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Abstract: As supply chains (SCs) become more complex globally, businesses are looking for efficient
business analytics (BA), business intelligence (BI), and artificial intelligence (AI) tools for managing
supply-chain risk. The tools and methodologies proposed by the supply-chain risk management
(SCRM) literature are mostly based on experts’ judgments, their knowledge, and past data. The expert
evaluation-based approach could be partly or fully replaced by AI solutions, increasing objectivity,
impartiality, and impersonality, reducing sources of human mistakes, biases, and inefficiencies in
SCRM. However, the transition from BA to AI in SCRM is not a self-contained process; though
attractive as a vision, it is not straightforward as a management or implementation process. The
purpose of this research is to explore and define the conceptual grounds for transitioning from BA to
AI in SCRM. The conceptual SCRM structure, its AI suitability, and implementation terms are defined
theoretically based on a literature review. A single, in-depth business case study is employed to
explore the theoretically defined terms of AI-based SCRM implementation. The proposed conceptual
AI-suitable SCRM structure is defined by five principal building blocks: risk events, risk-event
indicators, data-processing rules and algorithms, analytical techniques, and risk event probability
forecasts. The study concludes that the business environment meets AI-based SCRM-implementation
terms of data existence and access. Since data on risk events and negative outcomes are limited for
machine learning, experts’ experience and knowledge might be utilised to build initial rules and
data-processing algorithms for AI.

Keywords: business analytics; artificial intelligence; supply-chain risk management

1. Introduction

The issue of sustainable supply chains to reduce risk is permanently on the business
agenda. To gain a cost advantage or to expand market share, many firms try to make
supply chains more resilient by constantly improving supply chain risk management by
employing various methods and models. Managing supply chain risks with sophisticated
methods uses a variety of applications, starting with essential supply tracking and finishing
with sustainability issues, including hybrid meta-heuristic algorithms for a supply chain
network considering different carbon emissions regulations [1], following multi-objective
optimisation modelling of the sustainable green supply chain, and decisions about sustain-
able closed-loop supply chain networks. Reduced risk in the supply chain has a positive
effect on a firm’s finances and improves the use of resources, which brings the firm closer
to sustainability development goals.

The business issues related to supply-chain risk (SCR) identification, assessment, and
management are becoming more complex and dynamic due to firms’ attempts to be more
efficient and competitive, followed by the wide adoption of global sourcing, global partner-
ship and networking, and global supply-chain (SC) integration [2,3]. These strategies, in
turn, constantly increase SC risks [4]. As stated by Trkman et al. [5], “In the modern world
competition is no longer between organisations, but among supply chains”. Supply-chain
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risk management (SCRM) has consequently become a prerequisite to sustainable business
development, ensuring a competitive benefit and enhancing organisational efficiency. Sci-
entific discussion [5] and national and supranational policy trends [6–9] emphasise the
need for advancements in SCRM theory and practice based on contemporary analytical
techniques employing AI and big data (BD) analytics. However, these advancements are
not self-starting and require conceptually reasoned, empirically proven grounds. Based on
interview data, even large commercial enterprises struggle to manage SCR, as managers
face challenges in understanding the impacts of various internal and external factors on
certain risks. They strive to judge and interpret the available evidence on the possibility of
loss and how to take discrete actions to manage risk [10].

The SCRM literature encourages the application of experts’ experience-based judg-
ments, their knowledge, and past data. These solutions are motivated by the assumption
that SCRs are difficult and complicated to manage due to the lack of relevant data to identify
and assess risks by estimating objective risk indicators [11]. The common outcome of such
SCRM tools is rated preferences, which are used to support SC decision-making.

Earlier proposed SCRM conceptualisations are not appropriate due to the need to
engage experts (which requires time to implement) to focus on whole SCs instead of certain
nodes and edges in SC networks. They are insufficient for AI applications since they follow
the assumption that experts’ knowledge and experience, not objective data-based indicators,
are the main data source for SCR identification and assessment. Current computational,
data-linking, data-collection, and data-processing capabilities united by AI solutions could
improve and enrich SCRM at the levels of both everyday business practice and scientific
SCRM research.

Experts’ experience and knowledge are good to apply to research and scientific studies
but difficult to generalise and complicated to access and apply in everyday business life
and practice. The practical implications of previously proposed SCRM methodologies are
limited to studied cases and constrained in time, “The SCR debate in academic literature is
rather limited to a case- and location-specific studies” [12]. Fan and Stevenson [13] also
found a dominance of case study and survey methods in SCRM research and limited use of
secondary data. This article proposes a generalised conceptualisation of AI-based SRCM
to promote objective data-driven SCRM solutions, which will not be context or certain
case specific.

AI solutions and applications do not occur in a vacuum [14–17]. Normally, they are
developed by extending and expanding conventional business analytics (BA) and business
intelligence (BI) practices. The practical relevance and motivation of this research are to
explore current SCRM practices to learn how theoretically defined terms for AI-based
SCRM are met in contemporary business. In other words, from a conceptual point of view,
the research question is: what are the conceptual structure and implementation terms of
AI-based SCRM? Objective secondary data and data sources related conditions will be
defined as terms for AI-based SCRM implementation.

Such a conceptualisation would help in achieving missing integrations of technical
and managerial systems [18]. The attempts to enrich business functions with AI are prob-
lematic since business relationships (including sales and purchases) do not always follow
patterns discoverable by data analytics. New developments and recent changes in business
environments could dramatically alter expected trajectories based on past data analytics.
Thus, the conceptualisation of AI-based SCRM is a field worth researching. The proposed
conceptual SCRM structure and the exploration of its implementation terms contribute
to the SCRM field by defining the conceptual grounds for BA-to-AI transformation in
SCRM. SCRM is a process of risk identification, assessment (or evaluation), reaction (or
decision-making), and monitoring [11,13]. The present study focuses on the identification
stage and does not cover assessment, decision-making, or monitoring.

The purpose of this research is to explore and define the conceptual grounds for the
evolution from BA to AI in SCRM. The specific objectives are the following: (1) to define
a conceptual SCRM structure (and its implementation terms) suitable for AI-based SCR
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identification; (2) to explore AI-based SCRM implementation terms in a selected company’s
case; (3) to define the conceptual grounds for AI in SCRM based on the conceptual SCRM
structure and empirically explored terms of its implementation.

