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Lina Draudvilienė 1,* , Asta Meškuotienė 2, Renaldas Raišutis 1,3 , Olgirdas Tumšys 1 and Lina Surgautė 1
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Abstract: The 2D-FFT is described as a traditional method for signal processing and analysis. Due
to the possibility to determine the time and frequency (t,f ) domains, such a method has a wide
application in various industrial fields. Using that method, the obtained results are presented in
images only; thus, for the extraction of quantitative values of phase velocities, additional algorithms
should be used. In this work, the 2D-FFT method is presented, which is based on peak detection of
the spectrum magnitude at particular frequencies for obtaining the quantitative expressions. The
radiofrequency signals of ULWs (ultrasonic Lamb waves) were used for the accuracy evaluation of
the method. An uncertainty evaluation was conducted to guarantee the metrological traceability of
measurement results and ensure that they are accurate and reliable. Mathematical and experimental
verifications were conducted by using signals of Lamb waves propagating in the aluminum plate.
The obtained mean relative error of 0.12% for the A0 mode (160 kHz) and 0.05% for the S0 mode
(700 kHz) during the mathematical verification indicated that the proposed method is particularly
suitable for evaluating the phase-velocity dispersion in clearly expressed dispersion zones. The
uncertainty analysis showed that the plate thickness, the mathematical modeling, and the step of the
scanner have a significant impact on the estimated uncertainty of the phase velocity for the A0 mode.
Those components of uncertainty prevail and make about ~92% of the total standard uncertainty
in a clearly expressed dispersion range. The S0 mode analysis in the non-dispersion zone indicates
that the repeatability of velocity variations, fluctuations of the frequency of Lamb waves, and the
scanning step of the scanner influence significantly the combined uncertainty and represent 98% of
the total uncertainty.

Keywords: signal processing; 2D-FFT method; Lamb waves; phase velocity; dispersion curve;
frequency; reliability; uncertainties; systematic error

1. Introduction

In 1991, Alleyne and Cawley were the first [1] to propose the use of the two-dimensional
fast Fourier transform (2D-FFT) for measuring propagating multimode signals. Since then,
the 2D-FFT has been widely applied and used in the field of signal processing and, there-
fore, described as a classical and/or traditional method. The basic premise of this method
is to transform the received amplitude–time record into amplitude–wavenumber records
at discrete frequencies [1,2]. Using the 2D-FFT technique, the wave propagating along
the object during the experiment is characterized by the distance (d) and time (t) that are
transformed into the wavenumber (k) and frequency (f ) space. As a result, the image (t,f )
of the measured array signals is projected [3,4]. By applying special signal-processing algo-
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rithms, the time and frequency (t,f ) domain can be determined. It is the primary condition
to analyze the non-stationary/multimode signals, such as ultrasonic Lamb waves (ULWs).

Ultrasonic inspection is becoming a standard method in Non-Destructive Testing
(NDT) and Structural Health Monitoring (SHM) applications [5]. As a result, the signals
of ULWs are among many other non-stationary/multimode signals that are widely used
in civil, mechanical, and aerospace industries for detecting internal structural defects,
their location and sizing, structural discontinuities, material parameters, and others [6].
However, the ULWs possess the dispersion phenomenon (the velocity of waves varies
depending on the frequency and thickness); that is, the signal-processing methods should
be able to perform the calculation of both (t,f ) domains and allow displaying them [7–9].
Another undesirable phenomenon is an infinite number of modes. Lamb waves have an
infinite number of the dispersive symmetric (Sn) and antisymmetric (An) modes, which
emerge depending on the thickness of the object, the material under investigation, and
the frequency; and every one of them is described by two velocities, namely phase and
group [9,10]. Therefore, special signal-processing algorithms need to be applied to examine
the signals of Lamb waves, except for the analysis of the evanescent modes. That is
why the 2D-FFT method, which enables us to identify the multimodal dispersion modes
and display them from the corresponding (f,k) energy trajectories, is considered to be a
good tool for the analysis of such a signal. However, there is one significant drawback
to this method. The obtained results are presented in images, and additional algorithms
have to be used for the quantitative expressions. As a result, a number of various signal-
processing algorithms are created and used for the quantitative display of (f,k) domains
for the dispersion evaluation of Lamb waves [10,11]. Then the representation can be
directly associated with the calculation of the velocity changes, which are used for detecting
defects and/or delamination [12] and provide understanding about the wave-propagation
phenomena. Moreover, wave propagation and interaction effects, such as reflections,
refractions, diffractions, mode conversions, and others, influence the analysis of phase-
velocity dispersion due to distortions of waveforms [5]. As presented in Reference [12], not
only the location of the defect but also its size is determined according to the changes of
the phase velocity. Therefore, algorithms allowing direct reconstruction of the quantitative
values of the dispersion curves by (f,v) are constantly developed and researched. However,
it should be noted that, in order to estimate the location and size of the defect based on
phase-velocity changes, at first it is necessary to know the reliability of these methods.
Therefore, an assessment of the accuracy of any method developed must be performed.

