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Building Façade Style Classification

from UAV Imagery Using a Pareto-

Optimized Deep Learning Network.

Electronics 2022, 11, 3450. https://

doi.org/10.3390/electronics11213450

Academic Editors: Singara Singh

Kasana, Ben Soh and Geeta Kasana

Received: 2 October 2022

Accepted: 16 October 2022

Published: 25 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Building Façade Style Classification from UAV Imagery Using
a Pareto-Optimized Deep Learning Network
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Abstract: The article focuses on utilizing unmanned aerial vehicles (UAV) to capture and classify
building façades of various forms of cultural sites and structures. We propose a Pareto-optimized
deep learning algorithm for building detection and classification in a congested urban environment.
Outdoor image processing becomes difficult in typical European metropolitan situations due to
dynamically changing weather conditions as well as various objects obscuring perspectives (wires,
overhangs, posts, other building parts, etc.), therefore, we also investigated the influence of such
ambient “noise”. The approach was tested on 8768 UAV photographs shot at different angles and
aimed at very different 611 buildings in the city of Vilnius (Wilno). The total accuracy was 98.41%
in clear view settings, 88.11% in rain, and 82.95% when the picture was partially blocked by other
objects and in the shadows. The algorithm’s robustness was also tested on the Harward UAV dataset
containing images of buildings taken from above (roofs) while our approach was trained using
images taken at an angle (façade still visible). Our approach was still able to achieve acceptable 88.6%
accuracy in building detection, yet the network showed lower accuracy when assigning the correct
façade class as images lacked necessary façade information.

Keywords: Pareto; optimization; deep learning; building segmentation; building façade recognition;
drones

1. Introduction

Remote data collection has become a need in industrial design [1], architecture [2],
and city planning [3]. Object tracking has been used both in industrial applications [4]
and for pedestrian tracking in smart city applications [5]. Another common application is
the automatic inspection of building surfaces [6]. The usage of unmanned aerial vehicles
(UAVs) may be emphasized to support construction management tasks, particularly with
relation to construction site logistics, monitoring and follow-up of the work’s evolutionary
process, and permitting visual inspections in difficult spots and because of its capacity to
record inaccessible regions [7] such as bridges [8], wind turbine rotor blades [9], and fea-
tureless tunnel-like settings [10], the UAV has become an ideal instrument for visual data
collecting [11]. These applications are enabled by deep learning technologies, which sur-
pass standard classification algorithms in terms of performance and feature transferability
to new datasets [12]. It has been also demonstrated to contribute substantially to solving
various sustainable-development problems [13].

In the architectural, engineering, construction, and facility management industries,
unmanned aerial vehicles have become an almost mandatory visual data collecting tool
for analyzing building façades, leading to collections of sequence datasets, potentially
used to benchmark the computer vision systems [14,15]. The building façade is also a
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major distinguishing characteristic from the initial eye contact since it often becomes a
complicated interaction between the inside of buildings and the outside [16]. The UAV can
collect a comprehensive high-quality image of the façade from every angle. As a result
of the image processing techniques used in digital photogrammetry, extra visual assets
such as 3D or orthomosaic models can be created [17]. The engineer, architect, or even
AI itself [18] may then examine the visual assets created and flag potential faults, make
maps, design buildings and building information modeling (BIM) applications, etc. [19].
This method has also become a very sustainable alternative for improving accessibility
and providing an enriched analysis [20] and experience of city life due to their ability
to capture images remotely and provide interesting and attractive perspectives to the
urban landscape and buildings [21]. They have been effectively used for structural health
monitoring of buildings [22]. However, the effective use of remotely sensed images and data
captured by drone cameras requires the effective use of image processing, segmentation,
and classification techniques [23].

We can potentially use the images of the urban landscape captured by drones to
identify visual landmarks and defects on historical buildings, objects of urban heritage,
etc. [24], or in city planning [25]. The problem is very complex when images in question
vary in style, are obstructed by numerous other objects, and there is a low possibility of
a clear, unobstructed view, which is the case when given the task to analyz e the unique
buildings of the city of Vilnius (Wilno), a UNESCO heritage place, varying in style, from the
Gothic church towers to the most modern glass structures[26]. Such a task requires the
adoption of intelligent solutions supported by AI for the detection and identification of
buildings in the overall urban background. The objective of our research, therefore, was
set to detect the borders of a building’s façade accurately under changing weather and
lighting situations, as well as to determine the real building façade style based on façade
taxonomy [27].

The remaining sections of the paper are organized as follows. Section 2 goes through
the relevant works and highlights the most typical issues encountered while processing
building façade images. Section 3 introduces the proprietary dataset and outlines the
approaches employed. Section 4 summarizes the findings. Section 5 concludes the paper.

2. Related Works

Image processing is a broad field of research with a multitude of diverse methods
available for researchers. Numerous studies have addressed the topic of object identification
and detection [28–30]. Image processing becomes particularly complex in open spaces,
where many extraneous noises that affect image processing occur: the sun and the resulting
shadows, wind, rain, snow, and water surfaces and reflections from them [31–33]. All of
the above factors influence the level of illumination and make the characteristic features of
objects less visible. The problem of image processing in open spaces with dynamic changes
in weather conditions is especially problematic [34]. Currently, there are no effective image
processing methods suitable for identifying objects with different characteristics in different
environments surrounding the object [35–37]. When considering the specific problem of
building detection and identification, the current research focuses on:

• Detection of buildings and determination of their shape from high-resolution satellite
images [38–41]. As an alternative, drones or manned drones can be used. In this
case, high-resolution photos are obtained for a selected time and further analyzed
separately. Such a system can be classified as both static and dynamic because the
distance between the camera and the surface is distant and the camera does not move
much relative to the object during the selected period. The most common task is
to update the maps of buildings to assess the relationship between the territory of
buildings and green areas and assess the roof of specific buildings, otherwise referred
to in the literature as the form of building foundations.

