
Citation: Skersys, T.; Danenas, P.;

Mickeviciute, E.; Butleris, R.

Transforming BPMN Processes to

SBVR Process Rules with Deontic

Modalities. Appl. Sci. 2022, 12, 8976.

https://doi.org/10.3390/

app12188976

Academic Editors:

Malgorzata Pankowska and

Emilio Insfran

Received: 23 July 2022

Accepted: 5 September 2022

Published: 7 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Transforming BPMN Processes to SBVR Process Rules with
Deontic Modalities
Tomas Skersys 1,2,* , Paulius Danenas 1 , Egle Mickeviciute 1 and Rimantas Butleris 1

1 Center of Information Systems Design Technologies, Kaunas University of Technology, K. Barsausko Str. 59,
51423 Kaunas, Lithuania

2 Department of Information Systems, Kaunas University of Technology, Studentu Str. 50,
51368 Kaunas, Lithuania

* Correspondence: tomas.skersys@ktu.lt

Abstract: The Object Management Group (OMG) has put considerable effort into the standardization
of various business modeling aspects within the context of model-driven systems development.
Indeed, the Business Process Model and Notation (BPMN) is now arguably the most popular process
modeling language. At the same time, the Semantics of Business Vocabulary and Business Rules
(SBVR), which is a novel and formally sound standard for the specification of virtually any kind
of knowledge using controlled natural language, is also gaining its grounds. Nonetheless, the
integration between these two very much related standards remains weak. In this paper, we present
one such integration effort, namely an approach for the extraction of SBVR process rules from BPMN
processes. To accomplish this, we utilized model-to-model transformation technology, which is one
of the core features of Model-Driven Architecture. At the core of the presented solution stands a
set of model transformation rules and two algorithms specifying the formation of formally defined
process rules from process models. Basic implementation aspects, together with the source code of
the solution, are also presented in the paper. The experimental results acquired from the automatic
model transformation have shown full compliance with the benchmark results and cover the entirety
of the specified flow of work defined in the experimental process models. Following this, it is
safe to conclude that the set of specified transformation rules and algorithms was sufficient for the
given scope of the experiment, providing a solid background for the practical application and future
developments of the solution.

Keywords: business process model; process rules; model transformation; SBVR; BPMN

1. Introduction

Despite all the efforts of OMG to make Business Process Model and Notation (BPMN)
(OMG, 2013) a graphical language that could be read and understood equally by both IT
and business people, the latter still lean toward the natural language specifications; this is
especially true when it comes to documenting and validating business process models [1–4].
Better yet is to have both graphical and textual representations of business knowledge,
because people might have different preferences towards process representation formats
depending on the application purpose and the cognitive style of an individual himself [5,6].
This implies that graphical business process models should have unambiguous representa-
tion in natural language as well. In other words, there is an actual need for a solution that
could support different kinds of visualizations (namely graphical and natural language-
based) of business process models and beyond. Such a solution would be beneficial to
all interested parties in any information systems development (ISD) effort, i.e., actual
process participants who take part in real-world business activities, business analysts who
model and analyze business processes, and system developers who develop computerized
information systems supporting those business processes.

Appl. Sci. 2022, 12, 8976. https://doi.org/10.3390/app12188976 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12188976
https://doi.org/10.3390/app12188976
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-7782-0312
https://orcid.org/0000-0002-2054-0624
https://doi.org/10.3390/app12188976
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12188976?type=check_update&version=2

Appl. Sci. 2022, 12, 8976 2 of 27

We put this business process model representation objective into a larger context,
which is the development of solutions integrating various perspectives of business model-
ing and platform-independent modeling under the unified framework of OMG’s Model-
Driven Architecture (MDA) [7]. This is a long-term research initiative carried out by
the researchers at Kaunas University of Technology (KTU) together with their respected
partners in various research and development (R&D) projects, such as VeTIS (“Business
Rule Solutions for Information Systems Development”, 2007–2009), funded by the High
Technology Development Program, Lithuanian State Science and Studies Foundation, and
VEPSEM (“Integration of Business Processes and Business Rules on the Basis of Business
Semantics”, 2013–2015), funded by the European Social Fund (ESF). One of the main areas
of our research in this domain is the integration of formally sound natural language-based
business vocabularies and business rules with business processes. It is widely acknowl-
edged that business processes and business rules are tightly related to each other. Yet,
the actual integration of these two major aspects of business knowledge has not been
explicitly defined by OMG in their respective standards, namely BPMN and Semantics
of Business Vocabulary and Business Rules (SBVR) [8]. There is no direct referencing to
SBVR, nor its concepts in any context in the latest version of BPMN. At the same time in
SBVR, they mention business processes only once by saying that “ . . . a metamodel of a
business process can import the SBVR XMI Metamodel package to relate processes to rules,
or for modeling semantic formulations of rules that govern processes.” It should be made
clear that OMG does acknowledge the existence of direct or indirect relationships among
business processes and other business modeling aspects, such as business rules models;
however, these relationships are yet to be “ . . . defined more formally as BPMN and other
specifications are advanced” [9]. In other words, the integration of OMG standards that
define various aspects of business models, as well as information systems design, remains
a prerogative of the international research community.

In this paper, we focus on one of the aspects of the integration of business processes
with business vocabularies and business rules, specifically the transformation of BPMN
processes to structured natural language-based process rules, which is a kind of behavioral
business rules, expressed in SBVR. In that way, the natural language-based representa-
tion of business processes is well-aligned with the already existing business vocabularies
and business rules of the same business domain. SBVR provides the means to properly
structure and formalize business knowledge and to represent it in a natural language form,
meaning the acquired SBVR process rules can be viewed and validated by people as well as
computerized systems in the context of a single consolidated SBVR specification document.
Such an augmented specification could then be used not only as a means to textually
represent business processes but also for the requirements specifications, writing work
instructions, generating software artifacts, improving the real-world business processes,
and other purposes.

Further, the paper is organized as follows: an overview of the related work is presented
in Section 2; Section 3 provides a specification of the transformation patterns, which is the
core of our model transformation approach; basic implementation aspects of the approach
are presented in Section 4, which is followed by an illustrative example of transforming
BPMN process to a set of SBVR process rules presented in Section 5; Section 6 presents
an overview and evaluation of the experiment results, and Section 7 explores threats to
validity; finally, Section 8 concludes the presented research.

2. Related Work
2.1. State of the Art Research

Neither the integration of business processes with business rules nor the representation
of business processes in natural language text (and vice versa) are novel ideas whatsoever.
In model-driven ISD, the idea of integrating the two very much related aspects of business
knowledge has been around for three decades, counting from the first notable publication

Appl. Sci. 2022, 12, 8976 3 of 27

on this subject in 1991 [10]. Since then, numerous pieces of research have been conducted,
providing a variety of integration approaches and applications [11–18].

At the same time, the representation of graphical business processes in natural lan-
guage text has also gained significant attention. Most recently, Rosa et al., presented their
approach for the user-assisted visual annotation of business process-related elements in
textual documents [19]. The process model to text transformations (M2T) have gained
ground in requirements engineering as well, e.g., Aysolmaz et al., generated well-structured
system requirements documents from visual process models [20]. Meanwhile, others re-
searched transformations in the opposite direction, that is, extracting process models from
various textual documents [21–24]. In most of the overviewed related work, we observed
one common issue with natural language texts, which is the inherent ambiguity and the
lack of proper structuring of business knowledge expressed in natural language. In [25],
the authors conclude that even the most advanced natural language processing (NLP)
techniques still face many challenges when dealing with natural language texts in the
domain of BPM; obviously, the same situation is inherent in the domain of ISD as well.
In other words, without proper formalization, the representation of business knowledge
in natural language presents a considerable challenge to the practical application of that
business knowledge in BPM, ISD, and, presumably, other relevant domains.

We argue that OMG’s Semantics of Business Vocabulary and Business Rules [8] pro-
vides all the required means to properly structure and formalize business knowledge
while at the same time retaining the positive aspects provided by the natural language
representation. In one of his interviews, Rob van Haarst, who is a renowned person in the
business rules community, said that “SBVR is an extremely powerful method to formalize
knowledge, forming a solid base for contracts, end-user documentation, work instructions,
process design, and product development” [26]. Some go even further by stating that
SBVR coupled with BPMN provides an optimal combination for expressing the semantics
of business knowledge [27,28]. Moreover, SBVR specifications can be transformed into
various conceptual modeling as well as software artifacts [29–32].

While there are many approaches researched on the integration of business processes
and business rules, there is not much research on integrating specifically the concepts of
BPMN and SBVR [33–35] and even less so on transforming BPMN processes to natural
language-based SBVR business vocabularies and rules. Other than our own findings [36,37],
the results of just a few other research pieces are to be found on the internet. In [36], we
presented the SBVR and BPMN standards-based approach for the extraction of SBVR
business vocabularies from BPMN process models; notably, only the business vocabulary
part of the SBVR specification was considered in that research. In [37], certain founding
principles for extracting SBVR process rules from the process models together with the
experimentation results were presented; this research item lies in the fundament of the
research work presented in this paper. Other than [37], only two other papers [38,39]
published by the same authors presented some early research results describing the repre-
sentation of BPMN processes in a form of SBVR process rules. However, these papers do
not present a comprehensive transformation approach but rather the very basic principles
and attempts to comprehend the problematics of such a transformation in general; a small
set of basic illustrative model transformation rules were presented as well.

Several other research groups presented their approaches for transforming BPMN
processes to business rules expressed in other than SBVR textual representation formats.
The authors of [40] showed how compliance rules could be generated from the control flow
of a BPMN process model. The acquired rules were aimed at the uniform representation of
the activation of tasks using a specific human-readable language based on First-Order Logic
(FOL). The presented approach provides informal complementation to a process model,
whereas our approach deals with a more formal representation of business knowledge by
the means of SBVR. In [41], an approach for the verification of BPMN processes against
the rules defined as “IF . . . THEN . . . ” expressions is presented. The approach uses
the proposed Business Rules Language (BRL) to define structural patterns for the BPMN

Appl. Sci. 2022, 12, 8976 4 of 27

process model, which can then be used to construct the BRL-compliant “IF . . . THEN . . . ”
verification rules for the specific process model. The paper lacks a better representation
of the defined set of model patterns as well as an experimental investigation to prove the
validity of the presented development. Compared with both [40,41], our model transfor-
mation approach handles a greater variety of relevant BPMN concepts and process model
patterns, thus providing a more comprehensive representation of the process flow in a form
of SBVR process rules.

Concerning our work, valuable results were presented by the researchers working
with reverse transformations, that is, the automated development of BPMN process models
based on the business knowledge stored in SBVR business vocabularies and business
rules. The basis of all the reviewed approaches was a certain set of mapping rules for
transforming SBVR business vocabularies and business rules into corresponding process
model fragments composed of a single or a set of interrelated BPMN concepts forming
certain structural process patterns [42–46]. When talking about process patterns, one can
also consider the so-called recommender approaches for business process modeling [47].
Those recommendations may vary from suggesting presumably the most suitable label
for the next activity being added to the sequence flow [48] up to recommending large
process fragments [49] to the process model under development. Among other overviewed
research items dealing with model transformations, the recommender approaches may also
provide insights into the variety of possible structural business process patterns, which is a
relevant subject to our approach.

