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Abstract: With the advancement in pose estimation techniques, human posture detection recently
received considerable attention in many applications, including ergonomics and healthcare. When
using neural network models, overfitting and poor performance are prevalent issues. Recently, convo-
lutional neural networks (CNNs) were successfully used for human posture recognition from human
images due to their superior multiscale high-level visual representations over hand-engineering
low-level characteristics. However, calculating millions of parameters in a deep CNN requires a
significant number of annotated examples, which prohibits many deep CNNs such as AlexNet
and VGG16 from being used on issues with minimal training data. We propose a new three-phase
model for decision support that integrates CNN transfer learning, image data augmentation, and
hyperparameter optimization (HPO) to address this problem. The model is used as part of a new
decision support framework for the optimization of hyperparameters for AlexNet, VGG16, CNN, and
multilayer perceptron (MLP) models for accomplishing optimal classification results. The AlexNet
and VGG16 transfer learning algorithms with HPO are used for human posture detection, while CNN
and Multilayer Perceptron (MLP) were used as standard classifiers for contrast. The HPO methods
are essential for machine learning and deep learning algorithms because they directly influence the
behaviors of training algorithms and have a major impact on the performance of machine learning
and deep learning models. We used an image data augmentation technique to increase the number
of images to be used for model training to reduce model overfitting and improve classification
performance using the AlexNet, VGG16, CNN, and MLP models. The optimal combination of
hyperparameters was found for the four models using a random-based search strategy. The MPII
human posture datasets were used to test the proposed approach. The proposed models achieved an
accuracy of 91.2% using AlexNet, 90.2% using VGG16, 87.5% using CNN, and 89.9% using MLP. The
study is the first HPO study executed on the MPII human pose dataset.

Keywords: data augmentation; CNN; dropout; transfer learning; human pose detection; hyperpa-
rameter optimization; decision support

1. Introduction

With the availability of large-scale category-level training data, such as ImageNet [1],
and an effective overfitting avoidance technique (“dropout”) [2], deep convolutional neural
networks (CNN) defeated all known methods in the ImageNet Large-Scale Visual Recogni-
tion Challenge (ILSVRC) 2012 [3]. The fundamental benefit of CNN for image classification
is that the entire system is trained from raw pixels to final categories, eliminating the need
to construct an appropriate feature extractor manually. The key drawbacks of CNN are:
(i) for weight parameter learning, many labeled training samples are essential; and (ii) a
strong Graphics Processing Unit (GPU) is required to accelerate the learning process. The
popular deep CNN design (shown in Figure 1) is based on [4] and consists of 5 convolu-
tional layers, 3 fully connected layers, and a final soft-max classifier with approximately
60 million parameters. Deeper convolutional networks with more parameters, such as
16 and 19 layers [5], and 22 layers [6], can achieve superior performance. Even if the
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over-fitting preventive strategy is used, learning that many parameters from just thousands
of training samples will result in substantial over-fitting. As a result, it is difficult to fit a
deep CNN to a small dataset while maintaining equivalent performance to a large dataset.
Transfer learning, which drops the classifier layer of a pre-trained CNN and fine-tunes it on
the target dataset, is a typical approach for employing deep CNNs on short datasets. This is
an efficient strategy in practice. While this strategy can be used to solve a specific problem,
it leaves us with some unanswered questions: how to choose the fine-tuning strategy, how
to set the hyperparameters (e.g., learning rate) for network fine-tuning, and additional
approaches to increase the network performance [7].
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Several manuscripts have used machine learning and deep learning methods to
solve the human posture classification problem [9,10], but none applied hyperparameter
optimization (HPO) with algorithms to find the best hyperparameters that will induce the
most excellent classification accuracy for the machine learning or deep learning algorithms
used (as far as we know). This set of hyperparameters is not the same for every classification
task and changes according to the nature of the medical problem, which is complex by
design. When a critical data analysis of medical data is required to identify hidden links
or abnormalities that are not evident to humans, machine learning technologies are being
employed in healthcare for computational decision-making [11]. Decision support systems
combined with various artificial intelligence (AI) methods have been used for supporting
various medical decisions while analyzing complex biomedical signals and images such
as echocardiograms [12], magnetic resonance images [13] and chest x-rays, and computed
tomography images [14].

Usually, huge amounts and complicated medical data, reports, and images must be
analyzed more quickly but with higher accuracy. It is challenging to implement algorithms
to carry out such jobs in and of themselves, but it is even more difficult to improve algorithm
accuracy while reducing execution time. Especially, hyperparameter optimization may
require a much larger overhead, because multiple training rounds and evaluations of
machine/deep learning algorithms for hyperparameter-optimized decision support are
needed. However, most of these methods solely concentrate on feature selection while
focusing specifically on the issues of underfitting and overfitting. The model can perform
well on both datasets, i.e., training data and testing data, if overfitting and underfitting
are prevented. Overfitting of the training data is frequently caused by irrelevant features
and improper (i.e., suboptimal) model design [15]. Most models proposed in the literature
are not generalizable, which raises the need for optimizing models that adapt well to
new, previously unavailable medical data [16]. As hyperparameter optimization is often
neglected in the validation of decision support systems, the significance of its effects
remains unreported [17]. Moreover, there is a lack of systematic studies on the effect
of hyperparameters on the accuracy and robustness of the AI models used for decision
support [18].
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This paper aims to propose a rigorous methodology for CNN transfer learning HPO
for human posture image classification. For this, the random search approach was adopted
to create recommended rankings for filter sizes for the convolutional layers and dense
layers of the four models and the learning rate values for the optimizer used in the models.
Additionally, the dataset used in the study includes the MPII human pose images obtained
from the Kaggle repository. Unlike current approaches, the models and techniques uti-
lized in this proposed system are more favorable since they enhance and optimize the
classification of human posture using deep learning algorithms.

