and-drop actions: Approach and implementation,”
J. Syst. Softw., vol. 122, pp. 327-341, Dec. 2016.

M. A. Hearst, “TextTiling: Segmenting text into multi-paragraph subtopic
passages,” Comput. Linguistics, vol. 23, no. 1, pp. 33—-64, 1997.

S.Bird, E. Klein, and E. Loper, Natural Language Processing With Python.
Sebastopol, CA, USA: O’Reilly, 2009.
(2021). Spacy.io. Accessed: Aug.
https://github.com/explosion/spaCy
A. Akbik, T. Bergmann, D. Blythe, K. Rasul, S. Schweter, and R. Vollgraf,
“FLAIR: An easy-to-use framework for state-of-the-art NLP,” in Proc.
Conf. North Amer. Chapter Assoc. Comput. Linguistics, Minneapolis, MI,
USA, Jun. 2019, pp. 54-59.

M. Gardner, J. Grus, M. Neumann, O. Tafjord, P. Dasigi, N. F. Liu,
M. Peters, M. Schmitz, and L. Zettlemoyer, “AllenNLP: A deep semantic
natural language processing platform,” in Proc. Workshop NLP Open
Source Softw. (NLP-OSS), Melbourne, VIC, Australia, Jul. 2018, pp. 1-6.
G. Chrupala, G. Dinu, and J. van Genabith, “Learning morphology with
Morfette,” in Proc. Int. Conf. Lang. Resour. Eval., Marrakech, Morocco,
Jun. 2008, pp. 1-6.

A. Chakrabarty, O. A. Pandit, and U. Garain, “Context sensitive lemma-
tization using two successive bidirectional gated recurrent networks,” in
Proc. 55th Annu. Meeting Assoc. Comput. Linguistics, R. Barzilay and
M. Kan, Eds. Vancouver, BC, Canada, 2017, pp. 1481-1491.

T. Bergmanis and S. Goldwater, “Context sensitive neural lemmatization
with Lematus,” in Proc. Conf. North Amer. Chapter Assoc. Comput.
Linguistics, Human Lang. Technol., M. A. Walker, H. Ji, and A. Stent, Eds.
New Orleans, LA, USA, 2018, pp. 1391-1400.

M. Arehart, “Indexing methods for faster and more effective person name
search,” in Proc. 7th Int. Conf. Lang. Resour. Eval., Valletta, Malta,
May 2010, pp. 1-15.

A. Rozovskaya and D. Roth, “Grammatical error correction: Machine
translation and classifiers,” in Proc. 54th Annu. Meeting Assoc. Comput.
Linguistics, Berlin, Germany, 2016, pp. 2205-2215.

M. Junczys-Dowmunt, R. Grundkiewicz, S. Guha, and K. Heafield,
“Approaching neural grammatical error correction as a low-resource
machine translation task,” in Proc. Conf. North Amer. Chapter Assoc.
Comput. Linguistics, Human Lang. Technol., New Orleans, LA, USA,
2018, pp. 595-606.

S. Kiyono, J. Suzuki, M. Mita, T. Mizumoto, and K. Inui, “An empirical
study of incorporating pseudo data into grammatical error correction,”
in Proc. Conf. Empirical Methods Natural Lang. Process. 9th Int. Joint
Conf. Natural Lang. Process. (EMNLP-IJCNLP), Hong Kong, 2019,
pp. 1236-1242.

A. Ratnaparkhi, “°A maximum entropy model for part-of-speech tagging,”
in Proc. Conf. Empirical Methods Natural Lang. Process., 1996, pp. 1-10.
K. Toutanova, D. Klein, C. D. Manning, and Y. Singer, ‘‘Feature-rich part-
of-speech tagging with a cyclic dependency network,” in Proc. Conf. North
Amer. Chapter Assoc. Comput. Linguistics Hum. Lang. Technol., 2003,
pp. 252-259.

