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Abstract: A scheme for the analytical stochastization of ordinary differential equations (ODEs) is presented
in this article. Using It6 calculus, an ODE is transformed into a stochastic differential equation (SDE) in such
a way that the analytical solutions of the obtained equation can be constructed. Furthermore, the con-
structed stochastic trajectories remain bounded in the same interval as the deterministic solutions. The
proposed approach is in a stark contrast to methods based on the randomization of solution trajectories and
is not focused on the analysis of martingales. This article extends the theory of Itd calculus by directly
implementing it into analytical schemes for the solution of differential equations based on the generalized
operator of differentiation. The efficacy of the presented analytical stochastization techniques is demon-
strated by deriving stochastic soliton solutions to the Riccati differential equation. The presented semi-
analytical stochastization scheme is relevant for the investigation of the global dynamics of different
biological and biomedical processes where the variation interval of the stochastic solution is predetermined
by the rationale of the model.
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1 Introduction and motivation

Ever since the seminal work by Einstein [1], studying the effects of noise on dynamical systems has been an
important area of research in physics and other applied sciences. With the introduction of the Wiener
process, the derivative of which is white noise, [2] and It6 calculus [3], formal mathematical formulation
of stochastic differential equations (SDEs) became possible.

Since then, many areas of applications for SDEs have been the focus of research. One of the first and
foremost historical areas is economics and finance. SDEs in this area range from the now-classical Black-
Scholes equation for call and put option pricing [4] to more recent works. The price change of assets
obeying more sophisticated factors than simple supply and demand is modeled via SDEs in [5].
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A stochastic differential game of two insurers investing into the same financial market is posed using SDEs
in [6]. A duopolistic competition model with sticky prices is considered in [7]. A stochastic control model of
investment based on SDEs is presented in [8]. And agent-based model of a financial market is presented
in [9].

In recent years, SDE models have been applied to a wide array of biological phenomena [10]. An SDE
model for the evolution of the MCF-7 breast cancer cell line treated by radiotherapy is developed in [11].
Tumor-immune responses to chemotherapy are studied using SDEs in [12]. Plant growth is modeled via
a Gompertz-type SDE in [13]. Biochemical reaction systems are studied using SDEs in [14].

With the recent outbreak of the novel coronavirus COVID-19, the study of stochastic models for the
modeling of this phenomenon has emerged. Most are based on the well-known deterministic differential
equation model: susceptible-exposed-infected-recovered model (SEIR) [15,16]. Adak et al. used Brownian
motion to induce stochasticity into a SLIR (susceptible-latent-infected-recovered) model by adding sto-
chastic differential directly to a system of ordinary differential equations (ODE) in [17]. An adaptation of an
SIR model to include stochastic transition is discussed in [18]. A SIRS epidemic model including fractional
white noise is presented in [19]. A variant of stochastization is used in the generalized logistic equation to
model COVID-19 evolution in [20].

It is clear that the analysis of SDEs is currently a particularly relevant topic. Furthermore, there arises a
requirement to induce stochastization into previously deterministic models described via ODEs. While there
are many ways to approach this problem, the aim of this article is to provide a technique for stochastization
in such a way that if an analytical solution to the ODE can be constructed, an analytical solution to the SDE
can also be constructed. Consider the following ODE of the form:

dy
== 1
T P(t,y), €]

where P(t, y) is a continuously differentiable function. Let w(t) denote a Wiener process [21]. The objective

is to construct an SDE with respect to function f (t, w(t)|a) (where a is a scalar parameter) of the form:

d& = h(t, &)dt + hy(t, &)dw. @)
Equation (2) and its solution possess the following properties:

lim E(t, w(®a) = y(©); 3)

and as a tends to 0, the SDE (2) tends to (1) and conversely the solution to (2) tends to the solution of (1).
Itd calculus is a classical yet powerful mathematical theory of SDEs. Introduced almost seven decades ago
it is still widely used in a variety of technical, biomedical, and economical applications.

Note that other approaches to this problem also exist. The most straightforward approach would consist
of adding noise to (1) in every step of integration of a numerical integrator. While this technique does enable
the randomization of the solution trajectory, a solution of (1) bounded to an interval I ¢ R becomes no
longer bounded, which presents a problem for many applications.

