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Abstract: In this paper, we present a counter mode of a Shannon block cipher based on the matrix
power function. We make use of the matrix power function to define a single round symmetric cipher.
Continuing our previous research, we implement a non-commuting group the order of which is a
power of two in order to define a CTR mode in its most classic interpretation. We explore the security
of the newly defined scheme, first, by showing that our block cipher is perfectly secure and does not
leak any information about the initial plaintext based on the ciphertext. Then, we define a sequence
of security games that show how the CTR mode of our cipher can resist all passive attacks.
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1. Introduction

Symmetric ciphers are widely used in the modern digital world. The general idea of hid-
ing secret information using mathematics can be described as a triplet

(
Gen(), Enc(), Dec()

)
,

where Gen() is the key generation algorithm, Enc() is the encryption function, and Dec()
is the decryption function [1,2]. A major requirement of any symmetric cipher is the ability
to correctly restore the original message µ encrypted by the function Enc() using the same
secret key k. In other words, the following property should hold:

Dec(k, Enc(k, µ)) = µ.

Symmetric ciphers are commonly classified into block ciphers and stream ciphers
depending on their structure. Block ciphers are deterministic and can be used to encrypt
fixed-length groups of bits. Hence, the application of this type of ciphers is limited by the
size of a block, e.g., 128 bits. On the other hand, a stream cipher takes a message as input
and combines it with the keystream, usually by applying an exclusive-or (XOR) operation.

Notably, it is possible to obtain a stream cipher by linking together encrypted blocks
in specific ways. This is exactly how block ciphers are currently implemented in the real
world. The general methodology behind this approach is to define a mode of encryption
for a block cipher. The descriptions of these various modes can be found in [3].

Due to the topic of this paper, we focus on the counter mode (CTR) of symmetric
encryption. As far as the implementation of the various modes of encryption, the use of
this mode is a common practice. CTR was originally proposed in [4] to create a stream of
encrypted blocks, as shown in Figure 1.

The authors of [5] point out the following advantages of the CTR mode:

1. Software efficiency: As opposed to the cipher block chaining (CBC) mode, subse-
quent ciphertext blocks are computationally independent. This fact greatly contributes
to the performance speed of CTR mode.
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2. Hardware efficiency: Subsequent blocks can be computed separately, allowing paral-
lelization of calculations.

3. Preprocessing: As the message is used only in the last step of CTR mode, calculations
can be made in advance to make the encryption process resemble the one-time pad
(OTP) technique, i.e., simple XOR of the original message and a bit string obtained
long before the input.

4. Random-access: It is not necessary to encrypt previous blocks to obtain the ciphertext
of the upcoming ones; hence, encryption can start at any block.

5. Provable security: The above advantages do not affect the security of the CTR mode,
which relies on the pseudorandom nature of the encryption function Enc().

Figure 1. Encryption and decryption procedures of CTR mode.

An enhancement of this mode called the Galois counter mode was published in [6].
This mode was designed for use with AES cipher and was later standardized by NIST [7].
Another enhancement was proposed in [8]. Whether the block cipher presented in this
paper can be implemented in these modes remains an open question thus far.

However, as pointed out in [9], applications of CTR mode in practice commonly
require some means of authentication. For this reason, in [8], the authors introduced
additional tags to deal with this issue.

It is worth mentioning that the current implementation of CTR mode and its enhance-
ments usually makes use of the AES algorithm [10–14]. Due to its structure, AES uses rather
simple functions, most of which are linear. For this reason, depending on the size of the key
10, 12, or 14 rounds of encryption are performed. The CTR mode of AES is widely applied
in such modern technologies as blockchain, cryptocurrency, and encrypted search. Recent
applications of AES CTR mode for blockchain technology can be found in [11,12]. Here, the
CTR mode is used to ensure data integrity and confidentiality. The authors of [12] evaluated
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their approach by realizing a real implementation of their idea in the Ethereum blockchain
by adding an extra layer to it. This change allowed the authors of [12] to transform the
permissionless blockchain into a permessionned one, which is useful for applications in
wireless networks. In [14], the authors used CTR mode to preserve the privacy of data
during substring search.

It can be seen from Figure 1 that CTR uses the idea of the nonce. This information is
publicly known and, much like the OTP secret key, cannot be reused. The author of [9]
suggested splitting the nonce into two equal parts to achieve additional flexibility of CTR
mode, thus making it applicable to longer messages. Interestingly enough, in our scheme
the nonce is split to fit our goals; however, the obtained parts are not equal. Furthermore,
we think that we can achieve the flexibility of our proposal by manipulating the main
parameters of the block cipher. Hence, we believe that our idea can be used to encrypt
short and long messages (of course, with distinct parameter values). In other words, by
manipulating the block size, we think that we can maintain the speed of encryption for
both types of messages.

In our research, we suggest trading multiple rounds of encryption for a single round
of highly non-linear transformation. Furthermore, because we use matrix operations in
our research, a significant boost in speed is possible within the single block encryption by
applying parallelization of computations using several processors.

Previously, we published a paper [15] in which we defined a CBC mode of the Shannon
block cipher proposed in [16]. In those papers, we implemented a mapping called the
matrix power function (MPF) defined over a commuting platform, specifically, a Sylow
group of prime cardinality p. Based on the properties of the platform group, we defined
power matrices over the ring of integers Zp. A key feature we used in our construction is a
non-homomorphic mapping f , which uniquely assigned an element of the Sylow group to
an integer in Zp.