M. Silfverberg, T. Ruokolainen, K. Lindén, and M. Kurimo, ‘‘Part-of-
speech tagging using conditional random fields: Exploiting sub-label
dependencies for improved accuracy,” in Proc. 52nd Annu. Meeting Assoc.
Comput. Linguistics, Baltimore, MD, USA, 2014, pp. 259-264.

R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and
P. Kuksa, “Natural language processing (almost) from scratch,” J. Mach.
Learn. Res., vol. 12 pp. 2493-2537, Aug. 2011.

Z. Huang, W. Xu, and K. Yu, “Bidirectional LSTM-CRF models for
sequence tagging,” 2015, arXiv:1508.01991.

G. A. Miller, “WordNet: A lexical database for English,” Commun. ACM,
vol. 38, no. 11, pp. 39-41, 1995.

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training
of deep bidirectional transformers for language understanding,” in Proc.
Conf. North Amer. Chapter Assoc. Comput. Linguistics, Hum. Lang.
Technol., vol. 1. Minneapolis, M1, USA, Jun. 2019, pp. 4171-4186.

T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, ““Distributed
representations of words and phrases and their compositionality,” in Proc.
26th Int. Conf. Neural Inf. Process. Syst., vol. 2. Red Hook, NY, USA,
2013, pp. 3111-3119.

M. E. Peters, M. Neumann, M. Iyyer, and M. Gardner, “Deep contextu-
alized word representations,” in Proc. Conf. North Amer. Chapter Assoc.
Comput. Linguistics, Hum. Lang. Technol., vol. 1. New Orleans, LA, USA:
ACL, Jun. 2018, pp. 2227-2237.

15, 2022. [Online]. Available:

VOLUME 10, 2022

P. Danenas, T. Skersys: Exploring Natural Language Processing in Model-To-Model Transformations

IEEE Access

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

M. A. Hearst, “Automatic acquisition of hyponyms from large text
corpora,” in Proc. 14th Conf. Comput. Linguistics, 1992, pp. 1-7.

R. Snow, D. Jurafsky, and A. Y. Ng, “Learning syntactic patterns for
automatic hypernym discovery,” in Proc. 17th Int. Conf. Neural Inf.
Process. Syst., Cambridge, MA, USA: MIT Press, 2004, pp. 1297-1304.
M. Onofrei, I. Hulub, D. Trandabat, and D. Gifu, “Apollo at SemEval-2018
task 9: Detecting hypernymy relations using syntactic dependencies,” in
Proc. 12th Int. Workshop Semantic Eval., New Orleans, LA, USA, 2018,
pp. 898-902.

T. Kawaumra, M. Sekine, and K. Matsumura, ‘“Hyponym/hypernym detec-
tion in science and technology thesauri from bibliographic datasets,” in
Proc. IEEE 11th Int. Conf. Semantic Comput. (ICSC), 2017, pp. 180-187.
Z.Zhang, J. Li, H. Zhao, and B. Tang, “SJTU-NLP at SemEval-2018 task
9: Neural hypernym discovery with term embeddings,” in Proc. 12th Int.
Workshop Semantic Eval., New Orleans, LA, USA, 2018, pp. 903-908.
A. Z. Hassan, M. S. Vallabhajosyula, and T. Pedersen,
“UMDuluth-CS8761 at SemEval-2018 task9: Hypernym discovery
using Hearst patterns, co-occurrence frequencies and word embeddings,”
in Proc. 12th Int. Workshop Semantic Eval., New Orleans, LA, USA,
2018, pp. 914-918.

T. Dozat and C. D. Manning, “Simpler but more accurate semantic
dependency parsing,” in Proc. 56th Annu. Meeting Assoc. Comput.
Linguistics, Melbourne, VIC, Australia, 2018, pp. 484-490.

T. Kim, B. Li, and S.-G. Lee, ‘“‘Multilingual chart-based constituency parse
extraction from pre-trained language models,” in Proc. Findings Assoc.
Comput. Linguistics, EMNLP, Punta Cana, Dominican Republic, 2021,
pp. 454-463.

