
Citation: Ryselis, K.; Blažauskas, T.;

Damaševičius, R.; Maskeliūnas, R.

Agrast-6: Abridged VGG-Based

Reflected Lightweight Architecture

for Binary Segmentation of Depth

Images Captured by Kinect. Sensors

2022, 22, 6354. https://doi.org/

10.3390/s22176354

Academic Editors: Gregorij Kurillo

and Yongwha Chung

Received: 3 July 2022

Accepted: 19 August 2022

Published: 24 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Agrast-6: Abridged VGG-Based Reflected Lightweight
Architecture for Binary Segmentation of Depth Images
Captured by Kinect
Karolis Ryselis , Tomas Blažauskas , Robertas Damaševičius * and Rytis Maskeliūnas

Faculty of Informatics, Kaunas University of Technology, 44249 Kaunas, Lithuania
* Correspondence: robertas.damasevicius@ktu.lt

Abstract: Binary object segmentation is a sub-area of semantic segmentation that could be used for a
variety of applications. Semantic segmentation models could be applied to solve binary segmentation
problems by introducing only two classes, but the models to solve this problem are more complex
than actually required. This leads to very long training times, since there are usually tens of millions of
parameters to learn in this category of convolutional neural networks (CNNs). This article introduces
a novel abridged VGG-16 and SegNet-inspired reflected architecture adapted for binary segmentation
tasks. The architecture has 27 times fewer parameters than SegNet but yields 86% segmentation
cross-intersection accuracy and 93% binary accuracy. The proposed architecture is evaluated on a
large dataset of depth images collected using the Kinect device, achieving an accuracy of 99.25% in
human body shape segmentation and 87% in gender recognition tasks.

Keywords: depth images; convolutional neural network; binary segmentation

1. Introduction

The fundamental issue of semantic segmentation has lately gained attention in the
disciplines of computer vision and machine learning [1]. One of the crucial phases in
developing complicated robotic systems, such as autonomous cars/drones, human-friendly
robots, robot-assisted surgery, and intelligent military systems, is to assign a different
class label to each pixel of a picture [2]. Convolutional neural networks (CNN), which
have been applied to semantic segmentation, have unquestionably contributed to the
recent rise in interest in this subject. One of the core concerns of computer vision has long
been understanding a scene at the semantic level, but we have only recently saw practical
solutions to the issue [3]. Therefore, it should come as no surprise that prominent businesses
in the sector are now urgently tackling this issue alongside academic organizations that
study artificial intelligence.

Depth sensor data analysis has been on the rise lately. With the prevalence of low-
cost depth sensors such as Microsoft Kinect, different researchers found that depth data
could be applied for 3D face recognition [4], fall detection [5], evaluation of upper extrem-
ity characteristics [6], fitness applications [7,8], exercise coaching [9], industrial worker
activity monitoring [10], robotic applications [11], obstacle detection for visually im-
paired [12], anthropometric measurements [13], posture recognition [14] or general body
tracking [15]. The RGB (red, green, blue) + depth data are used even more often in applica-
tions such as image encryption [16], object detection [17] and especially semantic object
segmentation [18–20]. However, RGB cameras for some applications introduce security
risks as shown by Roesner et al. [21]. Depth sensors do not pose as many security threats.
Single-class (binary) segmentation is also sometimes useful. It was applied in areas as
different as cloud segmentation [22], medical images [23] or human body segmentation [24].

If it is known that a certain object is already in the scene, the only issue to solve is
segmenting the object from the background. This could be completed by existing semantic

Sensors 2022, 22, 6354. https://doi.org/10.3390/s22176354 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22176354
https://doi.org/10.3390/s22176354
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-1251-1575
https://orcid.org/0000-0003-2858-328X
https://orcid.org/0000-0001-9990-1084
https://orcid.org/0000-0002-2809-2213
https://doi.org/10.3390/s22176354
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22176354?type=check_update&version=1


Sensors 2022, 22, 6354 2 of 16

segmentation systems; however, they are more complex than actually needed, which means
that they are also more difficult to train. The issues are acknowledged by Shazeer et al. [25],
who suggest a solution to disable some parts of the network, or Huang et al. [26], who
suggest a solution to train very large networks more efficiently. However, the training time
for large neural networks still remains an issue, so smaller architectures are still required in
order to reduce the time to deploy the CNN-based solution for some domains.

Our work has made the following significant contributions:

• An in-depth and organized examination of the most important deep learning models
for semantic segmentation, their origins, and their contributions.

• A new convolutional deep learning model proposed for binary image segmentation.
• A comprehensive performance evaluation that collects quantitative metrics such as

segmentation accuracy and execution time.
• A discussion of the aforementioned results as well as a list of potential future works

that could set the course of future advances in semantic segmentation of depth images
and a conclusion summarizing the field’s state of the art.

The organization of the remaining parts of the paper is as follows. Section 2 discusses
previous deep learning models for semantic image segmentation. Section 3 introduces and
describes the proposed neural network architectures. Section 4 presents the results of the
experiments. Finally, Section 5 discusses the results and concludes.

2. Previous Work on Semantic Image Segmentation

VGG-16 is a neural network architecture introduced by Simonyan and Zisserman [27].
The authors suggested a fully convolutional neural network (FCN) that utilizes small 3 × 3
convolutional filters. The goal of VGG-16 is the classification of RGB images. The network
consists of five segments of layers. Each segment consists of two or three convolutional
layers with 3 × 3 filters with ReLU activation and a max pooling layer at the end. Each
pooling layer reduces the dimensions of the previous layer by a factor of 2. The network
uses a softmax layer to produce its output.