The remaining part of the article is prearranged as follows: Section 2 presents the
related works. Section 3 describes the two HPO models used in the study. This section also
presented the materials and methods used in the study. Section 4 presents the experimental
results and discussions. The discussion is presented in Section 5, and the article is concluded
with future works suggested in Section 6.

2. Literature Review

In this article, we described the utilization of HPO of deep learning algorithms and
data augmentation with deep learning models to solve image classification problems. It
is essential to shedding light on earlier related works on image classification using deep
learning algorithms. Machine learning in limited datasets is aided by data augmentation
approaches [19–23]. This is because the creation of false pictures immediately helps to
increase the deep learning model’s capacity for generalization and therefore lowers the
risk of overfitting [19,20]. One of the difficulties with data augmentation in this regard
is determining which transformations (such as zoom, rotation, and flip) will be applied
to the images [24–28]. This topic may be categorized as a HPO problem in terms of
machine learning [29–35]. Some research in the literature has looked at the impact of
data augmentation and HPO combinations in a variety of applications, including plant
classification [36], transmission line inspection [37], and the COVID-19 diagnosis procedure
in chest radiographic imaging [38]. Hyperparameter optimization was also applied in
bioinformatics to optimize SVM classification [39], predict real estate prices [40], and
improve neural network training [41].

However, previous studies lack suggestions for optimizing the combinations of deep
learning approaches in human posture image classification. The CNNs are deep learning
methods that have been extensively studied in the field of computer vision [42–44]. One
of the most important aspects that contribute to CNN’s relevance in machine learning
approaches is the ability to extract features from processed images automatically [45,46].

The novelty of this paper is as follows:

• A new decision support framework for the optimization of hyperparameters for
AlexNet, VGG16, CNN, and multilayer perceptron (MLP) models for accomplishing
optimal classification results;

• An experimental comparison of AlexNet, VGG16, CNN, and MLP classifiers that were
trained and evaluated by applying the image data augmentation technique to enrich
the training datasets;

• The study is the first HPO study executed on the MPII human pose dataset.

3. Materials and Proposed Method
3.1. Description of Dataset

The MPII human posture dataset comprises about 25,000 images extracted from online
videos. A single image of the dataset comprises one or more persons with more than
40,000 people annotated in total. The overall dataset covers 410 human activities, and each
image is provided with an activity label. Images were extracted from a YouTube video and
provided with previously unannotated frames [47]. The dataset was downloaded from
Kaggle as MPII Human Pose Data/Kaggle. This MPII human posture dataset asw used
for training and testing the transfer learning models, which are AlexNet and VGG16. The
split was a ratio of 75:25 which means 75% of the dataset for training, 15% of the dataset for



Appl. Sci. 2022, 12, 10156 4 of 23

validation, and 10% for testing. The dataset used for the study was 22,000 images, broken
down to 16,496 images for the training set (75%), 3305 images for validation (15%), and
2223 images for the testing (10%).

3.2. Data Preprocessing

The preprocessing procedure was performed on the MPII dataset images. The dataset
was downloaded and classified into 21 classes as follows: Dancing, Home_activities,
Music_playing, Occupation, Running, Sport, Winter_activities, etc. Thereafter, the dataset
was normalized to size (227, 227, 3) for AlexNet, (224, 224, 3) for VGG16, (32, 32, 3) for
CNN and MLP. It was rescaled to be between 0 and 255 and later changed to an array
format to enable us to use it for the implementation of a deep neural network. Another
major procedure in the image preprocessing stage was the use of data augmentation for the
training of the MPII human posture images to generate more data for model training.

3.3. Image Data Augmentation

An image is depicted as an array of pixels that utilize grey scales or RGB values during
image preprocessing. To maximize the pace of learning, the picture data should be scaled
from the lowest to the highest normalization. One of the most essential image preparation
approaches is image data augmentation, which may be performed both offline and online.
Small datasets benefit from offline augmentation approaches, but large datasets benefit
from online augmentation techniques. Because computing the model gradients using the
complete huge dataset takes a long time, the data is cycled over in mini-batches during
each optimization iteration with the batch size determined.

The image augmentation technique was introduced during the preprocessing proce-
dure in this study, which generates more training data from the original data. The procedure
does not require extra memory for storage, and the generated images are small batches that
are discarded after the training of the model. The image augmentation techniques used are:
(1) Horizontal RandomFlip; (2) RandomRotation (0.1); (3) RandomZoom (0.1); (4) Resizing
(h = 32, w = 32); (5) RandomContrast (0.1)

It was discovered that the image augmentation technique introduced assisted in
preventing model overfitting and enhanced the learning capacity thereby decreasing model
training time complexity. The framework of the proposed classification transfer learning
models with the image data augmentation method is shown in Figure 2.
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3.4. AlexNet

The AlexNet model is characterized by containing input layers, convolutional layers,
pooling layers, and fully connected (FC) layers. In general, the AlexNet transfer learning
algorithm is eight layers deep that comprises 5 convolutional layers and 3 FC layers as seen
in Figure 3. The network was modified by adding the Batch Normalization and Dropout
layers. The sequential model was built in blocks as follows:
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Block 1

• Convolutional layer 1: 96 filters, 11 kernels, 4 strides, padding is valid, and activation = relu.
• Pooling layer 1: MaxPooling2D of size 3, 2 strides, padding is valid.
• BatchNormalization layer 1 was passed before moving to the next layer.

Block 2:

• Convolutional layer 2: 256 filters, 5 kernels, 1 stride, padding is valid, and activation = relu.
• Pooling layer 2: MaxPooling2D of size 3, 2 strides, padding is valid.
• BatchNormalization layer 2 was passed before moving to the next layer.

Block 3:

• Convolutional layer 3: 384 filters, 3 kernels, 1 stride, padding is valid, and activation = relu.
• BatchNormalization layer 3 was passed before moving to the next layer.

Block 4:

• Convolutional layer 4: 384 filters, 3 kernels, 1 stride, padding is valid, and activation = relu.
• BatchNormalization layer 4 was passed before moving to the next layer.