The conceptual AI-suitable SCRM structure is defined by five principal building blocks:
(1) defined risk events, (2) defined risk event indicators, (3) data-processing rules and
algorithms, (4) analytical techniques, and (5) risk event probability forecasts. The existence
of and access to the data on indicators relevant to SCR identification are considered the
principal terms for AI-based SCRM implementation. The empirical research supports the
conceptual proposition that these terms for AI-based SCRM implementation are met by the
business environment. It means that empirical research supports the proposition that the
data needed for SCR identification exist and are accessible for business.

The empirical evidence to support the findings is gained by employing a single,
in-depth business case study.

This case study research reveals that, in SCR identification, business practitioners know
and use objective, secondary, data-based indicators that are available and accessible from
sources either inside or outside the organisation. This research proposes that abundant
secondary data exist which could be structured and utilised for automated, AI-based
SCR identification.

The research findings that support the conceptual propositions are presented in the
form of a conceptual matrix linking risks covered by SCRM and factor indicators (i.e., a
risk/indicator matrix, henceforth referred to as R/I-m). Risks are defined as events or cir-
cumstances affecting the focal company by financial or other losses caused by engaged SC
partners (buyers, carriers, or suppliers) and purchase or sales contract details. Risk events and
indicators are two blocks in the conceptual SCRM structure that are explored empirically.

The R/I-m serves as a reservoir to mine data-processing rules and algorithms (i.e.,
to create and develop a third conceptual SCRM structural element) that associate depen-
dent (risk events) and independent risk-prediction variables and play a twofold role in
conceptualising AI-based SCRM. They could be discovered by AI itself while processing
R/I-m, but they could also be explored and revealed by current BA practices. Conventional
data-processing rules and algorithms would provide a current human experience-based
economic and business management logic to be later refined and corrected by AI based on
data. In this way, BA is expected to convert gradually into AI.

The following chapter of the paper defines the research context by reviewing the
relevant literature on BA-to-AI transition and previous SCRM conceptualisations. The
conceptual SCRM structure suitable for AI and the principal terms of its implementation
are the outcomes of the literature review. The third chapter then outlines the research
method. The fourth chapter presents the research results: the structured SCRs and their
indicator lists that support the theoretical assumptions of the terms of AI-based SCRM
implementation. The closing fifth chapter extends the discussion to further research and the
potential and practical implications of the findings. The central role of the data-processing
rules and algorithms is also defined here. Conclusions are given at the end of the paper.

2. Literature Review

The central research problem is the fact that to manage risk—that is, to mitigate it to
prevent loss—complex analytical procedures must be performed. Managers, supported by
functional business services, must identify risks and respective potential losses to assess
the extent of risks and take measures to prevent expected losses. Problematically, however,
all these required analytics could be done in varying ways, with an extensive selection of
available tools and methods, including BA and BI (sometimes referred to as BA/I due to
blurred conceptual boundaries) and AI tools.

2.1. The Foundation Gained from Experience in Business Analytics

Today’s data-driven business environment enables business executives to use layered,
diverse data to support strategic and operational business decisions. However, processing
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large arrays of data inevitably raises the question of how to sort, systematise and analyse
them, diminish labour, and speed up analysis. Thus, BA/I facilitates extracting and
shaping data to interpret information and generate data-based action plans for the business.
Although they are alternatives, BI, BA, and AI have different specifications and outcomes.
When effectively interchanged, they can supplement each other and help achieve business
goals effectively.

BA involves understanding business performance based on data and statistical meth-
ods and can be used to develop strategies, acknowledge sales and market opportunities,
strengthen connections with the clientele, better indicate possible hazards, and reduce
threats [19–23].

BI was mentioned in the scientific literature as early as 1950 [24–26] and was recently
identified as a management technology trend [24] to rationalise the process of collecting,
reporting and analysing data and presenting actionable information to executives [27].
Although human hypotheses are involved in analysing collected data, especially in the
early stages of BA or BI, and management decisions apply individually developed practices,
they are sometimes naive tools and solutions [17]. Such a situation was observed in the
case company. Scientific research has also found evidence that organisations have largely
failed to capture the full benefits of BI systems and seek ways to leverage value from other
systems [10,28,29].

The essential idea of AI is learning [30] and constant improvement over time. It refers
to computer systems capable of mimicking, learning, and replacing human intelligence [31],
but the transition from BA/I to AI is not self-starting and requires conceptually reasoned,
empirically proven grounds. Despite its long history and widespread acceptance as a
decision-aid tool, AI has seen limited application in SCRM. The potential of AI to solve
complex problems and search for SCRM information has not been fully exploited [31].

In the case of this research, SCRM is the subject to search for the grounds to facilitate
BA/I-to-AI transitions. The conceptual structure of SCRM should be defined considering
the two aforementioned BA/I and AI perspectives to reveal ways, patterns, or terms of the
proposed transition from one kind of practice to the other. The revealed terms for transition
should then be explored empirically to prove propositions about needed change in practice.

The conceptual structure of SCRM is defined based on a review of previous research
in the field. Previous SCRM solutions in the scientific literature are often presented as
methodologies for SCR identification and assessment, which suggests defining lists of
objects (i.e., potential suppliers, manufacturers, distributors, certain risks and issues in
SCs) that need evaluation in terms of SC risk. Then the range of the respective risk factors
is set. Objects in SCs and events within or around SCs (depending on particular model
specifications) are then evaluated “on the basis of experts’ experience and past data” [32]
or “expert knowledge, historical data, and supply chain structure” by employing ques-
tionnaires to identify risk factors and their likelihoods [33] or through “brainstorming
meetings with experts who have a complete and detailed knowledge of the considered
system” [34]. Experts’ experience, knowledge, and past data-based evaluations of potential
SC partners, predefined risks, and other SC issues are processed by selected multi-attribute
(or multi-criteria) decision models (MADM or MCDM) employing the analytical hierarchy
process (AHP) [34–36], goal programming [32], and bow-tie analyses and diagrams, which
map risks and display the links between potential causes, evaluated probabilities, preven-
tative and mitigative controls and potential impacts, calculating total risk likelihoods and
impact values [33]. Quite often, the technique in order of preference by similarity to the
ideal solution (TOPSIS) and criteria importance through inter-criteria correlation (CRITIC)
methods are employed to deal with experts’ assessments [37]. The outcomes of such SCR
identification and assessment methodologies are decision-preference indices based on the
least overall SC risk. Risk identification, assessment, and evaluation are made based on
experts’ judgments.