• Detection and identification of buildings from building façade elements [42,43] in a
purely static context. In this case, the camera does not move relative to the image, so
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the captured characteristic features of the building allow a building to be distinguished
from other buildings.

• Identification of buildings from a video stream in real time [44]. The image is processed
by a camera, which is installed, for example, in front of a moving bus. This option can
be used for building contour detection, but it is rarely used for building identification.
To improve the accuracy, Zhang et al. [45] recommends using semantic segmentation
to extract building façades. Dai [46] offers a model based on deep learning-based
semantic segmentation technology and an ensemble learning technique, with object
detection technology incorporated as a magnifier to increase model performance on
small objects and border predictions.

We discuss the related works related to computer vision of building analysis below.
Semantic segmentation of building foundations is discussed in [47]. To solve the

problem, researchers used deep neural networks (DNNs) based on the convolutional neural
network (CNN) U-Net. A database of satellite images of cities was used to train the network.
The Triplet Loss Function was used for training. The methodology allowed improving the
segmentation of building foundations by 2% compared to the latest methods proposed by
other authors. The authors of [48] used Siamese’s fully CNN U-Net (SiU-Net) to segment
buildings from shared satellite images of the area. The 512× 512 images of individual
buildings, parts of large buildings, and groups of buildings were used for training. Images
obtained by an infrared camera are processed in [49] to segment the shapes of buildings
viewed from above using monochrome images obtained with an infrared camera. The 2D
adaptive image filter was used to determine the straight edges of contrasting areas in the
image and reject the lines intersecting at non-straight angles as noise. The work [50] also
examines the segmentation of buildings using satellite imagery. In this case, the authors
focus on building projections using CNNs with rotational equivariant properties. However,
CNNs are not sufficient as the quality of the segmentation is often determined by the
position of the camera relative to the building one might want to segment. The authors
of [51] state that CNNs are not fully suitable for processing synthetic aperture radar (SAR)
images. The authors propose a new multitasking structure for a full CNN for segmenting
buildings from SAR images, which allows for improving the quality of segmentation.
Similar work has been done in [52]. Before processing satellite images with a CNN,
additional image processing filters are first applied. The authors of [53] use already-created
city maps from online mapping platforms in their research. They divided their work to
extract 2D and 3D map fragments and distinguish the contours of buildings using various
filters. A multilayer perceptron was used to determine the height of the building from
3D images and the building itself was segmented in the image using the MASK R-CNN
network. The same task was performed in [54], only the graph convolutional network
(GCN) was used in this case. The authors argue that reducing the contrast of satellite
images degrades the quality of segmentation, so additional image processing is required
before training a CNN. The situation is well-summarized in [55]. It states that there is no
one-size-fits-all solution for image processing and segmentation of buildings. The accuracy
of segmentation depends both on the data, in this case, the images, and on the chosen
methodology, network type, structure, and additional image processing before paying for
the network. Additional image processing by custom filters is also required. Tao et al.
suggested using façade elements’ spatial arrangement regularity and appearance similarity
in a detection framework [56].

Vision transformer (ViT) techniques are fast gaining traction in computer vision and
remote sensing, offering a viable alternative to CNNs and their variants. ViT’s primal con-
cept was a model of encoder–decoder sequence transduction based on self-attention and
capable of encoding long-distance interactions between sequence components, originally
applied to natural language processing [57], but soon after also converted for use as image
categorization by Dosovitskiy et al. [58]. ViTs allow not using convolution layers in the
same way that typical CNNs do, but instead, ViT utilizes multi-head attention processes as
the primary building block to determine long-range contextual relationships between pixels
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in the image data. ViT has several drawbacks over CNNs as it necessitates additional GPU
memory and computational overhead [59]. This issue is exacerbated when dealing with
large-sized inputs such as fine-resolution remote-sensing photos. Second, spatial details are
not properly retained throughout the ViT’s feature extraction, making it unsuitable for all
scenarios of fine-grained building segmentation, but can be remedied by dedicated context
paths, such as in [60]. Chen et al. [61] recommended employing cross-attention solely
because it needs linear time for both computational and memory complexity rather than
quadratic time, assisting in the development of a dual-branch transformer to merge picture
patches of varying sizes to generate stronger image characteristics. Guo et al. [62] presented
an automated method for extracting building information from satellite and street view im-
ages, which is based on a novel transformer-based deep neural network with a multidomain
learning approach that was used to develop a compact model for multiple image-based
deep learning information extraction tasks using multiple data sources. Chen et al. [63]
proposed an efficient dual-pathway transformer structure that learns token long-term de-
pendence in both spatial and channel dimensions and achieves state-of-the-art accuracy on
benchmark building extraction datasets. Bazi et al. [64] demonstrated experimentally that
their approach can condense the network by reducing half of the layers while maintaining
competing classification accuracy. Bashamal et al. [65] proposed reshaping the picture and
its enhanced version into a sequence of flattened patches, which would then be sent to
the transformer encoder. The latter derives a compact feature representation from each
picture using a self-attention technique that can manage global interdependence between
image areas. The authors of [66] present a CNN+ViT hybrid search space with searchable
down-sampling locations, converting the search space into blocks with a self-supervised
training strategy to train each block individually before searching for the population center
as a whole.