Another option for inputting randomness into an ODE is based on random differential equations,
discussed in detail in [22]. Here the time variable t is replaced by a stochastic Wiener process w(t), yielding
the following random differential equation:

dy
a P(w(®), y). (4)

The latter approach is an improvement boundedness-wise over the former; however, the menagerie of
trajectories obtained from (4) would be much smaller than those from (2).

The main objective of this article is to construct a semi-analytical scheme for solving (2) and to apply
this scheme to the paradigmatic Riccati equation [23]. It is well known that the Riccati equation does admit
the first-order solitary solution (the kink-type solution) [24]. In its turn, soliton solutions (and the Riccati
equation in general) do play an important role in defining the global dynamics of different models,
including the prostate cancer model [25], the Hepatitis C treatment model [26], and COVID-19 within
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host model with immune response [27]. Thus, the construction and analysis of solitary solutions to various
differential equations have become a very active field of research in recent years. An overview of the latest
studies conducted in this area is presented further. The dynamics of ion acoustic solitary wave solutions
of two-dimensional nonlinear Kadomtsev-Petviashvili-Burgers equation in quantum plasma have been
investigated in [28]. Solitary wave solutions to the nonlinear Schrédinger equation were constructed in
[29-34]. In [35], the authors have proposed novel methods for the construction of exact traveling wave
solutions of the modified Liouville equation and the symmetric regularized long wave equation. The
stability analysis of solitary wave solutions for the fourth-order nonlinear Boussinesq water wave equa-
tion was performed in [36]. Dispersive traveling wave solutions of the equal-width and modified equal-
width equations were obtained in [37]. The problem formulations of models for internal solitary waves in
a stratified shear flow with a free surface were presented in [38]. New traveling wave solutions for the
fourth-order nonlinear Ablowitz-Kaup-Newell-Segur water wave dynamical equation were constructed
and investigated in [39]. In [40], the authors have developed a novel approach for the construction of
solitary wave solutions to the nonlinear Nizhnik-Novikov-Vesselov equation. Exact traveling and solitary
wave solutions of the Kudryashov-Sinelshchikov equation were obtained in [41]. The propagation of
soliton-like solutions to the coupled nonlinear (2 + 1)-dimensional Maccari system applied in plasma
physics was investigated in [42]. The authors of [43] have developed a modification of the variational
iteration algorithm for the study of the numerical solution to the dispersive water wave phenomena. The
interaction properties of soliton molecules were investigated and Painleve analysis for nano bioelectron-
ics transmission model was performed in [44].

Stochastization of such models describing different biological and biomedical processes is an impor-
tant research direction [17,45]. Stochastic models allow a better description of real-life processes and do
help to represent the effect of local unpredictability caused by the noise and different uncertainties.
However, computational analysis of SDEs containing a variable that represents random white noise
(usually calculated as the derivative of Brownian motion or the Wiener process) results in the investiga-
tion of martingales [46]. As a matter of fact is that a particular solution of an SDE can wander far away
from its non-stochastic counterpart solution as time moves away from the initial conditions [47].

SDE analysis is transformed into analytical or computational investigation of martingales. In some
situations, such wandering out of a predetermined variation interval is not tolerable. The ability to control
the variation range while allowing the stochastic wandering around the deterministic counterpart solution
is an open problem in mathematical sciences up to the best of our knowledge.

However, one needs to keep in mind that the range of values of the solution (especially if it is a soliton
solution) is predetermined by the structure of the model (e.g., the concentration of the infected cells
cannot be negative). Therefore, it is important to construct such stochastization schemes for ODEs which
would guarantee that the stochastic soliton solution would remain in the predetermined range of values.
The derivation of such soliton solutions to the stochastic Riccati equation is the main objective
of this article. That will be achieved by extending the theory of It6 calculus by directly implementing
it into analytical schemes for the solution of differential equations based on the generalized operator
of differentiation.

This article is organized as follows. Preliminary results of Itd calculus and some operator methods for
the solution of differential equations are presented in Section 2; the inverse balancing technique is adapted
to SDEs in Section 3; the scheme for the stochastization of first-order ODEs is constructed in Section 4; the
developed scheme is applied to obtain the stochastization of the Riccati equation in Section 5; concluding
remarks are given in Section 6.

2 Preliminaries

A short review of the concepts of Itd calculus required for the article’s main results is provided in this
section.
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The following notations are used throughout the text:
— w(t) — Wiener process;
- ¢, f , 1 — random processes;
— I(t, w(t)) — Itd integral;
= ag(t, w(t)), og(t, w(t)) - functions describing an SDE;
- @; - Itd function with respect to random process ¢
— D, - partial differentiation operator with respect to variable A;
- L, — integration operator with respect to variable A;
— D - generalized differential operator;
- G; — multiplicative operator.