S. Petrov, L. Barrett, R. Thibaux, and D. Klein, “Learning accurate,
compact, and interpretable tree annotation,” in Proc. 2Ist Int. Conf.
COLING-ACL, Sydney, NSW, Australia, Jul. 2006, pp. 433-440.

Y. Zhang, Z. Li, and M. Zhang, “Efficient second-order TreeCRF for
neural dependency parsing,” in Proc. 58th Annu. Meeting Assoc. Comput.
Linguistics, 2020, pp. 3295-3305.

T. Ji, Y. Wu, and M. Lan, “Graph-based dependency parsing with graph
neural networks,” in Proc. 57th Annu. Meeting Assoc. Comput. Linguistics,
Florence, Italy, 2019, pp. 2475-2485.

W. Wang and B. Chang, “Graph-based dependency parsing with bidirec-
tional LSTM,” in Proc. 54th Annu. Meeting Assoc. Comput. Linguistics,
Berlin, Germany, 2016, pp. 2306-2315.

A. S. Schwartz and M. A. Hearst, “A simple algorithm for identifying
abbreviation definitions in biomedical text,” in Proc. 8th Pacific Symp.
Biocomput., R. B. Altman, A. K. Dunker, L. Hunter, and T. E. Klein, Eds.
Lihue, HI, USA, Dec. 2002, pp. 451-462.

S. Sohn, D. C. Comeau, W. Kim, and W. J. Wilbur, “Abbreviation
definition identification based on automatic precision estimates,” BMC
Bioinform., vol. 9, no. 1, p. 402, 2008.

Y. Wu, S. T. Rosenbloom, J. C. Denny, R. A. Miller, S. Mani,
D. A. Giuse, and H. Xu, “Detecting abbreviations in discharge summaries
using machine learning methods,” in Proc. AMIA Annu. Symp., 2011,
pp. 1541-1549.

M. Oleynik, M. Kreuzthaler, and S. Schulz, “Unsupervised abbreviation
expansion in clinical narratives,” in Proc. 16th World Congr. Med. Health
Inform., vol. 245, A. V. Gundlapalli, M. Jaulent, and D. Zhao, Eds.
Hangzhou, China: I0S Press, Aug. 2017, pp. 539-543.

L. Heryawan, O. Sugiyama, G. Yamamoto, P. H. Khotimah,
L. H. O. Santos, K. Okamoto, and T. Kuroda, “A detection of informal
abbreviations from free text medical notes using deep learning,” Eur.
J. Biomed. Informat., vol. 16, no. 1, pp. 29-37, 2020.

X. Huang, E. Zhang, and Y. S. Koh, “Supervised clinical abbreviations
detection and normalisation approach,” in PRICAI 2019: Trends in Arti-

ficial Intelligence, A. C. Nayak and A. Sharma, Eds. Cham, Switzerland:

Springer, 2019, pp. 691-703.

Q. Jin, J. Liu, and X. Lu, “Deep contextualized biomedical abbreviation
expansion,” in Proc. 18th BioNLP Workshop Shared Task, Florence, Italy,
Aug. 2019, pp. 88-96.

I. Li, M. Yasunaga, M. Y. Nuzumlali, C. Caraballo, S. Mahajan,
H. M. Krumbholz, and D. R. Radev, “A neural topic-attention model for
medical term abbreviation disambiguation,” 2019, arXiv:1910.14076.

V. Joopudi, B. Dandala, and M. Devarakonda, “A convolutional route to
abbreviation disambiguation in clinical text,” J. Biomed. Informat., vol. 86,
pp. 71-78, Oct. 2018.

J. P.C. Chiu and E. Nichols, “Named entity recognition with bidirectional
LSTM-CNNSs,” Trans. Assoc. Comput. Linguistics, vol. 4, pp. 357-370,
Dec. 2016.