Block 5:

• Convolutional layer 5: 256 filters, 5 kernels, 1 stride, padding is valid, and activation = relu.
• Pooling layer 5: MaxPooling2D of size 3, 2 strides, padding is valid.
• BatchNormalization layer 5 was passed before moving to the next layer.
• The network model was flattened before moving to the next block.

Block 6:

• Fully connected layer 1: Dense node 4096, input (227, 227,3), activation = relu.
• Dropout layer was added to prevent the model from overfitting (0.4).
• BatchNormalization layer 5 was passed before moving to the next layer.

Block 7:

• Fully connected layer 1: Dense node 4096, activation = relu.
• Dropout layer was added to prevent the model from overfitting (0.4).
• BatchNormalization layer 5 was passed before moving to the next layer.

Block 8:

• Output layer: Dense (7), activation = softmax.
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3.5. VGG16

The VGG16 model is characterized by containing input layers, convolutional layers,
pooling layers, and FC layers as well. In general, the VGG16 transfer learning algorithm is
16 layers deep that comprises 13 convolutional layers and 3 FC layers as seen in Figure 4. It
was developed into six blocks which are five convolutional blocks and one classification
block. The network was modified by adding Batch Normalization and Dropout layers. The
input size used was 300, and 300 and the image channel were 3.
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Block 1.

• Convolutional layer 1: 64 filters, 3 kernel, activation = relu, padding = same, im-
age_input as defined earlier.

• MaxPooling2D layer 1: Pooling size = 3, strides = 2.

Block 2.

• Convolutional layer 2: 128 filters, 3 kernel, activation = relu, padding = same, im-
age_input as defined earlier.

• Convolutional layer 2: 128 filters, 3 kernel, activation = relu, padding = same, im-
age_input as defined earlier.

• MaxPooling layer2D 2: Pooling size = 3, strides = 2.

Block 3.

• Convolutional layer 3: 256 filters, 3 kernel, activation = relu, padding = same, im-
age_input as defined earlier.

• Convolutional layer 3: 256 filters, 3 kernel, activation = relu, padding = same, im-
age_input as defined earlier.

• Convolutional layer 3: 256 filters, 3 kernel, activation = relu, padding = same, im-
age_input as defined earlier.

• MaxPooling2D layer 3: Pooling size 3, strides = 2.

Block 4.

• Convolutional layer 4: 512 filters, 3 kernel, activation = relu, padding = same, im-
age_input as defined earlier.

• Convolutional layer 4: 512 filters, 3 kernel, activation = relu, padding = same, im-
age_input as defined earlier.

• Convolutional layer 4: 512 filters, 3 kernel, activation = relu, padding = same, im-
age_input as defined earlier.

• MaxPooling2D layer 4: Pooling size = 3, strides = 2.

Block 5.

• Convolutional layer 5: 512 filters, 3 kernel, activation = relu, padding = same, im-
age_input as defined earlier.

• Convolutional layer 5: 512 filters, 3 kernel, activation = relu, padding = same, im-
age_input as defined earlier.
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• Convolutional layer 5: 512 filters, 3 kernel, activation = relu, padding = same, im-
age_input as defined earlier.

• MaxPooling2D layer 5: Pooling size = 3, strides = 2.

Block 6 (Classification Block)

• Flatten.
• FC layer 1: Dense = 4096 nodes, activation = relu.
• Dropout = 0.4.
• FC layer 2: Dense = 4096 nodes, activation = relu.
• Dropout = 0.4.
• Output layer: classes, activation = softmax.

3.6. Proposed System Architecture

In this study, we used the RandomSearch hyperparameter optimization approach to
optimize two CNN transfer learning algorithms for decision support, namely AlexNet and
VGG16. These algorithms are employed in MPII human posture analysis to classify human
poses. These datasets consist of around 25,000 poses of different activities. When the default
hyperparameter settings are used, the accuracy of the algorithms is determined, and then,
when each of the HPO techniques is used, it is computed again. There is a comparison
between the before and after photos. For enriching the initially limited dataset, we also
design an image data augmentation approach. Rotation, translation, zoom, flips, shear,
mirror, and color perturbation [48] are examples of picture data augmentation techniques
that solve the problem of insufficient training data by including altered original samples in
the training set (Figure 2). The classification results with image data augmentation were
verified based on AlexNet [49] and VGG16 [5], respectively.

The proposed system architecture is presented in Figure 5. This represents the classifi-
cation of human postures using data augmentation at the preprocessing phase after which
the models were trained. The MPII dataset was supplied to the system, and the preprocess-
ing phase, which includes normalization, rescaling, and data augmentation, was conducted
after which the processed dataset was passed to the models for training. The results were
obtained, and the system was evaluated using the training and validation losses and ac-
curacies. Figure 6 shows the proposed system using the hyperparameter-optimization
method. The MPII dataset was supplied into the system, and the preprocessing such as
normalization and rescaling was conducted. The hyperparameter optimizer was used on
the processed data, after which it was passed to the models for training. The system was
evaluated using training and validation losses and accuracies.

The proposed approach relied on image data augmentation, hyperparameters, transfer
learning techniques, and classification approaches that were utilized on human posture
datasets. The recognition of human postures has become a vital aspect of the scientific area
in current centuries.