In the presented work, the focus is on the reliability evaluation of the 2D-FFT method
that is based on peak detection spectrum magnitude at particular frequencies. This signal-
processing method was developed and presented in our previous work [13]. The inves-
tigation was carried out by using Lamb wave signals propagating in different materials
and geometry objects. The obtained results showed that the method is appropriate for
evaluating the phase-velocity dispersion of the Lamb waves.

Validation of the signal-processing method is an important and necessary part, as
it helps to avoid costly and time-consuming practices and ensure the comprehension of
the method efficiency [14]. All investigations should be performed to quantify an optimal
uncertainty, as to avoid new testing. Using the obtained results, the analysis of complex
parameters can be minimized, thus minimizing costs and demonstrating that further testing
or calculations will not enhance the quality of the predictive/expected measurement. It
is an important aspect of measurement that affects costs, quality, decisions, and risks of
decisions taken. According to the presented work [14], such a procedure should include
several main steps:

(1) Development of an algorithm of the signal-processing method.
(2) Mathematical modeling of the dispersion curve segments. The purpose is to iden-

tify the capabilities of the most accurate reconstructed segments and determine the
uncertainty components associated with the model errors.

(3) Experimental setup and verification of the results.
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(4) Determination of input and output parameters, which affect the final method accuracy.
Optimization of the selected uncertainty components for uncertainty quantification in
high-dispersion and non-dispersion zones of phase-velocity dispersion curves of the
A0 and S0 modes.

The main task of the presented work was to evaluate the accuracy of the 2D-FFT
method based on the peak detection of the spectrum magnitude at certain frequencies,
using the signals of Lamb waves propagating in a homogeneous aluminum plate. Us-
ing the general principles of measurement theory, we identify, analyze, and present the
main characteristics and sources of uncertainties that mainly affect the accuracy of the
obtained results. It benefits laboratories that evaluate the uncertainty of their measurement
results when demonstrating their technical competence upon their certification/audit in
accordance with SO/IEC 17025:2017.

The paper is organized as follows: The technique of peak detection of the spectrum
magnitude from the 2D-FFT image is introduced in Section 2. A mathematical simulation of
the object and numerical verification of the 2D-FFT method are presented in Section 3. The
experimental verification of the proposed method is described in Section 4. An analysis of
the uncertainties and limitations is discussed in Section 5. The conclusions of the research
are presented in Section 6.

2. The Technique of Peak Detection of the Spectrum Magnitude

As mentioned in the introduction, using the 2D-FFT method, the distance and time
are transformed into the wavenumber and frequency space, and an image of a 2D data
array is obtained. To obtain quantitative expressions, the technique of peak detection
of 2D spectrum magnitude is proposed, which was presented in the previous work [14].
Therefore, at this stage, the general flowchart of the proposed algorithm with the main
steps (Figure 1) and short explanations is presented below.
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The algorithm consists of two main stages: the 2D-FFT method application and
calculation of peak detection of 2D spectrum magnitude of the acquired signals:
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I. Application of the 2D-FFT method for analysis of the B-scan data. Since the 2D-FFT
method is well-known, the mathematical equations are not given, but the segment of
the A0 mode phase-velocity curve obtained by this method is displayed in Figure 1.

II. Detection of 2D spectrum magnitude peaks includes the following steps:

1. Selecting the frequency bandwidth (from f 1 up to f 2).
2. Estimating the phase velocity of Lamb wave modes from the 2D-FFT image and

applying the peak detection of 2D spectrum magnitude at maximum energy and
particular frequencies (within the selected frequency bandwidth).