2.2. Concepts’ Definitions, Issues, and Pre-Conditions to Be Considered

Definition of a process rule. Since the first comprehensive research publications on
the business rules subject in the last decade of the XX century [50–52], there has been a lot
of arguing persisting about what business rules actually are or what they should be, etc.
We will not go into the extensive discussion over this subject here, but rather introduce
the concepts of a behavioral business rule and a process rule, the latter being one of the
cornerstones of our model transformation approach presented in this paper.

In SBVR, a behavioral business rule indicates something business participants are either
obliged to do (an obligation) or prohibited from doing (a prohibition), except where there
is some explicit advice of permission given (a permission) [8]. We define a process rule (also
known as a process-related rule) as a kind of behavior rule, which explicitly guides and
constrains the flow of work itself (i.e., “ . . . the sequence and timing of activities” [53])
within a given business domain. In the context of BPMN and SBVR standards, process rules
specify the flow of work presented in a BPMN process model in a well-structured set of
natural language-based SBVR rules with deontic modalities inherent to the behavioral rules.
Next to other kinds of business rules, the process rules have their place in the so-called
process-rule continuum as well [13].

SBVR’s capability to represent BPMN processes. When deciding on the matters of
representing certain things, one must always make sure that the language selected for
the task has sufficient expressive power to represent those things properly. In the case
of SBVR representing concepts of BPMN, we concluded that SBVR should be extended
to fully represent process rules and at the same time preserve the semantics of BPMN
processes (especially if the reverse transformation is to be considered). Two extension
options were considered. The first option was to extend the SBVR metamodel itself. Such
an approach has already been applied by several other research groups to meet their specific
requirements [33,42,54,55]. However, altering the metamodel of any widespread modeling
standard comes at a cost, for example, tracking and applying changes on a metamodel level
each time a new version of a standard is issued, accepting the high risk of closing-in in
your own “sandbox” because the solution with the altered standard metamodel might not
be accepted elsewhere, or limiting the range of tool support due to limited tool capabilities
to support extensions on the metamodel level. The second option, which we consider
an optimal solution for our approach, is using additional vocabulary describing BPMN

Appl. Sci. 2022, 12, 8976 5 of 27

concepts. The peculiarity of SBVR is that SBVR itself is a business vocabulary that is meant
to be imported into other vocabularies developed for any business domain. Importing other
business vocabularies is a common practice in SBVR. Thus, the developed vocabulary for
BPMN would be just another vocabulary to be imported for the process rules development;
such an approach would not alter the SBVR metamodel, thus avoiding the “side-effects” of
the previously described first option. However, it should be noted that the development of
relevant SBVR business vocabularies for the specification of process rules is not within the
scope of this paper, therefore this aspect will not be elaborated any further.

Linguistic Issues. Again, the linguistic aspect of business knowledge should be
considered during the specification of SBVR business vocabularies, which is not within the
scope of this paper, rather than during the phase of the specification of SBVR process rules.
Nevertheless, a general awareness of the potential issues of this kind is a relevant topic in
the context of this paper as well; thus, it will be briefly discussed in this subsection.

The generation of natural language texts from BPMN process models [1] and reverse
transformation approaches [23] indicate that even advanced NLP techniques cannot guar-
antee the completeness and reliability of obtained results. Even though SBVR offers means
to deal with synonyms, synonymous forms, homonyms, and some other peculiarities of a
natural language, Ref. [56] showed that this is not sufficient even in the case of the English
language, which has the largest NLP toolset available and is overall less complicated lan-
guage compared with, for example, Lithuanian. SBVR’s Structured English (SE) does not
take into consideration declension, tenses, and plurality, which are the intrinsic features
of natural languages. We argue that most of the aforementioned issues can be dealt with
by introducing certain naming conventions to BPMN model elements and by following
good modeling practices [36,37]. In that case, only a small set of simple NLP techniques is
required to achieve satisfactory results.

3. Transformation of BPMN Processes to SBVR Process Rules

This section presents basic conceptual and engineering aspects of the approach for
transforming BPMN processes to SBVR process rules with deontic modalities.

3.1. Transformation Scenario

The approach presented in this paper follows the so-called business rules “mantra” [57],
which states that business rules are built on facts (or verb concepts, according to SBVR
terminology), and facts are built on terms (noun concepts in SBVR terminology). Verb
concepts and noun concepts form the basis of any business vocabulary; successively, one
must have a business vocabulary to properly specify and manage business rules. This is a
similar approach used in our other model transformation developments involving SBVR
models [36,58].

The basic model transformation scenario (Figure 1) starts with the formation of the
SBVR business vocabulary stage and then proceeds with the second stage, where SBVR
business rules are being formed. Lastly, the overall SBVR model is validated by a business
analyst or other interested party using the solution. This paper focuses on the second
stage alone as the first stage was extensively presented in our previous papers mentioned
above. Hence, we presume that a comprehensive SBVR business vocabulary holding both
noun concepts and verb concepts (together with certain meta information underlying a
BPMN process model) is already present and the formation of SBVR business rules may
begin. Another reminder is that the transformations presented in this paper produce only
a particular subset of SBVR business rules, namely process rules, leaving other kinds of
business rules outside the scope of this paper.

The approach applies principles of a deterministic rule application strategy for model
transformations according to the taxonomy presented in [59]. Following this taxonomy,
our approach can be classified as a hybrid, bearing similarities from both declarative
and imperative approaches, meaning some rules may require satisfying constraints for
the presence of elements generated by other transformation rules. Indeed, the algorithm

Appl. Sci. 2022, 12, 8976 6 of 27

presented in Figure 1 shows the hierarchical nature of such a transformation starting with
“lower-level” concepts, such as noun concepts and verb concepts, then moving forward
with the formation of business rules that are built upon those previously transformed
concepts. Finally, following the model transformation taxonomy [60], we classify our
transformation approach as an exogenous horizontal one-to-one model transformation.

Figure 1. The overall architecture supporting the developed model transformation solution.

3.2. Transformation Rules

In general, a model transformation (T) represents a mapping between the input model
and the output (target) models. For a specific model transformation rule (Ti) defined in
our approach, the input is represented by a specific BPMN process model structure pattern
(PPi) and the output is represented by a specific SBVR process rule structure pattern (RPi):

Ti: PPi → RPi, where i = 1, . . . , 9

Further, in Table 1, we present model transformation rules for the automatic transfor-
mation of BPMN processes to SBVR process rules with deontic modalities. We state that
the presented set of transformation rules is sufficient for the formation of a ruleset of SBVR
process rules expressing the core flow concepts of a modeled BPMN process. Furthermore,
experimenting with the acquired sets of process rules showed that those rulesets provide
enough business knowledge to reverse engineer the flows of the initial processes; however,
this is a subject for another research and will not be elaborated on further in this paper.

Appl. Sci. 2022, 12, 8976 7 of 27

Table 1. Rules for the transformation of BPMN processes to SBVR process rules (Ti: PPi → RPi).

Ti Transformation Rule Definition

T1

PP1
1

Pattern with a sequence flow:

RP1

(* RP1 *)
“It is obligatory that ”, (vc(end_ev(n)) | vc(intermed_ev(n)) | vc(participant(z), activity(n))), “after”,
(vc(start_ev(m)) | vc(intermed_ev(m)) | vc(participant(z), activity(m))), [“and if”, vc(cond(i))], “.”;
(* /RP1 *)

E.g.,

(* Next are examples of process rules acquired from the basic process pattern consisting of two
sub-sequential flow objects*)
It is obligatory that manager registers orderafter order is received.
It is obligatory that order is completed after ordered production is delivered.
It is obligatory that order calculates order estimate after manager receives registered order and if order
information is correct.

T2
2

PP2

Pattern with diverging and | or converging exclusive gateway(s):

RP2

(* RP2.div *)
(* RULE PATTERN PART FOR A DIVERGING EXCLUSIVE GATEWAY: *)
(* Repeat for every diverging sequence flow seq_flow(j) (where j = j, . . . ,jj, n = n, . . . ,nn) *)
{
(* If sequence flow seq_flow(j) contains condition cond(j) *)
(“It is obligatory that ”, (vc(end_ev(n)) | vc(intermed_ev(n)) | vc(participant(z), activity(n))), “after”,
(vc(start_ev(m)) | vc(intermed_ev(m)) | vc(participant(z), activity(m))), “ and if”, vc(cond(j)), [“and”, vc(cond(i))],
“.”;) |
(* If sequence flow seq_flow(j) does not contain condition cond(j) *)
(“It is permitted that”, (vc(end_ev(n)) | vc(intermed_ev(n)) | vc(participant(z), activity(n))), “after”,
(vc(start_ev(m)) | vc(intermed_ev(m)) | vc(participant(z), activity(m))), [“and if”, vc(cond(i))], “.”;)
}
(* /RP2.div *)

(* RP2.conv *)
(* RULE PATTERN PART FOR A CONVERGING EXCLUSIVE GATEWAY: *)
(* Next is an RP part for the first converging seq_flow(k) (where k = k, n = n) *)
“It is obligatory that ”, (vc(end_ev(t)) | vc(intermed_ev(t)) | vc(participant(z), activity(t))), “after”,
(vc(intermed_ev(n)) | vc(participant(z), activity(n))), [“and if”, vc(cond(k))],
(* Next is an RP part for every next converging seq_flow(k) (where k = k + 1, . . . ,kk, n = n + 1, . . . ,nn) *)
{“or”, (vc(intermed_ev(n)) | vc(participant(z), activity(n)), [“and if”, vc(cond(k))]}, “.”;
(* /RP2.conv *)

Appl. Sci. 2022, 12, 8976 8 of 27

Table 1. Cont.

Ti Transformation Rule Definition

E.g.,

(* Next is an example with two process rules acquired from two diverging branches of an exclusive gateway*)
It is obligatory that manager assigns platinum order status after order is registeredand if customer is_a platinum customer.
It is obligatory that manager assigns normal order status after order is registeredand if customer is_a first-comer customer.
(* Next is an example with a converging exclusive gateway *)
It is obligatory that orderis rejected after manager rejects orderand if customer is_a first-comer customeror order
confirmation is past due.