2.1 Wiener process and Itd integral

Let us consider a non-differentiable Wiener process w(t) with the following properties [21]:

Am Aw(f) = 03 )

i Q@@ _ {1’ Z = 6)

At—0 At o,
Let o(t, x) be continuous and satisfy a global Lipschitz condition. The integral of o (¢, w(t)) with respect
to the Wiener process is defined as the Itd integral [22]:

t

t
I(t, w(t)) = ja(s, w(s))dt + Ia(s, w(s))dw(s)
0

N-1 °
= im, 2, alt™, oG - 6) @
" N-1
+ lim %o(t}m, Wt - w(tf™),
=

where 0 = t{") < tM<...< t™) = t is a partition of the interval [0, t]. The aforementioned limit is taken in

the mean-square sense, ensuring that maxonSN,l(tj(iVl) - tl.(N )) 5 0.

2.2 Ito’s lemma

Itd’s lemma is a fundamental result in the SDE theory. Suppose a process é(t) is given that has the following
differential:

dé(t) = as(t, &)dt + og(t, )dw(t), (8)

where a;, 0; and an additional function f(¢, x) satisfy conditions detailed in the previous section. Then,
the differential of process f(t, ¢) is given by:

2
df (e, &) = (g—’; . agg . %of%)

dt + ogg—{( , dwto ©

x=¢

The aforementioned equation is an analogy of the chain rule of differentiation for stochastic
processes.
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2.3 SDEs and their solutions

First, consider the following stochastic equation where the coefficients depend only on ¢:
dn = ay(t)dt + o,(t)dw(t). (10)

In this case, it is possible to compute the solution 7n(t) directly by applying the Itd integral (7):
t t

n) =ny + Ia,l(s)ds + jan(s)dw(s). (11)

0 0

Now let us consider a generalized version of (10) that takes the form (8).

Suppose that it is possible to determine such a function f(¢, x) that taking n = f(t, £) and using (9) to
compute its differential yields (10). Then, n is given by (11). Furthermore, if some function g(t, x) satisfies
the condition g(t, f(¢, x)) = x, then the solution to (8) is given by:

t t

E=gt,nt) =g|t,ny + Jan(s)ds + Ion(s)dw(s) . (12)

0 0

The substitutions described above are possible only if It6’s condition holds true [48]

oo (t, x ag(t, x 20:(t, x
ilna,l(l‘) = og(t, x) 5 L §(6 ) - i £t ) + 1 i(6 ) . (13)
dt of(t,x) ot ox og(t,x) 2 ox?
Thus, given (8), it is possible to apply Itd’s condition to compute g,(t). Then, 1t6’s lemma yields:
o, (t
CA Oy (14)
ox ot x)
from which the function f(¢t, x) can be determined as follows:
[ d
u
fen =00 [ (15)
U{(t’ u)
0
In the subsequent parts of this article the following notation is used:
d
O(t) = I Ingy(t), (16)

and the only time-dependent function @y is referred to as the Itd function of stochastic process &.

2.4 Operator solutions to ODEs

In order to obtain stochastization of ODEs, the analytical solutions of these ODEs must be considered.
In this section, a short review of the generalized differential operator method for the construction of
analytical solutions to ODEs is presented. The method was first presented in [49] and later developed
in [50,51].

Consider the following ODE:

% = A, y); y=yts); y0,s)=s. 17)

The generalized differential operator for (17) reads

D = A(¢, s)Ds, 18)
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where D; denotes the partial differentiation operator with respect to s. Using the generalized differential
operator (18), the following multiplicative operator is constructed:

+00 t] .
Gt = Z T'D]. (19)
=07’
Operator G; possesses the following property:

th(X, S) = f(GtX’ Gts)a (20)

for any analytic bivariate function f(x, s). Furthermore, the solution to (17) can be written as:

+00 i
t .
y=y(t,s)=Gs = ZFDJS. (1)
j=0 /!

2.5 Operator solution to a particular partial differential equation

In subsequent sections, a partial differential equation arises that possesses the following form:
ou u
N, _fO(t’ X)_ :fl(t) X)u(t’ X); (22)
ot ox

where fo(t, x), fi(t, x) are analytical functions. The following boundary condition is posed:
u(0, x) = @,(x), (23)

where ¢,(x) is also analytic.