3.7. Hyperparameter Optimization (HPO)

The structural organization and learning techniques of neural networks are governed
by a set of hyperparameters known as structural and algorithm hyperparameters [50]. The
structure and topology are characterized by structural hyperparameters, which include the
number of network layers, the number of neurons in each layer, the degree of connection,
the transfer function, etc. As the network’s structure changes, they have an impact on its
effectiveness and computational complexity. The size of the training dataset, the training
method, momentum, learning rate, and other algorithm parameters all affect the learning
process. Although hyperparameters are not part of the neural network model and have
no impact on its performance, they do have an impact on the training stage’s speed
and performance.
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The HPO settings for machine learning or deep learning algorithms are a collection
of resolutions that have a true impact on the training procedure and the classification
results, which reflect how a model performs appropriately. The procedure of training a
model to classify human pose images in the training dataset and apprehend the output
based on the image patterns is referred to as model training. Aside from hyperparameter
selection, model design, which describes a model, directly influences how long it takes to
train, validate, and test a model. The setting has arisen as an important and problematic
subject in the application of deep learning algorithms because of their impact on model
performance and the fact that the ideal collection of values is unknown. Hyperparameters
can be adjusted in a variety of methods in the literature. The procedures for optimizing
these hyperparameters are presented as follows:

• When the scholar has a firm understanding of neural network structure and learning
data, the manual search calculates the hyperparameter value based on the scholar’s
perception or knowledge. However, the criteria for setting hyperparameters are
ambiguous, demanding multiple experiments.

• Random search is a method to train a model that selects random combinations of
hyperparameters. We utilize the best combinations of random hyperparameters.
Random search resembles grid search in several ways.

The fact that we do not give a list of feasible values for each hyperparameter is a
critical distinction. Instead, for each hyperparameter, we sample values from a statistical
distribution. For each hyperparameter, a sample distribution is constructed to perform
a random search. This method allows us to limit the number of hyperparameter combi-
nations that are attempted. In contrast to grid search, which attempts every conceivable
combination, random search allows us to define the number of models to train. Our search
iterations might be based on our computational resources or the time spent per iteration.

An experiment is a set of tests designed to identify the factors that have the greatest
impact on a response variable [51]. The major goal of the Design-of-Experiments (DOE)
methodology is to maximize this response variable after these components are found. To
discover the link between factors and the response variable, these studies need a careful
selection of variables, their ranges, and the number of experiments run. The influence of
factors on the response variable has traditionally been examined by changing the amounts
of one component at a time while keeping the other factors constant. However, this method
is inefficient and leaves out information about prospective interactions.

Table 1 provides an overview of all hyperparameters that were fine-tuned for all
models. The most significant parameters of neural networks are the initial learning rate,
the learning rate decay factor, the number of hidden neurons, and regularization strength.

Table 1. Hyperparameters and their range for the four models.

Hyperparameter Description AlexNet Range VGG16 Range CNN Range MLP Range

Kernel Size Convolutional
layer kernel size 3, 5, 7, 11 3, 5, 7, 11 3, 5, 7, 11 -

Filter number Convolutional
layer neurons

Min_value = 64,
128, 256

Max_value = 256,
384, 512

Min_value = 64,
128, 256

Max_value = 256,
384, 512

Min_value = 32, 64
Max_value = 256, 384 -

Layer Depth Number of layers
in the network 1, 2, 3 1, 2, 3 1, 2 -

Neuron Count Final FC layers
neuron count

Min_value = 1028
Max_value = 4500

Min_value = 1028,
1028

Max_value = 4500,
4500

Min_value = 28
Max_value = 256

Min_value = 128,
256

Max_value = 512,
1028

Learning Rate Updating weight
while training 10−2, 10−3, 10−4 10−2, 10−3, 10−4 10−2, 10−3, 10−4 10−2, 10−3, 10−4
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In the validation dataset, the best-performing model with the minimum loss value
is chosen. The ultimate performance of the model is estimated using a hold-out test set,
as the validation dataset’s performance is integrated into the model’s hyperparameter
optimization. This strategy provides an objective assessment of performance. Tables 2–5
show the best hyperparameter results for AlexNet, VGG16, CNN, and MLP, respectively.

Table 2. Summary of AlexNet Models hyperparameter search result (Best Trials).

Hyperparameter Values

Conv_1_filter 232
Conv_1_kernel 5
Conv_2_filter 352

Conv_2_kernel 7
Conv_3_filter 312

Conv_3_kernel 7
Dense_1_units 1540
Dense_2_units 2564
Learning_rate 0.0001

Score 0.8910

Table 3. Summary of VGG16 Models hyperparameter search result (Best Trials).

Hyperparameter Values

Conv_1_filter 232
Conv_1_kernel 3
Conv_2_filter 128

Conv_2_kernel 7
Conv_3_filter 424

Conv_3_kernel 11
Dense_1_units 2052
Dense_2_units 3076
Learning_rate 0.001

Score 0.9022

Table 4. Summary of CNN Models hyperparameter search result (Best Trials).

Hyperparameter Values

Conv_1_filter 32
Conv_1_kernel 5
Conv_2_filter 64

Conv_2_kernel 7
Dense_1_units 60
Learning_rate 0.01

Score 0. 8742

Table 5. Summary of MLP model hyperparameter search result (Best Trials).

Hyperparameter Values

Dense_1_units 512
Dense_2_units 640
Learning_rate 0.0001

Score 0.8685

4. Results and Discussion

This section presents the implementation results for all the models used in the study.
The models that were executed alone, with data augmentation, and with hyperparameter
optimization are presented in figures and tables in this section.
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4.1. Experimental Settings

Training and validation accuracies and losses are used to verify the models’ perfor-
mance. The entire execution results are displayed in tables and graphs for easier compre-
hension. The entire experiments were executed on an Intel (R) Core (TM) i7-6600U CPU
running at 2.60 GHz with 8 GB of RAM and a 64-bit operating system.