Interestingly enough, the newly defined block cipher was proven to be perfectly secure
(a feature proven for the OTP technique by Shannon himself). However, a comparison of
our block cipher to OTP has shown that in our case the same key can be used multiple
times without revealing the secret data. Furthermore, in [17] we presented a comparison of
the performance of our cipher to AES-128 and TDES. The results of that paper have shown
that by varying the main parameters of our proposal, we can encrypt roughly the same
amount of data about 1.5 times faster than AES-128 and 47 times faster than TDES.

Following the path laid out in this paper, we propose the CTR mode of the Shannon
block cipher based on MPF. Seeking to keep our proposal closer to the classic definition of
this mode, we use a certain non-commuting group containing 2t elements as a platform for
MPF. In this way, it is possible to apply the XOR operation at the last step of CTR mode,
which was not possible with the structures used in our previous publication. Moreover, we
assume that by switching to a non-commuting group we contribute to the overall security
of our scheme as well.

The rest of this paper is organized as follows: in Section 2, we revise the basic defi-
nitions and algebraic structures used in our previous research; in Section 3, we propose a
block cipher based on MPF mapping and explore its basic properties; in Section 4, we intro-
duce the CTR mode of the proposed block cipher and in Section 5 we explore its resistance
against passive attacks. Finally, we present our conclusions at the end of the paper.

2. Our Previous Work and Preliminaries

To be self-contained, let us revise the notion of MPF. As the name of this mapping states,
it is defined for matrices with their entries chosen from appropriate algebraic structures.
Moreover, for cryptographic purposes, we use square matrices of order m. Hence, in total,
each matrix contains m2 entries.

Let us assume that S is some multiplicative semigroup where each element has a
maximum possible order of ord(S). This semigroup does not need to be cyclic and can even
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be non-commuting. We call S a platform semigroup and denote the set of matrices with
entries in S by Matm(S). Let

W be a matrix in Matm(S). We use this matrix as a base of MPF.
Due to the maximal order of elements in S, it is clear that raising any arbitrary element

of this semigroup makes sense modulo ord(S), as larger powers can be reduced. Hence, we
consider the ring Zord(S), which contains non-negative integers less than ord(S). We refer to
it as the power ring and denote the set of matrices with entries in Zord(S) by Matm(Zord(S)).
Matrices X, Y ∈ Matm(Zord(S)) are inputs of the MPF, and we call them power matrices
because their entries are used as powers.

Let us first assume that S is a commuting semigroup. Formally, we can then define
one-sided mappings called the left-sided MPF (LMPF) and the right-sided MPF (RMPF),
respectively, in the following way:

Definition 1. Let W ∈ Matm(S) be a publicly known matrix. Then, LMPF is a mapping
F(X) : Matm(Zord(S))→ Matm(S) denoted as

EL = XW,

where EL ∈ Matm(S) is the LMPF value with entries calculated in the following way:

{eL}ij =
m

∏
k=1

wxik
kj .

Definition 2. Let W ∈ Matm(S) be a publicly known matrix. Then, RMPF is a mapping
F(Y) : Matm(Zord(S))→ Matm(S) denoted as

ER = WY,

where ER ∈ Matm(S) is the RMPF value with entries calculated in the following way:

{eR}ij =
m

∏
k=1

w
ykj
ik .

Notably, if the platform semigroup S is commuting, the two-sided MPF can be defined
as a mapping F(X, Y) : Matm(Zord(S))×Matm(Zord(S)) → Matm(S) due to the following
associativity property:

X(WY) = (XW)Y. (1)

However, if S is non-commuting, property (1) does not hold in general, and the two-
sided MPF cannot be defined. As such, based on the order of actions, we can define the
left-to-right (LR) and right-to-left (RL) MPF.

Definition 3. Let W ∈ Matm(S) be a publicly known matrix. Then, LRMPF is a mapping
F(X, Y) : Matm(Zord(S))×Matm(Zord(S))→ Matm(S) denoted as

ELR =
(

XW
)Y

,

where ELR ∈ Matm(S) is the LRMPF value with entries calculated in the following way:

{eLR}ij =
m

∏
k=1
{eL}

ykj
ik

and {eL}ik are the appropriate entries of the LMPF value matrix EL.
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Definition 4. Let W ∈ Matm(S) be a publicly known matrix. Then, RLMPF is a mapping
F(X, Y) : Matm(Zord(S))×Matm(Zord(S))→ Matm(S) denoted as

ERL = X
(

WY
)

,

where ERL ∈ Matm(S) is the LRMPF value with entries calculated in the following way:

{eRL}ij =
m

∏
k=1
{eR}xik

kj

and {eR}kj are the appropriate entries of the RMPF value matrix ER.

In this paper, we use the LRMPF, although similar results can be obtained by switching
the order of actions.

Now, we present a brief reminder of the non-commuting group used as a platform
group for MPF construction.

Set a and b to be two non-commuting generators and let e denote the identity element
of a group defined by the following relations:

R1 : a2t−1
= e;

R2 : b2 = e;
R3 : bab−1 = a2t−2+1,

(2)

where t is some positive integer which determines the cardinality of the obtained group.
Explicit presentation of the so-called modular group via its generators and the defined
relations is provided below:

M2t = 〈a, b | R1, R2, R3〉 (3)

The inspiration for this group comes from several papers on the theory of indecompos-
able non-commuting groups. In [18], the authors discuss the realizability of seven examples
of non-commuting groups which cannot be decomposed into the Cartesian product of any
smaller groups. Each of the presented examples contains 16 elements in total. One of the
briefly mentioned groups is a special case of the definition (3) which is called a modular
group of size 16, or M16 for short. The explicit presentation of this group is

M16 =
〈

a, b | a8 = e, b2 = e, bab−1 = a5
〉

.