The VGG network itself was inspired by AlexNet [28]. The novelties that VGG
introduced in comparison to AlexNet were small receptive filters (3 × 3 vs. AlexNet’s
11 × 11), which allowed a deeper network. AlexNet consists of 11 layers while VGG
supports up to 19 layers. This property leads to better results. Research by Yu et al. [29] has
shown that VGG-16 is better than AlexNet at removing background information. However,
benchmarks performed by Canziani et al. [30] have shown that VGG and AlexNet carry a
small amount of accuracy per parameter. This is a disadvantage of these models, as the
researchers state that “VGG and AlexNet are clearly oversized”. VGG-16’s accuracy density
was evaluated to be ~0.5% per million parameters, while that for AlexNet was 0.8% per
million parameters. It was also shown by Paszke et al. [31] that smaller architectures are
viable. They achieved 55.6% segmentation IoU accuracy, which is comparable to other state-
of-the-art neural networks of the time. However, the authors state that their architecture
requires 79 times fewer parameters to learn.

The VGG-16 network is popular and inspired many other architectures. SegNet is
one of the networks based on VGG-16 [32]. It suggests an encoder–decoder architecture
for semantic image segmentation—it takes RGB images as inputs and produces labels of
semantic segmentation. VGG-16 acts as an encoder in this architecture. The decoder is
the reverse of the encoder—it has the same layers but in reverse order, and max pooling
layers are replaced with upsampling layers. The authors introduced the idea of using
pooling indices computed in the max-pooling step in the encoder. The network was trained
to segment objects on the road into 11 classes. SegNet was also applied in other areas
of research such as brain tumor segmentation [33], detection of cracks in pavement [34]
and semantic segmentation using event-based cameras [35]. This shows that SegNet is a
very versatile architecture that can be applied in different areas. Mou et al. also suggest a
VGG-16 encoder–decoder architecture based on VGG-16 with relation modules [36]. They



Sensors 2022, 22, 6354 3 of 16

include the spatial relation module and channel relation module, which are then aggregated.
They help to identify long-term relations in the images.

A solution for binary image segmentation is SoftSeg [37]. The authors suggest that
linear ReLU-based activation should be used instead of the sigmoid function in order to
soften the boundary of the two classes.

TernausNet is another binary image segmentation network [38]. It is based on the
so-called encoder–decoder (ED) architectures, which are divided into two halves and are
often referred to as U-Nets in reference to the groundbreaking research by [39]. The spatial
dimension is gradually decreased by the encoder using pooling layers, and the spatial
dimension is gradually recovered by the decoder. By leveraging skip connections, each
feature map in the decoder portion only obtains data directly from feature maps at the
same level as the encoder part, enabling EDs to produce abstract hierarchical features with
fine localization. The authors suggest using a VGG-11 based encoder–decoder with a fully
connected layer replaced with a single convolutional layer of 512 channels. However,
U-Net is criticized due to the blurring of extracted features and low-resolution information
duplication [40].

He et al. [41] suggested a Spatial Pyramid Pooling Network that could produce a
spatial pyramid representation of deep features independent of the input size (SPP-Net).
The SPP-Net’s ability to feed CNNs with inputs of various sizes was its most significant
contribution. Different-sized feature maps are always produced by feeding different-
sized images into convolutional layers. However, the feature map produced by that layer
would be fixed if a pooling layer, which comes before a decision layer, had stride values
proportionate to the input size. The nature of this architecture prevents fine-tuning the
layers before the SPP layer.

Recurrent Neural Networks (RNNs) and Convolutional Neural Networks (CNNs) are
combined in the ReSeg model [42]. In order to more accurately localize the pixel labels, the
input picture is fed through a CNN encoder that is similar to the VGG architecture and
then processed by recurrent layers. Another related method is the DAG-RNN [43], which
models long-range semantic relationships among picture units using a DAG-structured
CNN+RNN network. To the best of our knowledge, semantic segmentation lacks solely
recurrent structures, which is mostly because semantic segmentation necessitates an initial
CNN-based feature encoding strategy.

Segmentation was also implemented by DeepLab v3 and Quick Shift combined via
class voting by Zhang et al. [44]. Long et al. suggested a fully CNN [45] that does not have
a full decoder and infers the output image directly from the bottleneck layer. However, all
mentioned models, while useful and accurate, use RGB data. Since there are three channels,
the input data are more complex than only the depth channel; therefore, the networks
should also be possible to simplify for more efficient usage for depth image segmentation.

The ineffective loss of label localization within the feature hierarchy, the inability to
process global context knowledge, and the lack of a method for multiscale processing may
be summed up as the key shortcomings of FCNs. Therefore, the majority of the following
research has focused primarily on offering new structures or methodologies as solutions to
these problems.

The summary of this section is provided in Table 1.

Table 1. Overview of previous work on semantic image segmentation.

Year Model Novelty Major Drawback

2012 AlexNet [28] Depth of the model Ineffective and lower accuracy than later models
2014 VGG-16 [27] Small receptive fields Heavy model, computationally expensive
2015 U-Net [39] Encoder–decoder architecture Blurred features, slower due to decoder
2015 SPP-Net [41] Variable image size adaptation Cannot fine-tune convolutional layers before SPP layer
2015 FCNN [45] Adaptation into fully convolutional networks -
2016 ReSeg [42] Recurrent layer Features must be extracted using other techniques
2017 SegNet [32] Decoder non-linear upsampling Slower due to decoder
2021 SoftSeg [37] Normalized ReLU activation and regression loss function Hard to evaluate due to fuzzy boundaries



Sensors 2022, 22, 6354 4 of 16

3. Methodology
3.1. Workflow

Prediction using the Agrast-6 model is implemented in a Java project. The model is
loaded from a disk from the Tensorflow saved model format; the image is converted to a
format acceptable by Tensorflow Java library and passed to it. The result is then fetched
and converted back from the Tensorflow data structures.

3.2. Suggested Neural Network—Agrast-6 Architecture

The suggested neural network model—Abridged VGG-Based Reflected Architecture
for Segmentation Training-6 (Agrast-6)—is an abridged modification of SegNet [32]. The
task solved by SegNet is semantic segmentation. In order to solve this task, SegNet
architecture introduces over 32,000,000 trainable parameters. This architecture can be
simplified for simpler tasks.