Another common conventional business analytics-based SCRM scenario is a fuzzy
inference system (FIS), which also considers all SC agents. Failure modes and effects
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analysis (FMEA) also calculates total aggregated SC risk [33,38]. Close to the FIS is fuzzy
synthetic evaluation, which is based on qualitative linguistics and expresses and defines
fuzzy variables in mathematical logic [39,40]. Fuzzy numbers are used to quantify and
estimate risks when adequate data to measure risk factors are difficult or impossible to
acquire [33].

Value at risk (VaR) in the SC operations reference model (SCOR) was calculated by
Li et al. (2013) as “the probability of events times the monetary impact of the events for
a specific process, supplier, product or customer”. The risk matrix approach (RMA) also
considers two essential metrics, probability and severity [4]. However, these methodologies
and proposed modifications are based on the scoring, rating, and evaluating of potential
risks and their factors from experts’ experiences, knowledge, and points of view. The
dominant SCRM conceptualisations are mostly based on the notion that “since the precise
ex-ante estimation of the probability and severity of an event is challenging, the concept of
subjective judgment should be introduced” [35].

2.2. The Limitations of Business Analytics-Based Supply Chain Risk Management and Research on
the Ways to Overcome Them

The above-defined SCRM analytical outcomes deliver SCR assessments for predefined
SCs. Calculated preference indices assess overall SC risk. However, current business
dynamics require rapid changes and adaptations in SCs. New partners enter SCs while
others leave them every day. SCs are even more dynamic in the merchandise business,
where quick decisions following markets’ conditions are common in everyday practice.
Applicability of MADMs and similar BA practices are limited due to the need to engage
experts (which requires time to implement) to focus on whole SCs. Fuzzy numbers applied
to estimate risk factors and respective event probabilities become less relevant when
companies easily access data and data-processing capabilities. Expert evaluation-based
AHP and similar approaches could be replaced by AI solutions, which will be able to
deliver instant online assessments for every potential SC partner. MCDM approaches based
on pairwise comparisons have other limitations as well: the need to assign precise numbers
to long lists of items is challenging even for experienced experts, different experts provide
different evaluations, and a predefined assessment scale (usually 1–9) imposes prior limits
on estimations [35].

The next step towards objective data, not subjective evaluation-driven risk identi-
fication and assessment, is applying statistical, mathematical modelling to calculate the
expected probabilities of predefined risk events, such as binary logistic regression [41],
Bayesian network (BN) probability models [11,42], ripple effect assessment in multi-stage
SCs modelled with the integrated Discrete-Time Markov Chain and Dynamic Bayesian
Network (DBN) [43], and a system dynamics framework [44,45]. BN model parameters
(i.e., probability tables) should still be specified by industry experts and managers, so most
BN models are still subjective, especially in the development phase. These models employ
objectively measurable predictors, such as supplier deliverable storage capacity, production
capacity, transportation capacity, order level, re-order interval, lot size [41], demand, order
quantity, order-fulfilment rate, production rate, inventory, product, transportation cost, cost
per truck, truck capacity, price, safety stock, etc. [45].

The system dynamics modelling approaches require that “projected or anticipated
values for initial probability, initial cost and initial time (delay) were provided to activate
the system” [44]. Again, these parameters are set by experts sharing their knowledge,
experience, and respective insights. Objective indicators-based models still are rare in the
literature. The essential problem that limits the wider application of objective data and
mathematical–statistical modelling is a lack of quantitative data and records of bad events
and negative business impacts: “Database of disruptions from different sources are not
maintained so supply chain risk data is non-existent. Now we are talking about big data
but their usability is a question mark, and finding appropriate sources of data is a complex
task” [11].
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The empirical analysis of general data analytics capabilities in the context of SC
resilience [46] indicated that improved information processing capacity has a positive
impact on SC resilience by reducing the ripple effects of negative or disruptive events. SC
resilience is one of the interrelated research fields which investigates SC properties and
opportunities to recover after disruption [46], i.e., after an event with negative consequences.
Such findings support the proposition of our research, that data analysis instead of expert-
based risk evaluation could be a relevant way to manage the risk that emerges in SCs. The
conceptual structure of AI-based SCRM would be useful to extend information processing
capabilities that are considered to have a significant role in improving SC resilience [46–48].

Our study finds its place within the research field, covering conceptualisations of the
data-driven decision support SCRM systems. The digital supply chain twin model [49],
proposed to be developed for constant mapping of disruption risk in supply networks
and ensuring visibility; vary SC resilience angles, covering SC viability achieved by en-
hanced integrity of intertwined supply networks [50]; the agent-based simulation study of
resilience strategies in blockchain-coordinated SCs [51] that revealed how cooperation and
deeper SCs integration could reduce the risk and increase resilience as well as confirmed
relationships among trust and transparency development through blockchain technology
in humanitarian SCs [52], are few current conceptual outcomes that support relevance and
suitability of our study in the state-of-the-art context. AI-enabled SCRM would be another
relevant option for businesses in managing risk and increasing SCs resilience.

The present study extends the data-driven decision support SCRM systems research
field by paying particular attention to the role of AI, which is often mentioned as central in
the current and future SCRM systems. Through the aim of the research is to conceptualise
the grounds of the AI that would allow transition from BA to AI in SCRM, the empirical
study takes a practical perspective and looks at the problem through the eyes of a business
that meets dynamic and constantly changing SCs, where blockchain coordination, deeper
integration and smart contracts still are in a future perspective, where day to day risk
management has higher priority compared to complex concepts of resilience and disruption.

2.3. The Place for Artificial Intelligence-Based Approach in the Field of Supply Chain Risk
Management Research

The current study attempts to expand the idea of objective data- and risk indicator-
driven SCRM to encourage faster development of AI-based SCRM systems and solutions.
The question of data existence and availability is explored deeper by empirical, qualitative
research and is reported later in this paper. Figure 1 summarises the differences between
the dominant and AI-based SCRM solutions producing the research gap and respective
questions. The figure indicates that the conceptual SCRM structure and the terms of its
implementation should be explored and defined to set the grounds for the shift from the
dominant approach to an AI-based SCRM one.

The aforementioned analytical approaches, terms, and concepts in the SCRM field
include but are not limited to SCRM itself [53–62], supplier risk [42,63], supplier finan-
cial disruption risk [64], supply disruption risk [65–67], supply quality risk [68], geo-
graphical supply risk [69], supply-chain relational risk [70,71], risk in buyer–supplier
relationships [72], procurement risk management [73,74], and demand and supply risk [75].
Commonly, SCR is associated with external factors and respective events that occur outside
the focal organisation, most often caused by suppliers, that is, SC partners. An obvious
principal element of the conceptual SCRM structure is the predefined risk or certain risk of
events that should be identified, assessed, and then managed.
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research gap.