To remain self-contained, we present the expressions for basic operations in M16.
However, we leave the proofs of these expressions outside of this paper, as they can be
found in [19].

Because the group M16 is multiplicative, we can define the product of two elements.
Assume the indices α, α1, α2 ∈ {0, 1, . . . , 7}, whereas β, β1, β2 ∈ {0, 1}. Then, given two
elements of M16 w1 = bβ1 aα1 and w2 = bβ2 aα2 , their product is calculated in the follow-
ing way:

w1 · w2 =


bβ1+β2 aα1+α2 if α1 is even;

bβ1 aα1+α2 if α1 is odd and β2 = 0;

bβ1+1aα1+α2+4 if α1 is odd and β2 = 1.

(4)

Moreover, given an element of M16 w = bβaα, its n-th power is calculated in the
following way:

wn =


aαn, if β = 0;

bnaαn, if β = 1 and α is even;

bnaαn+4[ n
2 ], if β = 1 and α is odd,

(5)
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where the notation
[ n

2
]

stands for the integer part of n
2 . We note that calculating an inverse

of an element of M16 is equivalent to raising it to the seventh power; hence, we have

w−1 =


a−α, if β = 0;

ba−α, if β = 1 and α is even;
ba4−α, if β = 1 and k is odd.

(6)

In other papers [20,21], authors have considered non-commuting groups of sizes 32
and 64, respectively. Interestingly enough, special cases of definition (3) were mentioned in
those papers as well.

In a previous paper [19], we explored the basic properties of M16 seeking implemen-
tations of this group in cryptography. The results of this paper showed that M16 can be
used as a platform for MPF, and over the following years we published several papers in
which we proposed various symmetric and asymmetric cryptographic primitives based
on an MPF defined over M16. Moreover, we considered the complexity of the algebraic
problem behind a key exchange protocol defined using the aforementioned tools. Using
Schaeffer’s criteria, we were able to prove that a certain MPF problem is NP-complete if
M16 is used as a platform. This fact brings us one step closer to the branch of post-quantum
cryptography, as it is conjectured that NP-complete problems are thus far uncrackable by
quantum computers.

Even though the research presented in this paper belongs to the field of symmetric
cryptography, there are similarities between the computational problems our primitives
are based on. Hence, we claim that the CTR mode of our block cipher can be consid-
ered computationally safe. We define this feature formally in Section 5 and prove it in
Proposition 3.

In general, the groupM16 contains words of the types aαbβ or bβaα, where α ∈ {0, 1, . . . , 7}
and β ∈ {0, 1}. However, due to relations R1, R2, and R3, every word can be written in the
form bβaα, which we consider a canonical representation. Hence, the cardinality of this
group is |M16| = 16 . This fact is indicated by the index in its notation. A similar idea is
true for the general case, i.e., |M2t | = 2t.

Recently, we have considered applications of MPF defined over M2t in symmetric
cryptography. Based on our previous findings, in the upcoming section we present a
symmetric block cipher, i.e., we show how to encrypt and decrypt a message using MPF
defined over M2t .

3. Shannon Block Cipher Based on MPF

Let us consider a message of m2t bits which can be represented by a matrix M with
entries in M2t . Such a message is viewed as a single block for our cipher. The transformation
of the initial message to its matrix representation is performed by splitting it into m2 chunks
of size t. The most significant bit of each piece is interpreted as the power of generator
b whereas the rest of the bits represent the power of generator a. As such, we can define
two matrices Mb and Ma which consist of the mentioned powers of generators b and
a, respectively. Moreover, we use this index notation for other matrices as well, thus
separating the powers of generators into appropriate matrices. We use the extra notations
aA, bB to define matrices with entries aαij and bβij , respectively, where A = {αij} and
B = {βij}.

Furthermore, in our research we make use of the following extra mappings which
help us to separate the powers of generators a and b. We denote these mappings by φ(w)
and ψ(w), where w ∈M2t , and define them as follows:

φ(bβaα) = β, ψ(bβaα) = α.

At first, it may seem that the pair (φ(w), ψ(w)) is a kind of analogue to the discrete
logarithm mapping. However, because M2t is a non-commuting and indecomposable
group, the basic properties that the discrete logarithm should satisfy are invalid in the
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general case. Hence, the use of these mappings is not harmful to our scheme. Instead, we
use them to hide the output of the LRMPF value.

More specifically, we define the matrix analogues of the mappings φ(w) and ψ(w) by
simply applying them entry-wise to the entries of the matrix bB � aA, where � denotes the
Hadamard product of two matrices. Denoting them by the appropriate uppercase letters,
we have:

Φ(bB � aA) = B, Ψ(bB � aA) = A.

Now, we are ready to describe our proposal in greater detail. Prior to executing the
proposed scheme, the parameters t and m and the shifting parameter κ, defined below in
Equation (7), are published online. In addition, note that each time something is chosen at
random we assume that the choice is uniform in the appropriate set of possibilities.

3.1. Key Generation Procedure

The result of the following key generation procedure is a symmetric key ~K = (X, Y, ∆).

1. Generate a binary matrix ∆

2. Generate a matrix X with random entries from Z2t−1 ;
3. Generate a temporary matrix Y′ with random entries from Z2t−2

4. Choose a permutation matrix P from the set of permutation matrices
5. Define Y = 2Y′ + P; using Gauss–Jordan algorithm, calculate its inverse Y−1.