An operator solution to (22) and (23) is presented in [49]. Let L, denote the integration operator with
respect to variable A.

Then, the solution to (22) and (23) is given by:

u(t, x) = exp(A(t, x)), (24)

where A(t, x) is the solution to the following operator problem:

(D¢ — fo(t, X)DA = fi(t, x); (25)
A0, x) = Ingy(x) = Py(x). (26)
The solution to (25) and (26) reads
A(t, x) = (Z (Lefo(t, X)Dx)k)(]-'tfl(t’ x) + Po(x)). @27)
k=0

3 Inverse balancing technique for SDEs

The main idea of the inverse balancing technique is as follows: given a differential equation, and an
analytical form of its solution to assume that the solution is known, and determine the parameters of
the differential equation in terms of the solution parameters. This yields a robust approach to determining
the necessary conditions of the existence of a particular solution to a class of differential equations. It has
been applied in a variety of fields, ranging from astrophysics [52], and population dynamics [53] to medi-
cine [25].

In this section, the method is extended to include SDEs.
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Theorem 3.1. Suppose that the It6 function ®(t), o¢(t, x) and a constant 0 < a < 1 are given.
Then, the It6 partial differential equation with respect to function a:(t, x|a)

1 Ag(t,x) 9 agt,xla) a2 d%0(t, x)
ax(t, 0| = $ 9% e B B 0! (28)
og(t,x) ot ox og(t, x) 2 ox
has the following general solution:
X
0 a2 9g(t, x) C(t a? 90g(t, x)
ag(t, x|a) = oe(t, x) j Di(t )j ARSI O B . (29)
ot ag(t u) os(t, u ox o(t,0) 2 ox | _,
where C(t) is an arbitrary function.
Proof. Equation (28) can be rewritten as:
das(t, x|a ag(t, x|a) dox(t, x 2 %0 (t, x oo (t, x
£(t, x| ): £(t, x|a) da( )+a—0;(t,x) 5(2 )—®5(t)+ 1 i ( ). (30)
ox ox(t, x) ox 2 ox og(t,x) ot
Denote
1 90g(t, x)
G0 =0 o (1)
a? 0%0x(t, x) 1 00(t, x)
N(t,x) = —0e(t, x) ——— — DO(t . 32
(t,2) = S0t 0—3 KO+ (32)
Then, the solution to (30) takes the following form:
X X v
agt, xla) = exp IM(t, wdu || C(t) + IN(t, V) exp —IM(t, w)du (dv |, (33)
where C(t) is an arbitrary function. Note that
O'{(t, X)
M(t,uw)du| = 34
exp I (t, wdu % 0) > (34)
and
X
Qox(t, v) 1 00(t,v)
NG, M(t, wdu [dv = a¢, 0 J ML CAN NN tJ j d
j ( v)exp[ [ mee.w u]v o(t, 0) x [2 7 ) Pl e v]
° (35)
oo (t, 2 Qo (t,
—0§(t0)a 0g(t,x) a2 00¢(t, X) 5()1 a dv |
ox 2 ax -0 og(t, v) at og(t, v)
Combining (34) and (35) yields (29). O
For clarity in further derivations, (29) will be rewritten as:
a{(t’ X) = P(t’ X) + aQ(t’ X|(X), (36)

where

. 1o
P(t, %) = o(t, )| Se() j [g(t ) Di(t )j i | 37)



836 —— Zenonas Navickas et al. DE GRUYTER

Q(t, xla) = ot x)(%w + s§+)(t)), (38)
with
__CO g - @ 9%EX)
S5(t)_ag(t, o % 0="37% Y (39

Theorem 3.2. The SDE with respect to process I;’ = %7 (t, w(t)|a):
d€ = (P(t, ©) + aQ(t, E|))dt + acg(t, E)dw(t); (40)

satisfies the It6 condition (13) with It6 function ®g(t) = Dg(t), which is defined by (28).