The problem of building segmentation, i.e., finding it in an image, is relevant when con-
sidering not only satellite images when the building is visible from above, but also images
of the building façade when the building is photographed from the side view. For example,
in [67], feature extraction is used for the automatic identification of buildings for tourism
purposes. SIFT (scale-invariant feature transform) is used to determine characteristic points
of the object in the image; assign an orientation to the object, compile a description of
characteristic points, and perform an alignment of characteristic points. The result was
greatly influenced by the ambient lighting and the accuracy was not sufficient. In [68],
the authors use texture and color properties of a building to determine the position of an
object and propose multi-scale neighborhood sensitive histograms of oriented gradient
(MNSHOG) and automatic color correction to preserve the texture and color properties
of building images. Next, they combine the texture and color characteristics of buildings
into a single array and use the extreme learning machine (ELM) for classification. The pa-
per [69] discusses localizing discriminative visual landmarks to identify a building and
thus locate it. The study used CNN with algorithms for extracting their characteristic prop-
erties. Segmentation of building façades using procedural shape priors is presented in [70].
The authors used process modeling to determine the geometric and photometric variation
of buildings, and random forests (RF) to optimize the processing time and resources used.

Morphological segmentation of building façades is presented in [71]. The authors
use directional color gradients to isolate the façades of buildings from the general back-
ground of the city. The sky is then detected based on the segmentation method and the
acquisition of color markers. Finally, the façade area is subdivided according to floor
levels and morphological filters are used to alleviate the effect of reflections from windows,
textured balconies, and other small surface irregularities on the quality of segmentation.
Similar methods are also used in dynamic building façade detection and identification
systems, where the video stream or photos are taken from vehicles moving on the road.
The study [72] used building façade detection, segmentation, and feature extraction pro-
cedures to locate a mobile robot based on the accurate segmentation of building façades.
The authors classify the points of the figure into planes using RANSAC (random sample
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consensus) algorithm. Next, the authors construct a model of Markov random fields until
all of the individual points belonging to the individual surfaces of the building are classified
into separate planes. The method allowed the detection of buildings with 90% accuracy
and the detection of individual façade surfaces with 85% accuracy.

According to [73], segmenting an image into separate areas is a complex procedure. It
is usually necessary to distinguish objects of complex shapes from the general background
surrounding the building. Detecting the edges of individual areas is one of the main tools
for finding and identifying objects in an image [74]. Often, authors first find the edges of
objects and then create their various filters to get rid of the noise and leave only the edges
of the objects that are relevant to them.

To summarize, the problems of the task of building detection and identification are ob-
vious: changing environmental conditions greatly affect the quality of recognition. The com-
plexity of the task is highly dependent on the shape of the building façade, the natural
conditions, and the urban background behind the building. Using elementary mathemati-
cal models, researchers are usually able to identify only buildings with a very simple façade
structure. Moreover, the classified buildings must differ significantly from each other.
However, there are many problems in identifying buildings with a similar façade structure.
In particular, due to distance and environmental factors, it is difficult to distinguish the
contours of individual façade elements. Incorrect contours can be obtained with shadows
or reflections. Separating the correct form alone does not guarantee successful further
classification. In addition to the shape of the façade, the background behind the building
has a significant impact on the tasks of detecting and identifying the façade of a building.
In solving complex façade detection problems, researchers typically choose artificial neural
networks. In this case, modern methods such as CNN and ViT can single out features that
the researcher will simply not notice with the naked eye.

In this paper, we present a novel method for the segmentation and identification of
specifically selected buildings against a noisy and cluttered city background. We discuss
the common problems faced while solving this task in the following section.

Common Problems of Building Façade Image Processing

Images obtained by a remote camera often need to be denoised [75] and despeck-
led [76]. Additionally, some of the objects might appear in front of the building and the
in-painting algorithm should be applied [77]. Then there might be a factor of image resolu-
tion [78]. The reasons why the image quality needs to be improved can be seen from the
sample images of the building façade presented in Figure 1a–c.

(a) (b) (c)

Figure 1. Examples of building images: (a) image from a natural distance; (b) a view with a slight
“floating effect” due to direct sunlight; (c) a captured image with a specific departure of points.

As the position of the sun changes with respect to the camera’s lens, the image quality
also changes. In addition, when shooting from a greater distance, the resolution of the
zoomed façade decreases. Then there is an impact of wide camera angle, and also very
common fisheye effect [79]. In this case, you need to use filters to get better results [80].
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In the specific case, Figure 1 shows an example of a building façade in the evening when
the lighting level is already lower. The resulting image is very noisy and quite blurry.
By using the unsharp masking method, the thresholds of individual areas can be high-
lighted. Figure 2a presents the original image while Figure 2b shows the processed image
with increased contrast between the colors of the individual areas. The results achieved
in the figure are visible to the naked eye. In this case, the image in Figure 2b will allow
obtaining better contours of the building and thus better results should be obtained by
training an ANN.