4.2. Optimization of Hyperparameter of the Transfer Learning Models
4.2.1. AlexNet

The AlexNet transfer learning algorithm was implemented alone (Figure 7a,b) without
augmenting the image dataset while conducting the preprocessing phase. The dataset was
only normalized and resized. The parameters set for the implementation are 50 epochs,
batch size of 32, image input shape of (227, 227), channel = 3, optimizer = Adam, loss
is categorical_crossentropy, and learning rate = 0.0001. The algorithm was implemented
with IDA, and the results are shown in Figure 8a,b. The result of the implementation of
the algorithm with a hyperparameter optimizer is shown in Figure 9a and b. From the
implementation, it was discovered that the AlexNet + HPO model performed the best
in terms of training accuracy at 99.9%, while AlexNet + IDA performed the second best
with a training accuracy of 98.8%. The validation accuracy of 91.2% for AlexNet + HPO
was the best with the lowest execution time of 28 min. Table 6 shows the summary of all
AlexNet results.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 12 of 25 
 

Training and validation accuracies and losses are used to verify the models’ perfor-
mance. The entire execution results are displayed in tables and graphs for easier compre-
hension. The entire experiments were executed on an Intel (R) Core (TM) i7-6600U CPU 
running at 2.60 GHz with 8 GB of RAM and a 64-bit operating system. 

4.2. Optimization of Hyperparameter of the Transfer Learning Models 
4.2.1. AlexNet 

The AlexNet transfer learning algorithm was implemented alone (Figure 7a,b) with-
out augmenting the image dataset while conducting the preprocessing phase. The dataset 
was only normalized and resized. The parameters set for the implementation are 50 
epochs, batch size of 32, image input shape of (227, 227), channel = 3, optimizer = Adam, 
loss is categorical_crossentropy, and learning rate = 0.0001. The algorithm was imple-
mented with IDA, and the results are shown in Figure 8a,b. The result of the implementa-
tion of the algorithm with a hyperparameter optimizer is shown in Figure 9a and b. From 
the implementation, it was discovered that the AlexNet + HPO model performed the best 
in terms of training accuracy at 99.9%, while AlexNet + IDA performed the second best 
with a training accuracy of 98.8%. The validation accuracy of 91.2% for AlexNet + HPO 
was the best with the lowest execution time of 28 min. Table 6 shows the summary of all 
AlexNet results. 

Table 6. Summary of AlexNet transfer learning results. 

Transfer Learning 
Model 

Training 
<break/>Accu-

racy 
Training Loss 

Testing 
<break/>Accu-

racy 

Validation 
Loss 

Time (min) 

AlexNet 0.9709 = 97.1% 0.1050 0.7885 = 78.9% 0.6788 61 
AlexNet + IDA 0.9877 = 98.8% 0.0293 0.8165 = 81.7% 1.0808 50 
AlexNet + HPO 0.9990 = 99.9% 0.0043 0.9147 = 91.2% 1.0356 28 

 

  
(a) (b) 

Figure 7. Training and testing of AlexNet model: (a) accuracy, (b) loss. 

  
(a) (b) 

Figure 7. Training and testing of AlexNet model: (a) accuracy, (b) loss.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 12 of 25 
 

Training and validation accuracies and losses are used to verify the models’ perfor-
mance. The entire execution results are displayed in tables and graphs for easier compre-
hension. The entire experiments were executed on an Intel (R) Core (TM) i7-6600U CPU 
running at 2.60 GHz with 8 GB of RAM and a 64-bit operating system. 

4.2. Optimization of Hyperparameter of the Transfer Learning Models 
4.2.1. AlexNet 

The AlexNet transfer learning algorithm was implemented alone (Figure 7a,b) with-
out augmenting the image dataset while conducting the preprocessing phase. The dataset 
was only normalized and resized. The parameters set for the implementation are 50 
epochs, batch size of 32, image input shape of (227, 227), channel = 3, optimizer = Adam, 
loss is categorical_crossentropy, and learning rate = 0.0001. The algorithm was imple-
mented with IDA, and the results are shown in Figure 8a,b. The result of the implementa-
tion of the algorithm with a hyperparameter optimizer is shown in Figure 9a and b. From 
the implementation, it was discovered that the AlexNet + HPO model performed the best 
in terms of training accuracy at 99.9%, while AlexNet + IDA performed the second best 
with a training accuracy of 98.8%. The validation accuracy of 91.2% for AlexNet + HPO 
was the best with the lowest execution time of 28 min. Table 6 shows the summary of all 
AlexNet results. 

Table 6. Summary of AlexNet transfer learning results. 

Transfer Learning 
Model 

Training 
<break/>Accu-

racy 
Training Loss 

Testing 
<break/>Accu-

racy 

Validation 
Loss 

Time (min) 

AlexNet 0.9709 = 97.1% 0.1050 0.7885 = 78.9% 0.6788 61 
AlexNet + IDA 0.9877 = 98.8% 0.0293 0.8165 = 81.7% 1.0808 50 
AlexNet + HPO 0.9990 = 99.9% 0.0043 0.9147 = 91.2% 1.0356 28 

 

  
(a) (b) 

Figure 7. Training and testing of AlexNet model: (a) accuracy, (b) loss. 

  
(a) (b) 

Figure 8. Training and testing of AlexNet + IDA model: (a) accuracy, (b) loss.



Appl. Sci. 2022, 12, 10156 12 of 23

Appl. Sci. 2022, 12, x FOR PEER REVIEW 13 of 25 
 

Figure 8. Training and testing of AlexNet + IDA model: (a) accuracy, (b) loss. 

  
(a) (b) 

Figure 9. Training and testing of AlexNet + HPO model: (a) training and validation accuracy, (b) 
training and validation loss. 

4.2.2. VGG16 Transfer Learning Model 
The VGG16 transfer learning algorithm was implemented alone (Figure 10a,b) with-

out augmenting the image datasets while conducting the preprocessing phase. The da-
taset was only normalized and resized. The parameters set for the implementation are 
epochs of 50, batch size of 32, image input shape of (300, 300), channel = 3, optimizer = 
Adam, loss of categorical_crossentropy, and learning rate of 0.0001. The algorithm was 
also implemented with IDA, and the results are shown in Figure 11a,b. The result for the 
implementation of the algorithm with a hyperparameter optimizer is shown in Figure 
12a,b. From the implementation, it was discovered that the VGG16 model performed best 
in terms of a training accuracy of 100%, while VGG16 + HPO performed second best with 
a training accuracy of 99.8%. The validation accuracy of 90.2% for VGG16 + HPO was the 
best with the lowest execution time of 33 min. Table 7 shows the summary of the entire 
VGG16 result executions. 