VOLUME 10, 2022

(64]

[65]

[66]

[67]

[68]

[69]

[70]

(71]

[72]

(73]

(74]

(751

[76]

(77]

(78]

[79]

[80]

(81]

(82]

(83]

(84]

(85]

(86]

G. Lample, M. Ballesteros, S. Subramanian, K. Kawakami, and C. Dyer,
“Neural architectures for named entity recognition,” in Proc. Conf.
North Amer. Chapter Assoc. Comput. Linguistics, San Diego, CA, USA,
Jun. 2016, pp. 260-270.

A. Ghaddar and P. Langlais, ‘‘Robust lexical features for improved neural
network named-entity recognition,” in Proc. 27th Int. Conf. Comput.
Linguistics, Santa Fe, NM, USA, Aug. 2018, pp. 1896-1907.

L. Liu, J. Shang, X. Ren, F. F. Xu, H. Gui, J. Peng, and J. Han, “Empower
sequence labeling with task-aware neural language model,” in Proc. 32nd
AAAI Conf. Artif. Intell. 33th Innov. Appl. Artif. Intell. Conf. 8th AAAI
Symp. Educ. Adv. Artif. Intell., 2018, pp. 1-15.

Y. Shao, J. C.-W. Lin, G. Srivastava, A. Jolfaei, D. Guo, and Y. Hu,
“Self-attention-based conditional random fields latent variables model
for sequence labeling,” Pattern Recognit. Lett., vol. 145, pp. 157-164,
May 2021.

I. O. Mulang’, K. Singh, C. Prabhu, A. Nadgeri, J. Hoffart, and
J. Lehmann, “Evaluating the impact of knowledge graph context on
entity disambiguation models,” in Proc. 29th ACM Int. Conf. Inf. Knowl.
Manage., New York, NY, USA, Oct. 2020, pp. 2157-2160.

M. P. K. Ravi, K. Singh, I. O. Mulang’, S. Shekarpour, J. Hoffart, and
J. Lehmann, “CHOLAN: A modular approach for neural entity linking on
Wikipedia and Wikidata,” in Proc. 16th Conf. Eur. Chapter Assoc. Comput.
Linguistics, 2021, pp. 504-514.

Y. Zhang, H. Lin, Z. Yang, J. Wang, Y. Sun, B. Xu, and Z. Zhao,
“Neural network-based approaches for biomedical relation classification:
A review,” J. Biomed. Informat., vol. 99, Nov. 2019, Art. no. 103294.

L. He, K. Lee, M. Lewis, and L. Zettlemoyer, “Deep semantic role
labeling: What works and what’s next,” in Proc. 55th Annu. Meeting Assoc.
Comput. Linguistics, Vancouver, BC, Canada, 2017, pp. 473—483.

J. Zhou and W. Xu, “End-to-end learning of semantic role labeling using
recurrent neural networks,” in Proc. 53rd Annu. Meeting Assoc. Comput.
Linguistics 7th Int. Joint Conf. Natural Lang. Process., Beijing, China,
2015, pp. 1127-1137.

Z.Tan, M. Wang, J. Xie, Y. Chen, and X. Shi, “Deep semantic role labeling
with self-attention,” in Proc. 32nd AAAI Conf. Artif. Intell. 30th Innov.
Appl. Artif. Intell. Conf. S8th AAAI Symp. Educ. Adv. Artif. Intell., 2018,
pp. 1-8.

D. Marcheggiani and I. Titov, “Encoding sentences with graph convolu-
tional networks for semantic role labeling,” in Proc. EMNLP, Copenhagen,
Denmark, Sep. 2017, pp. 1506-1515.

H. Fei, M. Zhang, B. Li, and D. Ji, “End-to-end semantic role labeling with
neural transition-based model,” in Proc. AAAI Conf. Artif. Intell., vol. 35,
pp. 12803-12811, May 2021.

M. Zhang, “A survey of syntactic-semantic parsing based on constituent
and dependency structures,” Sci. China Technol. Sci., vol. 63, no. 10,
pp. 1898-1920, Oct. 2020.