(a) (b)

Figure 2. (a) Original and (b) color image of increased contrast between individual areas.

Another obvious problem is varying weather conditions [81]. In Figure 3a the building
is illuminated by the sun, and in Figure 3b the same building is covered by rain.

(a) (b)

Figure 3. Example of building view (a) in the sunshine; (b) covered by clouds and rain.

The overall level of illumination varies greatly between the façade and the surrounding
environment. For these reasons, using the same image processing methodology will result
in completely different results in both cases [82]. Figures 4 and 5 show how applying
the same threshold values results in completely different contour separation results when
the sun is shining and it is covered before the rain. For example, Using a Canny filter to
separate the contours and using a threshold value [83], e.g., that of 0.45, would make it
possible to find the area of the building and see it quite clearly, as illustrated in Figure 4a.
Meanwhile, in a case of covering, the same threshold value gives a completely bad result
(Figure 4b).



Electronics 2022, 11, 3450 7 of 24

(a) (b)

Figure 4. Separation of area contours with a Canny filter with a threshold value of 0.45, when (a) the
sun is shining, (b) overcast.

If we focus on the image overlaid and choose a threshold value of 0.16, we can
distinguish the building (as can be seen in Figure 5b. However, at this threshold, the noise
level (contours and trees of other buildings) increases significantly and it is difficult to
detect the building in Figure 5a. These images show that there is no single threshold
value for all cases. In similar types of image processing tasks, the threshold is adjusted by
an expert.

(a) (b)

Figure 5. Separation of area contours with a Canny filter with a threshold value of 0.16 when (a) the
sun is shining, (b) overcast

A common problem is the need for the transformation of the building façade when
in the frame we see the building not directly in front, but rotated or pushed [84]. Viewed
at an angle, the façade of the building no longer has 90◦ angles and is stretched. In this
case, before processing, we need to transform the building so that we can see the façade
exactly from the front. In Figure 6a, we see the originally obtained frame, and in Figure 6b
we see the transformed image. In Figure 6b, the façade of the building is shown exactly
from the front. Transformations of this kind make it possible to improve the visibility
of the individual areas of the building façade and thus guarantee a better separation of
the contours [85] and can further increase the quality of image processing systems. Such
transformation operations are also useful in training artificial neural networks. Using push,
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rotate, and other transformations, it is possible to obtain the façade of a building at different
angles from different projections and thus increase the size of the training data.

(a) (b)

Figure 6. Example of building façade detection: (a) the original image obtained, and (b) the trans-
formed image in order to have only a view of the façade exactly from the front.

3. Materials and Methods
3.1. Data Acquisition

We have used a DJI Mavic Air [86] (Sensor: 1/2.3′′ CMOS, Effective Pixels: 12 MP,
Lens FOV: 85°, 35 mm Format Equivalent: 24 mm, Aperture: f/2.8, Electronic Shutter:
8-1/8000 s), flown above picturesque locations in the city of Vilnius (Wilno), to capture
numerous locations of different architecture as recommended by the Vilnius Architectural
Guide [87] (see Figure 7 illustrating the dynamic variety in styles). We have captured 611
buildings at multiple angles (minimum of 4 (north, east, south, west), with additional
variations if the façade was not visible at the exact angle) and in different conditions (in
total 8768 images from 8 a.m. to 5 p.m.) The shape of the buildings themselves varied from
quite ordinary squares to multiangle shapes, also with differences in stylistic details, such
as the number and layout of windows and doors, the colors of façades as well as decorative
elements, roof slopes, and style. The buildings are spaced at different distances and located
in different directions around the city. The photos were taken during the periods of 2021
and 2022, so different shadows fell on the building façades at different times of the day, thus
worsening the separation of building features and the identification of buildings. The UAV
was flying in different permissible weather conditions. Some of the images were obtained
of the sun shining in the morning, some during noon, and some in the evening with façades
falling into shadows (approximately 22%, 69%, and 9% of each category). Some images
were also obtained at medium and high cloud cover present at the time of flying (around
35%). The dataset also included an additional 1435 images taken during light rain (in
non-windy conditions permissible to fly our UAV). The number of images in each class
was not equal, nor was the number of buildings with distinct façade types. To balance
the dataset, we used standard picture augmentation methods (rotation, brightness, etc.)
from the Albumentations library [88]. The dataset was pre-annotated by the same R-CNN
network developed by us (trained on the [89] dataset), then every image was manually
supervised and corrections were made if required by the authors of this paper. We have left
30% of the dataset untouched (for validation and testing). In total, 70% of the photos were
used for training. Validation was performed with 20% of the photos and the remaining 10%
of photos were used for testing.
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Figure 7. Famous Vilnius (Wilno) buildings used in the research.

3.2. Methodology

In this chapter, we present the operation algorithm of our proposed methodology
(Figure 8). The methodology has three stages: collection and processing of training data
(stage I), training of the model (stage II), and building façade style classification (stage III).

1. Stage I requires the collection and processing of training data for network training.
In particular, the façades of buildings are photographed using UAVs in various
weather conditions (step 1). Furthermore, the specific façades of the buildings are cut
from the obtained photos (step 2) with a bounding box. When cutting building façades,
keep in mind that all photos for network training should be the same dimensions. This
is a disadvantage because the shape of the buildings does not always allow the entire
façade of the building to be cut out and placed in a picture of a certain size. In order to
accommodate the entire façade of the building, a larger area has to be cut out, in which
case part of the city background remains in the image of the educational data.