Table 7. Summary of VGG16 transfer learning results. 

Transfer Learning 
Model Training Acc. Training Loss Testing Acc. Validation 

Loss Time (min) 

VGG16 0.1000 = 100% 0.0011 0.7692 = 76.9% 1.3228 83 
VGG16 + IDA 0.8765 = 87.7% 0.3005 0.7982 = 79.8% 0.5521 78 
VGG16 + HPO 0.9984 = 99.8% 0.0067 0.9015 = 90.2% 0.8654 33 

 

  
(a) (b) 

Figure 10. Training and testing of VGG16 model: (a) training and testing accuracy, (b) training and 
testing loss. 

Figure 9. Training and testing of AlexNet + HPO model: (a) training and validation accuracy,
(b) training and validation loss.

Table 6. Summary of AlexNet transfer learning results.

Transfer
Learning Model

Training
Accuracy Training Loss Testing

Accuracy
Validation

Loss Time (min)

AlexNet 0.9709 = 97.1% 0.1050 0.7885 = 78.9% 0.6788 61
AlexNet + IDA 0.9877 = 98.8% 0.0293 0.8165 = 81.7% 1.0808 50
AlexNet + HPO 0.9990 = 99.9% 0.0043 0.9147 = 91.2% 1.0356 28

4.2.2. VGG16 Transfer Learning Model

The VGG16 transfer learning algorithm was implemented alone (Figure 10a,b) without
augmenting the image datasets while conducting the preprocessing phase. The dataset was
only normalized and resized. The parameters set for the implementation are epochs of 50,
batch size of 32, image input shape of (300, 300), channel = 3, optimizer = Adam, loss of
categorical_crossentropy, and learning rate of 0.0001. The algorithm was also implemented
with IDA, and the results are shown in Figure 11a,b. The result for the implementation
of the algorithm with a hyperparameter optimizer is shown in Figure 12a,b. From the
implementation, it was discovered that the VGG16 model performed best in terms of a
training accuracy of 100%, while VGG16 + HPO performed second best with a training
accuracy of 99.8%. The validation accuracy of 90.2% for VGG16 + HPO was the best with
the lowest execution time of 33 min. Table 7 shows the summary of the entire VGG16
result executions.
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Table 7. Summary of VGG16 transfer learning results.

Transfer
Learning Model Training Acc. Training Loss Testing Acc. Validation

Loss Time (min)

VGG16 0.1000 = 100% 0.0011 0.7692 = 76.9% 1.3228 83
VGG16 + IDA 0.8765 = 87.7% 0.3005 0.7982 = 79.8% 0.5521 78
VGG16 + HPO 0.9984 = 99.8% 0.0067 0.9015 = 90.2% 0.8654 33

4.3. Standard Classifier Results Examination

The performance of each deep learning (CNN and MLP) classifier with data aug-
mentation, hyperparameter optimization, and alone was measured and is detailed in
Tables 8 and 9 for CNN and MLP, respectively.

Table 8. Summary of CNN results.

Transfer
Learning Model

Training
Accuracy Training Loss Validation

Accuracy
Validation

Loss Time (min)

CNN 0.9996 = 99.9% 0.0040 0.6511 = 65.1% 2.6715 39
CNN + IDA 0.6873 = 68.7% 0.8018 0.6767 = 67.7% 1.3748 31
CNN + HPO 0.9869 = 98.7% 0.0530 0.8750 = 87.5% 2.1469 3
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Table 9. Summary of MLP results.

Transfer Learning
Model

Training
Accuracy Training Loss Validation

Accuracy
Validation

Loss Time

MLP 0.9928 = 99.3% 0.0386 0.7009 = 70.1% 2.0471 38 min
MLP + IDA 0.6930 = 69.3% 0.8584 0.7205 = 72.1% 0.8379 33 min
MLP + HPO 0.9746 = 97.5% 0.0774 0.8985 = 89.9% 0.3604 7 min

4.3.1. CNN Model

The CNN model was implemented alone (Figure 13a,b) without augmenting the
image datasets while conducting the preprocessing phase. The dataset was only nor-
malized and resized. The parameters set for the implementation are epochs of 50, batch
size of 32, image input shape of (32, 32), channel = 3, optimizer = Adam, loss is categori-
cal_crossentropy, and learning rate = 0.0001. The algorithm was also implemented with
IDA, and the results are shown in Figure 14. The result for the implementation of the algo-
rithm with hyperparameter optimization is shown in Figure 15. From the implementation,
it was discovered that the CNN model performed best in terms of a training accuracy of
99.9%, while CNN + HPO performed second best with a training accuracy of 98.7%. The
validation accuracy of 87.5% for CNN + HPO was the best with the lowest execution time
of 3 min. Table 8 shows the summary of the CNN results.
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4.3.2. MLP Model

Figures 16–18 give the MLP classifier alone result, with image augmentation, and with
the hyperparameter optimizer, respectively. The MLP algorithm was implemented alone
(Figure 16a,b) without augmenting the image datasets while conducting the preprocessing
phase. The dataset was only normalized and resized. The parameters set for the imple-
mentation are epochs of 50, batch size of 32, image input shape of (32, 32), channel = 3,
optimizer = Adam, loss of categorical_crossentropy, and learning rate of 0.0001. The algo-
rithm was also implemented with IDA, and the results are shown in Figure 17a,b. The result
for the implementation of the model with hyperparameters is shown in Figure 18a,b. From
the implementation, it was discovered that the MLP model performed best in terms of train-
ing accuracy at 99.3%, while MLP + HPO performed second best with a training accuracy
of 97.5%. The validation accuracy of 89.9% for CNN + HPO was the best with the lowest
execution time of 7 min. Table 9 shows the summary of the entire MLP result executions.
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4.4. Performance Analysis of the Models