First, SegNet is based off VGG-16, which itself is a network of 16 layers [27]. However,
the first three layers are fully convolutional layers which only work with 224 × 224 × 3
BGR images. Depth data only has one channel. This limitation could be overcome by
repeating the same channel three times. However, this research does not intend to use
pre-trained weights from SegNet or VGG models; therefore, it makes sense to simplify the
model instead. These layers are dropped in Agrast-6.

Next, VGG-16 consists of blocks of layers. There are 5 blocks; each block consists of
either 2 or 3 convolutional layers with a 3 × 3 filter and a max pooling layer at the end. Each
max pooling layer reduces both dimensions of the image by 2. The depth of convolutional
layers is increased with each block, starting with the depth of 32 at the first layer up to 512
at the last layer. This gives extra dimensions for the network to learn the features. However,
in binary image segmentation, there are fewer features to learn, and the model is more
simple than in semantic segmentation. Thus, Agrast-6 leaves 3 blocks of layers instead
of 5, and each block only has one convolutional and one max pooling layer. The depth
of convolutional layers is also decreased to 32, 128 and 256, while max pooling is more
aggressive with the first two layers reducing image dimensions by a factor of 4 and the last
layer reducing image dimensions by two. In that case, the total dimensional compression
is the same as in VGG-16, but it is completed quicker with more aggressive max pooling
layers and fewer convolutional layers.

The first part acts as an encoder. The next part, introduced in SegNet, is the decoder.
It tries to generate a new segmentation image from the encoded features. The decoder
is a reflection of the encoder with max pooling layers replaced with upsampling layers.
Changes in dimensionality are kept the same in both the encoder and the decoder. This
idea is also used in Agrast-6. Three blocks of upsampling convolutional layers are used to
generate the image from the encoded features. However, in the case of SegNet, the depth
dimension of the last layer is 32, because it has to learn many labels. In binary segmentation,
there are only two possible layers, so there is no reason to have 32 outputs per pixel. Thus,
one more convolutional layer of depth dimension reduction is introduced.

Originally, SegNet uses the Softmax activation function as its last layer. Softmax tends
to yield better results with multi-class classification tasks [46]. However, in case of a binary
classification, ReLU was observed to perform better. This was shown in the works of
Agarwal et al. [47]. As a result, ReLU activation is used in the Agrast-6 network as the
activation of the last layer. To sum up, the full architecture of Agrast-6 is 6 layers of encoders
(3 convolution–max pooling pairs), 6 layers of decoders (3 upsampling–convolution pairs),
a feature reduction convolutional layer and a ReLU classifier. The full architecture is shown
in Figure 1. The notation used in the figure is based on the Tensorflow terminology. The
padding value of “same” for convolutional and transposed convolutional layers means that
the convolution is applied to all pixels and edge pixels are zero-padded. ReLU activation
at the end has a max value set to one. This option limits the final value of this layer to 1,
i.e., ReLU is applied, and if the value coming from this layer is greater than 1, it will be set
to 1; otherwise, the original ReLU function output will be used.



Sensors 2022, 22, 6354 5 of 16

Figure 1. Architecture of the proposed Agrast-6 deep learning model for binary segmentation tasks.

3.3. Neural Network Implementation

The decoder is automatically generated from the encoder. The decoder generator
iterates over the encoder layers in reverse and produces new layers. The upsampling
layer is generated if a max pooling layer is found; the deconvolutional layer is generated
if a convolutional layer is found; the ReLU layer is generated if an input layer is found.
This process is shown as a UML activity diagram in Figure 2. It outputs the network
shown in Figure 1 and guarantees that the architecture is mirrored. Copied parameters
for convolutional–transposed convolutional layers are filters, kernel size, activation and
padding. The upsampling layers are generated by setting the size of the layer as encoder
strides. The final transposed convolutional layer has 1 filter, a 3 × 3 kernel size and
ReLU activation.



Sensors 2022, 22, 6354 6 of 16

Figure 2. UML activity diagram of neural network creation process.

4. Neural Network Training and Evaluation
4.1. Dataset

The Agrast-6 neural network has been trained using the dataset of 220,000 images.
The dataset is self-collected depth image sequences (videos) captured using a Kinect 2
camera. The images contain people sitting, standing or doing different poses, for example,
standing on one leg or raising their hand. The dataset is captured indoors. A total of
45 people participated in data capture as actors. It is split into two parts: simple poses
(standing and sitting on the chair, open environment) and complex poses (different poses
from raised hands to crouch to laying on the ground, more cluttered environment). Ground
truth binary masks have been obtained semi-automatically with human supervision using
specialized software. The size of the dataset is 220,000 depth images with their respective
foreground masks.

Kinect depth image dimensions are 424 × 512; however, the Agrast-6 network down-
scales the image in max pooling layers and then upscales it in upsampling layers by a
factor of 32. Since 424 does not divide by 32, the data were right-padded with values of 0
both in the depth frames and ground truth frames.



Sensors 2022, 22, 6354 7 of 16

4.2. Settings

Agrast-6 is implemented using Python programming language and a Tensorflow
2 library. Tensorflow includes the model of VGG-16, which was modified to produce the
encoder. The training was performed on a system with AMD Ryzen 3900X CPU and NVidia
1660 SUPER GPU. The model has 1,200,000 trainable parameters.

4.3. Training

The whole dataset is divided into train and test parts, the train part is 80% of the data,
and 20% are used for testing.

The learning rate has been set to 0.0001 with Adam optimizer. However, after
100 batches, the human shape is already visible, while after 6400 batches, the human
is clearly visible. After 16,200 batches of data (just over 1/3 of the first epoch), the hu-
man silhouette is already bright, which shows that the confidence of the network has
become high.

A batch of this size consists of about 4900 frames, which means that 8.2 GB of memory
is used for one batch of images. The frames from all images are put into a single collection
which is then shuffled and fed into the training method. When all frames are exhausted,
the next 20 image sequences are loaded, and the process repeats until all data are exhausted.
The same is completed for test images, but the batch size is reduced to 5. This process is
repeated for each training epoch. It takes about 5 h to train one epoch and 1 h to validate
the model against the test dataset.