2. Once the data has been collected for training, the process proceeds to stage II. First of
all, the network model is developed (R-CNN) (step 3). The network is further trained
with façade data (step 4). The network then performs a validation function (step 5).
Finally, a network robustness check is performed with images not yet used in the
training (step 6).

3. Finally, we classify the building façades (stage III). The network assigns each building
in the image to one of the different façade style groups. Next, we evaluate how many
images the R-CNN has assigned to the correct groups. We preset a certain threshold
as a percentage of the classification reliability we aim for. If the obtained reliability is
greater than or equal to the threshold, we consider that the CNN model was successful
(step 7).
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Figure 8. Deep learning-based methodology to identify building façades.

The remainder of this section aims to explain the heuristic building detection method
used in data processing, explain the data augmentation process, as well as to provide more
details on the network architecture and the optimization applied.

3.3. Heuristic Building Detection Method

First, the original color image with a resolution of 2080× 4160 (step 1) is loaded. Next,
the resolution of the image (step 2) is changed to 512× 512. The same resolution will be
used by artificial neural networks. Next, the color image Ic is changed to gray Ig with
brightness information (step 3). To compute gradient of the image, the derivatives Ix and
Iy are calculated by convolving Ig with Sobel kernels Kx and Ky:

Kx =

−1 0 1
−2 0 2
−1 0 1

, (1)

Kx =

 1 2 1
0 0 0
−1 −2 −1

, (2)

Ix = Kx ∗ Ig, (3)

Iy = Ky ∗ Ig. (4)

The magnitude G of the gradient is calculated as follows:

|G| =
√

I2
x + I2

y . (5)

The threshold for gradient Tg (step 4) is selected. Selecting a Tg value distinguishes
contours between contrasting areas. The contours are assigned white if the gradient pixel



Electronics 2022, 11, 3450 11 of 24

|G(x, y)| > Tg and the background is assigned black (step 5). The sizes of the objects are
estimated as long as there are unprocessed objects (step 6). The sizes of the objects are
estimated by a sum of pixels vertically Py and horizontally Px. If the object size Px + Py is
larger than the selected size threshold Ts (step 7), the i- th object is assigned a tag O(i) (step
8) and the next i + 1 object is processed:

O(i) =

{
1, if Px + Py ≥ Ts,
0, if Px + Py < Ts.

(6)

If the object size is less than the threshold Ts, the object is removed (step 9). After pro-
cessing all of the objects and leaving only the largest ones according to the set threshold
Ts, the rectangular objects are searched further (step 10). If there are rectangular shape
(step 11), the largest rectangular shapes (step 12) is extracted.

3.4. Image Augmentation

To improve the training performance of the deep learning model, we have adopted
image augmentations, which are useful when a dataset of images is too small as in our case.

We have adopted the Albumentations image augmentation library [88]. We adopted
elastic deformation augmentation using the RGB adaptation of elastic transform as sug-
gested in [90].

The method produces an augmented image from the original image by applying a
displacement field to its pixels. The method defines for each pixel in the original image,
the displacement field ∆x(x, y) = αrand(−1,+1) and ∆y(x, y) = αrand(−1,+1), where α
is a scaling factor that depends on the size of the original image, and rand(−1,+1) is a
random value drawn from the uniform distribution in [−1, 1].

Because of the random displacement of each pixel, the augmentation introduces
distortions in the augmented image. The horizontal ∆x and the vertical ∆y displacement
fields are then filtered by the rotationally symmetric Gaussian lowpass filter.

3.5. An Enhanced R-CNN Model

We have chosen to utilize a modification of the region-based convolutional neural
network [91] due to its reasonably low computational weight and proven good efficiency
with patch analysis, further enhanced by our suggested Pareto optimization (see a dedicated
section below). The enhanced R-CNN model for building façade detection is developed
as follows. The size of the input layer depends on the size and type of the image. The
network also includes a branch of the full convolutional network (FCN) to help improve the
detection of the building shape as was suggested in a similar application by Wang et al. [92].
The size of the input layer is defined in our approach as the vector of h× l × c, where h is
the height; l—width of the image; c— the number of channels in the picture (for grayscale,
c = 1). In this case, data normalization is not used in the input layer. This is followed by a
2D convolutional layer. This layer applies convolution sliding filters to the input, that is,
the visual information entering the input layer. The convolution operation between the
filters and the image entering the input is performed by sliding the filter vertically and
horizontally and calculating the product of the weights and the input point and adding
the initial component (bias). The response y of the convolutional filter with the number of
input channels n is calculated as follows:

y =
n

∑
c=1

wc × xc + b, (7)

where wc is a weight array of the 2D filter of the cth input channel; xc is a 2D input to the
cth filter; b is the bias.

In this case, we selected a hidden convolutional layer size equal to 16 filters of size
3× 3. We also chose to match the output size of the layer to the input size without additional
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overlap (“Padding”, “same”). The filter shift step was left at the default level of 1× 1.
Initial weights were assigned equal to 1. The bias training factor was left equal to 1.