“Risk” is defined as the “probability of [predefined] events that [might] result in
loss” [57]. In other words, “risk is to be seen as the occurrence of an event, or the occurrence
of a combination of events having impacts on at least one of the company’s objectives,
its overall value, or its reputation” [34]. Risk management requires that events causing
negative consequences should be known and predefined, while the concept of SC disruption
looks from a more generalised perspective, covering both natural disasters and man-made
disasters [46,49].

The calculated probability of events that might result in losses changes the decision-
making context from “decisions under uncertainty” to “decisions under risk” [57]. Thus,
SCRM is defined as “the extent of information availability about randomly changing supply-
chain parameters” [57]. This means that such an approach to SCRM covers only SCRs
(certain events), which might be predicted based on a known, predefined set of predictors,
that is, indicators. This simple definition is the background of another element in the
conceptual SCRM structure: defined risk event indicators (Figure 2). SCRM is possible only
based on collected data about all SC elements, including the characteristics of present and
potential SC partner companies, contract details, actions and partner interactions along the
SC, and even pre- and post-contracting communication with partners.
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Figure 2. Conceptual SCRM structure suitable for AI-based SCR identification.

The focal company, which is intended to identify, assess, and manage SCR, must define
a set of risk control points (CPs) where data on risk-predicting indicators is collected [76].
Actually, all nodes (“which fulfil different functionalities such as production, storage, and
distribution” [77]) and edges (which transfer physical, informational, and financial flows
between nodes [77]) in SC networks could be treated as risk CPs. The set of relevant SCR
CPs could be managed as an integrated risk control system (RCS) [2]. RCS engineering
builds on relationships with persons or software agents [2] at each defined CP. The RCS
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ensures constant data updates. The SCR CPs include companies participating in SCs
(network nodes) and certain actions (network edges) of those participants throughout SCs.
The former are treated as static SCR data CPs (SCPs), the latter as dynamic SCR data CPs
(DCPs). The transition from BA/I to AI would enable covering a larger number of CPs and
respective data. Particular attention is paid to the DCPs—SC network edges—where data
relevant to SCR identification are constantly streaming (Figure 1).

The operational link between predefined risk events and the indicators to identify and
assess them is built by data analytics, which covers data-processing rules and algorithms
(Figure 2). These rules and algorithms are set as predefined critical values, thresholds,
accepted differences between mean and trend values, etc. Conventionally in business,
experience-based rules and algorithms are employed in risk identification and assessment.
In this case, these rules are often problematically hidden in human minds and, therefore,
tacit, implicit and thus difficult to observe, evaluate and correct [17].

The SCRM literature suggests that expected risks or certain data associated with
risk events should be processed by experts based on their knowledge and experience.
Mathematical modelling or AI could process the data based on statistics, mathematical data
exploration and machine-learning outcomes. Data processing is set by a selected analytical
technique responsible for SCRM (Figure 2) that is here treated as another element in the
conceptual SCRM structure.

Risk event–probability forecasts are calculated by processing data associated with
certain risk events. Calculated risk event probabilities identify risks (Figure 2).

Following these theoretical considerations, the five principal SCRM conceptual struc-
ture elements are (1) defined risk events, (2) defined risk event indicators sourced from SC
network nodes and SCP and DCP edges, (3) data analytics, processing rules and algorithms,
(4) analytical techniques, and (5) risk event forecasts and risk identification. These five
structural SCRM elements are the conceptual background for transitioning from BA/I to AI
in SCRM. Such a conceptualisation of the SCRM structure is suitable for AI since it defines
dependent variables (risk events) and independent variables (risks’ events indicators),
associates them with data-processing rules and algorithms, and anticipates data-processing-
based outcomes. All these elements are principal in AI definitions [15,17]. The essential
feature of AI—learning and constant improvement of risk prediction based on data from
past prediction and forecasting—is ensured by the fourth structural element of AI-based
SCRM, where appropriate technical AI tools should be installed, such as machine learning.

From a practical–empirical point of view, the conceptual SCRM structure is suitable
for AI-based SCR identification; in practice, it will be equipped with the data-driven risk
indicators from available, accessible internal and external data sources. Thus, two principal
terms for AI-based SCR identification are (1) associations of SCRs with risk-prediction
indicators from available data sources and (2) the availability and accessibility of risk
prediction–indicator data from internal and external data sources.

These AI-based SCRM implementation terms assume enough data in the business
environment, including internal and external data sources, for SCR identification. Another
assumption is that the data sources of the indicators needed for SCR identification are
well-known and easy to access inside or outside the focal organisation. The qualitative
in-depth case research explores the extensiveness of data-based SCR indicators practically
used in business. The empirical exploration-based proof that AI-based SCRM implemen-
tation terms are met in the business environment extends the grounds for transition to
AI-based SCRM.

The final conceptual assumption is that data-processing rules and algorithms are the
core of the SCRM structure and that the transition from BA/I to AI should be organised
around them. Currently, unstructured, often tacit rules and algorithms should be made
explicit to set initial risk-assessment models. The discussion at the end of the paper
integrates the theoretical and empirical findings.
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3. Research Method

The empirical study was done to prove the aforementioned conceptual grounds for
AI development and implementation terms in companies or certain business ecosystems
to increase SCRM efficiency. The first two structural elements—risk event definitions and
associated indicators—are the main research targets of the empirical study because “AI in
its essence is not about programming, debugging, software patching . . . [but] more about
defining models, engineering variables, tweaking parameters, updating and refining mod-
els” [17]. Applied approaches to analytical techniques, methods of risk-event forecasting,
and data-processing rules and algorithms are not covered by this study. Structured lists of
SCRs, associated indicators, and the conceptual summary of available data sources would
lay meaningful backgrounds for further research and practical implications.

The choice of qualitative empirical research is motivated by the intention to immerse
ourselves into SCRM as experienced by representatives of different business functions to cover
SCRM from various perspectives. The objectives of the empirical research are following:

1. To explore the extensiveness of indicators relevant to SCR identification;
2. To sum up the data sources of indicators for static (pre-contract) and dynamic (contract-

related) risk identification.

The extensiveness, availability of, and access to SCR-relevant indicator data are concep-
tual terms for incorporating AI into SCRM. Since this research is exploratory and qualitative,
these terms are not measured quantitatively. The available data sources are also structured
according to risk types and data sources defined as static and dynamic risk CPs.