The proposed models were evaluated using training and validation accuracies and
losses, which are shown in Figure 19, while Figure 20 shows the training and validation
losses of the models. VGG16 has the best training accuracy with the lowest training loss of
0.0011, while AlexNet + HPO has the second-best training accuracy of 99.9% with a training
loss of 0.0043, and VGG 19 + HPO is the third-best with a training accuracy of 99.8% and
a training loss of 0.0067. AlexNet + HPO performed best with a validation accuracy of
91.2%, and VGG16 + HPO had a VA of 90.2%, which made it the second-best model. The
model with the lowest validation loss (0.5521) is VGG16 + IDA followed by AlexNet with a
validation loss of 0.6788.
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The training and validation accuracies of the transfer learning models are shown in
Figure 21, while Figure 22 shows the training and validation losses of the models. CNN
has the best training accuracy of 99.9% with the lowest training loss of 0.0040, while MLP
has the second-best training accuracy of 99.3% with a training loss of 0.0386, and CNN
+ HPO is the third-best with a training accuracy of 98.7% and a training loss of 0.0530.
MLP + HPO performed best with a validation accuracy of 89.9%, and CNN + HPO had a
validation accuracy of 87.5%, which made it the second-best model. The model with the
lowest validation loss (0.3604) is MLP + HPO, followed by MLP + IDA with a validation
loss of 0.8379.
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The time taken for execution was also used for the evaluation of the models. It was
discovered that those transfer learning algorithms that used HPO were executed at the
lowest time. AlexNet + HPO executed at 28 min, while VGG16 + HPO executed at 33 min.
It was also discovered that the next models with a lower time of execution are the ones that
used image data augmentation at the preprocessing stage of their datasets. AlexNet + IDA
executed at 50 min, while VGG16 + IDA executed at 78 min as seen in Table 10.
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Table 10. Transfer learning models with execution time.

Transfer Learning Models Time

AlexNet 61 min
AlexNet + IDA 50 min
AlexNet + HPO 28 min

VGG16 83 min
VGG16 + IDA 78 min
VGG16 + HPO 33 min

The same condition applied to deep learning models have the models implemented
with HPO having the lowest time of execution. The deep learning models with a second-
lowest time of execution were also the ones that used IDA at the preprocessing stage of the
datasets. CNN + HPO executed in 3 min, while MLP + HPO executed in 7 min. Likewise,
CNN + IDA was executed in 31 min, and MLP + IDA was executed in 33 min (Table 11).

Table 11. Deep learning models with execution time.

Deep Learning Models Time

CNN 39 min
CNN + IDA 31 min
CNN + HPO 3 min

MLP 38 min
MLP + IDA 33 min
MLP + HPO 7 min

4.5. Comparison with Related Work

Several previous studies proposed methods for posture recognition while using the
MPII dataset for performance evaluation.

Luvizon et al. [52] suggested a deep network architecture for pose recognition. In-
put images are processed through a series of CNNs made up of prediction blocks (PB),
downscaling and upscaling units (DU and UU), and simple (skip) connections; the entry-
flow derives feature maps from images. Each PB generates supervised posture and action
predictions, which are then honed by more units and blocks. Pose estimation and action
recognition information is transferred separately from one prediction block to another.

Munea et al. [53] outlined a quick and effective bottom-up multi-person posture
estimate method based on a few deconvolutional layers applied to a ResNet architecture.
These bottom-up detection and association representations are simultaneously inferred to
encapsulate the global context for a greedy parse to produce good results at a cheap cost.

In Qin et al. [54], a simple Human Pose Estimation network with RGB picture input
was presented. They proposed the Capable and Vigorous Campstool Network (CVC-
Net) using the Stacked Hourglass network design. They suggested a new residual block
called the Res2Net depth block and used it to replace the residual blocks in the Hourglass
network to decrease the number of model parameters. They employed three methods—the
channel attention mechanism, the PixelShuffle up-sampling approach, and a proposed
Cross-Stage Heatmap Fusion method—to enhance model performance. They used a
Differentiable Spatial to Numerical Transform model together with Euclidean distance loss
in the coordinate regression phase so that the model could be trained end-to-end.

Wang et al. [55] improved performance by combining the benefits of Transformers
and high resolution. To be more precise, we create MTNet (Multi-scale Transformers-
based high-resolution Networks), a sub-network with two parallel branches. One is the
local branch and combines high resolution with local convolutional procedures. Another
uses multi-scale Transformer encoders to learn long-range interdependence of full body
keypoints. Finally, both two branches are combined to forecast final keypoint heatmaps.

Wang et al. [56] created a re-parameterized lightweight bottleneck block UULPN that
includes a lot of feature maps and broadens their variety. In the bottleneck block, they
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offered a multi-branch structure and a single-branch structure. A multi-branch structure
was used in the training phase to improve prediction accuracy. A single-branch structure
was employed in the deployment phase to increase the model inference speed.

In Wu et al. [57], to estimate a 3D human posture, a mixture density network that
predicts a variety of potential hypotheses was proposed. A feature extractor initially
estimates the 2D joint points from the input photos before extracting the correlation data for
human joints. Following the extraction of the human posture characteristic, the hypotheses
generator generates pose hypotheses. Moreover, they presented the Locally Connected
Network (LCN) instead of the conventional Fully Connected Network (FCN), which is
applied to a feature extraction module, to use the link between human joints better. The
projected pose is then scored using a 3D pose picker based on the ordinal ranking of joints.

Yang et al. [58] suggested adding a shortcut link to a dense layer, which was inspired
by the architecture of a residual block in ResNet. To increase the network’s convergence, the
number of parameters is significantly reduced, and the computational cost is also decreased
when all residual blocks are replaced with a densely connected residual module.