What follows is a data packet normalization layer that normalizes the data transmitted
over each input channel as a small data packet. To accelerate CNN training and reduce
the sensitivity to network initialization, we used batch normalization (BN) layers. The BN
layer implements the following expressions:

µ =
1
m

m

∑
i=0

yi, (8)

σ2 =
1
m

m

∑
i=0

(yi − µ)2, (9)

ŷ =
y− µ√
σ2 + ε

, (10)

ỹ = γŷ + β, (11)

where µ is a mean; σ2 is the variance; ε is the numerical stability coefficient; γ is the scale
factor; β is the offset calculated over a mini-batch; m is the number of images in a mini-batch;
y is the response from multi-channel convolution filter; ỹ is the batch normalized output.

The rectified linear unit (ReLU) layer performs a nonlinear threshold operation for
each input element when any value less than zero is set to zero:

yr =

{
ỹ, if ỹ ≥ 0,
0, if ỹ < 0.

(12)

In the max pooling layer, a sample reduction operation is performed by dividing the
input sample into rectangular concentration regions and calculating the maximum value
for each region. Equation (13) describes the output after max pooling:

ym = max
1≤j≤M×M

yr(j), (13)

where M is the size of the pooling region.
Next, the four layers already discussed are repeated, starting with the 2D convolution

layer. Only in this case, 32 filters of size 2× 2 are selected in the layer. The BN, ReLU, and
max pooling layers are identical to those discussed earlier.

This is followed by a fully connected (FC) layer in which the input data is multiplied
by weight vectors and a bias value is added. Equation (14) describes the ith neuron output
f (L)
j in the Lth fully connected layer:

f (L)
j = a

(
w(L)

0,j +
NL−1

∑
i=1

w(L)
i,j f (L−1)

i

)
, (14)

where a(·) denotes an activation function; NL−1 is the number of neurons in the L− 1 fully
connected layer; L is the index of the fully connected layer; i is the synapse index; j is the
neuron index in the L-th layer; f (L−1)

i is the output signal from ith neuron in the the L− 1

layer; w(L)
i,j is the neuron weight in the L-th layer.

R-CNN optimizes the spatial location misalignment problem produced by the ROI
pooling layer by using region of interest (ROI) aligning and introducing a bilinear inter-
polation approach. To achieve precise pixel-level target segmentation, each ROI is better
matched to the position of pixels on the original input picture. Finally, a regression layer
is added, in which the mean square regression error values are calculated. Our enhanced
R-CNN is displayed in Figure 9.
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Figure 9. Architecture of the enhanced R-CNN network.

3.6. Pareto Optimized Layer

The Pareto-optimal layer [93,94] with quadratic polynomial optimization [95] was also
added to help increase the overall accuracy of the algorithm, using an iterative population-
based strategy that uses a single search procedure to estimate the Pareto front of optimum
neural network solutions. This added feature was represented as a directed acyclic graph of
cells, each of which is made up of 16 blocks. Each block is an 8-tuple that maps input vectors
to output vectors. The output of the block was formed by applying a soft thresholding
function and formed by concatenating unused blocks in the depth dimension.

The finite-dimensional convex optimization problem is described below. We define
the quadratic module of a set of constraints G on a finite-dimensional vector space E as

QcE,G = {∑g∈G0 g h + ∑g′∈G+ g′ h′

| h ∈ E, g h ∈ E · E, h′ ∈ Σ2(E), g′h′ ∈ E · E}.

If G? is the set of constraints such that G?0 = G0 and G?+ = ∏(G+), the quadratic
module QcE,G? is the preordering of G, and is denoted Qc?E,G.

By design, the QcE,G ⊂ E · E is a cone of polynomials which are non-negative on the
semi-algebraic set S.

Definition 1. Given a finite-dimensional vector space E ⊂ R[xx] which contains 1 and a set of
constraints G, we define

LcE,G := {Λ ∈ E · E∗ | Λ(p) ≥ 0, ∀p ∈ QcE,G, Λ(1) = 1}.

The convex set associated with the preordering Qc?E,G = QcE,G? is denoted Lc?E,G.
The set LcE,G is the intersection of the closed convex cone of semi-definite positive

quadratic forms on E× E with a linear space S, thus it is a convex closed set. In multi-
objective optimization, one considers m > 1 objectives U1, ..., Um : S′ over solution space S.
A solution s ⊂ S is called Pareto optimal iff it is not dominated by any other s′ ⊂ S. The
Pareto front S is the set of all Pareto optimal s ⊂ S. All other s are sub-optimal.

The conventional error backpropagation method is employed to train the neural
network. The gradient descent approach is used to execute neural network training by
updating the weight vector w in order to minimize the square error E(w). It begins from an
initial weight vector w(0) and computes the weight vector difference w(j) for each iteration.
By using this technique, the weight vector w is moved in the direction where the function
E(w) decreases at the fastest pace.

Training is supervised and so we have a set of associations: s(q) : t(q), q = 1, 2, . . . , Q is
given. The training vectors s(q) have N components,

s(q) =
[

s(q)1 s(q)2 . . . s(q)N

]
,
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and their targets t(q) have M components,

t(q) =
[

t(q)1 t(q)2 . . . t(q)M

]
.