The current SCRM literature does not provide full clarity on identifying SCRs by
mathematical statistical modelling with data-driven indicators of risk factors. The ex-
plicitness of risk events and their prediction indicators were considered essential terms
of AI-based SCRM implementation. Therefore, we conducted a case study [78] to learn
from one situational context in a company and its abilities in the transition from BA to AI
in SCRM.

This research thus adopted a qualitative approach and used a single, in-depth case
study as the exploratory research design. Interviews are the main data-collection method in
a qualitative case study, which is an appropriate method to explore a complex phenomenon
in detail [78] and reveal relevant information [79] to extrapolate conceptual generalisations.
Case study-based evidence is then applied to enhance and extend SCRM conceptualisa-
tion [80]. The single, in-depth case study method is considered appropriate to explore
theoretically defined terms without the aim to compare different practices and to search for
similarities and/or differences [79,81]. The research “highlights a construct by showing its
operation in an ongoing social context”, as the classic case study approach defines [81].

The case study approach was appropriate to catch not only conventional risk events
and associated indicators but also those on the minds of business representatives still not
considered practical due to limited analytical capabilities or other reasons. These risk
events and data-utilisation opportunities should be addressed by our proposed transition
from conventional BA/I to advanced, innovative AI solutions in SCRM.

Several criteria guided the selection of the target case company to study. The firm
(referred to as the “Holding Company” for confidentiality) has extensive experience in
a range of industries and markets. The Holding Company specialises in the supply and
distribution of commodities and raw materials, one of the most diversified commodity and
raw material-distribution groups in Eastern Europe. Its activities are grouped into several
business segments: biofuel, agro, textile, food, energy, package, industry, services, and
plastic materials.

The main headquarters of the company are in Lithuania; the company also has offices
in Latvia, Estonia, Denmark, Poland, Russia, Ukraine, Belarus, Hungary, Romania, the
United Arab Emirates, and China. The company’s main trading markets are in Eastern
Europe. The Holding Company’s business model is based on (1) representing suppliers
in existing and new markets (the company works with more than 2000 suppliers) and
(2) developing customer networks in search of new suppliers or partners (the company
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has more than 5000 customers). The Holding Company sells 4000 products and has trade
relations in 70 countries.

The case company and research partners joined forces in February 2019 and developed
a risk-identification, assessment, and management model to help companies identify and
manage SCR using AI.

In research, we “identify and make analytical generalisations to the general case of which
[our] study is an instance” [82], which provides context for the research. Rashid et al. [83],
a step-by-step guide for business researchers (i.e., a checklist comprised of four phases,
that is, the foundation phase, prefield phase, the field phase, and reporting phase), was
followed for clarity, selection, and operationalisation of the qualitative case study.

The possible limitations of the case study research worth mentioning here are the
following: single data collection method, while classical case study research anticipates that
multiple methods, combining qualitative and quantitative ones [84], should be employed.
The within-case analysis is done, but research lacks cross-case data, which would let to
look “beyond initial impressions and see evidence thru multiple lenses” [84]. However,
replication across cases is not required to reach the aim of this research. This research fits
the theory-elaboration, not theory-generation type case study [85], which means that the
general theoretical approach is developed based on a literature review and then put into
a particular empirical context to elaborate on the new and currently relevant direction.
Another limitation of the empirical research worth considering is the lack of a pilot study
before the main interview. The interview guide was developed by researchers and used to
collect the data without a formal test of the data collection instrument.

Seven semi-structured interviews were done with representatives of business support
functions at the Holding Company to critically examine SCRM in a large commercial firm
operating in many industries and to understand how it explores SCR factors to identify
SCRs. Semi-structured, open-ended questions allow respondents to freely express their
views and provide more room to explore factors of interest by allowing authors to probe
for clarifications for more in-depth answers [86].

The interviewees were not constrained by giving them a conceptual framework,
predefined risk or indicator categories, or any other ideas. To ensure data validity, all the
interviews were conducted by two interviewers.

Table 1 provides data about the interviewed managers. All the interviews were recorded
and fully transcribed. The questions were formulated to achieve the objectives of the study.

Table 1. Characteristics of interviewees.

Code Department, Position Experience in a
Managerial Position Role in the Company Interview Date

and Duration

A Finance (2 representatives)
15 years of experience in the
financial field, 8 years of
experience in the financial field

Head of financial services group,
credit control specialist

31 May 2019,
3 h

B Accounting 25 years of experience in the
accounting field Head of accounting services group 13 June 2019,

2 h

C Logistics 14 years of experience in the
transport industry Head of transport services group 19 June 2019,

2 h

D Legal 16 years of experience in the
legal field Head of legal services group 12 June 2019,

2 h

E Prevention and vindication 4 years of experience in the
prevention and vindication field

Head of prevention and
vindication department

3 June 2019,
3 h

F IT 17 years of experience in the
IT field Head of IT services group 9 July 2019,

2 h

G CEO 6 years of experience in CEO
position CEO 10 July 2019,

3 h
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The data were analysed using directional content analysis, an effective process of
classification, coding, and categorising [87]. MaxQDA 18 software was used to qualitatively
analyse the interview transcriptions.

The following steps were taken:

1. SCR coding. Great variations in how managers described SCR, what specific activities
they included in SCRM and how they emphasised each practice became clear in the
first transcript reading. Various risk patterns emerged that could indicate different
types of risk indicators in the empirical data. To arrive at common themes in the
interview data, a two-cycle coding process was followed [88].

a. The authors worked separately and developed the categories and sub-categories
of SCRs that emerged from the interview transcripts.

b. After the proposed risk categories and sub-categories were sketched out by
each researcher individually, we began to develop unified risk categories.

2. SCR indicators coding. The next step was to find the indicators used to identify
each risk. Using the risk categories as a framework, we coded sections of transcripts
that mentioned known data and risk-identification indicators. The authors also
compared their independently developed holistic codes and established agreement
on all of them.

3. SCR-indicator association and grouping by data sources. The last step was to un-
derstand risk-management practices and identify data sources of indicators of static
(pre-contract) and dynamic (contract-related) SCRs.

A total of 1535 segments were coded in the interview transcripts. All codes were assigned
to SCRs and data-source categories: supplier risks events—6 codes emerged from the 115 coded
segments (from 6 documents); buyer risks events—7 codes emerged from the 247 coded
segments (from 6 documents); carrier risks events—5 codes emerged from the 65 coded segments
(from 4 documents); contract risks arising inside the company—10 codes emerged from the
329 coded segments (from 7 documents); supply-chain risk indicators—64 codes emerged from
the 779 coded segments (from 7 documents).