Note that no additional restrictions are applied each time the matrix is generated at
Steps 1–3 of the presented process. In addition, because P = Y mod 2 is a permutation
matrix, the last step of the presented algorithm is always successful, i.e., Y is invertible.
Hence, all the steps of this procedure are executed exactly once, as none of them can result
in a failure. It can be seen that due to the definition of matrix Y, both even and odd entries
of Y are distributed uniformly in the subsets of even and odd elements of Z2t−1 , respectively.
This fact is important in establishing the perfect secrecy property in Section 4.

3.2. Encryption Function

Assuming that the original message has been converted into its matrix representation,
the encryption is performed as follows:

1. The obtained matrix representation of the message is split into separate matrices Ma
and Mb, where each leading bit of an entry of the message matrix M is used to form
binary matrix Mb, whereas the rest of bits are used to form Ma. Notably, entries of Mb
are interpreted as powers of generator b. Similarly, Ma contains powers of generator a.

2. The encryption algorithm is as follows:

C1 = bMb+∆ � aMa+X;

C2 =
(YC1

)Y;

C = Shiftκ(Φ(C2) ‖ Ψ(C2)) + (∆ ‖ X),

(7)

where ‖ denotes the concatenation of two matrices, Shiftκ is the entry-wise shifting
by κ bits (e.g., to the right) operator, and the addition is performed with respect to
the appropriate modulo (i.e., matrices Mb and ∆ are summed modulo 2, Ma and X
modulo 2t−1, and finally modulo 2t). In all cases, we omit moduli of addition, as their
values are usually clear from the context.

3. The matrix C is converted into a string of bits by concatenating its entries in the
following way:

c = c11 ‖ c12 ‖ . . . ‖ c1m ‖ c21 ‖ c22 ‖ . . . ‖ c2m ‖ cmm.

The obtained string c is the ciphertext of the initial message.
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Due to the discussed steps, the encryption function is provided by

Enc(~K, M) = Shiftκ(Φ(
(YC1

)Y
) ‖ Ψ(

(YC1
)Y

) + (∆ ‖ X), (8)

where M = Mb ‖ Ma is the original message represented in matrix form and C1 is defined
as in Equation (7).

3.3. Decryption Function

Let us assume that the received ciphertext c has been transformed into a matrix in the
same way as the original message. The following procedure is performed to decrypt the
encrypted message using the symmetric key ~K = (X, Y, ∆).

1. The decryption algorithm is as follows:

D1 = Shiftt−κ(C− ∆ ‖ X).

D2 = bD1b aD1a

D3 =
(Y−1

D2
)Y−1

;

Da = Ψ(D3)− X,

Db = Φ(D3)− ∆

(9)

where D1b is a binary matrix obtained by splitting the first bits of D1 and D1a consists
of the leftover bits. Subtraction is to be treated as an inverse of addition in the
encryption algorithm (7).

2. Matrices Da and Db are concatenated together entry-wise, producing matrix D =
Db ‖ Da.

3. The obtained matrix D undergoes the procedure of transformation to a string of bits
by concatenating entries of the matrix.

4. Junk symbols are removed (if any). The output of this step is the initial message.

We can summarize the steps presented above by defining the decryption function
as follows:

Dec(~K, C) =
(

Φ
((Y−1

D2
)Y−1)

− ∆
)
‖
(

Ψ
((Y−1

D2
)Y−1)

− X
)

, (10)

where C is the ciphertext represented in matrix form and D2 is defined as in Equation (9).

3.4. Proof of the Validity

Looking at the presented encryption and decryption algorithms, we can clearly see
that D2 = C2 due to definitions of these matrices.

Let us consider an intermediate result H = YC1. Note that entries of matrix T are
provided by

hij =
m

∏
k=1
{c1}

yik
kj . (11)

An important restriction, which helps us to prove the validity of our protocol, is the
structure of the key matrix Y. Obviously, due to Y being a permutation matrix modulo 2, it
is invertible over Z2t−1 , as its determinant is always odd and hence is relatively prime with
2t−1 for any value of t. Furthermore, because exactly one entry is odd in each row and each
column of Y, exactly one of the multipliers in the product (11) can contain generator b, and
hence it can never be cancelled unless raised to an even power.

It is clear that the restoration of the matrix C1 ∈ Matm(M2t) is successful mod-
ulo 2t−1, as in this case the non-commutative nature of the platform group is gone, i.e.,
C1 ≡ HY−1

mod 2t−1. Hence, only the extra summands of 2t−1 can affect the final result.
However, the structure of matrix Y helps to control extra summands in the powers of
generator a as well. More precisely, if the extra summand appears when calculating hij,
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then it appears when restoring {c1}ij as well, cancelling the original effect. Similarly, if the
extra summand does not appear in the first place, then it does not appear during decryption.
Hence, we have C1 = HY−1

. This is due to the fact that the parity of the powers of generator
a is preserved during decryption calculations thanks to the structure of matrices Y and Y−1.
For this reason, and due to the successful restoration of the powers of generator b using
Formulas (4) and (5), we obtain the desired result. Hence, the matrix Y−1, which has the
same structure as Y, successfully restores the initial matrix C1 when applied to H, i.e., we
have C1 = HY−1

.
We now consider the matrix C2 = HY = YCY

1 . Due to the properties established in
this proof, the matrix Y−1 successfully restores matrix H, i.e., H = CY−1

2 .
Combining these two observations, we gain the following result:

D2 = Y−1
DY−1

1 = Y−1
CY−1

2 = Y−1
(

YCY
1

)Y−1

= C1.

Moreover, applying the mappings Φ and Ψ and subtracting the appropriate matrices
yields the matrix form M of the initial message, i.e., D = M.