Proof. Note that

ag(t, &la) = P(t, &) + aQ(t, la); (41)
oz(t, Ela) = acg(t, &). (42)
The It6 condition for these functions is given by (28), which results in the proof of the theorem. O

Taking the limit as @ — 0 in the SDE (40) results in the ODE (1). Note that the solution of the SDE also
tends to the deterministic solution of the ODE:

lim Et, w(t)la) = &(t, 0) = y(b). 43)

4 Stochastization of first-order ODEs

4.1 Construction of analytical solutions to (40)

In order to construct the analytical solutions to (40) the algorithm described in Section 2.3 is applied. Let (40)
be given. A transformation 77 (¢) = f(¢, f ) of process E must be determined in order to transform (40) into:

df = ag(tla)dt + oz(t)dw(t). (44)

The solution to (44) is given by (11), which results in %7 = g(t, 77 (t)), where g(¢, x) is the inverse transforma-
tion to f(t, x) with respect to x.

Theorem 4.1. Functions az(t), 05(t) are given by:

az(tla) = oﬁ(t)(isf(t) + s§+>(t)); (45)

t
o7(t) = y exp J(Dg(s)ds ;v € R\{0}, (46)
0

where Sg(t), Sé”(t) are defined by (39).

Proof. Using (16) directly yields (46). Then, It6 lemma (9) yields

of

ag(tla) = Py

15) 1 02
+ ag(t, xla)é + zog(t, x|a)2a—xj; (47)
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Inserting (15) into (47) results in

X
0 du o5 (t) o5(t) 90 (¢, x|a)
sltla) = —| o5(t) | ——— z(t, x|la - . 48
agltie) = 3| o€ )j ort,ula) | ag(t. x| )og(t, o 2 x (48)
0
Using (46), (41), and (42) transforms (48) into:
a t X t
_Y I N I J‘ N
ai(tla) =~ —| e ®z(s)ds | - e Dz(s)d
it = 2| = expl | @g(s) o || ) vesas
0 0 0
X
2 90x(t, O (t
x [ Se(t) + aSgS”(t) + & %6x) I 9 1 + 5 du (49)
2 ox ot og(t,u)  og(t, u)
0
20066, ) [ |
a- 00(L, X
T o exp[J.QDg(s)ds
0
Simplifying and cancelling like terms in (49) yield (45). O
Using the results of Theorem 4.1, SDE (44) is rewritten as:
dif = U,T(t)((155(t) + s§+>(t))dt + dw(t)), (50)
a
which leads to the solution:
t t
At = 7, + Iaﬁ(s)(ls{(s) + s§+>(s))ds + Ioﬁ(s)dw(s); 7, < R. (51)
a
0 0

After the transformed SDE (44) is determined, the solution to (40) can be obtained if the function:

X

t
_Y du
flt,x) = " exp !CDf(s)ds _([—O;(t, s (52)

can be inverted with respect to x. The following theorem addresses this problem.

Theorem 4.2. The inverse function to (52) with respect to x reads

t
g(t,x) = ¥ ¢, %x exp —jcpf(s)ds , (53)
0

where Y(t, z) satisfies the condition ¥(t, 0) = O and the following differential equation:

¥
= = alLw). (54)

Proof. The function g(t, x) is inverse to f(t, x) with respect to x if the following relation holds true:
f(t, g, x)) = x. (55)

Using (52) in the aforementioned equation yields

8(t,x)

t
Y du
aexp '!-Cbg(s)ds I o, W) =X, (56)
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which can be rearranged as:

g(t,x) t
I du - x& exp —J.Cbg(s)ds . (57)
O_f(t’ u) Y o
Let W(t, z) satisfy the following:
v
I du = z. (58)
og(t, u)

0
Differentiating (58) with respect to ¥ and rearranging yields

M W) W, 0) = o. (59)
0z

Applying (59) to (57) yields (53). O

Corollary 4.1. The solution to SDE (40) is given by:

E(t, w(bla) = g(t, F(tla)), (60)

where g, 1] are given by (53) and (51), respectively.

4.2 Scheme for stochastization of first-order ODEs

Suppose that the ODE (1) and an It6 function ®g(t) are given. Thus, the function P(t, x) is known and (37)
yields

P | (PO 8 1
0= et { (Gg(t, W ot ot w) ]du' (61)

Note that the left-hand side of (61) does not depend on x, thus differentiating (61) with respect to x results in

a partial differential equation with respect to the unknown function c(t, x):
60'5 aag opP
— + P— = ge(t, x)| Dp(t) + — |. 62
ot ox i )( o ax) (©2

The aforementioned differential equation can be used to determine such cg(t, x) that (61) holds true.
Then, Q(t, x) can be computed via (38), leading to (40), which is the stochastization of (1).