Table 2 summarizes the hyperparameters used during training. The convolutional and
deconvolutional layers all had the same kernel size and ReLU activation. The max-pooling
window size was the same as dimensionality reduction. Adam optimizer with a learning
rate of 0.0001 was used, and it optimized for a binary cross-entropy function.

Table 2. The values of Agrast-6 model hyperparameters.

Hyperparameter Value

Convolutional layer kernel size 3 × 3
Convolutional layer activation function ReLU
Max-pooling pool size 4 × 4, 2 × 2 for last layer
Optimizer Adam
Optimizer learning rate 0.0001
Loss function Binary cross-entropy

4.4. Quantitative and Qualitative Validation Analysis

The neural network was evaluated using the standard training metrics. In the first
four epochs, it has shown significant improvements in loss, precision and recall values with
both test and train data. The next epochs have shown little improvement. After five epochs
of training, the network peaked at its train precision and accuracy, while metrics with the
test dataset continued to improve. Learning progress details are shown in Table 3.

Table 3. Training results of the proposed deep learning architecture. The best performance is indicated
in bold.

Epoch Train Test
Loss Precision Accuracy Recall Loss Precision Accuracy Recall

4 0.0161 0.9415 0.9939 0.9444 0.0430 0.9308 0.9916 0.9030
5 0.0150 0.9457 0.9944 0.9490 0.0347 0.9317 0.9920 0.9106
6 0.0158 0.9440 0.9940 0.9440 0.0329 0.9209 0.9919 0.9206
7 0.0152 0.9452 0.9942 0.9469 0.0351 0.9226 0.9915 0.9102
8 0.0164 0.9412 0.9938 0.9433 0.0324 0.9195 0.9921 0.9265
9 0.0162 0.9437 0.9939 0.9421 0.0325 0.9316 0.9925 0.9194



Sensors 2022, 22, 6354 8 of 16

The results suggest that the neural network has not overfit the data, because all test
metrics are high and started decreasing. Another interesting property of the training
is the early stages of learning. Figure 3 shows how the network immediately started
learning toward the correct output. Batch zero is not entirely random; however, not much
is visible yet.

Figure 3. Neural network output after training batches 0, 100, 8400, and 16,200.

Figure 4 shows the outputs of the network after different epochs. The network is not
quite sure about the head after two epochs; however, it grows with each successive epoch.
After seven epochs, the network seems to have learned about the head, which is a relatively
small part of the body with unique features and contributes less to the loss function. After
nine epochs, the output is bright white, which shows the high confidence of the network.

Figure 4. Neural network output after epochs 2, 5, 6 and 9.



Sensors 2022, 22, 6354 9 of 16

Both Figures 3 and 4 show outputs for an image from the test set which has not been
used to train the network. This qualitative output evolution suggests that the network is
learning new features with each epoch.

4.5. Segmentation Evaluation via Cross-Intersection Accuracy and mIoU

The Agrast-6 network with weights learnt in nine epochs was loaded into a Java
custom benchmark tool to test the mIoU and cross-intersection accuracy metrics. The latter
was calculated as

a =
n(A∩G)

n(A)
× n(A∩G)

n(G)
(1)

where A is a set of points marked by Agrast-6, and G is a set of ground truth points. An
average of accuracy values has been computed for each frame sequence. Pixels with over
0.5 confidence were included in the segmentation output.

It was found that the average score of cross-set intersection is 85.7% while mIoU is
86.5%. However, most of the per-sequence cross-set intersection accuracy values (69%)
fall into the 90–100% accuracy category. In addition, 7.5% of the frame sequences were
processed at the accuracy of less than 80%. A detailed distribution of accuracy values is
shown in Figure 5.

Figure 5. A histogram of segmentation accuracy value distribution.

Figure 6 shows accuracy values dissected by dataset and camera angle. The network is
more stable with a more complex dataset; however, the accuracy is similar in both datasets.
Side views of the human seem to be more challenging for Agrast-6 to segment. This may
be due to the smaller surface area visible by the camera. Back and front views were easier
to segment due to a larger visible surface area of the body.



Sensors 2022, 22, 6354 10 of 16

Figure 6. Accuracy value analysis by dataset. Left—standing and sitting people, right—people in
complex positions.

Figure 7 shows example segmentations with the most prevalent accuracy values. The
green color represents false-negative pixels, while red represents false positive, and yellow
represents true positive. (A is red, G is green, intersection is yellow). It is qualitatively
visible that the leg is the hardest part of the body to process for the neural network.
However, it is worth noting that ground truth is also the most difficult for humans to
acquire, so these two issues may be related.



Sensors 2022, 22, 6354 11 of 16

Figure 7. Examples of most typical segmentation accuracy images. Accuracies of 86%, 88%, 89%,
90%, 91% and 92%, respectively.

4.6. Gender-Wise Accuracy Comparison

The dataset used for training and evaluating the Agrast-6 model consists of depth
images of people with balanced proportions of male and female participants. The research
conducted by Karastergiou et al. has shown that body fat is distributed in different patterns
in male and female bodies [48]. This means that gender impacts the shape of the body,
which could lead to different accuracy of the segmenter for different genders. Therefore, it
was decided to evaluate how the network performs for different genders.

The results have shown that females are detected with more accuracy in both sub-
datasets. Detailed results are outlined in Table 4. Since the results are consistent across
both datasets, females could be seen as more easily segmentable by AGRAST-6 architecture.
Note that there are more male samples in the complex dataset; however, female silhouettes
were easier to learn.

Table 4. Male vs. female detection accuracy.

Dataset Gender Mean Cross-Set Intersection mIoU

Simple male 82.2% 82.4%
Complex male 86.7% 87.1%

Simple female 85.3% 85.8%
Complex female 87.3% 87.6%

The observed results may be caused by the clothing differences between male and
female participants. For example, some female subjects were wearing a dress during the
capture, which may be easier for the neural network to localize. On the other hand, some
male participants were wearing black jeans that cause a lot of noise around the leg area
and makes it difficult for the network to segment correctly. Female participants also tend
to have longer hair (there were zero male participants with long hair), and this may have
helped to correctly segment the head, which, as shown in Figure 4, was the most difficult
part of the body to learn.