T3
3

PP3

Pattern with diverging and | or converging inclusive gateway(s):

RP3

(* RP3.div *)
(* RULE PATTERN PART FOR A DIVERGING INCLUSIVE GATEWAY: *)
(* Repeat for every diverging sequence flow seq_flow(j) (where j = j, . . . ,jj, n = n, . . . ,nn) *)
{
“It is obligatory that ”, (vc(end_ev(n)) | vc(intermed_ev(n)) | vc(participant(z), activity(n))), “after”, (vc(start_ev(m)) |
vc(intermed_ev(m)) | vc(participant(z), activity(m))), [“ and if”, vc(cond(j))], [“and”, vc(cond(i))], “.”;
}
(* /RP3.div *)

(* RP3.conv *)
(* RULE PATTERN PART FOR A CONVERGING INCLUSIVE GATEWAY: *)
“It is obligatory that”, (vc(end_ev(t)) | vc(intermed_ev(t)) | vc(participant(z), activity(t))), “ after”,
(* Next is an RP part for the first converging seq_flow(k) (where j = j, k = k, n = n) *)
[“(”],(vc(vc(intermed_ev(n)) | vc(participant(z), activity(n))), [“if”, vc(cond(j))], [“and”, vc(cond(k)), “)”],
(* Next is an RP part for every next converging seq_flow(k) (where j = j + 1, k = k + 1, . . . ,kk, n = n + 1, . . . ,nn) *)
{ “and”, [“(”], (vc(intermed_ev(n)) | vc(participant(z), activity(n))), [“if”, vc(cond(j))], [“and”, vc(cond(k)), “)”] }, “.”;
(* /RP3.conv *)

E.g.,

(* Next is an example with two process rules acquired from two diverging branches of an inclusive gateway*)
It is obligatory that quality worker attaches quality certificate after ordered productionis packaged.
It is obligatory that expeditoradds extra packaging layer after ordered productionis packagedand if ordered production is a
fragile production.
(* Next is an example with a converging inclusive gateway *)
It is obligatory that expeditordelivers ordered productionafter quality worker attaches quality certificateand (expeditoradds
extra packaging layer if ordered production is a fragile production).

T4

PP4

Pattern with diverging event-based gateway:

Appl. Sci. 2022, 12, 8976 9 of 27

Table 1. Cont.

Ti Transformation Rule Definition

RP4

(* RP4 *)
(* Repeat for every diverging sequence flow seq_flow(j) (where j = j, . . . ,jj) *)
{
“It is permitted that ”, (vc(end_ev(n)) | vc(intermed_ev(n))), “after”, (vc(start_ev(m)) | vc(intermed_ev(m)) | vc(participant(z),
activity(m))), [“ and if”, vc(cond(i))], “.”;
}
(* /RP4 *)

E.g.,
(* Next is an example with two process rules acquired from two diverging branches of an even-based gateway *)
It is permitted that order confirmation is received after manager sends order confirmation request.
It is permitted that order rejection is received after manager sends order confirmation request.

T5

PP5

Pattern with diverging and | or converging parallel gateway(s):

RP5

(* RP5.div *)
(* RULE PATTERN PART FOR A DIVERGING PARALLEL GATEWAY: *)
(* Repeat for every diverging sequence flow seq_flow(j) (where j = j, . . . ,jj, n = n, . . . ,nn) *)
{
“It is obligatory that ”, (vc(intermed_ev(n)) | vc(participant(z), activity(n))), “after”, (vc(start_ev(m)) | vc(intermed_ev(m)) |
vc(participant(z), activity(m))), [“ and if”, vc(cond(i))], “.”;
}
(* /RP5.div *)

(* RP5.conv *)
(* RULE PATTERN PART FOR A CONVERGING PARALLEL GATEWAY: *)
“It is obligatory that ”, (vc(end_ev(t)) | vc(intermed_ev(t)) | vc(participant(z), activity(t))), “after”,
(* Next is an RP part for the first converging seq_flow(k) (where k = k, n = n) *)
[“(”],(vc(vc(intermed_ev(n)) | vc(participant(z), activity(n))), [“if”, vc(cond(k)), “)”],
(* Next is an RP part for every next converging seq_flow(k) (where k = k + 1, . . . ,kk, n = n + 1, . . . ,nn) *)
{ “and”, [“(”], (vc(intermed_ev(n)) | vc(participant(z), activity(n))), [“if”, vc(cond(k)),“)”]}, “.”;
(* /RP5.conv *)

E.g.,

(* Next is an example with two process rules acquired from two diverging branches of a parallel gateway *)
It is obligatory that quality worker executes quality checkafter ordered productionis produced.
It is obligatory that expeditorschedules order delivery dateafter ordered productionis produced.
(* Next is an example with a converging parallel gateway *)
It is obligatory that order is completed after ordered production is deliveredand order invoice is fully covered.

T6

PP6

Pattern with interrupting | non-interrupting boundary event:

RP6

(* RP6 *)
“It is permitted that ”, (vc(non-interrupt_ev(k)) | vc(interrupt_ev(k))), “when”, vc(participant(z), activity(i)), “.”;
“It is obligatory that”, (vc(end_ev(j)) | vc(intermed_ev(j)) | vc(participant(z), activity(j))), “after (”, (vc(non-interrupt_ev(k)) |
vc(interrupt_ev(k))), “when”, vc(participant(z), activity(i)),“).”;
(* ADDITIONAL RULE TO THE RULE PATTERN FOR AN INTERRUPTING BOUNDARY EVENT: *)
[“It is prohibited that”, vc(participant(z), activity(i)), “after”, vc(interrupt_ev(k)), “.”;]
(* /RP6 *)

Appl. Sci. 2022, 12, 8976 10 of 27

Table 1. Cont.

Ti Transformation Rule Definition

E.g.,

(* Next is an example with a set of process rules expressing behavior of an interrupting boundary event *)
It is permitted that order cancellationis receivedwhen manager registers order.
It is obligatory that manager cancels orderafter (order cancellationis receivedwhen manager registers order).
It is prohibited that manager registers orderafter order cancellationis received.

T7

PP7

Pattern with two semantically equivalent variations of using data object with: (a) data association, and (b) association:

RP7

(* RP7.out *)
(* RULE PATTERN PART FOR AN OUTGOING DATA OBJECT (DATA OUTPUT): *)
(* Next is an RP part for the first data object (data output) produced by an activity | event (n = n) *)
“It is obligatory that ”, (gc(data_obj(n)) | gc(data_obj_in-state(n))), “is produced”,
(* Next is an RP part for every next data object (data output) produced by an activity | event (n = n + 1, . . . ,nn) *)
[{“and ”, (gc(data_obj(n)) | gc(data_obj_in-state(n))), “is produced”}],
“when”, (vc(start_ev(i)) | vc(intermed_ev(i)) | vc(participant(z), activity(i))), “.”;
(* /RP7.out *)

(* RP7.in *)
(* RULE PATTERN PART FOR AN INCOMMING DATA OBJECT (DATA INPUT): *)
(* Next is an RP part for the first data object (data input) required by an activity | event (n = n) *)
“It is permitted that ”, (vc(end_ev(j)) | vc(intermed_ev(j)) | vc(participant(z), activity(j))), “ only if ”, (gc(data_obj(n)) |
gc(data_obj_in-state(n))), “is provided to ”, gc(participant(z)),
(* Next is an RP part forevery next data object (data input) required by an activity | event (n = n + 1, . . . ,nn) *)
[{“and”, (gc(data_obj(n)) | gc(data_obj_in-state(n))), “is provided to”, gc(participant(z))}], “.”;
(* /RP7.in *)

E.g.,

(* Next is an example with a produced (outgoing) data object *)
It is obligatory that registered order is produced and production request is producedwhen manager registers order.
(* Next is an example with a required (incoming) data object *)
It is permitted that manager calculates order estimate only if registered order is provided to manager.

T8

PP8

Pattern with two semantically equivalent variations of using data stores with: (a) data association, and (b) association:

Appl. Sci. 2022, 12, 8976 11 of 27

Table 1. Cont.

Ti Transformation Rule Definition

RP8

(* RP8.out *)
(* RULE PATTERN PART FOR PROVIDING DATA TO A DATA STORE: *)
(* Next is an RP part for the first data store required by an activity (n = n) *)
“It is obligatory that”, gc(data_store(n)), “is provided with data”,
(* Next is an RP part for every next data store required by an activity (n = n + 1, . . . ,nn) *)
[{“and”, gc(data_store(n)), “is provided with data”}], “when”, vc(participant(z), activity(i)), “.”;
(* /RP8.out *)

(* RP8.in *)
(* RULE PATTERN PART FOR RECEIVING DATA FROM A DATA STORE: *)
(*Next is an RP part for the first data store required by a particular activity (n = n) *)
“It is permitted that”, vc(participant(z), activity(j)), “only if”, gc(data_store(n)), “is available to”, gc(participant(z)),
(* Next is an RP part for every next data store required by a particular activity (n = n + 1, . . . ,nn) *)
[{“and”, gc(data_store(n)), “is available to”, gc(participant(z))}], “.”;
(* /RP8.in *)

E.g.,

(* Next is an example with providing data to a data store *)
It is obligatory that completed order reports is provided with data when manager completes order.
(* Next is an example with a data store required to perform an activity *)
It is permitted that manager performs quarterly sales assessment only if completed order reports is available to manager.

T9

PP9

Pattern comprised of the variations of “participant as a black-box” and “participant as a white-box” with incoming and
outgoing message flows. Each process pattern PP is mapped to two rule patterns RP (one for a sending and one for a
receiving end):

RP9

(* RP9.Case(a)*)
(* Next is the first pattern rule of Case (a) *)
“It is permitted that”, gc(participant(y)), “sends”, (“message” | gc(msg)), “to ”, gc(participant(z)), “.”;
(* The actual value of <something> in the expression “sends <something> to” depends on whether there is an actual
message object attached to a message flow, or not; the same holds true for all other relevant pattern rules of RP9 *)
(* Next is the second pattern rule of Case (a) *)
“It is permitted that”, gc(participant(z)), “receives ”, (“message” | gc(msg)), “from ”, gc(participant(y)), “.”; (*
The actual value of <something> in the expression “receives <something> from” depends on whether there is an actual
message object attached to a message flow, or not; the same holds true for all other relevant pattern rules of RP9 *)
(* /RP9.Case(a) *)

(* RP9.Case(b) *)
(* Next is the first pattern rule of Case (b) *)
(“It is obligatory that ” | “It is permitted that ”), gc(participant(y)), “sends”, (“message” | gc(msg)), “to”, gc(participant(z)),
“when”, (vc(end_ev(i)) | vc(intermed_ev(i)) | vc(participant(y), activity(i))), “.”;(*
The deontic formulation depends on the semantics of a specific source node the message flow is connected to (e.g., Send
Message Task will imply obligation, while a Manual Task with an outgoing message flow attached to it – permission); the
same holds true for the first pattern rule of the Case (d) of RP9 *)
(* Next is the second pattern rule of Case (b) *)
“It is permitted that ”, gc(participant(z)), “receives”, (“message” | gc(msg)), “from”, gc(participant(y)), “.”;
(* /RP9.Case(b) *)

Appl. Sci. 2022, 12, 8976 12 of 27

Table 1. Cont.