W. Han, Y. Jiang, H. T. Ng, and K. Tu, “A survey of unsupervised
dependency parsing,” in Proc. 28th Int. Conf. Comput. Linguistics,
Barcelona, Spain, 2020, pp. 2522-2533.

J.Li, A. Sun,J. Han, and C. Li, ““A survey on deep learning for named entity
recognition,” IEEE Trans. Knowl. Data Eng., vol. 34, no. 1, pp. 50-70,
Jan. 2022.

K. Liu, “A survey on neural relation extraction,” Sci. China Technol. Sci.,
vol. 63, no. 10, pp. 1971-1989, Oct. 2020.

0. Sevgili, A. Shelmanov, M. Arkhipov, A. Panchenko, and C. Biemann,
“Neural entity linking: A survey of models based on deep learning,”
Semantic Web, vol. 13, no. 3, pp. 527-570, Apr. 2022.

Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis,
L. Zettlemoyer, and V. Stoyanov, “RoBERT: A robustly optimized BERT
pretraining approach,” 2019, arXiv:1907.11692.

K. Clark, M.-T. Luong, Q. V. Le, and C. D. Manning, “ELECTRA: Pre-
training text encoders as discriminators rather than generators,” 2020,
arXiv:2003.10555.

Z. Yang, Z. Dai, Y. Yang, J. G. Carbonell, R. Salakhutdinov, and
Q. V. Le, “XLNet: Generalized autoregressive pretraining for language
understanding,” 2019, arXiv:1906.08237.

C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou,
W.Li, and P. J. Liu, “Exploring the limits of transfer learning with a unified
text-to-text transformer,” J. Mach. Learn. Res., vol. 21, no. 140, pp. 1-67,
2020.

P. He, X. Liu, J. Gao, and W. Chen, “DeBERTa: Decoding-enhanced BERT
with disentangled attention,” 2020, arXiv:2006.03654.

S. Adolph, A. Cockburn, and P. Bramble, Patterns for Effective Use Cases.
Boston, MA, USA: Addison-Wesley, 2002.

116957

IEEE Access

P. Danenas, T. Skersys: Exploring Natural Language Processing in Model-To-Model Transformations

[87] S. W. Ambler, The Elements of UML(TM) 2.0 Style. USA: Cambridge,
U.K.: Cambridge Univ. Press, 2005.

[88] M. Weske, G. Decker, M. Dumas, M. La Rosa, J. Mendling, and
H. A. Reijers, “Model collection of the business process management
academic initiative,” Version BPMAI-29-10-2019, Zenodo, 2020.

[89] C. Manning, M. Surdeanu, J. Bauer, J. Finkel, S. Bethard, and
D. McClosky, “The Stanford CoreNLP natural language processing
toolkit,” in Proc. 52nd Annu. Meeting Assoc. Comput. Linguistics, Syst.
Demonstrations, Baltimore, MD, USA, 2014, pp. 55-60.

[90] P.Qi, Y. Zhang, Y. Zhang, J. Bolton, and C. D. Manning, ‘““Stanza: A Python
natural language processing toolkit for many human languages,” in Proc.
58th Annu. Meeting Assoc. Comput. Linguistics, Syst. Demonstrations,
2020, pp. 101-108.

[91] R. Weischedel, M. Palmer, M. Marcus, E. Hovy, S. Pradhan, L. Ramshaw,
N. Xue, A. Taylor, J. Kaufman, M. Franchini, M. El-Bachouti, R. Belvin,
and A. Houston, “‘OntoNotes release 5.0,” LDC2013T19, Linguistic Data
Consortium, Philadelphia, PA, USA, 2013.

[92] R. Panchendrarajan and A. Amaresan, “Bidirectional LSTM-CRF for
named entity recognition,” in Proc. 32nd Pacific Asia Conf. Lang., Inf.
Comput., Hong Kong, Dec. 2018, pp. 1-10.