4.7. Qualitative Error Analysis

Some examples of errors made by Agrast-6 are provided in Figure 8. The first two
images show examples where the network almost completely failed to segment the depth
image. Only the thigh was included in the output for the first image (yellow color shows the
correctly segmented part of the body), and the legs were included in the second example.



Sensors 2022, 22, 6354 12 of 16

The person in the second image was partially occluded by another object, which may
have caused troubles in segmenting the output. The third image is an example with the
black jeans—the whole bottom part of the body was not included in the segmentation
output, which shows that the network has not yet learnt this type of noise in “Kinect”
depth images. The bottom row shows images where the person was segmented correctly
or almost correctly, but extra artifacts were included in the segmentation output (shown in
red). These objects have shapes somewhat similar to the human body and were mistakenly
included as a human body. However, the first five images are from the bottom 1% of the
images by accuracy while the last one is in the bottom 7%. Therefore, these mistakes are
made only in some cases. Figure 9 showcases depth as seen by the camera for these images.

Figure 8. Examples of low-accuracy segmentation outputs.

Figure 9. Examples of depth as seen by the camera in images in Figure 8.

4.8. Prediction Performance

The computational performance of the Agrast-6 model is summarized in Table 5.
A performance benchmark has been run on a system with AMD Ryzen-9 3900X CPU
(469 GFlops) and NVidia GTX 1660 SUPER GPU (5.03 TFlops). Tensorflow for Java has
been used to perform the benchmark, and GPU utilization was enabled. Measurements
include float buffer (input) initialization, prediction session run and result fetch to a new



Sensors 2022, 22, 6354 13 of 16

float buffer. Very little variation was observed between the runtime, which was expected
since AGRAST-6 accepts images of the same dimensions. The only exception was the first
frame, which took longer than the others. The average prediction time was 166 ms, the
shortest time was 154 ms, and the longest (first frame) was 229 ms. A standard deviation of
12.8 was observed, which shows that the processing time is quite stable.

Table 5. Performance of the Agrast-6 model.

Parameter Value

Computational speed achieved on AMD Ryzen-9 3900X CPU 469 GFlops
Computational speed achieved on NVidia GTX 1660 SUPER GPU 5.03 TFlops
Average prediction time 166 ms
Shortest prediction time 154 ms
Longest prediction time 229 ms

4.9. Comparison with Other Solutions

Palmero et al. suggested a multi-model human body segmentation model from the
RGB-Depth and thermal data [49]. The authors introduce several descriptors and fuse them
together. They found that random forest classifier worked best to segment the images at
79% overlap. Zeppelzauer et al. constructed another random forest solution that segments
depth data of rock art [50]. Their solution works by computing deviation maps, extracting
valleys and peaks from these maps and classifying the data using a random forest classifier.
They achieve an accuracy of 60% measured in the Dice similarity coefficient. Wang et al.
used CNN to segment brain tumors from medical images [51]. They used three different
neural networks to process different stages of segmentation. WNet [51] segments the
tumor itself, which is the relevant part for this comparison. It consists of 14 blocks of
convolutional layers each having one to three layers. The partial output is also captured
and later combined. This architecture reached a Dice score of 91%. The author suggested
a geometrical method to segment point cloud semi-automatically. It uses an expanding
bounding box to segment the depth data represented by a point cloud [52]. This research
used the same dataset. However, the bounding box approach, while being focused on
speed, yielded highly varying results. For the simpler part of the dataset, it averaged
at 76%.

This overview suggests that CNN-based models are currently among the best-performing
techniques to solve segmentation problems, and the Agrast-6 architecture is no exception.

Table 6 shows a comparison of different neural network sizes. The networks from
the older generation such as AlexNet or VGG-16 have a very large number of parameters,
62,000,000 for AlexNet and even 134,000,000 for VGG-16. Such large architectures are
difficult to train due to the huge amount of data required and other problems such as
exploding gradients. The newer generation of neural networks is much smaller. Both
SegNet and U-Net networks have around 30,000,000 parameters. However, Agrast-6 shows
that even these amounts of parameters are overkill for binary image segmentation. The
proposed architecture has only 1,250,000 parameters. This leads to a much smaller model
size; when exported using the Tensorflow saved model format, it takes only 15.4 MB of disk
space, while SegNet, the next most lightweight model, takes 117 MB, which is 7.6 times
larger than Agrast-6. Segmenting neural networks tends to work slower than classifying
neural networks with respect to parameter count. This is evident from the inference time
comparison shown in Table 6. AlexNet and VGG-16 inference times are lower than SegNet
or U-Net inference times despite having more parameters to be trained. On the other hand,
image resolution has a big impact on segmenting forward pass. SegNet and U-Net have a
similar number of parameters; however, SegNet is two times faster, as the image input size
was much smaller. As a result, Agrast-6 architecture’s forward pass takes 292 ms, which
is faster than SegNet despite much higher resolution, and it produced a relatively high
accuracy. This benchmark was performed using an Intel i5-8250U CPU (163 GFlops); all
models used a Tensorflow implementation.



Sensors 2022, 22, 6354 14 of 16

Table 6. Comparison of segmentation methods.