Ti Transformation Rule Definition

(* RP9.Case(c) *)
(* Next is the first pattern rule of Case (c) *)
“It is permitted that ”, gc(participant(y)), “sends ”, (“message” | gc(msg)), “to ”, gc(participant(z)), “.”;
(* Next is the second pattern rule of Case (c) *)
(* Next is a rule pattern variation when a receiving node is an event *)
(“It is obligatory that ”, (vc(start_ev(j)) | vc(intermed_ev(j))), “when”, gc(participant(z)), “receives”, (“message” | gc(msg)),
“from”, gc(participant(y))) |
(* Next is a rule pattern variation when a receiving node is an activity *)
(“It is obligatory that” | “It is permitted that”, gc(participant(z)), “receives”, (“message” | gc(msg)), “from”, gc(participant(y)),
“when”, vc(participant(z), activity(j))), “.”;
(* The deontic formulation for both rule variations depends on the semantics of a specific target node the message flow is
connected to (e.g., Receive Message Task will always imply obligation, while a Manual Task with an incoming message flow
attached to it – permission); the same holds true for the first pattern rule of the Case (d) of RP9 *)
(* /RP9.Case(c) *)

(* RP9.Case(d) *)
(* Next is the first pattern rule of Case (d) *)
(“It is obligatory that ” | “It is permitted that”), gc(participant(y)), “sends ”, (“message” | gc(msg)), “to”, gc(participant(z)),
“when”, (vc(end_ev(i)) | vc(intermed_ev(i)) | vc(participant(y), activity(i))), “.”;
(* Next is the second pattern rule of Case (d) *)
(* Next is a rule pattern variation when a receiving node is an event *) (“
It is obligatory that”, vc(start_ev(j)) | vc(intermed_ev(j)), “when”, (gc(participant(z)), “receives”, (“message” | gc(msg)), “from
”, gc(participant(y))) |
(* Next is a rule pattern when a receiving node is an activity*)
(“It is obligatory that ” | “It is permitted that”, (gc(participant(z)), “receives”, (“message” | gc(msg)), “from”, gc(participant(y)),
“when”, vc(participant(z), activity(j))), “.”;
(* /RP9.Case(d) *)

E.g.,

(* Next is an example of the first rule of Case (a) *)
It is permitted that customer sends order to manager.
(* Next is an example of the second rule of Case (a) *)
It is permitted that manager receives order from customer.
(* Next is an example of the first rule of Case (b). The sending node is a send message event, which implies an obligation
to act *)
It is obligatory that customer sends order to managerwhen order request is sent.
(* Next is an example of the second rule of Case (b) *)
It is permitted that manager receives order fromcustomer.
(* Next is an example of the first rule of Case (c) *)
It is permitted that customer sends order estimate confirmation to manager.
(* Next is an example of the second rule of Case (c). The receiving node is a receive message event, which implies an
obligation for an even to happen when a message is received *)
It is obligatory that order estimate is confirmed when manager receives order estimate confirmation from customer.
(* Next is an example of the second rule of Case (c). The receiving node is a manual task, which implies a permission to act
*)
It is permitted that manager receives order estimate confirmation from customerwhen manager schedules order delivery
date.
(* Next is an example of the first rule of Case (d) *)
It is obligatory that customer sends message to manager when order estimate is confirmed.
(* Next is an example of the second rule of Case (d). Note that the information about the message being received is stated
implicitly, which naturally brings a certain level of ambiguity to the specification, especially when there is a number of
messages being sent within a modeled process; therefore, it is advised to avoid implicit messages whenever possible, and
this is one of the good practices for modeling processes *)
It is obligatory that confirmed order estimate is received when manager receives message from customer.

1 Note that in patterns PPi, most of the listed BPMN concepts are supertypes, meaning that those elements
generalize sets of subtypes. For example, in PP1, the identified activity represents a BPMN concept Activity,
which in BPMN is defined as a Process step, e.g., Task, Sub-Process; or the intermediate_event representing a BPMN
Intermediate Event, which in BPMN has an extensive set of subtypes, e.g., Message Intermediate Event, Timer
Intermediate Event. Such pattern modeling decision was made to reduce the representational complexity of PPi,
thus avoiding cluttering the visual representation with the excessive level of detail. 2 The pattern T2 also holds
several additional variations to handle specific cases of an exclusive gateway, which are not presented in this
paper. The specific cases include handling of default sequence flows that hold no condition expressions (those are
handled through formulating joins of negations of the conditions of all the other sequence flows diverging from
that exclusive gateway) or exclusive gateways with no condition expressions on any of the diverging sequence
flows (which is considered a bad modeling practice but still used quite often). 3 The pattern T3 holds two process
patterns PPi resulting in the same rule pattern RP3: (1) the one presented in the paper with a set of sequence
flows diverging from an inclusive gateway; (2) the second one with a set of two or more conditioned sequence flows
diverging from activity(i), which is an alternative to a diverging inclusive gateway. These two cases were merged
into one pattern for simplicity reasons.

Appl. Sci. 2022, 12, 8976 13 of 27

For conceptual clarity, we specified all transformation rules using a unified template,
the main principles of which were taken from [58]. In each transformation rule, the PPi
is presented as a fragment of a conceptualized BPMN process diagram, and the RPi as
a formalized textual structure expressed in Extended Backus–Naur form (EBNF). In PPi,
some element abbreviations are used; however, with basic knowledge of BPMN, those
abbreviated elements are easily identified intuitively (e.g., start_ev stands for Start Event
or seq_flow for Sequence Flow). In the formalization of RPi, the vc(a) refers to a particular
SBVR noun concept representing a particular BPMN concept; in its turn, the vc(a, b) refers
to a particular SBVR verb concept constructed upon a pair of noun concepts representing
particular concepts of the BPMN process model.

Again, as was mentioned before, both noun concepts and verb concepts are formed
during the execution of Stage 1 of the model transformation process (Figure 1), which is
outside the scope of this paper. In addition, it is important to note that the presented set of
transformation rules covers a subset of concepts of the BPMN process model relevant to
the extraction of the process rules, meaning that the BPMN concepts that are unrelated to
the extraction of the process rules or are uninterpretable by the automated interpreters (e.g.,
Complex Gateway), are left out of the scope of the current version of the approach as well.
The following subset of BPMN concepts was considered in this transformation approach:
pool/lane, start/intermediate/end events, interrupting/non-interrupting boundary events,
activity, exclusive/inclusive/event-based/parallel gateways, data object, data store, mes-
sage, message flow, sequence flow, and sequence flow with a condition.

In Table 1, each formalized rule Ti is followed by examples of SBVR process rules as
the execution result of that specific transformation rule. For more examples of the actual
instantiation of the specified transformation rules refer to Section 5.

Full semantic expressiveness of the acquired process rules is reached when considering
the underlying business vocabulary comprising noun concepts and verb concepts because
those concepts hold all the relevant semantic information inherited from the BPMN process
model from which they were acquired (e.g., SBVR general concepts being enriched with
descriptions and meta-information about the types of BPMN concepts that those general
concepts represent). Furthermore, this aspect becomes critical when it comes to reverse
engineering BPMN process models from SBVR specifications if there would be such a need.

3.3. Extracting Process Rules from Multiple Cascading Gateways

Other than the defined process patterns, our approach also supports the so-called cas-
cading gateways, that is, when a sequence flow leaves one diverging/converging gateway
and leads directly to another diverging/converging gateway forming a cascade of two
sub-sequentially diverging gateways. The processing of cascading gateways follows the
so-called backward-chaining principle analyzing the required number of flow objects retro-
spectively and combining multiple conditions of the diverging and converging sequence
flows into one process rule. The processing of such chains can be challenging at both the
conceptual and engineering levels.

To present the developed algorithm, let us first introduce the notions of activity node
neighborhood (Definition 1).

Definition 1. Activity node neighborhood is defined as a tuple

AN =
〈

act, Sact, SFinc, SFout, SFD
inc, SFD

out

〉
where:

• activity is an activity node: (type(activity)∈ {Task, Event, SubProcess};
• Sact is a set of subjects performing the defined activity;
• SFinc is a set of sequence flows incoming to the activity act, with or without conditions;
• SFout is a set of sequence flows outgoing from the activity, with or without conditions;
• SFD

inc is a set of default sequence flows incoming to the activity;

Appl. Sci. 2022, 12, 8976 14 of 27

• SFD
out is a set of default sequence flows outgoing from the activity.

Given such a formal structure, one can apply it to process the defined rules T2, T3,
T4, and T5. To process a chain of gateways, one must also consider advanced structures
supporting recursive gateway processing. Therefore, a gateway neighborhood definition must
be introduced (Definition 2).

Definition 2. Gateway neighborhood is defined as a tuple

GN =
〈

gate, type, Sactivity, ANinc , ANout, , GNinc, , GNout , SFinc, SFout, SFD
inc, SFD

out, Rpart

〉
where:

• gate is a BPMN gateway node;
• type is a type of the defined gateway gate (type∈ {inclusive, exclusive, event-based, parallel});
• ANinc is a set of activities incoming to the gateway gate;
• ANout is a set of activities outgoing from the gateway gate;
• GNinc is a set of other gateways incoming to the gateway gate;
• GNout is a set of other gateways outgoing from the gateway gate;
• SFinc is a set of incoming to the gateway gate, with or without conditions;
• SFout is a set of outgoing from the gateway gate, with or without conditions;
• SFD

inc is a set of default sequence flows incoming to the gateway gate;
• SFD

out is a set of default sequence flows outgoing from the gateway gate;
• Rpart is a partial rule, recursively extracted at the gateway gate.

Gateway neighborhoods are constructed recursively and exclusively from incoming or
outgoing sequence flows, which have gateways at their ends. For our backward-chaining
algorithm, we will use only GNinc ; then, gateway element el is extracted as follows:

Gel
Ninc

= Gel
Ninc
∪ GN(g), ∀g ∈ {source(SFinc)| source(SFinc) is gateway and target(SFinc = el}

where SFinc is a set of BPMN sequence flows incoming to el.
Further, we present an algorithm (Algorithm 1), which is used to extract process rules

from tuples of sub-sequentially interconnected gateways.

Algorithm 1: extractComplexRules

Input: BPMN element el: type(el) ∈ {Task, Event, SubProcess}
Ael

N ← activity node neighbourhood for el
SFg

inc ← {source(SFinc)|source(SFinc) is gateway and target(SFinc) = el}
If SFg

inc = ∅ :
Run extract T1 rule; Return ∅

FinalRules ← ∅
For SF ∈ SFg

inc :
Gg

N ← GN f or gateway in source(SF)
createPartialRule(Gg

N)
FinalRules ← FinalRules ∪ concat

(
extractRule

(
Ael

N
)
, Gg

N .Rpart
)

End for
Output: a set of extracted rules FinalRules.

The procedure createPartialRule is based on the detection of the so-called boundary
gateway. We define a gateway as a boundary if it does not contain any incoming sequence
flows with other gateways as their sources (GNinc is empty). For boundary gateways, rules
T2, T3, T4, and T5 can be directly applied to extract partial rules that are further combined
recursively. The pseudocode for this procedure is provided in Algorithm 2.