Zhang et al. [59] described a framework for estimating human position. They adopted
the MobileNetV2 backbone network design for posture estimation and minimized compu-
tational cost with hardly any accuracy loss by employing a differentiable neural architecture
search approach.

The performance of previous studies is summarized in Table 12 and compared against
our method.

Table 12. Comparison with previous studies on posture recognition using MPII dataset.

Reference Model Accuracy

Luvizon et al. [52] Custom network 87.0%
Munea et al. [53] Modified ResNet 93.5%

Qin et al. [54] CVC-Net 91.6%
Wang et al. [55] Transformer network 90.86%
Wang et al. [56] UULPN 85.7%
Wu et al. [57] Mixture density network Only qualitative results reported

Yang et al. [58] Modified ResNet 88.8%
Zhang et al. [59] MobileNetV2 backbone 88.1%

This study MLP + HPO 89.9%

5. Discussion

The results of hyperparameter optimization reveal that some combinations of parame-
ters have a greater impact on the model’s performance, while others have a minor impact.
We noticed that the number of layers and the breadth of the filter had a significant impact
on the prediction performance. The results also showed that great performance may be
achieved for all filter widths. Furthermore, using several layers produced somewhat better
performance than using only one layer since it tolerates additional model complexity, but it
similarly required a longer training time. The training time was affected by the number of
layers and the breadth of the filter, but not by the classification performance. Accordingly,
provided that the number of layers is rigid, a high filter width takes fewer periods to train
than a lesser filter width, even though the two alternatives provide similar predictions. The
same can be said for the number of filters used. The higher the filters used, the longer the
training period becomes, with no discernible gain in prediction accuracy. The number of
filters used has a significant impact on the training time (bottom). The number of trainable
parameters is determined by the number of filters, their breadth, and the number of layers
and stacks. As a result, by utilizing fewer filters for the equivalent fuse of filter width and
layers, training time is lowered. Adding extra layers to the network enhances the depth
and, as a result, its complexity. Training time is influenced by the number of layers but not
by performance. Although both would deliver equal outcomes provided the number of
layers was fixed, an extensive filter width would require fewer layers and hereafter fewer
training times than a narrower filter width.
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An independent test set was used to choose the most efficient network model with
the optimal mix of hyperparameter values. These results show that the suggested VGG16
and AlexNet transfer learning models can reliably classify human pose images. As a result,
transfer learning models are an excellent choice for replacing time-consuming classical
machine learning models. Figures 9–19 depict the model training outcomes, including
training accuracies, validation accuracies, training loss, and validation loss numbers. The
fundamental downside of transfer learning models is that they demand a lot of processing
resources, such as GPUs and a lot of RAMs. Transfer learning classifiers create synthetic
data during the training phase, which requires a large amount of storage space.

Image augmentation was used in the data preparation portion of the investigation.
Data augmentation was used as a regularizer to help manage data overfitting. By producing
additional training data and exposing the model to diverse versions of data, image aug-
mentation helps to reduce the likelihood of overfitting. The image augmentation utilized in
this study helped the model to operate better and more precisely by improving the results.
It also reduces operating expenses by adding transformations in the datasets, as evidenced
by the fact that the model calculation execution time is shorter than when the model is
without image augmentation. It also helps with data cleansing, which is necessary for good
model accuracy. Image augmentation also improves the robustness of deep learning by
adding variations to the model.

Deep learning models are particularly subtle to the extent of the training set and, to be
adequately built, require significantly bigger training datasets. Our findings reveal that no
single hyperparameter combination significantly beats the others. Training a model with
the same hyperparameter settings again does not necessarily result in the same classification
accuracy due to variations in weight and bias initialization. It is critical to go through
the training process many times before deciding on the best-performing network. Deeper
models with more layers, on the other hand, take longer to train.

The proposed hyperparameter-optimization methodology for decision-making can
support doctors in making critical clinical decisions more effectively. The approach pre-
sented in this paper is also useful in situations where people lack access to integrated
primary medical care technology for early diagnosis and treatment.

6. Conclusions

This study used four models for decision support in posture recognition: two transfer
learning algorithms and two deep learning algorithms CNN and MLP. The models were
implemented on MPII Human-Posture dataset images. Three main stages were carried out,
which were implementing the algorithms alone, implementing using image augmentation,
and implementing using hyperparameter optimization (HPO). The HPO transfer learning
algorithms outperformed the ones implemented with image augmentation in terms of
training loss and validation accuracy. AlextNet + HPO outperformed the other four models
with a validation accuracy of 91.2% followed by VGG16 + HPO with a validation accuracy
of 90.2%. The algorithm with the lowest training loss was VGG16 (0.0011), while the model
with the lowest validation loss was 0.5521. In terms of execution time, deep learning
models with HPO had the lowest execution times of 3 min for CNN + HPO and 7 min for
MLP + HPO. This was a result of having fewer layers. Therefore, we recommend that re-
searchers implement their transfer learning algorithms using hyperparameter-optimization
techniques to obtain optimized training and validation losses and accuracies.

In image classification, particularly using transfer learning and deep learning models,
image augmentation can generate diverse outcomes based on a different dataset. In this
study, the performance of posture image classification was determined using transfer
learning models. In general, the proposed models are effective in their decision-making
application for classifying the MPII pose dataset, as evidenced by the comparison of the
four models.

The disadvantage is the increased complexity, as finding optimal hyperparameter
values requires additional computational resources. The scope of this study will be ex-
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panded in the future by performing experiments with larger image datasets. This may
be accomplished by integrating deep learning algorithms with optimization methods to
improve image data augmentation and accurately characterize postures.
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26. Abayomi-Alli, O.O.; Damaševičius, R.; Misra, S.; Maskeliūnas, R.; Abayomi-Alli, A. Malignant skin melanoma detection using

image augmentation by oversampling in nonlinear lower-dimensional embedding manifold. Turk. J. Electr. Eng. Comput. Sci.
2021, 29, 2600–2614. [CrossRef]
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