Method Accuracy Input Type Based on Purpose Parameters Model File Size Inference Time Input Size

Multi-modal RF RGBD + T [49] 78% RGBD + T Random forest + descriptors Segmentation - - - -
Rock depth + RF [50] 60% Depth Random forest + deviation maps Depth segmentation - - - -

WNet [51] 91% Medical depth CNN Segmentation - - - -
AlexNet [28] 60% RGB CNN RGB classification 62 M 233 MB 52 ms 227 × 277
VGG-16 [27] 75% RGB CNN RGB classification 134 M 528 MB 215 ms 224 × 224
SegNet [32] 60% RGB CNN Semantic RGB segmentation 32 M 117 MB 341 ms 340 × 480
U-Net [39] 92% RGB CNN RGB binary segmentation 30 M 386 MB 676 ms 512 × 512

Auto-expanding BB [52] 76% Depth Geometrical Binary depth segmentation - - 60 ms 424 × 512
Agrast-6 (this paper) 86% Depth CNN Binary depth segmentation 1.25 M 15.4 MB 292 ms 448 × 512

5. Discussion and Conclusions

This article presented an abridged VGG-based reflected architecture for segmentation
training, which is named Agrast-6 (“Agrastas” means “gooseberry” in Lithuanian). It
has six encoder layers, seven decoder layers and a ReLU activation layer, which reduces
the number of trainable parameters by a factor of 27 in comparison with SegNet [32].
However, the problem of binary segmentation is less complex than semantic segmentation,
which allows a simpler network, which, in turn, reduces the time required for training
significantly. The simpler model did not cause low accuracy, as even after nine epochs of
training, this model already achieves binary segmentation accuracy comparable to much
heavier state-of-the-art models. The Agrast-6 architecture has been trained using a real-life
indoor dataset collected using a Kinect camera, where one person is semantically an obvious
foreground and has shown the average cross-intersection accuracy of 86% and mIoU of
87% at segmenting the data. This means a much higher accuracy per parameter (70%
accuracy per 1,000,000 parameters), which is impossible to achieve with large architectures.
This could be further increased using more training epochs, as test accuracy and precision
metrics have still been increasing.

The accuracy of the network could further be improved by optimizing and fine-tuning
the hyperparameters of the architecture—this is a proof-of-concept work that shows that
this kind of architecture is viable for binary segmentation. However, it takes a lot of time
and data to optimize the hyperparameters as the learning time of Agrast-6 is quite large,
which will require a careful selection of the optimization heuristics. Unfortunately, it is not
possible to reuse pre-trained weights of another model such as SegNet due to the different
architecture and different domains of application. Another way to improve segmentation
accuracy is to add a post-processing step, since the segmentation sometimes includes
separate distinct objects.

Author Contributions: Conceptualization, T.B.; methodology, T.B. and R.M.; software, K.R.; valida-
tion, K.R., T.B. and R.M.; formal analysis, K.R., R.M. and R.D.; investigation, K.R. and R.D.; resources,
T.B.; data curation, K.R.; writing—original draft preparation, K.R., R.M. and T.B; writing—review
and editing, R.M. and R.D.; visualization, K.R.; supervision, T.B.; project administration, T.B.; funding
acquisition, T.B. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not publicly available due to privacy requirements.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Khanday, N.Y.; Sofi, S.A. Taxonomy, state-of-the-art, challenges and applications of visual understanding: A review. Comput. Sci.

Rev. 2021, 40, 100374. [CrossRef]
2. Garcia-Garcia, A.; Orts-Escolano, S.; Oprea, S.; Villena-Martinez, V.; Martinez-Gonzalez, P.; Garcia-Rodriguez, J. A survey on

deep learning techniques for image and video semantic segmentation. Appl. Soft Comput. J. 2018, 70, 41–65. [CrossRef]

http://doi.org/10.1016/j.cosrev.2021.100374
http://dx.doi.org/10.1016/j.asoc.2018.05.018


Sensors 2022, 22, 6354 15 of 16

3. Ulku, I.; Akagündüz, E. A Survey on Deep Learning-based Architectures for Semantic Segmentation on 2D Images. Appl. Artif.
Intell. 2022, 36. [CrossRef]

4. Mráček, Š.; Drahanskỳ, M.; Dvořák, R.; Provazník, I.; Váňa, J. 3D face recognition on low-cost depth sensors. In Proceedings of
the 2014 International Conference of the Biometrics Special Interest Group (BIOSIG), Darmstadt, Germany, 10–12 September 2014;
pp. 1–4.

5. Cippitelli, E.; Fioranelli, F.; Gambi, E.; Spinsante, S. Radar and RGB-depth sensors for fall detection: A review. IEEE Sens. J. 2017,
17, 3585–3604. [CrossRef]

6. Kurillo, G.; Chen, A.; Bajcsy, R.; Han, J.J. Evaluation of upper extremity reachable workspace using Kinect camera. Technol. Health
Care 2013, 21, 641–656. [CrossRef]

7. Chen, C.; Liu, K.; Jafari, R.; Kehtarnavaz, N. Home-based senior fitness test measurement system using collaborative inertial
and depth sensors. In Proceedings of the 2014 36th Annual International Conference of the IEEE Engineering in Medicine and
Biology Society, Chicago, IL, USA, 26–30 August 2014; pp. 4135–4138.

8. Ryselis, K.; Petkus, T.; Blažauskas, T.; Maskeliūnas, R.; Damaševičius, R. Multiple Kinect based system to monitor and analyze
key performance indicators of physical training. Hum-Centric Comput. Inf. Sci. 2020, 10, 51. [CrossRef]

9. Ofli, F.; Kurillo, G.; Obdržálek, S.; Bajcsy, R.; Jimison, H.B.; Pavel, M. Design and evaluation of an interactive exercise coaching
system for older adults: Lessons learned. IEEE J. Biomed. Health Inform. 2016, 20, 201–212. [CrossRef]

10. Patalas-maliszewska, J.; Halikowski, D.; Damaševičius, R. An automated recognition of work activity in industrial manufacturing
using convolutional neural networks. Electronics 2021, 10, 2946. [CrossRef]

11. Tadic, V.; Toth, A.; Vizvari, Z.; Klincsik, M.; Sari, Z.; Sarcevic, P.; Sarosi, J.; Biro, I. Perspectives of RealSense and ZED Depth
Sensors for Robotic Vision Applications. Machines 2022, 10, 183. [CrossRef]

12. Long, N.; Wang, K.; Cheng, R.; Hu, W.; Yang, K. Unifying obstacle detection, recognition, and fusion based on millimeter wave
radar and RGB-depth sensors for the visually impaired. Rev. Sci. Instrum. 2019, 90, 044102. [CrossRef]

13. Camalan, S.; Sengul, G.; Misra, S.; Maskeliūnas, R.; Damaševičius, R. Gender detection using 3d anthropometric measurements
by kinect. Metrol. Meas. Syst. 2018, 25, 253–267.