Appl. Sci. 2022, 12, 8976 15 of 27

Algorithm 2: createPartialRule

Input: gateway neighborhood GN.
If GN .GN inc ← ∅ :

GN .Rpart ← extractSimpleRule(GN)
Return GN

GN .Rpart ← ∅
defaultCond ← ∅
First process gateways
For Gi

N ∈ GN . GN inc
createPartialRule(Gi

N)
condpartial ← create partial antecedent from conditions in Gi

N .SFinc

if Gi
N .gate ∈

{
el
∣∣el = source(SF), ∀SF ∈ SFD

inc
}

defaultCond← defaultCond ∪condpartial
else

GN .Rpart ← concat(Gi
N .Ri

part,
′ IF′, condpartial)

End for
Then process activities
For Ai

N ∈ GN . AN inc
condpartial ← create partial antecedent from conditions in Ai

N .SFinc

if Ai
N .act ∈

{
el
∣∣el = source(SF), ∀SF ∈ SFD

inc
}

defaultCond← defaultCond ∪condpartial
else

GN .Rpart ← concat(GN .Rpart, ′ IF′, condpartial)
End for
Finally, add default conditions
If |de f aultCond| 6= ∅ :

GN .Rpart ← concat(GN .Rpart, ′OTHERWISE′)
For cond ∈ defaultCond

GN .Rpart ← concat(GN .Rpart, cond)
End for

Output: updated gateway neighborhood GN.

The developed approach is capable of processing chains composed of a virtually
unlimited number of sub-sequential gateways. However, one should consider good mod-
eling practices stating that modeling decisions via multiple cascading gateways should
be avoided as this results in over-complex process rules, which in turn may result in poor
readability and understandability of the presented business process logic by humans.

To illustrate the presented algorithms, we will use the example from Section 5. Let us
consider the following process rule:

It is obligatory that order request is rejectedafter provider analyzes orderand
(provider evaluates extra conditionsif order has extra conditions) and if order
cannot be fulfilled.

The formation of this rule starts from the event order request is rejected. This element
has an incoming sequence flow and a gateway element at the start of the chain under
consideration (i.e., the source element), therefore we can identify the instance gateway
neighborhood. Yet, this is not a boundary gateway as it has a sequence flow incoming
from another preceding gateway. In turn, that preceding gateway is connected with the
tasks analyze order and evaluate extra conditions acting as source elements for the connecting
sequence flows. Hence, we move to this gateway as it has no directly connecting preceding
gateways and mark it as a boundary gateway. As mentioned, this gateway has two
incoming task elements, namely, analyze order and evaluate extra conditions. These tasks are
used to create partial antecedent conditions provider analyzes order and (provider evaluates
extra conditionsif order has extra conditions) with the latter “if . . . ” formulation taken
from the guard condition of the sequence flow incoming to the task evaluate extra conditions.
Finally, we append the guard condition order cannot be fulfilled from the sequence flow
connecting to the event order request is rejected with the gateway element that represents
the condition required to trigger this event. Internally, these elements are assigned to the
gateway neighborhood structures, which are then used to form our process rule.

Appl. Sci. 2022, 12, 8976 16 of 27

4. Implementation

This section describes the prototype for transforming BPMN processes to SBVR process
rules. The latest version of the plugin prototype and other useful information is available
at https://bitbucket.org/pauliusdan/sbvr-extraction (accessed on 29 August 2022).

The implementation architecture (Figure 2) comprises a CASE system and four other
systems entirely or partially developed by our team during various R&D projects:

- MagicDraw is a CASE system supporting the newest official versions of UML, BPMN,
and some other OMG modeling standards. However, it does not natively support any
version of SBVR, which is extensively used in our approach. Yet, MagicDraw has Open
Java API, enabling the development of custom plug-ins. It also has other advanced
capabilities for UML profiling, analysis, and reporting, as well as domain-specific
language (DSL) development.

- SBVR modeler plug-in for MagicDraw, which uses a UML profile for SBVR. Both the
plug-in and the profile were developed during the VEPSEM project, in which the
authors of this paper also took part. In the CASE system, SBVR business vocabulary is
graphically represented as a set of so-called fact diagrams. The plug-in also supports
the specification of SBVR business rules as formal text-based expressions.

- External SBVR editor VeTIS is a tool developed during another R&D project, VeTIS.
The editor supports the development and syntactic validation of SBVR business
vocabularies and business rules expressed as well-structured natural language-based
textual specifications. It supports various additional properties of SBVR concepts
defined in the SBVR standard and is also capable of augmenting business vocabulary
entries with complementary information, such as synonyms and definitions for general
concepts from WordNet.

- Tool for BPMN process transformation to SBVR process rules is also implemented as a
plug-in for the MagicDraw and is entirely developed by the authors of this paper. The
tool implements both automatic model-to-text (to be used in the VeTIS editor) and
model-to-model transformations, which may be called out selectively from the context
menu of the CASE system’s modeling environment. The specified model transforma-
tion rules were implemented using the QVT model transformation language [61]. We
consider the model transformation component to be of technology readiness level 4
(TRL 4) (the referred technology readiness levels are defined in the HORIZON 2020
documentation and can be accessed at: https://ec.europa.eu/research/participants/
data/ref/h2020/wp/2014_2015/annexes/h2020-wp1415-annex-g-trl_en.pdf (accessed
on 29 August 2022)), meaning this development was tested in the laboratory environ-
ment.

- Model integration plug-in provides model integration capability and QVT transfor-
mation engine basis. This plug-in was developed during the VEPSEM project.

https://bitbucket.org/pauliusdan/sbvr-extraction
https://ec.europa.eu/research/participants/data/ref/h2020/wp/2014_2015/annexes/h2020-wp1415-annex-g-trl_en.pdf
https://ec.europa.eu/research/participants/data/ref/h2020/wp/2014_2015/annexes/h2020-wp1415-annex-g-trl_en.pdf

Appl. Sci. 2022, 12, 8976 17 of 27

Figure 2. The basic architecture of the prototype of the model transformation solution.

To better understand the roles of each of the architectural components, let us take a
look at the graphical interface of the overall solution (Figure 3):

- The input and output models (BPMN process model and SBVR business vocabulary
and process rules, respectively) are displayed in the model view tab of the CASE tool
(Tag 1). The presented models are stored as a single project representing the specified
business knowledge of a business domain.

- Tag 2 denotes a toolbar comprising SBVR concepts for creating visual representations
of SBVR business vocabularies (fact diagrams).

- In the center, there is the main area for deploying diagrams (Tag 3). The current view
displays a fact diagram “Order Registration”.

- On the right side of the CASE tool’s graphical user interface, there is an additional
viewer dedicated to exploring SBVR business vocabularies and rulesets (Tag 4).

- At the bottom, there is an optional frame opened to view a BPMN process diagram
(Tag 5). Functionally, this frame is similar to the main frame representing the SBVR
working environment. In MagicDraw, these two frames can switch places depending
on the main focus of a user.

- The pop-up window (Tag 6) displays a condition of the opened BPMN process dia-
gram, specified using so-called SBVR Structured English (SE).

Appl. Sci. 2022, 12, 8976 18 of 27

Figure 3. The MagicDraw GUI setup for working with BPMN and SBVR models.

Different sets of SBVR business rules (including process rules) can be managed through
the customized MagicDraw tables (Figure 4).

Figure 4. MagicDraw table for representing SBVR business rules (including process rules).

5. Illustrative Example

The section presents an example of a business process represented by the BPMN
process diagram (Figure 5), which is an input of our model transformation approach,
together with the resulting SBVR model consisting of SBVR business vocabulary and
a set of process rules supported by the provided business vocabulary (Tables 2 and 3,
respectively).

Appl. Sci. 2022, 12, 8976 19 of 27

Figure 5. An illustrative example: the business process “Order Registration”.

Table 2. An SBVR business vocabulary for the business process “Order Registration”.

SBVR Concept Type Extracted SBVR Concepts Representing an Exemplary Business Process

General concept
customer, provider, order, order request, received order, scheduled order, received, scheduled, order estimate,
extra conditions, order estimate approval request, order estimate approval, order estimate rejection, order
production, delivery date

Verb concept

customer sends order request to provider, provider receives order request from customer, order is received, order has
state received, order has extra conditions, provider analyzes order, provider evaluates extra conditions, order cannot
be fulfilled, order request is rejected, provider sends message to customer, customer receives message from provider,
provider calculates order estimate, order estimate is sent, provider sends order estimate approval request to
customer, customer receives order estimate approval request from provider, customer sends order estimate rejection
to provider, provider receives order estimate rejection from customer, customer sends order estimate approval to
provider, provider receives order estimate approvalfrom customer, order estimate is unacceptable, order estimate is
approved, order request is terminated, provider schedules order production, order has state scheduled, provider
schedules order delivery date, order is ready for production

Once again, the extraction of SBVR business vocabularies from BPMN process models
was not within the scope of this paper. However, general concepts and verb concepts form
a basis for business rules (including process rules) and therefore they are also presented in
this section (Table 2).

In Table 3, we organized the process rules into a sequence resembling the flow of work
performed in the presented business process. This was done to increase the readability of

Appl. Sci. 2022, 12, 8976 20 of 27

the specification. However, it must be noted that, by definition, SBVR business rules are
not organized in any sequences within their rule sets.

Table 3. A set of SBVR process rules extracted from the business process “Order Registration”.

SBVR Process Rule Process Rule Pattern

It is permitted that customer sends order request to provider.
It is obligatory that order is received when provider receives order request from customer. T9

It is obligatory that received order is produced when order is received. T7

It is obligatory that provider analyzes order after order is received.
It is obligatory that provider evaluates extra conditionsafter order is received and if order has extra conditions. T3

It is permitted that provider analyzes order only if received order is provided to provider.
It is permitted that provider evaluates extra conditionsonly if received order is provided to provider. T7

It is obligatory that order request is rejectedafter provider analyzes order and (provider evaluates extra conditionsif order
has extra conditions) and if order cannot be fulfilled.
It is obligatory that provider calculates order estimateafter provider analyzes order and (provider evaluates extra
conditionsif order has extra conditions) and if not(order cannot be fulfilled).

Cascading gateways

It is obligatory that provider sends message to customerwhen order request is rejected.
It is permitted that customer receives message from provider. T9

It is obligatory that order estimate is produced when provider calculates order estimate. T7

It is obligatory that order estimate is sent after provider calculates order estimate. T1

It is permitted that order estimate is sent only if order estimate is provided to provider. T7

It is obligatory that provider sends order estimate approval requestto customerwhen order estimate is sent.
It is obligatory that customer receives order estimate approval requestfrom provider. T9

It is permitted that order estimate is approved after order estimate is sent.
It is permitted that order estimate is unacceptable after order estimate is sent. T4

It is permitted that customer sends order estimate rejectionto provider.
It is obligatory that order estimate is unacceptable when provider receives order estimate rejectionfrom customer. T9

It is permitted that customer sends order estimate approvalto provider.
It is obligatory that order estimate is approved when provider receives order estimate aprovalfrom customer. T9

It is obligatory that order request is terminated after order estimate is unacceptable. T1

It is obligatory that provider schedules order production after order estimate is approved.
It is obligatory that provider schedules order delivery dateafter order estimate is approved. T5

It is obligatory that scheduled orderis produced when provider schedules order production. T7

It is obligatory that order is ready for productionafter provider schedules order production and provider schedules order
delivery date. T5

6. Experimental Evaluation

For the experiment, our main goals were to verify whether: (1) the acquired process
rules fully cover the workflows of the source BPMN process models; (2) our developed en-
gineering solution fully complied with the conceptually defined approach for the extraction
of SBVR process rules from BPMN process models.