5 Stochastization of the Riccati equation

5.1 General case

Consider the Riccati differential equation [24]:

d
d—}t/ =60/ -y - 6wy R, (63)

The aim of this section is to provide a stochastization of (63) in the form (40).
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Let P(x) = 6(x - y)(x — y,). Note that (62) has the form (22) with functions fo(t, x) = -P(x),
filt, x) = () + %. Then, following from Section 2.5, the solution to (62) reads:
U{(t’ X) = eXp(A(t’ X))’ (64)
where, by (27):
+00 dP
A(t, x) = (Z (_LtP(X)Dx)k](Lt((DZ(t) + a) + l/)o(X)), (65)
k=0
and the function 1,(x) satisfies 0z(0, x) = expy,(x). Note that when considering the stochastization
of an ODE, 1,(x) can be selected arbitrarily.
Denoting @g(t) = L®@z(s) = .[;@g(s)ds and rearranging (65) lead to:
+00 dpP R +00
Alt,x) =L ) (L(=POOD T+ Pe(O) + Y (L(=POOD)) (). (66)
k=0 k=0

Note that the term L¥ can be written as a factor 1% when the operands do not depend on t. Thus, (66) is
transformed to: '

+00 Lk R +00 Lk
At %) = L Y, 1 (-PCOD)S@x — yy = 1,) + Be(0) + Y L (-POOD)!(0). (67)
k=0 ¢ k=0 "

Note that the operator G; = Z;Z%%(—P(X)DX)" is the multiplicative operator defined in (19). Applying prop-

erty (20), (67) is simplified as:
t
At = [8((600 -y, - y)ds + B(©) + $(600). (68)
0

By (21), Gyx gives the solution to ODE (63) with initial condition y(0) = x. The analytical form of this solution
reads [50]

(s-y2)
exp(ut) - 22—
y=yt,9) =y—— 25 y(0,9) =, (69)
exp(ut) - —
where j = 6(y, - ).
Thus, the final form of A(t, x) reads
t
At ) = 8 @5, = 3y - y)ds + BEO) + Pyt ) (70)
0

From (64) and (40) it follows that the stochastization of (63) reads

~ ~ 2 ~ ~
@z = [ P@) + L explact, s))(exp(Aa, f))%

dA
o — exp(A(t, O))E

)]dt + aexp(A(t, ))dw(t).  (71)

x=0

Note that the stochastization (71) depends on the solution of the non-stochastic equation (63).

5.2 Stochastization of equation (63): special case oz = 0:(x)

In this section, a stochastization for (63) is obtained such that the function o depends only on x and the
solution to the obtained stochastic equation is constructed.



840 —— Zenonas Navickas et al. DE GRUYTER

Suppose that A(t, x) = B(x), then:
ox(t, x) = exp(B(x)). (72)

Since the right-hand side does not depend on t, gs(t, x) is only dependent on x. Furthermore, inserting t = O
yields

(0, x) = exp(B(x)) = exp(Py(x)). (73)

Then, (70) can be rewritten as:

t
exp(B(x) — B(y(t, x))) = exp| I(Zy(s, X) =y — y,)ds + Dg(t) |, (74)
0

where y(t, x) is given by (69). The solution of the functional equation (74) with respect to B(x) reads:
B(x) = In(v6(x - y)(x - y,)) = In(vP(x)); v € R\{0}, (75)

when &Dg(t) = @g(t) = 0. In that case, 0¢(t, x) has the following form:
og(t, x) = vé(x — y)(x - y,) = vP(x). (76)

Inserting (76) into (71) yields the stochastization of (63) in the special case:
~ ~ 2 ~
af - P(f)(l + Y PEWBCE v, - ) + I + avdw(t)), )

+) _ Nty
where 85~ = In(vdy,y,) o "

5.3 Analytical solution of (77)

Following the algorithm outlined in Theorem 4.1, the functions (45) and (46) read

ai(tla) = y(l + 59)); (78)
o 4

o7(t) =y; y € R\{O} (79)