3. The second-order polynomial approximation is applied in order to reduce the
influence of scattering effects of detected peaks of phase velocity due to the
presence of blurred shapes of 2D spectrum magnitude.

3. The Object Mathematical Simulation and Numerical Verification of the
2D-FFT Method
3.1. The Object Mathematical Simulation

Based on the methodology for the reliability evaluation of the signal-processing meth-
ods used for the dispersion estimation of Lamb waves presented by Draudviliene and
Meskuotiene [13], the mathematical verification should be conducted at the beginning.
Since experimental research is necessary for the complete assessment of the method reliabil-
ity, the properties and geometry of the chosen object should be the same in the mathematical
modeling and experimental research. Thus, the study is conducted by using a homogeneous
7075-T6 aluminum plate [15]. The material properties of such a 2 mm–thick aluminum plate
are as follows: density, ρ = 2780 kg/m3; Young’s modulus, E = 71.78 GPa; and Poisson’s
ratio, ν = 0.3435.

The next step of the presented study is a selection of the frequency range. For that
purpose, the phase-velocity dispersion curves of the asymmetric and symmetric modes
of Lamb waves are required. The analytical computational package ‘DISPERSE’ was
chosen [16], and using the geometry parameters and material properties of the selected
object, we plotted the calculated dispersion curves, which are shown in Figure 2.
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Figure 2. The phase-velocity dispersive curves of the A0 and S0 modes of Lamb waves calculated by
using the analytical method (package ‘DISPERSE’).

Based on the obtained phase-velocity dispersion curves, the frequency range up to
300 kHz and possessing a central frequency of 160 kHz is selected for the study, where
the A0 mode is highly dispersive; meanwhile, the S0 mode shows a weak dispersion level.
Thus, the three-period harmonic bursts with Gaussian envelop that have a frequency of



Sensors 2022, 22, 6750 5 of 17

160 kHz are used as the input signal, u0(t). The propagating signals are then obtained
according to the following [17]:

ux(t) = IFT[FT[u0(t)] ·H(j f , x)] (1)

where ux(t) is the output signal, and u0(t) is the input signal. The IFT denotes the in-
verse Fourier transform; H(j f , x) is the complex transfer function of the object given by

H(j f , x) = e−α( f )xe
−jω x

cph( f ) ; x is the propagation distance, α( f ) is the frequency-dependent
attenuation coefficient; cph( f ) is the phase-velocity dispersion curve corresponding to the
particular guided wave mode; ω is the angular frequency; and j is the basic imaginary unit,
j =
√
−1. Since the attenuation of the Lamb waves is very low in the case of the unloaded

metal plates, this parameter is eliminated.
A 200 mm distance with a dx step of 0.1 mm is used to obtain the signals of both A0

and S0 modes. In this way, 2001 simulated signals for both modes are obtained, which
are displayed in two B-scan images. The images of B-scans of the A0 and S0 modes
are presented in Figure 3a,b, respectively. The normalized amplitudes of the signals are
presented by the appropriate color indicated in color bar.

Having the simulated signals, the 2D-FFT method and technique of peak detection
spectrum magnitude can then be applied. Likewise, the technique reliability evaluation at
the theoretical level can be obtained.
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Figure 3. The B-scan images of the simulated A0 (a) and S0 (b) modes of Lamb waves, using a
mathematical model.

3.2. Mathematical Verification of the Method
3.2.1. Investigation of the A0 Mode

Using the 2D-FFT method, the A0-mode phase-velocity dispersion curve segment at
the 160 kHz frequency range was reconstructed, and the image is presented in Figure 4a.
Then, using the presented technique of detection of peaks of the spectrum magnitude,
the phase-velocity segments of the A0 mode in numerical values were retrieved. The
reconstructed A0-mode phase-velocity segment, which was created by calculating the peak
values of spectrum magnitude at particular frequencies, is presented in Figure 4b. The
reconstructed segment covers the (114–214 kHz) frequency range. Then, using the analytical
method (computational package ‘DISPERSE’) as a reference method, the comparison of the
obtained results was conducted, and the obtained results are presented in Figure 4c.