Experiment settings. Thirty-two representative BPMN 2.0 process models of various
sizes and complexity were selected from various internet sources for the experiment; the
experimental transformation code together with the sets of source models, and the acquired
results are available at: https://github.com/paudan/bpmn2sbvr (accessed on 29 August
2022). With the selected models, we tried to cover a variety of BPMN concepts relevant
to our research as well as various situations of the flow of work within modeled business
processes. After the models were selected, they were manually transferred to MagicDraw’s
modeling environment. At the same time, some models became subject to minor refactoring
to eliminate the identified modeling and element naming issues. The resulting set of models
was considered as an input for the experiment.

Experiment execution and results. At first, the experimental set of BPMN process
models was manually processed by each of the authors of this research independently
to acquire three sets of results comprising SBVR process rules extracted from the process

https://github.com/paudan/bpmn2sbvr

Appl. Sci. 2022, 12, 8976 21 of 27

models using the defined set of transformation rules and the cascading gateways’ algorithm.
The acquired sets were then carefully compared to detect any conflicting situations. As
natural language-related preprocessing is outside the scope of this paper, grammatical
inconsistencies or ambiguities were not considered during the evaluation of the obtained
results. Then, a single benchmark set of process rules was produced. After that, the
automatic process rules extraction from the provided source BPMN models using the
developed solution was performed to acquire automatic extraction results (Table 4).

Table 4. Statistics of the automatically extracted process rules.

Model T1 T2 T3 T4 T5 T6 T7 T8 T9 Cascading gtw.

Model 1 5 3 0 0 2 2 0 0 0 0

Model 2 7 4 0 0 0 0 0 0 10 0

Model 3 2 1 0 0 1 0 0 0 4 2

Model 4 2 1 0 0 2 0 0 0 4 2

Model 5 5 1 0 0 2 0 0 0 4 2

Model 6 2 2 2 0 3 0 0 0 0 1

Model 7 11 0 0 4 2 0 0 0 12 0

Model 8 4 3 0 0 0 0 0 0 0 0

Model 9 19 8 0 0 0 0 0 0 24 0

Model 10 4 2 0 0 0 0 0 0 12 0

Model 11 16 1 0 4 1 0 0 0 0 2

Model 12 4 2 0 0 3 0 0 0 0 0

Model 13 5 0 0 0 0 0 0 0 0 0

Model 14 5 0 0 4 0 0 0 0 0 0

Model 15 6 1 0 0 0 1 0 0 0 2

Model 16 5 2 0 0 3 0 0 0 0 0

Model 17 6 2 0 0 0 0 2 0 0 0

Model 18 15 6 0 0 0 0 5 0 12 0

Model 19 12 6 0 0 0 0 0 0 8 0

Model 20 8 4 0 0 0 0 0 0 16 0

Model 21 5 4 0 0 0 0 0 0 0 0

Model 22 14 6 0 0 0 0 3 0 10 0

Model 23 9 2 0 3 0 2 0 0 0 0

Model 24 7 6 0 0 0 0 4 0 0 0

Model 25 9 3 0 0 0 2 4 0 16 5

Model 26 7 2 0 2 0 0 0 0 10 0

Model 27 4 2 0 0 0 0 1 0 8 0

Model 28 7 2 0 0 3 0 4 0 6 0

Model 29 8 0 0 0 0 0 0 0 0 0

Model 30 4 2 0 0 0 0 0 0 6 0

Model 31 20 2 0 0 0 0 2 7 10 0

Model 32 6 2 0 0 0 0 4 0 2 0

In Table 4, the column Model denotes the 32 BPMN process models that were selected
for the experiment; columns T1–T9 represent the transformation rules that were defined in

Appl. Sci. 2022, 12, 8976 22 of 27

Table 1; each cell on the intersection of a specific source model Model(i) and transformation
rule Tj represents the number of BPMN process rules that were acquired from Model(i)
after performing Tj; the last column of Table 4 represents the results of the extraction of
cascading gateways described in Section 3.3.

Discussion. The first observation from the acquired results of the automatic extraction
of process rules (Table 4) is that, indeed, the experiment did cover a full set of the defined
transformation rules and algorithms, meaning we have tested the whole specification. After
closely analyzing the results, the main conclusion was that those results fully coincided
with the benchmark results acquired from the manual extraction. Such a conclusion was
drawn after comparing the process rules from the benchmark and automatic transformation
result sets for each of the 32 source models. It should be reminded though that some of
the source models were refactored, as described in the Experiment settings, to objectively
avoid invalid entries. Previously, our early experimenting with the original, and therefore
sometimes invalid, models was causing a certain number of invalid or even absent result
entries. Registering and presenting such results in this paper was considered irrelevant as
they were objectively influenced by the invalid source models and not by our development
itself. However, such a situation confirmed the general observation from our other relevant
model transformation research activities that modelers should put considerable effort
into following best modeling practices and avoiding over-complex non-compliant models,
thereby mitigating the possibility of different model interpretations, poor readability, and
other related issues.

Yet another important observation was that the results covered the entirety of the
specified flow of work defined in the experimental process models, meaning the set of
specified transformation rules and algorithms was sufficient for the given scope of the
experiment.

In addition, several other observations could be considered when talking about other
possible applications of our development:

- An empirical investigation of the acquired sets of process rules showed that those
rulesets could provide enough business knowledge to reverse engineer the flows of
the initial processes with very little expert assistance, provided the process rules were
supported by the underlying business vocabulary enriched with the BPMN concept
types. A more in-depth investigation of this subject, however, does not fall within the
scope of this paper.

- Assuming that the process model is one of the main sources of business knowledge
for functional requirements elicitation, one could also consider utilizing the developed
SBVR models for the same purpose. In such cases, the SBVR business vocabularies and
rules could be used as an alternative, or at least a complementing, textual specification
next to business process models and other sources of knowledge. Such an approach
would fall in line with the already existing developments that use SBVR as one of the
means to express requirements (e.g., [62]).

- While some still prefer UML activity diagrams to BPMN process diagrams when
modeling business processes, the earlier-discussed motivation behind using the com-
plementing natural language-based SBVR specifications remains the same. Therefore,
it would be worth exploring the possibilities of adopting our developed approach
for UML as well. We assume that such an adoption would utilize a subset of modi-
fied model transformation rules from our current development and the basic model
transformation scenario (Figure 1) would remain unchanged.

Finally, it is important to state the limitations that are inherent in this approach:

• The processes should use pool/lane elements to define the participants. If this condi-
tion is failed, it will not be possible to extract subjects as noun concepts, which take
part in the formation of verb concepts and, subsequentially, business rules.

• While we did not consider the semantic and syntactic validity of the labels (in other
words, names) of model elements in this research, not naming the elements at all
would result in the formation of invalid process rules.

Appl. Sci. 2022, 12, 8976 23 of 27

• While there exist several conventions about naming conditions on exclusive and inclu-
sive gateways, the specificity of the formation of SBVR verb concepts requires writing
explicit condition formulations directly on the sequence flows leaving a gateway. Tech-
nical remark: the conditions can be written in the Name, or the Guard property of a
sequence flow as shown in the exemplary process diagram in Figure 5.

In our experiment, all the above-mentioned limitations (or peculiarities, as we would
like to call them) were handled during the refactoring of the selected source models.

Additionally, it should be noted that our development utilized only a subset of BPMN
concepts that are relevant to the formation of process rules. This constraint was explicitly
stated in Section 3.2.

7. Threats to Validity

Basic threats to the validity of our experiment results and the approach itself are
categorized as follows [63]: (a) threats to construct validity, (b) threats to internal validity,
and (c) threats to external validity. All three categories of threats are assessed in the
following subsections.

Threats to Construct Validity. To properly apply any approach, one must ensure a
common understanding of things among all interested parties. However, the interpretability
and common understanding of concepts throughout the problem domain have the potential
to be handled improperly in certain settings; this is called a threat to construct validity. This
threat was minimal in our research, because: (1) all the specified transformation rules and
algorithms were automated and did not leave any space for misinterpreting things; (2) the
manual extraction of benchmark experimental results was performed exclusively by the
authors, who naturally shared a common understanding of things.

Threats to Internal Validity. Internal validity considers internal factors and how
they can affect the results, e.g., human error, motivation, subjectivity. Even though the
automated nature of the experiment helped to reduce the influence of the human factor,
some threats to internal validity remained.

The manual selection of source models for the experiment might be considered one
of such threats because it holds a certain degree of subjectivity. Nonetheless, the models
were carefully selected by considering the variety of possible modeling cases to test various
capabilities of the approach. Therefore, we state that, in this case, the subjectivity in the
selection of source models was justified.

Another threat to internal validity, which is a human error, is also related to the set
of source models. As the BPMN process models were selected from different sources,
neither of them was ready to be processed automatically by our experimental system.
Human errors could appear during this preparation phase. However, all the inputs for the
experiment were double-checked and agreed upon by all authors; therefore, we assume
this threat to be minimal.

Threats to External Validity. External validity can be biased by the non-rigorous
generalization or failure to generalize the developed approach to a larger extent. In our
case, the main threat to external validity is the fact that a relatively small number of models
was selected for the experiment; this objectively reduces the reliability of the acquired
experiment results to some extent.

Another threat is the lack of standardized modeling practices, in particular, using
certain conventions of naming model elements. In addition, there is always a chance
that some practitioners will disagree on certain modeling practices used in this research,
e.g., placing fully formulated conditions on the sequence flows diverging from a gateway
instead of stating a question on the gateway itself and then placing “yes/no”-like answers
on the diverging sequence flows. All this could lead to worse results compared with the
ones presented in this paper.

Appl. Sci. 2022, 12, 8976 24 of 27

8. Conclusions

Among other concerns that the professionals working in model-driven ISD face are
the lack of efficient standards-based approaches that would provide practical and efficient
means to the development of business process models synchronized with formalized
well-structured business vocabularies and business rules specifications.

In this paper, basic conceptual and implementation aspects of the approach for the
automatic extraction of SBVR process rules from BPMN process models were presented. At
the core of the approach are nine transformation patterns and the two conceptual algorithms
for processing cascading gateways. The experimental findings confirmed that SBVR process
rules can indeed be extracted from BPMN business process models by both manual and
automatic means. Moreover, the results of the automatic extraction of process rules have
shown full compliance with the benchmark results, providing a solid background for
the practical application and future developments of the solution. Another important
observation was that the results covered the entirety of the specified flow of work defined
in the experimental process models, meaning the set of specified transformation rules and
algorithms was sufficient for the given scope of the experiment.

It is evident from the experimental evaluation that the quality of the results (especially
in the case of automatic extraction) depends heavily on the quality of the underlying
business vocabulary and whether the source models meet commonly accepted modeling
practices.