Thus, (77) is transformed into:
dij = y(K + Sg))dt + ydw(t), (80)

a
with the solution
tla) = 7, + y(K + Sg))t + yw(t). (81)
a

By Theorem 4.2, the function W(z) must be derived from the differential equation:

dav
E =vi(z - Y1)(Z - )’z); ¥(0) = 0. (82)
The solution to the aforementioned equation reads
exp(kz) - 1
¥(z) = )QL’ K =6v(y, = o) (83)

exp(xz) — i—j

By (53) we obtain

g(t,x) = g(x) = \If(%x) (84)
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and the analytical solution to (77) is given by:
av [ ~ v (+)
exp(KT(no + y(; + Sf )t + yw(t))) -1
AT e _n
exp(K ) (110 + y(a + Sg )t + ya)(t))) "

Since it must hold that limaﬁog (tla) = y(t), where y(t) is given by (69), parameters fj, = 0, v = 1. Inserting
these values into (85) yields

E(tla) = g{(tl) = v, (85)

exp(kt + xa(sg>t +w() -1
E(tla) =y,

7 (86)
exp(xt + Ka(Sg')t + w(t))) - ;2

1
Note that comparing the above solution to (69) it can be seen that only the variable within the exp function
has the Wiener process w(t). This means that the solution of the stochastic Riccati equation belongs to the

same set of values as the deterministic Riccati equation.

5.4 Numerical comparison: stochastization and randomization of the Riccati
equation

In this section, two different approaches to induce randomness into the Riccati equation are compared.

The first approach is described in Sections 5.2 and 5.3, which leads to a special case of the stochastic
Riccati equation (77) and its analytical solution (86).

The randomization procedure is described as follows. Let the Riccati equation (63), a scaling variable
€ > 0, and a sample 6,,..., 8, of a Gaussian random variable with mean zero and unit variance be given.
Consider any constant-step time-forward numerical integrator with step size h > 0. The randomized solu-
tion at points t, = kh, k = 0,..., n is denoted as Ek = 2(tk).

We initialize the process by setting the first point equal to the initial condition: 30 =Y,. In the kth step,

the value fk is computed by performing one-time forward integration step for following the differential
equation:
dé

o= -WE -+ e St =Gy k=l (87)

The process of randomization described above yields a random solution trajectory with the mean close to
the deterministic solution (Figure 1(a)). The non-stochastic solution represented by the thick black line

in Figure 1 is validated in the article [53]. However, note that the randomized solution 2 leaves the interval
to which the deterministic solution y(t) is bound. This is not the case for the stochastic solution, which
remains bounded to the same interval as y(t) (Figure 1(b)).

Note that the statistical mean of function (86) is not equal to the solution (69) of the deterministic
Riccati equation. As mentioned before, the deterministic Riccati equation solution is obtained when @ — 0.

6 Concluding remarks

A scheme for the analytical stochastization of ODEs is presented in this article. Given an ODE, its SDE
counterpart is constructed in such a way that it satisfies the It6 condition. This ensures that it is possible to
construct an analytical solution to the obtained SDE via the application of It6 calculus.

The described technique of stochastization has two important properties: as the parameter a that
governs the influence of randomness on the SDE solution tends to zero, the solution tends to the
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Figure 1: The randomized solution ?(t) of the Riccati equation (a) and the solution f(tla) of the stochastic Riccati equation (b).
Parameters of the Riccati equation are setto d = 1, y; = 2, y, = 3; the initial conditions are set to zero at t = 0. The scaling
variable € is setto 5in (a); a is set to 0.5 in (b). Thin grey lines denote randomized and stochastic solution trajectories in (a) and
(b), respectively. Thick black lines depict the solution of the deterministic Riccati equation. The dashed black line denotes the
upper bound for the deterministic solution fort > 0.

deterministic ODE solution. Furthermore, if the ODE solution is bounded to an interval, the constructed
stochastic trajectories can also only belong to that interval — which is not true for most other stochastiza-
tion schemes.

Due to the fact that the presented semi-analytical stochastization scheme allows us to confine a
stochastic solution to a particular variation interval, the scheme is especially relevant for the investigation
of the global dynamics of different biological and biomedical processes where the variation interval of the
stochastic solution is predetermined by the rationale of the model.
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The scheme is applied to the paradigmatic Riccati equation which possesses kink soliton solutions. It is
shown that the general analytical form of the deterministic solution is preserved in the stochastic solution
after the transformation of the ODE to the SDE. Stochastic trajectories obtained in this manner are
a generalization of kink soliton solutions in the stochastic sense.

The extension of the presented stochastization scheme to higher-order ODEs and systems of ODEs,
as well as applications to real-world models, remains a definite objective of future research.
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