Matrix D now undergoes a transformation to obtain a string of bits d by concatenating
its entries as follows:

d = d11 ‖ d12 ‖ . . . ‖ d1m ‖ d21 ‖ d22 ‖ . . . ‖ d2m ‖ dmm.

Relying on the discussed observations, we conclude that d is the bit string representing
the initial message with junk symbols at the end. These can now be dropped to leave us
with the initial message.

3.5. The Main Properties of the Proposed Block Cipher

In our previous paper [16], we have shown that all the intermediate steps of the simi-
larly designed block cipher operating in CBC mode produce values uniformly distributed
in the appropriate algebraic structures. Moreover, the block cipher proposed in that paper
has the perfect secrecy property. Here, we revise the appropriate proofs and adapt them to
fit our proposal.

Due to the similarities between the two ciphers, we claim that the following statements
are true.

Proposition 1. Assume that the secret key ~K is uniformly chosen from the set of all possible keys
K. Then, in Step 2 of the counter mode, the intermediate matrices C1, C2 are distributed uniformly
in Matm(M2t) and the matrix C is distributed uniformly in Matm(Z2t).

Proof. Let us apply the previously defined mappings Φ(·) and Ψ(·) to the matrix C1 =
bB � aA, where B = Nb + ∆ and A = Na + X. Recall that due to the statement of the
proposition and the properties of matrix summation, the entries Φ(C1) = B and Ψ(C1) = A
are uniformly distributed in Z2 and Z2t−1 , respectively.

Because Y is a permutation matrix modulo 2, it mixes up the entries of A without
changing them. For this reason, the entries of Φ(C2) are uniformly distributed in Z2. Hence,
powers of generator b in matrix C2 are uniformly distributed in Z2.

We now consider the distribution of the powers of generator a in matrix C2. Keeping
in mind the properties of permutation matrices, without loss of generality, we henceforth
consider a special case of identity permutation, i.e., we assume that odd entries of matrix
Y are located on its main diagonal. We make a remark regarding the general case of
permutation matrices later in this proof.
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Let us focus on the intermediate result V = YC1 and apply the mapping Ψ(·) to this
matrix. We can express every entry ψ(vij) as follows:

ψ(vij) =
m

∑
k=1

ψ({c1}kj)yik + γij, (12)

where γij ∈ {0, 2t−2} can be one of two possible values depending on the number of times
the extra summand 2t−2 was added. We split the sum (12) into two parts based on the
parity of entries of matrix Y. Then, for even values of Y, we have

sij =
m

∑
k=1,k 6=i

ψ({c1}kj)yik + γij (13)

Due to the special structure of matrix Y, we have a single summand of the sum (12)
containing an odd entry yii. Hence, we denote

uij = ψ({c1}ij)yii. (14)

Note that if Y is a permutation matrix other than identity modulo 2, then the column
index changes in the extracted summand. The omitted index in sum (13) changes as well.
These are the only two differences in the general case.

Due to construction, all possible values of the sum (13) lie in the subset of even
elements of Z2t−1 , and hence we claim that

2t−2−1

∑
r=0

Pr(sij = 2r) = 1, (15)

which is obviously true, as these probabilities form a total probability. The exact values of
these probabilities are irrelevant.

Considering the only odd summand, we can calculate the following probability:

Pr(uij = u0) = Pr(ψ({c1}ij)yii = u0) = Pr(ψ({c1}ij) = u0y−1
ii ) =

1
2t−1 , (16)

where u0 ∈ Z2t−1 is fixed. This comes from the fact that gcd(yii, 2t−1) = 1, and hence y−1
ii

exists. Moreover, ψ({c1}ij) is uniformly distributed due to the statement of the lemma.
Meshing facts (15) and (16) together, we obtain the following result:

Pr(ψ(vij) = z0) = Pr(sij + uij = z0) = Pr(uij = z0 − 2r)·

· Pr(sij = 2r) =
1

2t−1

2t−2−1

∑
r=0

Pr(sij = 2r) =
1

2t−1 .
(17)

This result means that powers of generator a in an intermediate matrix V are dis-
tributed uniformly in Z2t−1 . Note that because the term γij does not play a major part in this
calculation, distributions of power of both generators are independent of each other, i.e.,
powers of generator b do not in any way affect the distribution of powers of generator a.

Similar calculations of probabilities can be performed for the powers of generator a in

the matrix VY =
(

YC1

)Y
= C2. Relying on the uniform distribution of entries of matrix V

and properties of matrix Y, we draw a conclusion that powers of generator a in matrix C2
are distributed uniformly.

Lastly, the powers of both generators in matrix C2 are distributed uniformly. Then,
due to the properties of the matrix summation and uniform distribution of concatenated
matrices, the final output C is distributed uniformly in Matm(Z2t). The shifting operation
does not play any part in this distribution, as it only performs an additional mix of bits.
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Proposition 2. Assume that the secret key ~K is uniformly chosen from the set of all possible keys
K. Then, the block cipher presented in Step 2 is perfectly secure.