14. Kulikajevas, A.; Maskeliunas, R.; Damasevicius, R.; Scherer, R. Humannet-a two-tiered deep neural network architecture for
self-occluding humanoid pose reconstruction. Sensors 2021, 21, 3945. [CrossRef]

15. do Carmo Vilas-Boas, M.; Choupina, H.M.P.; Rocha, A.P.; Fernandes, J.M.; Cunha, J.P.S. Full-body motion assessment: Concurrent
validation of two body tracking depth sensors versus a gold standard system during gait. J. Biomech. 2019, 87, 189–196. [CrossRef]
[PubMed]

16. Ma, Y.; Li, N.; Zhang, W.; Wang, S.; Ma, H. Image encryption scheme based on alternate quantum walks and discrete cosine
transform. Opt. Express 2021, 29, 28338–28351. [CrossRef] [PubMed]

17. Peng, H.; Li, B.; Xiong, W.; Hu, W.; Ji, R. RGBD salient object detection: A benchmark and algorithms. In European Conference on
Computer Vision, Proceedings of the 13th European Conference, Zurich, Switzerland, 6–12 September 2014; Springer: Cham, Switzerland,
2014; pp. 92–109.

18. Qi, X.; Liao, R.; Jia, J.; Fidler, S.; Urtasun, R. 3d graph neural networks for rgbd semantic segmentation. In Proceedings of the
IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 5199–5208.

19. Wang, J.; Wang, Z.; Tao, D.; See, S.; Wang, G. Learning common and specific features for RGB-D semantic segmentation with
deconvolutional networks. In European Conference on Computer Vision, Proceedings of the 14th European Conference, Amsterdam, The
Netherlands, 11–14 October 2016; Springer: Cham, Switzerland, 2016; pp. 664–679.

20. Hu, X.; Yang, K.; Fei, L.; Wang, K. Acnet: Attention based network to exploit complementary features for rgbd semantic
segmentation. In Proceedings of the IEEE International Conference on Image Processing (ICIP), Taipei, China, 22–25 September
2019; pp. 1440–1444.

21. Roesner, F.; Kohno, T.; Molnar, D. Security and privacy for augmented reality systems. Commun. ACM 2014, 57, 88–96. [CrossRef]
22. Fu, K.; Lu, W.; Diao, W.; Yan, M.; Sun, H.; Zhang, Y.; Sun, X. WSF-NET: Weakly supervised feature-fusion network for binary

segmentation in remote sensing image. Remote Sens. 2018, 10, 1970. [CrossRef]
23. Barrowclough, O.J.; Muntingh, G.; Nainamalai, V.; Stangeby, I. Binary segmentation of medical images using implicit spline

representations and deep learning. Comput. Aided Geom. Des. 2021, 85, 101972. [CrossRef]
24. Hu, Y.T.; Huang, J.B.; Schwing, A. Maskrnn: Instance level video object segmentation. In Proceedings of the Advances in Neural

Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; Volume 30.
25. Shazeer, N.; Mirhoseini, A.; Maziarz, K.; Davis, A.; Le, Q.; Hinton, G.; Dean, J. Outrageously large neural networks: The

sparsely-gated mixture-of-experts layer. arXiv 2017, arXiv:1701.06538.
26. Huang, Y.; Cheng, Y.; Bapna, A.; Firat, O.; Chen, D.; Chen, M.; Lee, H.; Ngiam, J.; Le, Q.V.; Wu, Y.; et al. Gpipe: Efficient training

of giant neural networks using pipeline parallelism. In Proceedings of the Advances in Neural Information Processing Systems,
Vancouver, QC, Canada, 8–14 December 2019; Volume 32.

27. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556.
28. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. In Proceedings of

the Advances in Neural Information Processing Systems, Lake Tahoe, NV, USA, 3–6 December 2012; Volume 25.
29. Yu, W.; Yang, K.; Bai, Y.; Xiao, T.; Yao, H.; Rui, Y. Visualizing and comparing AlexNet and VGG using deconvolutional layers. In

Proceedings of the 33 rd International Conference on Machine Learning, New York, NY, USA, 20–22 June 2016.

http://dx.doi.org/10.1080/08839514.2022.2032924
http://dx.doi.org/10.1109/JSEN.2017.2697077
http://dx.doi.org/10.3233/THC-130764
http://dx.doi.org/10.1186/s13673-020-00256-4
http://dx.doi.org/10.1109/JBHI.2015.2391671
http://dx.doi.org/10.3390/electronics10232946
http://dx.doi.org/10.3390/machines10030183
http://dx.doi.org/10.1063/1.5093279
http://dx.doi.org/10.3390/s21123945
http://dx.doi.org/10.1016/j.jbiomech.2019.03.008
http://www.ncbi.nlm.nih.gov/pubmed/30914189
http://dx.doi.org/10.1364/OE.431945
http://www.ncbi.nlm.nih.gov/pubmed/34614967
http://dx.doi.org/10.1145/2580723.2580730
http://dx.doi.org/10.3390/rs10121970
http://dx.doi.org/10.1016/j.cagd.2021.101972


Sensors 2022, 22, 6354 16 of 16

30. Canziani, A.; Paszke, A.; Culurciello, E. An analysis of deep neural network models for practical applications. arXiv 2016,
arXiv:1605.07678.

31. Paszke, A.; Chaurasia, A.; Kim, S.; Culurciello, E. Enet: A deep neural network architecture for real-time semantic segmentation.
arXiv 2016, arXiv:1606.02147.

32. Badrinarayanan, V.; Kendall, A.; Cipolla, R. Segnet: A deep convolutional encoder-decoder architecture for image segmentation.
IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2481–2495. [CrossRef] [PubMed]

33. Alqazzaz, S.; Sun, X.; Yang, X.; Nokes, L. Automated brain tumor segmentation on multi-modal MR image using SegNet. Comput.
Vis. Media 2019, 5, 209–219. [CrossRef]

34. Chen, T.; Cai, Z.; Zhao, X.; Chen, C.; Liang, X.; Zou, T.; Wang, P. Pavement crack detection and recognition using the architecture
of segNet. J. Ind. Inf. Integr. 2020, 18, 100144. [CrossRef]

35. Alonso, I.; Murillo, A.C. EV-SegNet: Semantic segmentation for event-based cameras. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition Workshops, Long Beach, CA, USA, 16–17 June 2019.