Similar to the Delta rule, during training, the network is shown each training vector
one at a time. Let us say that during the training procedure time step t, given a training
vector s(q) for a certain q as input, to the network, x(t). To propagate the input signal
forward through the network, then use the current weights and biases to generate y(t),
the matching network output. The steepest descent algorithm is used to minimize the
weights and biases. The error square for this training vector is:

E = ‖y(t)− t(t)‖2,

where t(t) = t(q) is the target vector that corresponds to the selected training vector s(q).
The network’s total weights and biases determine this square error, E, as they are

necessary for y(t). Based on the steepest descent method, we identify a set of updating
rules for them:

w(`)
ij (t + 1) = w(`)

ij (t)− α
∂E

∂w(`)
ij (t)

b(`)j (t + 1) = b(`)j (t)− α
∂E

∂b(`)j (t)
,

where α(> 0) is the learning rate.
We must comprehend how E is affected by the weights and biases in order to compute

these partial derivatives. In the beginning, E explicitly depends on the network output y(t).
(the final layer’s activations, a(L)), It is thereafter reliant on the net input into the L−th
layer, n(L). Additionally, n(L) is determined by the weights and biases of layer L as well
as the activations of the layer before it. For brevity, the reliance on step t is removed, which
is the explicit relation as follows:

E = ‖y− t(t)‖2 = ‖a(L) − t(t)‖2 = ‖ f (L)(n(L))− t(t)‖2

=

∥∥∥∥∥ f (L)

(
NL−1

∑
i=1

a(L−1)
i w(L)

ij + b(L)
j

)
− t(t)

∥∥∥∥∥
2

.

It is then easy to compute the partial derivatives of E with respect to the elements of
W(L) and b(L) using the chain rule for differentiation.

4. Experimental Investigation
4.1. Training Procedure

Our dataset contained 8768 UAV photographs, shot at different angles aiming at 611
buildings in the city of Vilnius (Wilno), taken in varying weather and lighting conditions
(see Section 3.1 for further details). A total of 70% of the photos were used for training.
Validation was performed with 20% of the photos and the remaining 10% of photos were
used for testing. All computational operations were made on a Linux Mint 22 machine,
with a Geforce 1650 GPU with 16GB of RAM and a Ryzen 3500 CPU.

A total of 1000 epochs were used for training. One epoch occupied one iteration. We
see that the value of the error drops from about the 40th iteration to about 0. The standard
deviation also decreased consistently. Figure 10 illustrates full loss curves until the 1000th
epoch, showing stable results for the total loss, bounding box loss, classification loss, and
segmentation loss. We see that from about the 35th iteration the error value drops to about
0.5 and is minimized towards the end of the training.
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(a) (b)

(c) (d)

Figure 10. (a) Total loss; (b) bounding box loss; (c) classification loss; (d) segmentation loss.

4.2. Results

The buildings were classified into seven classes following the typology of building
façades proposed in [27], which identified six types of building exteriors as follows:

1. transparent—using apertures, windows, doors, cracks, curtain walls, and other fea-
tures that allow for unhindered communication between the interior and the outside,

2. opaque—where there is no clear visual distinction between the interior and the outside
due to the usage of entire walls, large divisions, and closures;

3. blended compositions;
4. composed shape, which relies design on proportions, architectural detail composition,

or rhythm;
5. decomposed shape refers to intentional distortion or omission of proportions, the

composition of architectural elements, or rhythm;
6. mixed shape refers to the connection between distortion or absence of proportions,

the composition of architectural details, or rhythm.

An additional class (7) is “Other”, which includes all types of façades not covered by
the aforementioned typology.
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Classification results are illustrated in Figure 11, where confusion matrices indicated
an average accuracy of 98.41% in clear view settings (top left), 88.11% in rain (top right),
and 82.95% when the picture was partially blocked by other objects and was in the shadows
(bottom left).

We have also experimented with the Harward UAV dataset containing images of
buildings strictly from above [96]. None of the images were used in training, yet our
approach was still able to achieve acceptable 88.6% accuracy in building detection (bottom
right matrix in Figure 11). The network, unfortunately, failed to assign the correct class as
the images from above lacked necessary information.

(a) (b)

(c) (d)

Figure 11. Confusion matrix of building façade classification in: (a) clear weather conditions; (b) rainy
conditions; (c) partially blocked or in shadow. (d) shows the classification result from the Harward
UAV dataset [96].

Figure 12 illustrates the accuracy of classification in the same scenarios. The results
suggest that our technique is relatively stable in our Vilnius (Wilno) dataset under all use
cases, as the fluctuation between the seven groups classified is not significant. Unfortu-
nately, the classification results of the Harward UAV dataset show a substantial distribution
towards the seventh class of façades (others), as this dataset covers structures shot from the
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top and lacks differentiating façade information. Deviation values and mIoU values are
shown in Table 1.

Table 1. Calculated deviation and mIoU values.