Proof. Let us consider encryption algorithm (7). First, we turn our attention to matrix C1
and focus on the powers of generator a. Denoting Na + X = U, we rewrite each entry of
matrix U in the following form:

uij = xij + naij, i, j ∈ {1, . . . , m}. (18)

Due to the statement of the theorem, entries xij are chosen at random and are uniformly
distributed in Z2t−1 , whereas entries naij are random arbitrary distributed values in Z2t−1 .
For any fixed matrix U0 with entries u0ij ∈ Z2t−1 , we have

Pr(uij = u0ij) =Pr(xij = u0ij − naij) =

=
1

2t−1 ∑
n0ij∈Z2t−1

Pr(naij = n0ij) =
1

2t−1 , (19)

where n0ij are fixed elements of Z2t−1 .
We now calculate the conditional probabilities of the entries of matrix U:

Pr(uij = u0ij | naij = n0ij) = Pr(xij = u0ij − n0ij) =
1

2t−1 , (20)

because the entries xij and naij are independent, and the difference u0ij − n0ij ∈ Z2t−1 .
Another important property of matrix U is the independence of its entries. Because all

xij, i, j = 1, . . . , m, are independent, for all u0ij ∈ Z2t−1 we have

Pr(∩m
i,j=1{uij = u0ij}) = Pr(∩m

i,j=1{xij + naij = u0ij}) =

= ∑
n∈Z2t−1

Pr(∩m
i,j=1{xij = u0ij − n0ij},∩m

i,j=1{naij = n0ij}) =

=
1

2m2(t−1) ∑
n0ij∈Z2t−1

Pr(∩m
i,j=1{naij = n0ij}) =

1
2m2(t−1)

.

(21)

In the last step, we use the fact that the sum ∑n0ij∈Z2t−1
Pr(∩m

i,j=1{naij = n0ij}) is the
total probability, and hence is equal to 1.

Relying on the obtained Equalities (19)–(21), we claim that

Pr(U = U0) = Pr(U = U0 | Na = Na0) =
1

2m2(t−1)
, (22)

where Na0 ∈ Matm(Z2t−1) is a fixed matrix.
Similarly, matrix ∆ is chosen uniformly fromZ2. For this reason, analogous observation

holds for the matrix sum Nb + ∆, with probability 2−m2
. However, both sums in the

expression of C1 are independent of each other, and hence we have:

Pr(C1 = C10) = Pr(C1 = C10 | N = N0) =
1

2m2 ·
1

2m2(t−1)
=

1
2tm2 , (23)

where C10 is a fixed matrix defined over M2t and M0 is a fixed matrix defined over Z2t .
Hence, we have shown that the entries of matrix C1 are uniformly distributed in M2t .

Let us denote the set of all possible values of key matrix Y by KY. Note that each
matrix from this set reduced modulo 2 is a permutation matrix, and hence the cardinality
of this set is |KY| = n! · 2m2(t−2).
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We now consider the second step of the encryption algorithm (7), i.e., matrix C2. Due
to Proposition 1, entries of MPF value are uniformly distributed in M2t . All that is left is to
explore the conditional probabilities of its entries, expressed as follows:

Pr(C2 = C20 | N = N0) =
Pr(C2 = C20, N = N0)

Pr(N = N0)
(24)

Explicit calculations of probability Pr(C2 = C20, N = N0) are presented below in
matrix form for simplicity:

Pr(C2 = C20, N = N0) = Pr(Y(C1)
Y = C20, N = N0) =

=
(

∑
Y0∈KY

Pr(C1 = Y−1
0 (C20)

Y−1
0 ) · Pr(Y = Y0)

)
Pr(N = N0) =

=
1

2tm2 ·
(

∑
Y0∈KY

Pr(Y = Y0)
)
· Pr(N = N0) =

1
2tm2 · Pr(N = N0),

(25)

where Y0 ∈ KY is a fixed matrix. Here, we use the fact that the entries of C1 are identically
uniformly distributed and are independent of matrix N. Furthermore, keeping with our
notation, the sum ∑Y0∈KY

Pr(Y = Y0) represents a total probability, and hence is equal to
1. Note that we use the notation Pr(N = N0) to indicate the probability of a certain fixed
message, which is then split into two parts Na and Nb.

We limit ourselves to the matrix form of these calculations, as the expression of
probability for a single entry of C2 is much more complicated due to restriction on matrix Y.

Because Expression (25) is a numerator of conditional probability (24), we obtain the
following result:

Pr(C2 = C20 | N = N0) =

1
2tm2 · Pr(N = N0)

Pr(N = N0)
=

1
2tm2 . (26)

It can be seen from the obtained result that the distributions of C2 and N match, and
we can hence draw the conclusion that entries of matrix C2 are independent of plaintext
matrix N.

The proof for the last step of the encryption algorithm is analogous to the proof of
the first step, as the matrix ∆ ‖ X consists of uniformly distributed entries in Z2t , whereas
the shifting function does not have an impact on the distribution of the entries of the other
matrix summand.

However, it is important to note that for Proposition 2 to take place we have to apply
restriction on matrix Y, i.e., we must have Y = P mod 2, where P is a permutation matrix.
Otherwise, there is no way to ensure that the encryption function is one-to-one, and hence
there is a second nonce η, which can be used to decrypt the ciphertext. For these reasons,
the conditional probabilities for the matrix C2 do not grant us the desired independence
from the nonce if the constraint on Y is neglected.

We should emphasize that in Proposition 2 we have established perfect secrecy for
the encryption of a single block only. Obviously, as the plaintext grows in size it must be
split into several blocks, and due to the fixed length of the secret key the CTR mode cannot
possibly possess the perfect secrecy property, as it trivially contradicts Shannon theorem.

4. Counter Mode of Our Cipher

In this section, we introduce the main idea of this paper, i.e., the counter mode of our
cipher. Due to the general scheme of this mode presented in Figure 1, we consider only the
encryption function (8) of our original idea. Note that the restriction on matrix Y is required
in order to ensure that the encryption function is one-to-one, which, as we show in this
section, plays an important role in establishing the perfect secrecy property of our block
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cipher. Moreover, according to [1], despite the fact that the nonce is never decrypted, the
original plaintext has to be restored using the same nonce and no other such nonces should
exist. This condition implies the one-to-one nature of the encryption function. Hence, for
now we leave this restriction intact and present our thoughts on the matter at the end of
this paper.