[93] A. Gatt and E. Reiter, “SimpleNLG: A realisation engine for practical
applications,” in Proc. 12th Eur. Workshop Natural Lang. Gener., Athens,
Greece, 2009, pp. 90-93.

[94] J.Nivre, M.-C. de Marnefte, F. Ginter, J. Haji¢, C. D. Manning, S. Pyysalo,
S. Schuster, F. Tyers, and D. Zeman, “Universal dependencies V2:
An evergrowing multilingual treebank collection,” in Proc. 12th Lang.
Resour. Eval. Conf., Marseille, France, May 2020, pp. 4034-4043.

[95] A. Bies, J. Mott, C. Warner, and S. Kulick, “English web Treebank
LDC2012T13,” Linguistic Data Consortium, Philadelphia, PA, USA,
2012.

[96] S. Saha, “Open information extraction from conjunctive sentences,” in
Proc. 27th Int. Conf. Comput. Linguistics, Santa Fe, NM, USA, Aug. 2018,
pp. 2288-2299.

[97] . Ficler and Y. Goldberg, “A neural network for coordination boundary
prediction,” in Proc. Conf. Empirical Methods Natural Lang. Process.,
Austin, TX, USA, 2016, pp. 23-32.

[98] M. Miwa, R. Satre, Y. Miyao, and J. Tsujii, “Entity-focused sentence
simplification for relation extraction,” in Proc. 23rd Int. Conf. Comput.
Linguistics, Beijing, China, Aug. 2010, pp. 788-796.

[99] D. Vickrey and D. Koller, “Sentence simplification for semantic role
labeling,” in Proc. ACL, HLT, Columbus, OH, USA, Jun. 2008,
pp. 344-352.

[100] T. N. C. Vo, T. H. Cao, and T. B. Ho, “Abbreviation identification
in clinical notes with level-wise feature engineering and supervised
learning,” in Knowledge Management and Acquisition for Intelligent
Systems, H. Ohwada and K. Yoshida, Eds. Cham, Switzerland: Springer,
pp. 3-17, 2016.

[101] A. V. Dorogush, V. Ershov, and A. Gulin, “CatBoost: Gradient boosting
with categorical features support,” 2018, arXiv:1810.11363.

116958

[102] T. Chen and C. Guestrin, “XGBoost: A scalable tree boosting system,”
in Proc. 22nd ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining,
Aug. 2016, pp. 785-794.

[103] T. K. Ho, “Random decision forests,” in Proc. 3rd Int. Conf. Document
Anal. Recognit., vol. 1, Aug. 1995, pp. 278-282.

[104] L. Breiman, “Random forests,” Mach. Learn., vol. 45, no. 1, pp. 5-32,
Oct. 2001.

PAULIUS DANENAS received the Ph.D. degree
in informatics from Vilnius University, Vilnius,
Lithuania, in 2013.

He is currently a Researcher at the Centre
of Information Systems Design Technologies,
Kaunas University of Technology, Kaunas, Lithua-
nia. He is a coauthor of multiple papers in
highly-rated academic journals and proceedings
of international conferences. His research interests
include artificial intelligence, machine learning,
natural language processing, data science, software engineering, model-
driven development, and decision support systems (including business
and financial domains). He has served as a reviewer for a number of
highly-ranked academic journals, including the ones published by Springer,
Elsevier, Wiley, Taylor & Francis, IEEE, and others.

TOMAS SKERSYS is a Scientific Researcher
at the Center of Information Systems Design
Technologies and a Professor at the Department
of Information Systems, Kaunas University of
Technology. His research interests and practical
experience cover various aspects of business pro-
cess management and model-driven information
systems development. On these topics, he has

\
‘ Mﬁ" m published several articles in high-rated academic
M4 journals and in a number of international confer-
ences. He is also a co-editor of three books of international conferences
published by Springer Verlag.

VOLUME 10, 2022