Sensors 2022, 22, 6750 6 of 17Sensors 2022, 22, x FOR PEER REVIEW 6 of 17 
 

 

 
Figure 4. Image of the A0-mode phase-velocity dispersion curve segment obtained by 2D-FFT 
method (a); reconstructed quantitative values of the dispersion curves segment, using the pro-
posed method (b); and the dispersion curve segment obtained by analytical method (package 
‘DISPERSE’, the solid line) and reconstructed by using the proposed algorithm (circles) (c) 

According to Reference [13], the final step at the theoretical level is the calculation of 
the mean values of absolute and relative errors and standard deviation by comparing the 
results obtained by the mathematical simulation and reference method. 

The absolute error and the average of absolute errors are calculated as follows: ∆ , = 𝑐 (𝑓 ) − 𝑐 (𝑓 ) (2) 

∆ = 1𝑁 ∆ , , (3) 

where n = 1, ..., N, nth point of the dispersion curve, N is the number of points in a segment 
of the dispersion curves, 𝑐 (𝑓 ) is the phase velocity at the corresponding frequency 
obtained according to the reference dispersion curve, and 𝑐 (𝑓 ) is the phase velocity 
at the corresponding frequency of the reconstructed dispersion curve obtained by the 
mathematical simulation. Then the standard deviation is calculated according to the fol-
lowing: 

𝜎∆ = ∑ ( ∆ , − ∆ )(𝑁 − 1)  (4) 

The standard deviation represents the reliability of the method at the theoretical 
level, and it will be included in the uncertainty budget. The obtained results are presented 
in Table 1. 

Figure 4. Image of the A0-mode phase-velocity dispersion curve segment obtained by 2D-FFT
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the solid line) and reconstructed by using the proposed algorithm (circles) (c).

According to Reference [13], the final step at the theoretical level is the calculation of
the mean values of absolute and relative errors and standard deviation by comparing the
results obtained by the mathematical simulation and reference method.

The absolute error and the average of absolute errors are calculated as follows:

∆cmat, n = cmat( fn)− cre f ( fn) (2)

∆cmat =
1
N

N

∑
n=1

∆cmat, n , (3)

where n = 1, . . . , N, nth point of the dispersion curve, N is the number of points in a
segment of the dispersion curves, cre f ( fn) is the phase velocity at the corresponding fre-
quency obtained according to the reference dispersion curve, and cmat( fn) is the phase
velocity at the corresponding frequency of the reconstructed dispersion curve obtained
by the mathematical simulation. Then the standard deviation is calculated according to
the following:

σ∆cmat
=

√√√√∑N
n=1
(
(∆cmat,n)− ∆cmat

)2

(N − 1)
(4)

The standard deviation represents the reliability of the method at the theoretical level,
and it will be included in the uncertainty budget. The obtained results are presented
in Table 1.
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Table 1. The metrological characteristics of the phase-velocity (v = 1590 m/s) dispersion curve for the
A0 mode.

Mean Absolute Error
¯
∆cmat , m/s Standard Deviation σ∆cmat

,m/s Mean Relative Error
¯
δcmat , %

1.68 3.28 0.12

The phase-velocity dispersion curve was reconstructed in the frequency domain
covering 160 kHz, with an average relative error of 0.12%. Based on the result, one can
assume that the proposed method is a reliable tool for the evaluation of the A0-mode phase-
velocity dispersion and reconstruction dispersion curve segment in a clearly expressed
dispersion zone. The repeatability of the variation of the measured points of dispersion
curves is a part of the combined standard uncertainty and is equal to 0.2%. The relative
standard deviation was calculated as follows: σ∆cmat

× 100%/1590.

3.2.2. Examining the S0 Mode

The same procedure was applied for analyzing the suitability of the proposed tech-
nique of the peak detection spectrum magnitude for evaluating the phase-velocity disper-
sion by reconstructing the dispersion curve of S0 mode. The retrieved results are presented
in Figure 5.
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The comparison of the obtained results (Figure 5c) shows the significant deviation
from the reference segment of the dispersion curve of the phase velocity. It should be noted
that, in the case of the A0 mode, which is analyzed in the very high dispersion zone, the
different frequency components propagate at different velocities and are distributed in
a wide frequency range, which covers (114–214 kHz; see Figure 4c). Thus, the detection
of the peak spectrum magnitudes at the particular frequencies and the conduct of the
second-order polynomial approximation are the appropriate solutions. Meanwhile, in
the case of the S0 mode, the research was conducted in a non-dispersive zone. Due to
the concentration of the different frequency components in a relatively narrow frequency
range, from 140 kHz up to 180 kHz (Figure 5a), the detected values of the peak spectrum
magnitudes in the frequency axis and velocity axis are slightly distributed within the
circularly shaped region. As the detected peak values coincide, the reconstructed phase-
velocity dispersion curve has only a few values (Figure 5c); thus, estimating their relation to
the set of particular phase-velocity and frequency values is complicated enough. The studies
carried out [18] on the S0 mode in a non-dispersive frequency range (central frequency of
300 kHz) showed that variations of the phase-velocity components are covering a very
narrow range of distribution. Thus, the second-order polynomial approximation of more
densely concentrated phase-velocity values in terms of frequency generates some errors.
The obtained discrepancy of values is presented in Figure 5c.