Prior to performing encryption of the plaintext limited by 2l blocks, the sender generates
the nonce as a bit string, which for now can be interpreted as a number η ∈ {0, 1, . . . , 2m2t − 1}.
This is done by randomly choosing an integer η′ ∈ {0, 2m2t−l} and setting η = 2lη′. The
counter mode is executed as follows:

1. For the j-th block, we define a bit string n = η + (j− 1) of size m2t and convert it into
a matrix by splitting off t-bit chunks n1, n2, . . . , nm2 and interpreting them as entries
of the matrix N row-wise, i.e., the matrix N is as follows:

N =


n1 n2 . . . nm

nm+1 nm+2 . . . n2m
. . . . . . . . . . . .

nm(m−1)+1 nm(m−1)+2 . . . nm2

 (27)

2. The matrix N is encrypted using the secret key ~K = {X, Y, ∆} using the encryption
function Enc(~K, N) to obtain a ciphertext matrix C.

3. The matrix C is transformed into a bit string cj of size m2t by concatenating its entries,
i.e., cj = c11 ‖ c12 ‖ . . . ‖ c1m ‖ c21 ‖ . . . ‖ cmm;

4. The plaintext is split into separate disjoint parts µj of m2t bits (with junk at the end

if required), where j = 1, 2, . . . b |µ|m2 c. Each part is XORed with an appropriate bit
string cj.

The output of this algorithm is the ciphertext (η, c), where c is obtained by concatenat-
ing chunks c1 ⊕ µ1, c2 ⊕ µ2, . . . into a single string.

The decryption works similarly, with the plaintext replaced by the ciphertext in the
last step.

However, the perfect secrecy property does not mean that our block cipher is impervi-
ous to other kinds of attacks. The widely known one-time pad technique is easily broken
if the secret key is ever reused. This is something CTR mode and one-time pad have in
common. The major difference in the CTR mode, as opposed to the one-time pad, is the
fact that nonces must not be reused. However, it is much easier to ensure this restriction,
and casual solutions for this issue are known.

5. Security Analysis

In this section, we take another step towards the security of our block cipher. Follow-
ing the technique presented in [1], we use the notion of an Attack Game played between an
adversaryA, an effective algorithm aimed at the disruption of communication by extracting
hidden data (e.g., private key of some other relations) given the publicly available infor-
mation, and a challenger, a machine excepting inputs from the adversary and generating
outputs based on a certain sequence of actions.

The purpose of the attack game we consider in this section is to somehow tell apart
the encryption function from other random functions. In other words, we aim to show that
the encryption function can be viewed as a secure pseudorandom permutation (PRP). Note,
however, that at the moment we assume that the messages to be encrypted are chosen at
random. Hence, for now we adapt the notion of weak PRP security from [1].

Attack Game 1. Consider the encryption function Enc(~K, M), where the M is the encrypted
plaintext in its matrix representation. For an index β ∈ {0, 1}, we define the following Experiment
β between the challenger and the adversary A:
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1. The challenger randomly selects a function F in a following way:

F(M) =

{
Enc(~K, M) if β = 0;

Rand(M) if β = 1,
(28)

where Rand(M) : Matm(Z2t)→ Matm(Z2t) is a truly random permutation.
2. The adversary requests a sequence of Q queries from the challenger consisting of plaintext

matrices matrices Mq, where q = 1, 2, . . . , Q is the index of the queries and ciphertext matrices
Cq = F(~K, M).

3. The challenger generates random matrices Mq distributed uniformly in Matm(Z2t) and
computes Cq = F(Mq). He sends the obtained pairs to the adversary.

4. Relying on the obtained responses, the adversary outputs an experiment indicator β̂ ∈ {0, 1}
and wins the game if β̂ = β.

Denote by Pr(Wβ) the probability of the random event Wβ that A outputs the value β. The
advantage in winning the above game is then provided by

wPRPadv[A, Enc(~K, M)] = |Pr(W1)− Pr(W0)|.

Note that in this Attack Game the adversary remains passive and can only request
queries one at a time. Extra investigations of possible enhancements of our proposal
are needed to fully understand whether the adversary can be active in the presented
Attack Game.

Relying on the uniform distribution of the ciphertext matrix in Matm(Z2t) established
in the previous section, we claim the following.

Proposition 3. The encryption function Enc(~K, M) is a weakly secure pseudorandom permuta-
tion, i.e., the probability of winning the Attack Game 1 wPRPadv[A, Enc(~K, M)] is negligible if
messages are chosen at random with uniform distribution.

Proof. Let us first note that the adversaryA can gain control of all the possible messages M
by expressing them as a linear combination of the basis elements of the message spaceM.
All the adversary needs to do is to request m2 queries and check matrices M1, M2, . . . , Mm2

for linear independence. Every subsequent query Mq, where q > m2 can be expressed in
the following way:

Mq =
m2

∑
i=1

αqiMi

for some coefficients vector~αq. Conveniently, the co-domain of the function Enc(~K, M)
matches the domain, and hence every output can be expressed as a linear combination of
the same basis elements, i.e.,

Cq =
m2

∑
i=1

γqiMi

for some coefficients vector ~γq.
If β = 0, i.e., the original encryption function is used to encrypt the messages Mq,

then due to the constraint on the parameter Y the encryption function is a one-to-one
mapping. Hence, all of the outputs Cq are distinct. Furthermore, given a random vector
uniformly distributed~αq, the probability Pr(~γq = ~γ0

q) = 2−m2t, where ~γ0
q is a fixed vector.