The data were checked for reliability and validity to ensure the quality of the results.
In principle, this study can be repeated to generate similar results. The data collection
was carefully documented, the interviews were highly structured, and all the data were
collected into a qualitative database. Internally, all the researchers were involved in coding
and data analysis (Yin, 2009).

The research outcomes discussed further in the paper, due to the exploratory character
of the qualitative research design [79,80,88], should illuminate the form and content of the
theoretically defined grounds of BA/I-to-AI transition in SCRM.

4. Results: SCRs, Their Identification Indicators, and Data Sources

The interviewed representatives of the case company’s functional departments shared
their experiences in SCRM from both upstream (supply) and downstream (sales and
distribution) perspectives. The qualitative research revealed SCRs (i.e., expected events
with harmful consequences for the business), respective risk-identification indicators (risk
predictors), and risk control points in worldwide SCs as data sources.

Figure 3 overviews the interview data codes that define SCRs. Sums of coded seg-
ments and data sources are indicated respectively to the number of segments found in
different interviews.
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To reveal SCRs defined as certain events with potentially negative consequences to
the business, we structured coded primary data around main SC participants as main CPs
where SCRs emerged: (1) suppliers, (2) buyers, (3) carriers, and (4) commerce managers
(focal company representatives) managing purchases and sales contracts.

The primary research data on the indicators used by the managers and business
function representatives to predict risks were structured around the main data sources:
(1) companies participating in SCs (suppliers, buyers and carriers); (2) public (e.g., State
Tax Inspectorates or State Social Insurance Funds) or private (e.g., credit risk insurers,
commercial banks, publicly available street views image data, global positioning system
tracking data, etc.) third-party institutions authorised to collect and manage certain data
about companies (i.e., SC participants) in certain states; (3) third-party analysts, who assess
economic or business performance in particular states or sectors, evaluate commercial
risks in these environments, monitor market prices, etc. (indicators of this third category
could also be filled by the company’s internal analysts’ data); and (4) functional and/or
commercial departments of the focal company itself providing details on ongoing and/or
intended commercial contracts. Figure 4 gives detailed lists of data codes associated with
the SCRs and their identification indicators.
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Figure 4. Qualitative interview data analysis-based structure of R/I-m, where risk events are listed
along rows and indicators along columns.

The fifth category of SCR indicators (coded 2.5. in Figure 4) is worth attention. It
represents individuals’ subjective evaluations of SC elements based on expertise, experience,
and knowledge. Though interview data analysis supports the conceptual proposition
that, in practice, SCRs are associated with objectively measured, available, accessible
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data and thus meet the conceptual terms of AI-based SCRM implementation, it must be
acknowledged that experts’ knowledge-based subjective assessments to identify SCRs are
common, not just as the data source for SCRM scientific research (as discussed above),
but also in everyday SCRM. It would be unreasonable to disregard experts’ experience
and knowledge as a data source. However, applying this kind of data would be different;
experts would be asked not to evaluate risk but to provide knowledge-based assessments
for risk-prediction models along with other objectively measured indicators.

If SCRM is based on BA/I practices, indicators in the fifth category remain hidden
and implicit with unknown forms of interpretation and application but are nevertheless
applied in SCRM. These indicators cover subjectively evaluating reputations of supplying,
carrying, and buying companies and market risk, trust level, etc. They are not based on
exact, structured, objective variables. During the transition phase from BA/I to AI in
SCRM, these indicators could be valuable to tune prediction models and assist machine
learning, but they would then be structured and integrated into formal risk-prediction
models over time.

The revealed list of internally and externally sourced data indicators associated with
certain SCRs confirms that the first theoretically defined term for implementation of AI-
based SCRM is met in a business environment

Risk events and associated indicators covered by the aforementioned categories
(Figure 4) comprise the R/I-m, which serves as a background to develop SCR-identification
models and the overall AI framework. This matrix is a central element of the general
conceptual SCRM structure (Figure 2), which was defined based on the SCRM literature
review. Another term for implementing AI-based SCRM assumes the availability and
accessibility of data from internal and external data sources to fill the R/I-m. To confirm
empirically this condition is met in the business environment, we make a data-based sum-
mary of data sources of indicators for static (pre-contract) and dynamic (contract-related)
risk identification (Figure 5).

To structure revealed risks and their identification indicators by their data sources,
upstream (i.e., supply, buying side), and downstream (i.e., demand, selling side) SC per-
spectives [3] are broken down by already-defined SCPs, which occur and must be employed
for SCR assessment before commercial contracts are signed, and DCPs, which emerge after
signing commercial contracts when SC activities begin. Signing contracts multiplies SCPs
by adding DCPs, so risk assessment leaves the static and enters the dynamic phase. Data
from SCPs (Figure 5) describing SC-participating subjects and their activities should be
collected and entered into the R/I-m to evaluate current or potential participants and
the risks related to them. Data sourced from DCPs start to stream into the R/I-m when
certain commercial contracts start. AI tools are needed to cope with this greater number of
indicators and amount of data because humans cannot process them.

Figure 5 depicts attitudes towards SCs and points out where SCRs occur and where
they could be identified and assessed by processing data available at certain CPs. The
second term for implementation of AI-based SCRM, which follows the conceptual SCRM
structure, is also thus empirically confirmed as met in the business environment. The re-
vealed lists of static and dynamic risk CPs associated with certain SCRs as risk-identification
data sources serve as empirical evidence that confirms the second theoretically defined
term for AI-based SCRM applications.

The SC is observed from the perspective of the focal company, which is engaged in com-
mercial business and manages SCs of various products. Such SCs extend through several
countries. Local, international, and overseas shippers are also among the main participants.
Generally, the activity of a certain focal company covers only part of the SC: the upstream
side when the company sources resources and materials to fulfil its own manufacturing
business needs and the downstream side when it distributes manufactured products.

The conceptualisation of the SCRM data sources (Figure 5) is rather simplified, abstract,
and stylised. Each category of participating subject (i.e., each major SCP) requires gathering
data about all potential actors who may enter SCs managed by the focal company. Each DCP
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also requires exploitation to extract the contract-management data. Finally, each contract
constitutes its own SC with particular participants and particular contract-management
data from a mix of particular contract-related SCPs and DCPs. Thus, the R/I-m should
be seen and treated as a multilayer database associating data-providing CPs, SCRs, and
risk-prediction indicators. In the same way, certain SCRs will be measured for particular
SC partners and respective ongoing buying or selling contracts.
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5. Discussion and Implications: Do the Established Grounds Ensure an
Instant Transition?