The operating environment of our developed solution is a specific CASE tool, namely
MagicDraw. However, the conceptually defined transformation patterns and the algorithm
for processing cascading gateways could be implemented in any modeling tool supporting
BPMN and SBVR standards (e.g., through UML extension mechanism) and third-party
model transformations.

Future work. One of the most certain directions for our future research is the integra-
tion of the process rules transformation method with the advancements of NLP, in which
we have already reached certain tangible results [62]. Such an enhancement would mitigate
the NLP-related limitations of the existing transformation method. Another research effort
should be focused on conceptually merging SBVR process vocabulary and process rule
models with SBVR business vocabulary and business rules, thus gaining the ability to
specify and represent static as well as dynamic aspects of business domain knowledge
using the SBVR standard. Lastly, a thorough investigation of reverse-engineering textual
SBVR process rules back to visual BPMN process models could be yet another relevant
undertaking.

Author Contributions: Conceptualization, T.S.; Data curation, P.D., E.M. and R.B.; Methodology,
T.S.; Resources, P.D.; Software, P.D.; Supervision, T.S.; Validation, T.S., P.D., E.M. and R.B.; Writing –
original draft, T.S., P.D., E.M. and R.B. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Leopold, H.; Mendling, J.; Polyvyanyy, A. Generating Natural Language Texts from Business Process Models. In Advanced

Information Systems Engineering, LNCS, Proceedings of the 24th International Conference, CAiSE 2012, Gdansk, Poland, 25–29 June 2012;
Springer: Berlin/Heidelberg, Germany, 2012; Volume 7328, pp. 64–79. [CrossRef]

2. Wipp, W. Natural Language-Based Visualization and Modeling for Updatable Process Views. Bachelor’s Thesis, Faculty of
Engineering and Computer Science Institute of Databases and Information Systems, Ulm University, Ulm, Germany, 2013.

3. Leopold, H.; Mendling, J.; Polyvyanyy, A. Supporting process model validation through natural language generation. IEEE Trans.
Softw. Eng. 2014, 40, 818–840. [CrossRef]

4. Rodrigues, R.A.; Azevedom, L.G.; Revoredo, K. BPMN2TEXT: A Language-Independent Framework to Generate Natural
Language Text from BPMN models. iSys-Braz. J. Inf. Syst. 2016, 9, 38–56. [CrossRef]

http://doi.org/10.1007/978-3-642-31095-9_5
http://doi.org/10.1109/TSE.2014.2327044
http://doi.org/10.5753/isys.2016.320

Appl. Sci. 2022, 12, 8976 25 of 27

5. Ottensooser, A.; Fekete, A.; Reijers, H.A.; Mendling, J.; Menictas, C. Making sense of business process descriptions: An
experimental comparison of graphical and textual notations. J. Syst. Softw. 2012, 85, 596–606. [CrossRef]

6. Figl, K.; Recker, J. Exploring cognitive style and task-specific preferences for process representations. Requir. Eng. 2016, 21, 63–85.
[CrossRef]

7. Object Management Group. MDA Guide Revision 2.0; OMG Document Number: Ormsc/14-06-01; Object Management Group:
Needham, MA, USA, 2014.

8. Object Management Group. Semantics of Business Vocabulary and Business Rules (SBVR) Specification, version 1.4; OMG Document
Number: Formal/17-05-05; Object Management Group: Needham, MA, USA, 2017.

9. Object Management Group. Business Process Model and Notation (BPMN), version 2.0.1; OMG Document Number: Formal/2013-09-
02; Object Management Group: Needham, MA, USA, 2013.

10. Krogstie, J.; McBrien, P.; Owens, R.; Seltveit, A.H. Information systems development using a combination of process and rule
based approaches. In Advanced Information Systems Engineering, LNCS, Proceedings of the Third International Conference CAiSE’91,
Trondheim, Norway, 13–15 May 1991; Springer: Berlin/Heidelberg, Germany, 1991; Volume 498, pp. 319–335. [CrossRef]

11. Habich, D.; Richly, S.; Demuth, B.; Gietl, F.; Spilke, J.; Lehner, W.; Assman, U. Joining Business Rules and Business Processes. In
Proceedings of the 16th International Conference on Information and Software Technologies (ICIST), Kaunas, Lithuania, 21–23
April 2010; pp. 361–368.

12. Sapkota, B.; van Sinderen, M. Exploiting rules and processes for increasing flexibility in service composition. In Proceedings of
the 14th IEEE International Conference on Enterprise Distributed Object Computing Conference Workshops (EDOCW), Vitoria,
Brazil, 25–29 October 2010; pp. 177–185. [CrossRef]

13. Koehler, J. The Process-Rule Continuum—Can BPMN & SBVR Cope with the Challenge? In Proceedings of the 2011 IEEE 13th
Conference on Commerce and Enterprise Computing, Luxembourg-Kirchberg, Luxembourg, 5–7 September 2011; pp. 302–309.
[CrossRef]

14. Milanovic, M.; Gaševic, D.; Rocha, L. Modeling Flexible Business Process with Business Rule Patterns. In Proceedings of the 15th
IEEE International Enterprise Distributed Object Computing Conference, Helsinki, Finland, 29 August–2 September 2011; pp.
65–74. [CrossRef]

15. Nalepa, G.J.; Kluza, K.; Kaczor, K. Proposal of an Inference Engine Architecture for Business Rules and Processes. In Artificial
Intelligence and Soft Computing, LNCS, Proceedings of the 12th International Conference, ICAISC 2013, Zakopane, Poland, 9–13 June 2013;
Springer: Berlin/Heidelberg, Germany, 2013; pp. 453–464. [CrossRef]

16. Wang, W.; Indulska, M.; Sadiq, S. A Theoretical Perspective on Integrated Modeling of Business Processes and Rules. In
Proceedings of the 28th International Conference on Advanced Information Systems Engineering (CAiSE Forum), Ljubljana,
Slovenia, 13–17 June 2016; Springer: Ljubljana, Slovenia, 2016.

17. Kluza, K.; Nalepa, G.J. A Method for Generation and Design of Business Processes with Business Rules. Inf. Softw. Technol. 2017,
91, 123–141. [CrossRef]

18. Kluza, K.; Nalepa, G.J. Formal Model of Business Processes Integrated with Business Rules. Inf. Syst. Front. 2018, 21, 1167–1185.
[CrossRef]

19. Rosa, L.S.; Silva, T.S.; Fantinato, M.; Thom, L.H. A visual approach for identification and annotation of business process elements
in process descriptions. Comput. Stand. Interfaces 2022, 81, 103601. [CrossRef]

20. Aysolmaz, B.; Leopold, H.; Reijers, H.A.; Demirörs, O. A semi-automated approach for generating natural language requirements
documents based on business process models. Inf. Softw. Technol. 2018, 93, 14–29. [CrossRef]

21. Vanhatalo, J.; Volzer, H.; Leymann, F. Faster and More Focused Control-Flow Analysis for Business Process Models Through
SESE Decomposition. In Service-Oriented Computing—ICSOC 2007, LNCS, Proceedings of the Fifth International Conference, Vienna,
Austria, 17–20 September 2007; Springer: Berlin/Heidelberg, Germany, 2007; Volume 4749, pp. 43–55. [CrossRef]

22. Goncalves, J.C.; Santoro, F.M.; Baiao, F.A. Let Me Tell You a Story—On How to Build Process Models. J. Univers. Comput. Sci.
2011, 17, 276–295. [CrossRef]

23. Friedrich, F.; Mendling, J.; Puhlmann, F. Process Model Generation from Natural Language Text. In Advanced Information
Systems Engineering, LNCS, Proceedings of the 23rd International Conference, CAiSE 2011, London, UK, 20–24 June 2011; Springer:
Berlin/Heidelberg, Germany, 2011; Volume 6741, pp. 482–496. [CrossRef]

24. Vakulenko, S. Extraction of Process Models from Business Process Descriptions. Master’s Thesis, University of Tartu, Tartu,
Estonia, 2011.

25. Van der Aa, H.; Carmona, J.; Leopold, H.; Mendling, J.; Padro, L. Challenges and Opportunities of Applying Natural Language
Processing in Business Process Management. In Proceedings of the 27th International Conference on Computational Linguistics,
Santa Fe, NM, USA, 20–26 August 2018; pp. 2791–2801. Available online: http://aclweb.org/anthology/C18-1236 (accessed on
10 July 2022).

26. Spreeuwenberg, S. Interview with Rob van Haarst, Author of the Recently-published Book “SBVR Made Easy”. Bus. Rules J. 2014,
15. Available online: http://www.brcommunity.com/a2014/b747.html (accessed on 10 July 2022).

27. Nijssen, S. SBVR & BPMN as Pillars of Business Engineering. Bus. Rules J. 2008, 9. Available online: http://www.brcommunity.
com/a2008/b447.html (accessed on 10 July 2022).

28. Zur Muehlen, M.; Indulska, M. Modeling Languages for Business Processes and Business Rules: A Representational Analysis. Inf.
Syst. J. 2010, 35, 379–390. [CrossRef]

http://doi.org/10.1016/j.jss.2011.09.023
http://doi.org/10.1007/s00766-014-0210-2
http://doi.org/10.1007/3-540-54059-8_92
http://doi.org/10.1109/EDOCW.2010.44
http://doi.org/10.1109/CEC.2011.22
http://doi.org/10.1109/EDOC.2011.25
http://doi.org/10.1007/978-3-642-38610-7_42
http://doi.org/10.1016/j.infsof.2017.07.001
http://doi.org/10.1007/s10796-018-9826-y
http://doi.org/10.1016/j.csi.2021.103601
http://doi.org/10.1016/j.infsof.2017.08.009
http://doi.org/10.1007/978-3-540-74974-5_4
http://doi.org/10.3217/jucs-017-02-0276
http://doi.org/10.1007/978-3-642-21640-4_36
http://aclweb.org/anthology/C18-1236
http://www.brcommunity.com/a2014/b747.html
http://www.brcommunity.com/a2008/b447.html
http://www.brcommunity.com/a2008/b447.html
http://doi.org/10.1016/j.is.2009.02.006

Appl. Sci. 2022, 12, 8976 26 of 27

29. Eder, R.; Filieri, A.; Kurz, T.; Heistracher, T.J.; Pezzuto, M. Model-transformation-based software Generation Utilizing Natural
Language Notations. In Proceedings of the 2nd IEEE International Conference on Digital Ecosystems and Technologies (DEST),
Phitsanuloke, Thailand, 26–29 February 2008; pp. 306–312. [CrossRef]

30. Moschoyiannis, S.; Marinos, A.; Krause, P.J. Generating SQL Queries from SBVR Rules. In Semantic Web Rules, Proceedings of the
International Symposium, RuleML 2010, Washington, DC, USA, 21–23 October 2010; Springer: Berlin/Heidelberg, Germany, 2010.
[CrossRef]

31. Karpovic, J.; Ablonskis, L.; Nemuraitė, L.; Paradauskas, B. Experimental investigation of transformations from SBVR business
vocabularies and business rules to OWL 2 ontologies. Inf. Technol. Control 2016, 45, 195–207. [CrossRef]