For the first query, we can simply use Proposition 1. For subsequent queries, we rely on the
uniform distribution of message matrices, as in this case the ciphertext matrices preserve
this distribution.

On the other hand, if β = 1, then because Rand(M) is a random permutation it affects
the matrix M in a way indistinguishable from the one presented above, i.e., the output is
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distributed uniformly in Matm(Z2t), and hence the probability Pr(~γq = ~γ0
q) = 2−m2t is the

same for all queries q.
To summarize, regardless of the value of β, all the values of the coefficients vector ~γq

are equally possible, and hence the distribution of the outputs F(Mq) is indistinguishable
from the uniform in Matm(Z2t). For this reason, PRPadv[A, Enc(~K, M)] is negligible.

Hence, relying on the proven result, we claim that the function Enc(~K, M) can be
considered a weakly secure pseudorandom permutation. We use this fact in Section 5 to
prove the resistance of our main idea against passive adversaries.

Note that as of now we cannot do any better than Proposition 3. This is due to the fact
that hidden correlations arise between the ciphertexts when the adversary is allowed to
choose the message matrices at will. We believe that this issue can be fixed using additional
actions to mix the entries of the message matrices prior to applying the MPF mapping.
However, this is a topic for future research.

As we proven that the encryption function is a weakly secure pseudorandom permu-
tation, we only consider passive attacks at the moment. We formalize the resistance of of
the presented CTR mode against passive adversaries in the following Attack Game aimed
at relating each obtained ciphertext to the original plaintext given two choices. This means
that the adversary can obtain useful information, based on which he can choose the original
plaintext with a probability significantly different from the coin toss experiment.

Attack Game 2. Consider the nonce-based encryption scheme ε(~K, M, N), where the ciphertext
matrix C = Enc(~K, N)⊕M. For an index β ∈ {0, 1}, we define the following Experiment β
between the challenger and the adversary A:

1. The challenger randomly selects a key ~K ∈ K.
2. The adversary requests a sequence of queries to the challenger consisting of the pair of equal

length messages (Mq0, Mq1), the nonces ηq ∈ N \ {η1, η2, . . . , ηq−1}, where N denotes the
space of all possible nonces, and the ciphertexts Cq = Enc(~K, Nq)⊕Mqβ.

3. The challenger generates messages and nonces at random. Furthermore, he computes the
ciphertext as presented above. He sends these values to the adversary.

4. Relying on the obtained responses, the adversary outputs an experiment indicator β̂ ∈ {0, 1}
and wins the game if β̂ = β.

We denote by Pr(Wβ) the probability of the random event Wβ that A outputs the value β. The
advantage in winning the above game is provided by:

wPAadv[A, ε] = |Pr(W1)− Pr(W0)|.

Based on the properties of our scheme, we claim the following.

Proposition 4. For any efficient adversary A, his advantage wPAadv[A, ε] in Attack Game 2 is
negligible.

Proof. This result follows directly from the fact that Enc(~K, N) is a weakly secure pseudo-
random permutation and from Theorem 5.6 of [1].

From the results of this paper, it can be seen that our proposed CTR mode of the block
cipher based on MPF can resist all passive attacks.

From the point of view of implementation of our CTR mode, the practical advantage
of winning Attack Games 1 and 2 must be taken into the consideration to determine the
safe values of the main parameters of our block cipher, namely, the order of the square
matrices m and the group size determining parameter t. Though more investigations may
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be required in this area, we think that the link between the number of queries sent by the
adversary in Attack Game 2 can be estimated by the following inequality:

wPAadv[A, ε] ≤ Q2

2m2t
, (29)

which comes from Theorems 4.4 and 5.6 of [1].
Here, we should make another important observation. Due to the general structure of

the CTR mode, the decryption function is never used. This fact grants us an opportunity
to discard the restriction on the power matrix Y, thus making the encryption function
irreversible. A further investigation of this change may be required to fully understand the
effect it has on the proposed CTR mode.

6. Conclusions and Discussion

In this paper, we have presented a CTR mode of the original block cipher based on
matrices. Interestingly enough, instead of using multiple rounds to obtain a ciphertext, we
propose a strongly nonlinear MPF mapping. Our previous results together with our current
findings show a promising future for the presented ciphers, as they are perfectly secure,
which had previously been proven only for the OTP technique. In this paper, we have
explored the resistance of our proposal to passive attacks; however, there is a great deal of
work yet to be done. At the moment, we have introduced the basic idea of MPF application
for the counter mode of encryption. It now makes sense to work towards enhancements of
the original idea to make our proposal impervious to active attacks.

Interestingly, in the present paper we have demonstrated a way to construct a working
block cipher using a non-commuting platform group. Despite the fact that the associativity
property (1) is not satisfied, we were able to define a suitable template for the power matrix
Y, which allowed us to overcome this feature of MPF. Note, however, that if the defined
constraints on matrix Y are neglected, the decryption function of the presented block cipher
cannot be successfully used to restore the original plaintext.

The latter fact creates a rather interesting opportunity for our proposal, as discarding
(or greatly loosening) the restrictions of the power matrix Y would make the encryption
irreversible. Even though, as pointed out in [22], this change could be advantageous due to
the PRP/PRF switching lemma, it is necessary to analyze the complexity of nonce collision
problem, i.e., whether it is possible to effectively find two nonces which produce the same
ciphertext matrix. If this problem can be easily solved, it would have a dire effect on the
resistance of our proposal to all kinds of attacks.
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