In the following chapter, the generalised theoretical implications of the conceptual
SCRM system are integrated with the “contextual idiosyncrasy” [85] by discussing the
above-presented results of empirical research. Such integration or duality of generalised
theory and empirical context is considered a common outcome of case study research. It
means that all the following considerations are contextual; they are relevant in the scope of
the researched context (even if this is not mentioned repeatedly in the coming paragraphs).
Here, we elaborate the general SCRM concept, as defined above in the literature review, to
the context of AI-based SCRM.

AI, among other generalised interpretations, is defined as “the science and engineer-
ing domain concerned with the theory and practice of developing systems that exhibit
the characteristics we associate with intelligence in human behaviour” [89]. From this
perspective, the principal idea of this study could be controversial; the study searches for
grounds to expand AI to avoid decisions made by humans (due to inefficiency in terms
of time, cost, data-processing capabilities, possible mistakes, and potential biases), while
AI itself aims “to exhibit characteristics of human intelligence”. Notably, then, exhibiting
characteristics associated with human intelligence should not be perceived as an attempt to
replicate the outcomes or processes of human behaviour. On the contrary, while evaluation
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and judgement characteristics should remain, efficiency is expected to improve. Making
actions and decisions more logical is the most expected positive effect [90]. It should also
increase objectivity, impartiality, and impersonality by reducing common human mistakes,
biases, and inefficiencies in SCRM.

AI in SCRM links SCRs and their indicators. Conventionally in business practice, this
position is occupied by BA/I: data-processing rules and algorithms made by individuals
that are consequently subjective, intuitive, and difficult to integrate, creating difficulties
in tracking the efficiency of risk assessment, correcting mistakes, etc. A decision-maker
may construct his or her decision-making behaviour to constrain the opportunity for new
information to alter initial perceptions and choices [91]. Even the same set of data or ratios
might be interpreted differently by different employees at the same company, which affects
decision-making and enables intuitive conclusions and, therefore, human mistakes.

Such analytics in SCRM could be defined as “tasks . . . performed in an ‘artisanal’
fashion, with high labour intensiveness and low speed of completion” [17]. BA/I practice
can support separate reactive decisions but is not sufficient for advanced predictions
and proactive insights. Managers react to risk events (e.g., delayed payments, disrupted
shipments, supply quality issues, etc.) based on periodic checks for SC issues in spreadsheet
data, but they cannot proactively make and adapt SCRM decisions based on constant
predictive risk identification.

The transition from conventional BA/I to AI—or as Davenport [17] would say, from
“Analytics 1.0” to “Analytics 3.0 or 4.0”—requires “companies to transform their business
models and culture with extensive use of analytics”. AI solutions would convert companies’
SCRM analytics from descriptive (dominated by structured, historical data in spreadsheets,
reviews, categorisation, classification, ratings, human-made periodical, and repetitive
reviews of data) to predictive (e.g., real-time identification of suspicious transactions saved
from risky SC contracts and loss) and even prescriptive analytics [14]. Currently, companies
are mostly engaged in descriptive analytics, so this is an appropriate starting point.

This study proposes that the BA/I-to-AI transition in SCRM is possible if SCRM is
structured around predefined risk events, objectively measured data-driven risk indicators
linked to available, accessible data sources, and data-processing rules and algorithms based
on either expert knowledge and experience or models discovered by AI machine learning.
The empirically explored terms of AI-based SCRM implementation were proved to be met
in the business environment as long as SCR-identification indicators and data sources are
known and used by practitioners in the business. The conceptual SCRM structure suitable
for AI and the proof that it meets the terms of AI-based SCRM implementation lay solid
groundwork for the BA/I-to-AI transition in SCRM.

Does this mean, however, that the proposed conceptual grounds ensure the transition
can be instantaneous? Risk identification is based on the “availability of [considered
events’] probability distributions” [57]. Applied AI-based SCRM solutions are expected to
uncover probabilities (i.e., statistical probability distributions) of events based on observed
factors associated with predefined indicators. Since the number of events with undesirable
consequences is small compared to the number of events with desired ones, the availability
of unwanted-event probability distributions is often an issue in risk management. AI-based
SCRM developers should also expect difficulties in building prediction models due to
limited unwanted-event statistics. The data for predictors (independent indicators) are
available, but unwanted-event statistics will often be limited.

AI machines are expected to be able to explore the R/I-m data to develop empirically
reasoned (i.e., data-based) coefficients of risk-indicator associations defined in mathemati-
cal models. However, experience-based knowledge is also relevant and required to build
certain risk assessment models and make them work. The data-processing rules used by
humans to identify SCRs include critical values of predicting indicators, rules to treat the
indicators according to specified values or predefined threshold levels, predefined values
of nominal indicators (e.g., allowed payment verification documents), tolerated levels of
financial ratios, warning of risk in the case of sudden changes in the number of employees,
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etc. In some cases, these rules are based on and associated with other relevant indicators
in the system. Due to the limited availability of risk-event statistics and constraints on
mathematical–statistical modelling, BA/I rules should be considered in developing pre-
diction models to later be corrected by AI constantly learning from accumulated data on
prediction accuracy and risk events. The initial rules, procedures, and data-processing
algorithms developed by humans will gradually be replaced by ones discovered by AI for
examining past data, detecting patterns or relationships, and associating risk events and
their predictors. Data mining, pattern recognition, forecasting, and predictive modelling
are the most common techniques for this [14].

The transition from BA/I to AI in SCRM is thus not a revolution but rather an evolution:
elevating existing practice to greater potential in terms of calculation power, coverage of
prediction indicators, responsiveness to changing conditions, etc. The BA/I-to-AI transition
in SCRM will not be instantaneous, however. It will require time to develop. Experience
must accumulate [14,17] to perform better-informed classifications, categorisations (of
partners and contracts), and predictions that cross boundaries of known event samples,
extend the analysis, and cover all possible risks in all event–partner–contract combinations.
The transition from BA/I to AI in SCRM will happen when indicators processing rules and
algorithms are developed and maintained, not by humans, but by learning machines.

Figure 6 summarises the transition from BA/I to AI in SCRM based on the study
outcomes on conceptual grounds. The changes in the approach to SCRM are highlighted
according to the elements of the conceptual SCRM structure defined above (Figure 2).
Considerably more details are presented for predefined risk events and risk event indicators
since they were explored empirically.