Class Deviation Value mIoU Value Scenario

1 0.91 0.51

clear weather conditions

2 1.00 0.71
3 0.91 0.72
4 0.72 0.70
5 1.28 0.75
6 1.00 0.77
7 0.52 0.69

1 0.77 0.61

rainy conditions

2 0.33 0.65
3 1.48 0.62
4 1.76 0.61
5 1.31 0.64
6 0.78 0.69
7 0.53 0.61

1 0.83 0.55

partially blocked or in shadow

2 0.72 0.60
3 1.16 0.61
4 1.81 0.59
5 0.97 0.57
6 0.84 0.59
7 1.74 0.55

1 1.87 0.67

Harward UAV dataset

2 0.72 0.71
3 0.52 0.62
4 0.06 0.78
5 0.60 0.69
6 0.96 0.71
7 0.82 0.59

Figure 12. Accuracy of classification by class in different scenarios: (a) clear weather conditions;
(b) rainy conditions; (c) partially blocked or in shadow. (d) shows the classification result from the
Harward UAV dataset [96].
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Figure 13 illustrates a sample result, showing the processing result of the algorithm,
where every building had correctly marked boundaries even in the cases of multi-angled
shots, yet there were some masking errors, which is not surprising, given the complexity of
this particular area. Note that some of the large buildings shown are actually two or more
separate entities with joint walls (in the example identifiable by balustrades and top floor
decorations). Figure 14 shows an OpenStreetMap building overlay of the same location.

Figure 13. UAV camera images showing G� center and M�museum area at different angles. The
red mark indicates a detected façade shape. Color highlights show assigned segment masks.

Figure 14. OpenStreetMap building overlay of the G� center and M�museum area [97].

5. Discussion and Conclusions

The main contributions of this study are a novel method for the segmentation of
city buildings against a city background; the analysis of building features that allow for
successful segmentation and identification of buildings against a city background; and
the analysis of natural factors that influence the quality of building segmentation and
identification. To assess the limitations of the methodology and threats to validity, we
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assessed the impact of ambient noise. Outdoor image processing becomes problematic due
to dynamically changing weather conditions. During the day, when the sun is in different
positions, the contrast between the details of the building façades changes greatly in
relation to the building façades and the lens. When the sun shines on the lens, the contrast
of the photo decreases, and the image looks blurred. The image looks blurry even at
dusk. To address this problem, we proposed a method to highlight individual parts
of the building and to automatically calculate the illumination of the resulting photo.
The proposed method allowed transforming the image of the building to have the façade
of each building undistorted directly from the front.

As a result of this study, we can state that the proposed R-CNN-based deep neural
network model was trained to identify the façades of the objects from two classes: the
church and other buildings of the old town. Examination of the network with data not used
for training and validation showed that the buildings were classified in the first class with
65% accuracy without using the image augmentation. With image augmentation methods
with introduced transformations of images we were able to increase the number of images
for training. This allowed us to improve our results by 18.74% to 87.16% compared to
prior to optimization.

The applied Pareto optimization allowed achieving total accuracy of 98.41% in clear
view settings, 88.11% in the rain, and 82.95% when the picture was partially blocked by
other objects or was in shadow. This result is better than other state-of-the-art methods. The
algorithm’s robustness was also tested on the Harward UAV dataset containing images of
buildings taken from above (roofs) while our approach was trained using images taken at an
angle (façade still visible). Our approach was still able to achieve acceptable 88.6% accuracy
in building detection, yet the network showed lower accuracy when assigning the correct
façade class as images lacked necessary façade information. Naturally, such a comparison
is not completely fair, as the other works more or less focused on datasets with different
architectural style varieties, as well as different styles of pictures. Nonetheless, the RGB
based models, such as MultiDefectNet were achieving around 62.7% in [98], Zhang’s
model achieved 81.6% [99],the K-means cluster algorithm 82% [100] accuracy, while point
cloud-based models were exhibiting similar performance, e.g., Zolonvari’s model achieved
86% [101], DLA-net was efficient up to 83% [102], and LFA-net up to 80.9% [103], as
illustrated in Table 2.

Table 2. Comparison of classification accuracy with other approaches.

Method Data type Accuracy and Conditions

MultiDefectNet [98] RGB 62.7% (varying)
DETR (transformer+FNN hy-
brid) [99] RGB 81.6% (clear)

K-means [100] RGB 82% (clear)
Pointcloud slicing [101] Depth 86% (unspecified)
DLA-net [102] Depth 83% (unspecified)
LFA-net [103] Depth 80.9 % (unspecified)

R-CNN with Pareto
optimization (ours) RGB 98.41% (clear), 88.11% (rain), 82.95%

(partially blocked)

Overall, the obtained results suggest that this algorithm would someday be suitable
for recognizing the building façades in specific cases, with its accuracy still somewhat
dependent on weather conditions and general illumination. Potentially, increasing the
number of training images could improve the reliability of building identification. How-
ever, again, there is a high risk that the analysis of other buildings in another area will
require a modification of the structure of the network itself, for example with art-deco
buildings or those with circular shapes.
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BIM Building Information Modeling
AI Artificial Intelligence
UNESCO United Nations Educational, Scientific and Cultural Organization
DNN Deep Neural Network
CNN Convolutional Neural Network
SAR Synthetic Aperture Radar
U-Net Variant of Convolutional Neural Network
SiU-Net Variant of Convolutional Neural Network
MASK R-CNN Variant of Convolutional Neural Network
GSN Graph Convolutional Network
ViT Vision Transformer
RF Random Forest Algorithm
ELM Extreme Learning Machine
RANSAC Random Sample Consensus
CMOS (Complementary Metal Oxide Semiconductor) Image Sensor
FOV Field of View
R-CNN Variant of Convolutional Neural Network
FCN Full Convolutional Network
ReLU Rectified Linear Unit
FC Fully Connected
ROI Region of Interest
LFA-net Variant of Convolutional Neural Network
MultiDefectNet Variant of Convolutional Neural Network
DLA-net Variant of Convolutional Neural Network
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