32. Essebaa, I.; Chantit, S. Tool Support to Automate Transformations from SBVR to UML Use Case Diagram. In Proceedings of the
13th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE), Funchal, Portugal, 23–24
March 2018; pp. 525–532. [CrossRef]

33. Agrawal, A. Semantics of Business Process Vocabulary and Process Rules. In Proceedings of the 4th India Software Engineering
Conference (ISEC), Kerala, India, 24–27 February 2011; pp. 61–68. [CrossRef]

34. Cheng, R.; Sadiq, S.; Indulska, M. Framework for Business Process and Rule Integration: A Case of BPMN and SBVR. In Business
Information Systems, LNBIP, Proceedings of the14th International Conference, BIS 2011, Poznań, Poland, 15–17 June 2011; Springer:
Berlin/Heidelberg, Germany, 2011; Volume 87, pp. 13–24. [CrossRef]

35. Skersys, T.; Tutkute, L.; Butleris, R.; Butkiene, R. Extending BPMN Business Process Model with SBVR Business Vocabulary and
Rules. Inf. Technol. Control 2012, 41, 356–367. [CrossRef]

36. Skersys, T.; Kapocius, K.; Butleris, R.; Danikauskas, T. Extracting Business Vocabularies from Business Process Models: SBVR and
BPMN Standards-based Approach. Comput. Sci. Inf. Syst. 2014, 11, 1515–1535. [CrossRef]

37. Mickeviciute, E.; Butleris, R.; Gudas, S.; Karciauskas, E. Transforming BPMN 2.0 Business Process Model into SBVR Business
Vocabulary and Rules. Inf. Technol. Control 2017, 46, 360–371. [CrossRef]

38. Malik, S.; Bajwa, I.S. A Rule Based Approach for Business Rule Generation from Business Process Models. In Rules on the Web:
Research and Applications, LNCS, Proceedings of the 6th International Symposium, RuleML 2012, Montpellier, France, 27–29 August 2012;
Springer: Berlin/Heidelberg, Germany, 2012; Volume 7438, pp. 92–99. [CrossRef]

39. Malik, S.; Bajwa, I.S. Back to Origin: Transformation of Business Process Models to Business Rules. In Business Process Man-
agement Workshops, Proceedings of the BPM 2012 International Workshops, LNBIP, Tallinn, Estonia, 3 September 2012; Springer:
Berlin/Heidelberg, Germany, 2012; Volume 132, pp. 611–622. [CrossRef]

40. Al-Ali, H.; Damiani, E.; Al-Qutayri, M.; Abu-Matar, M.; Mizouni, R. Translating BPMN to Business Rules. In Data-Driven Process
Discovery and Analysis, Proceedings of the 6th IFIP WG 2.6 International Symposium, SIMPDA 2016, Graz, Austria, 15–16 December
2016; Springer: Cham, Switzerland, 2016; pp. 22–36.

41. Rachdi, A.; En-Nouaary, A.; Dahchour, M. Analysis of common business rules in BPMN process models using business rule
language. In Proceedings of the 11th International Conference on Intelligent Systems: Theories and Applications (SITA),
Mohammedia, Morocco, 19–20 October 2016; pp. 1–6. [CrossRef]

42. Steen, B.; Pires, L.F.; Iacob, M. Automatic generation of optimal business processes from business rules. In Proceedings of the 4th
IEEE International Enterprise Distributed Object Computing Conference Workshops, Vitoria, Brazil, 25–29 October 2010; pp.
117–126.

43. Wu, Z.; Yao, S.; He, G.; Xue, G. Rules Oriented Business Process Modeling. In Proceedings of the Internet Technology and
Applications (iTAP), Wuhan, China, 16–18 August 2011; pp. 1–4. [CrossRef]

44. Tantan, O.C.; Akoka, J. Automated transformation of Business Rules into Business Processes. In Proceedings of the Twenty-Sixth
International Conference on Software Engineering and Knowledge Engineering, Vancouver, Canada, 1–3 July 2014; pp. 684–687.

45. Addamssiri, N.; Kriouile, A.; Boussaa, S.; Gadi, T. MDA Approach: Refinement and Validation of CIM Level Using SBVR. In
Proceedings of the Mediterranean Conference on Information & Communication Technologies, Saïdia, Morocco, 7–9 May 2015.
[CrossRef]

46. Kluza, K.; Honkisz, K. From SBVR to BPMN and DMN Models. Proposal of Translation from Rules to Process and Decision
Models. In Artificial Intelligence and Soft Computing, LNCS, Proceedings of the 5th International Conference, ICAISC 2016, Zakopane,
Poland, 12–16 June 2016; Springer: Cham, Switzerland, 2016; Volume 9693, p. 9693. [CrossRef]

47. Elkindy, A.I.A. Survey of Business Process Modeling Recommender Systems. Master’s Thesis, Universitat Koblenz-Landau,
Mainz, Germany, 2019. Available online: https://kola.opus.hbz-nrw.de/frontdoor/index/index/docId/1895 (accessed on 10
July 2022).

48. Sola, D.; van der Aa, H.; Meilicke, C.; Stuckenschmidt, H. Exploiting label semantics for rule-based activity recommendation in
business process modeling. Inf. Syst. 2022, 108, 102049. [CrossRef]

49. Deng, S.; Wang, D.; Li, Y.; Cao, B.; Yin, J.; Wu, Z.; Zhou, M. A Recommendation System to Facilitate Business Process Modeling.
IEEE Trans. Cybern. 2017, 47, 1380–1394. [CrossRef]

50. Gottesdiener, E. Business RULES Show Power, Promise. Appl. Dev. Trends 1977, 4, 36–42. Available online: http://citeseerx.ist.
psu.edu/viewdoc/download?doi=10.1.1.329.8585&rep=rep1&type=pdf (accessed on 10 July 2022).

51. Ross, R. The Business Rule Book: Classifying, Defining and Modeling Rules, 2nd ed.; Business Rule Solutions Inc.: Houston, TX, USA,
1997.

http://doi.org/10.1109/DEST.2008.4635155
http://doi.org/10.1007/978-3-642-16289-3_12
http://doi.org/10.5755/j01.itc.45.2.8873
http://doi.org/10.5220/0006817705250532
http://doi.org/10.1145/1953355.1953363
http://doi.org/10.1007/978-3-642-21863-7_2
http://doi.org/10.5755/j01.itc.41.4.2013
http://doi.org/10.2298/CSIS140106079S
http://doi.org/10.5755/j01.itc.46.3.18520
http://doi.org/10.1007/978-3-642-32689-9_8
http://doi.org/10.1007/978-3-642-36285-9_61
http://doi.org/10.1109/SITA.2016.7772268
http://doi.org/10.1109/ITAP.2011.6006338
http://doi.org/10.1007/978-3-319-30298-0_41
http://doi.org/10.1007/978-3-319-39384-1_39
https://kola.opus.hbz-nrw.de/frontdoor/index/index/docId/1895
http://doi.org/10.1016/j.is.2022.102049
http://doi.org/10.1109/TCYB.2016.2545688
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.329.8585&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.329.8585&rep=rep1&type=pdf

Appl. Sci. 2022, 12, 8976 27 of 27

52. Business Rules Group. Defining Business Rules—What Are They Really? Final Report, Revision 1.3, July, 2000 (Formerly Known
as the “GUIDE Business Rules Project Report,” 1995). Available online: http://www.businessrulesgroup.org/first_paper/BRG-
whatisBR_3ed.pdf (accessed on 10 July 2022).

53. Vanthienen, J.; Goedertier, S. How Business Rules Define Business Processes. Bus. Rules J. 2007, 8. Available online: http:
//www.brcommunity.com/a2007/b336.html (accessed on 10 July 2022).

54. Baisley, D.E. A Metamodel for Business Vocabulary and Rules: Object-Oriented Meets Fact-Oriented. Bus. Rules J. 2004, 5.
Available online: http://www.brcommunity.com/a2004/b197.html (accessed on 10 July 2022).

55. Cabot, J.; Pau, R.; Raventos, R. From UML/OCL to SBVR specifications: A challenging transformation. Inf. Syst. 2010, 35, 417–440.
[CrossRef]

56. Kleiner, M.; Albert, P.; Bezivin, J. Parsing SBVR-Based Controlled Languages. In Model Driven Engineering Languages and
Systems, Proceedings of the 12th International Conference, MODELS 2009, LNCS, Denver, CO, USA, 4–9 October 2009; Springer:
Berlin/Heidelberg, Germany, 2009; Volume 5795, pp. 122–136. [CrossRef]

57. Business Rules Group (BRG). The Business Rules Manifesto. 2003. Available online: Businessrulesgroup.org/brmanifesto.htm
(accessed on 10 July 2022).

58. Skersys, T.; Danenas, P.; Butleris, R. Extracting SBVR business vocabularies and business rules from UML use case diagrams. J.
Syst. Softw. 2018, 141, 111–130. [CrossRef]

59. Czarnecki, K.; Helsen, S. Classification of Model Transformation Approaches. In Proceedings of the 2nd OOPSLA Workshop on
Generative Techniques in the Context of the Model Driven Architecture, Twente, The Netherlands, 26–27 June 2003; Volume 45,
pp. 1–17.

60. Mens, T.; van Gorp, P. A Taxonomy of Model Transformation. Electron. Notes Theor. Comput. Sci. 2006, 152, 125–142. [CrossRef]
61. Object Management Group. Query/View/Transformation (QVT), version 1.1; OMG Document Number: Formal/2011-01-01; Object

Management Group: Needham, MA, USA, 2011.
62. Danenas, P.; Skersys, T.; Butleris, R. Natural language processing-enhanced extraction of SBVR business vocabularies and business

rules from UML use case diagrams. Data Knowl. Eng. 2020, 128, 101822. [CrossRef]
63. Runeson, P.; Höst, M.; Rainer, A.; Regnell, B. Case Study Research in Software Engineering: Guidelines and Examples; John Wiley &

Sons: Hoboken, NJ, USA, 2012.

http://www.businessrulesgroup.org/first_paper/BRG-whatisBR_3ed.pdf
http://www.businessrulesgroup.org/first_paper/BRG-whatisBR_3ed.pdf
http://www.brcommunity.com/a2007/b336.html
http://www.brcommunity.com/a2007/b336.html
http://www.brcommunity.com/a2004/b197.html
http://doi.org/10.1016/j.is.2008.12.002
http://doi.org/10.1007/978-3-642-04425-0_10
Businessrulesgroup.org/brmanifesto.htm
http://doi.org/10.1016/j.jss.2018.03.061
http://doi.org/10.1016/j.entcs.2005.10.021
http://doi.org/10.1016/j.datak.2020.101822

	Introduction
	Related Work
	State of the Art Research
	Concepts’ Definitions, Issues, and Pre-Conditions to Be Considered

	Transformation of BPMN Processes to SBVR Process Rules
	Transformation Scenario
	Transformation Rules
	Extracting Process Rules from Multiple Cascading Gateways

	Implementation
	Illustrative Example
	Experimental Evaluation
	Threats to Validity
	Conclusions
	References