Thus, in order to summarize the efficiency of the proposed method for using the
dispersion evaluation of Lamb waves, an additional study needs to be conducted. In
relation to that, the frequency range where the S0 mode possesses a high dispersion nature
is selected.

As Figure 6 demonstrates, the S0 mode at the central frequency of 700 kHz (frequency
range from 400 kHz up to 1000 kHz) possesses a very high dispersion nature. Thus,
the three-period harmonic bursts with the Gaussian envelope and having a frequency of
700 kHz are used for simulating the input signal u0(t) in order to obtain the B-scan image
of the S0 mode (Figure 6). All other parameters are the same as those that were previously
used for the research at the central frequency of 160 kHz.
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Figure 6. Simulated B-scan image of the S0 mode at the central frequency of 700 kHz, using the
mathematical model.

Having the simulated signals and B-scan images, the 2D-FFT method and the tech-
nique of peak detection spectrum magnitude were applied, and the retrieved results are
presented in Figure 7a,b respectively. The obtained segment comparison of the phase-
velocity dispersion curve with the analytical method that uses the computational package
‘DISPERSE’ is presented in Figure 7c.
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Figure 7. The image of the S0-mode phase-velocity dispersion curve segment obtained in the 700 kHz
range by the 2D-FFT method (a), the quantitative values of the dispersion curve segment that were
reconstructed by using the analyzed method (b), and the dispersion curve segment acquired by using
the analytical method (the solid line) and reconstructed by using the proposed algorithm (circles) (c).

The comparison of the obtained results (Figure 7c) shows the high accuracy of the
method when reproducing dispersion curves in clearly expressed dispersion ranges.

Using Equations (2)–(4), we performed the calculations of the mean absolute, relative
errors, and standard deviation, and these are presented in Table 2.

Table 2. The metrological characteristics of the phase-velocity (v = 5402 m/s) dispersion curve for the
S0 mode.

Frequency, kHz Mean Absolute Error
¯
∆cmod , m/s Standard Deviation σ∆cmod

, m/s Mean Relative Error
¯
δcmod , %

160 29.1 5.79 0.54

700 2.61 1.87 0.05

The mean relative error for the S0 mode (Table 2) calculated in the region of the
significant phase-velocity dispersion (700 kHz) is ten times smaller than the obtained one
in the non-dispersive zone (160 kHz).

In order to complete the assessment of the reliability of the proposed method, experi-
mental research was conducted.
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4. Experimental Verification
4.1. Description of the Experimental Setup

An isotropic aluminum plate (dimensions 1.2 × 1.2 m2) of 2 mm in thickness was
chosen for the experimental research of the Lamb-wave propagation properties. The
parameters of the aluminum alloy plate used in the experiments were the same as those in
the mathematical verification and described in Section 3.1. The structural scheme of the
experimental equipment used in the study and arrangement of the ultrasonic transducers
are presented in Figure 8.
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Figure 8. The experimental setup for generating and receiving Lamb wave signals on an alu-
minum plate.