36. Mou, L.; Hua, Y.; Zhu, X.X. A relation-augmented fully convolutional network for semantic segmentation in aerial scenes. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019;
pp. 12416–12425.

37. Gros, C.; Lemay, A.; Cohen-Adad, J. SoftSeg: Advantages of soft versus binary training for image segmentation. Med. Image Anal.
2021, 71, 102038. [CrossRef]

38. Iglovikov, V.; Shvets, A. Ternausnet: U-net with vgg11 encoder pre-trained on imagenet for image segmentation. arXiv 2018,
arXiv:1801.05746.

39. Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In International
Conference on Medical Image Computing and Computer-Assisted Intervention, Proceedings of the 18th International Conference, Munich,
Germany, 5–9 October 2015; Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics); Springer: Cham, Switzerland, 2015; Volume 9351, pp. 234–241.

40. Seo, H.; Huang, C.; Bassenne, M.; Xiao, R.; Xing, L. Modified U-Net (mU-Net) with incorporation of object-dependent high level
features for improved liver and liver-tumor segmentation in CT images. IEEE Trans. Med. Imaging 2019, 39, 1316–1325. [CrossRef]

41. He, K.; Zhang, X.; Ren, S.; Sun, J. Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition. IEEE Trans.
Pattern Anal. Mach. Intell. 2015, 37, 1904–1916. [CrossRef]

42. Visin, F.; Romero, A.; Cho, K.; Matteucci, M.; Ciccone, M.; Kastner, K.; Bengio, Y.; Courville, A. ReSeg: A Recurrent Neural
Network-Based Model for Semantic Segmentation. In Proceedings of the IEEE Computer Society Conference on Computer Vision
and Pattern Recognition Workshops, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 426–433.

43. Shuai, B.; Zuo, Z.; Wang, B.; Wang, G. DAG-Recurrent Neural Networks for Scene Labeling. In Proceedings of the IEEE
Computer Society Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016; Volume
2016-December, pp. 3620–3629.

44. Zhang, S.; Ma, Z.; Zhang, G.; Lei, T.; Zhang, R.; Cui, Y. Semantic image segmentation with deep convolutional neural networks
and quick shift. Symmetry 2020, 12, 427. [CrossRef]

45. Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 3431–3440.

46. Agarap, A.F. Deep learning using rectified linear units (relu). arXiv 2018. arXiv:1803.08375.
47. Agarwal, M.; Gupta, S.; Biswas, K. A new Conv2D model with modified ReLU activation function for identification of disease

type and severity in cucumber plant. Sustain. Comput. Inform. Syst. 2021, 30, 100473. [CrossRef]
48. Karastergiou, K.; Smith, S.R.; Greenberg, A.S.; Fried, S.K. Sex differences in human adipose tissues—The biology of pear shape.

Biol. Sex Differ. 2012, 3, 1–12. [CrossRef] [PubMed]
49. Palmero, C.; Clapés, A.; Bahnsen, C.; Møgelmose, A.; Moeslund, T.B.; Escalera, S. Multi-modal rgb–depth–thermal human body

segmentation. Int. J. Comput. Vis. 2016, 118, 217–239. [CrossRef]
50. Zeppelzauer, M.; Poier, G.; Seidl, M.; Reinbacher, C.; Schulter, S.; Breiteneder, C.; Bischof, H. Interactive 3D segmentation

of rock-art by enhanced depth maps and gradient preserving regularization. J. Comput. Cult. Herit. (JOCCH) 2016, 9, 1–30.
[CrossRef]

51. Wang, G.; Li, W.; Ourselin, S.; Vercauteren, T. Automatic brain tumor segmentation using cascaded anisotropic convolutional
neural networks. In International MICCAI Brainlesion Workshop, Proceedings of the Third International Workshop, BrainLes 2017, Held
in Conjunction with MICCAI 2017, Quebec City, QC, Canada, 14 September 2017; Springer: Cham, Switzerland, 2017; pp. 178–190.

52. Ryselis, K.; Blažauskas, T.; Damaševičius, R.; Maskeliūnas, R. Computer-Aided Depth Video Stream Masking Framework for
Human Body Segmentation in Depth Sensor Images. Sensors 2022, 22, 3531. [CrossRef]

http://dx.doi.org/10.1109/TPAMI.2016.2644615
http://www.ncbi.nlm.nih.gov/pubmed/28060704
http://dx.doi.org/10.1007/s41095-019-0139-y
http://dx.doi.org/10.1016/j.jii.2020.100144
http://dx.doi.org/10.1016/j.media.2021.102038
http://dx.doi.org/10.1109/TMI.2019.2948320
http://dx.doi.org/10.1109/TPAMI.2015.2389824
http://dx.doi.org/10.3390/sym12030427
http://dx.doi.org/10.1016/j.suscom.2020.100473
http://dx.doi.org/10.1186/2042-6410-3-13
http://www.ncbi.nlm.nih.gov/pubmed/22651247
http://dx.doi.org/10.1007/s11263-016-0901-x
http://dx.doi.org/10.1145/2950062
http://dx.doi.org/10.3390/s22093531

	Introduction
	Previous Work on Semantic Image Segmentation
	Methodology
	Workflow
	Suggested Neural Network—Agrast-6 Architecture
	Neural Network Implementation

	Neural Network Training and Evaluation
	Dataset
	Settings
	Training
	Quantitative and Qualitative Validation Analysis
	Segmentation Evaluation via Cross-Intersection Accuracy and mIoU
	Gender-Wise Accuracy Comparison
	 Qualitative Error Analysis
	Prediction Performance
	Comparison with Other Solutions

	Discussion and Conclusions
	References