AI analysts (e.g., Akerkar [14–16]; Davenprot [17]; Min [31]) point out that AI solutions
often do not need to be developed (i.e., coded) from scratch. The set of SCRM-relevant
indicators defined here will also require extensive use of other AI techniques. Automated
street-view image recognition will require deep learning to process input data to charac-
terise situations, for instance, such as deciding whether a shipment address indeed points to
commercial premises. Statistical or semantic natural language processing will be required
to process contracts, customer complaints, and commercial correspondence (in voice or
text formats) to catch unfair or dishonest deals. The share of unstructured BD is growing in
SCR analytics [14], and AI is the current solution to cope with and exploit it efficiently.

Since AI is not intended to revolutionise but rather evolutionise and improve SCRM,
all its basic elements should remain and be used as initial building blocks. Thus, all of them
should be considered essential prerequisites for BA/I transition to AI. In the same way,
the relevance of this transition is proven. The BA/I approach is based state of all SCRM
elements; issues occurring under BA/I approach and expected changes after the transition
to AI are summarised in Table 2. The comparison of BA/I and AI practices along with
listed SCRM elements is done following Davenport [17], Andriole [90], Akerkar [14,15]
and other authors. Table 2 provides a summary of the practical implications of proposed
conceptual grounds for the transition from BA/I to AI in SCRM.

SCRM supporting AI decisions should be seen as integrating already existing BA/I
solutions. Companies should also care more about gathering data for machines to learn.
Negative risk events should be observed and registered over time to associate them with
predicting indicators, thus creating training databases. “The ability to ‘bootstrap’ rich and
unique training data can create more of a competitive advantage in AI than mastery of
AI technology” [17]. Appropriate, relevant rule-based systems from conventional BA/I
practices will be transferred to AI. Though rule-based systems are outdated BA/I techniques
from the 1980s [17], they are still relevant in the transition from BA/I to AI. Human-
proposed knowledge- and expertise-based rule systems (in terms of coefficients, critical
values, tolerated difference levels, thresholds, etc.) will likely be taken over by AI.
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Table 2. BA/I practice, issues, and expected changes after the transition to AI.

SCRM Elements BA/I Practices BA/I Issues Change after the Transition
to AI

1. Defined risk events

Risks are seen as specific to
certain business functions, e.g.,
finances and accounting, law
department, transportation

Function-wide risks concerns,
e.g., finance managers not
associating risk with shipment
or product quality issues

Company/business
ecosystem-wide estimations
of SCR, partner companies
and contract-respective risk
definitions, extended range of
monitored risk

2. Defined risk
event indicators

Straightforward, evident, easy
to access and process, e.g.,
financial ratios, contracts data,
firms’ profiles

Many relevant data sources
are not employed, e.g., GPS
tracks, commercial
correspondence, etc.

Optimised analytics, use of
the same data for many
different risk assessments,
extended data sources, and a
range of respective indicators

3. Data analytics, processing
rules, and algorithms

Personally developed expertise
and decision criteria

Bias in risk assessment due to
human emotions, intuition,
personal interests

Vast data and data processing,
cutting-edge statistical
methods, dynamic analysis
that improves over time

4. Analytical techniques

Spreadsheets, manual checking
for critical values, static data,
past periods summaries,
statistical analysis

Forecasts are mostly based on
past data, limited data from
ongoing processes, shortage
of analysts

Optical character recognition
in text documents processing,
automated texts or images
processing, automated
machine learning,
automated analysis

5. Risk event forecasts,
risk assessments

Intuitive, often based on past
periods data, human
experience-based hypotheses

Events observed and analysed
after they happened, limited
data-mining capabilities

Forecasts based on
machine-learned coefficients
and weights of indicators
assigned to risk events

6. Conclusions

1. Current business dynamics require rapid changes and quick adaptation in SCRM,
which employs different BA/I tools and techniques. The problem is human interpre-
tations being involved in decision-making. The decision maker may construct his
or her decision-making behaviour to constrain the opportunity for new information
to alter initial perceptions and choices. Even the same set of data or ratios might be
interpreted differently by different employees at the same company, which affects
the decision-making process and leaves room for intuitive conclusions and, therefore,
human mistakes. Therefore, the introduction of AI to SCRM should improve the accu-
racy of risk identification and assessment. The transition from BA/I to AI in SCRM is
not a self-starting process, however, so this article has developed a particular SCRM
structure that lays the conceptual groundwork for this transition, the implementation
terms of which it empirically explores.

2. This article has identified five elements of a conceptual SCRM structure: (1) defined
risk events, (2) defined risk event indicators, (3) data-processing rules and algorithms,
(4) analytical techniques, and (5) risk-event forecasts and risk identification. SCRM
built on these five elements would be suitable for AI-based solutions since it would
define dependent variables (risk events) and independent variables (risk-event indica-
tors), associate them with data-processing rules and algorithms and anticipate data
processing-based outcomes. Two principal terms for AI-based SCR identification to
explore empirically are (1) associations of SCRs with risk-prediction indicators from
available data sources and (2) the availability and accessibility of these data.

3. An empirical qualitative case study was conducted to explore the terms for AI-based
SCRM implementation. Two structural elements—risk-event and associated risk-
identification indicators—were the main research targets. SCR events, as dependent
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outcome variables, and their indicators, as independent predictors, are the basic
elements most required to engineer relationships among variables, build prediction
models, train them and kickstart AI in SCRM. Based on the selected case study
outcomes, both terms for AI-based SCRM implementation are empirically proved as
met in the business environment.

4. Though lists of risk events and prediction indicators are context-specific, the case
data suggest that SCR events could be clustered around main SC partners (suppliers,
carriers, and buyers) along with the focal company itself; while SCR identification
indicators could be associated with the main data sources (i.e., partnering companies,
legal, public and private third parties, external market or business analysts and
business data from internal sources in the focal company). The background from
which SCR-identification and assessment models emerge is the data matrix associating
risk events and their prediction indicators.

5. AI should develop around data-processing rules, procedures, or calculation algo-
rithms used to process indicators’ attempts to predict risk events. Initially, data-
processing rules, procedures, or calculation algorithms suggested by humans are
currently engaged in SC management; they will be tested, refined, and corrected by
AI employing machine learning, deep learning, and other relevant AI techniques.
Working AI in SCRM cannot be developed instantly, however.

6. This study has proposed that the predefined risk events, objectively measured, data-
driven risk indicators linked to available, accessible data sources, and data-processing
rules and algorithms set based on either business practitioner knowledge and expe-
rience or models discovered by AI machine learning are the principal grounds for
transitioning from BA to AI in managing supply-chain risks.
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