The experimental study was performed by using low-frequency, wideband contact-
type ultrasonic transducers with 180 kHz resonant frequency developed at the Ultrasound
Research Institute. The frequency bandwidth of these transducers is from 40 kHz up to
640 kHz (at−10 dB). A detailed description of the transducers is provided in Reference [19].
The two ultrasonic transducers are used to excite and receive the Lamb waves; one of
transducer (the transmitter) is mounted on a selected location on the plate, and the other
(the receiver) is repositioned by the linear mechanical scanner. The diameter of the active
size of the spherically shaped sensor surface is 1 mm. Thus, a point-like transmitter–receiver
effect is achieved, with spatial dimensions significantly smaller than the wavelengths of
the generated modes. The resonant frequency of the contact transducers is 160 kHz,
and the transmitter is excited by a 3-period Gaussian envelope signal. The position of
the receiver is changed with a linear scanner Standa 8MTF-75LS05 (Standa Ltd., Vilnius,
Lithuania). The experiments were conducted by using the ultrasonic measurement system
ULTRALAB. This system was designed and developed at the Ultrasound Institute of the
Kaunas University of Technology and consists of a voltage generator, a low-noise amplifier,
and an analogue-to-digital converter (ADC). The sampling frequency of the ADC is 50 MHz.
A low-noise 13.4 dB preamplifier was connected to the ultrasonic receiver to increase the
signal level and improve the signal-to-noise ratio. In order to form the B-scan image,
the transmitter was attached at a fixed position to the top surface of the aluminum plate.
The receiver was scanned in the distance range of 178 mm up to 278 mm away from the
excitation point (transmitter) with the dx = 0.1 mm scanning step. The formed B-scan image
is displayed in Figure 9a. This image clearly shows two different mode signals. The moving
time windows are used to distinguish these modes. The dotted lines in Figure 9a indicate
the limits of these windows. The distinguished S0 and A0 modes are normalized according
to the maximum amplitudes and are displayed in Figures 9b and 9c, respectively.
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Figure 9. Experimental B-scan image of the Lamb wave A0 and S0 modes propagating along the
aluminum plate of 2 mm in thickness (a) and S0 (b) and A0 (c) modes separated by a moving time
window (c). The abbreviation ‘n.a.’ means normalized amplitude units.

4.2. Experimental Verification of the Analyzed Method

The same procedure as in the mathematical investigation is used to analyze the reliabil-
ity of the method for the experimentally obtained signals. The images of the phase-velocity
dispersion curve segments of the A0 and S0 modes from using the 2D-FFT method and the
numerical estimations of phase-velocity values from using the technique of peak detection
of spectrum magnitude were obtained and are presented in Figure 10a,b, respectively.
Then the analytical method (using the computational package ’DISPERSE’) was applied
as a reference method and the comparison of the obtained results was conducted and is
presented in Figure 10c. The analysis was performed by using the experimentally retrieved
signals propagating along with the plate whose material parameters (Young’s modulus,
Poisson’s ratio, and density) and geometry were used in the mathematical verification. The
study was conducted in the same frequency range for different modes (the A0 and S0). The
results obtained in each case were compared by using the same reference method.

As mentioned above, the S0 mode is analyzed in the non-dispersive range; therefore,
the detected peak values coincide, and the dispersion curve is reconstructed in a narrower
frequency range.

In order to evaluate the quantitative characteristics of the method accuracy, a sys-
tematic error of the experimental values from conventional true values should be esti-
mated [20,21]. The systematic error of velocity is performed by comparing the segments of
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the dispersion curves reconstructed in both ways in the same frequency range. Then the
systematic error and the average of the errors are obtained as follows:

∆ck = cex( fk)− cre f ( fk), (5)

∆c =
1
K

K

∑
k=1

∆ck , (6)

where k = 1,. . . ; K is the kth point of the segment; K is the number of points in a segment of
the dispersion curves; cex( fk) is the phase velocity at the corresponding frequency of the
reconstructed dispersion curve from the experimental signals; and cre f ( fk) is the phase ve-
locity at the corresponding frequency obtained according to the reference dispersion curve.

The scatter of values obtained from repeated measurements is characterized by the
standard deviation of phase velocity, which is calculated as follows:

σ∆c =

√√√√∑K
k=1
(
∆ck − ∆c

)2

(K− 1)
. (7)
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Figure 10. The phase-velocity dispersion curves are calculated by 2D-FFT and peak detection of the
spectrum magnitude of 2D FFT (circles) for the A0 (a) and S0 (b) modes; and the dispersion curve
segment obtained by using the analytical method (by computational package ‘DISPERSE’, the solid
line) and reconstructed by using the proposed algorithm (circles) (c).

The mean absolute and relative errors for the A0 and S0 modes and the standard devi-
ation are presented in Table 3. The obtained results were used in the uncertainty analysis.
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Table 3. The metrological characteristics of the velocity (f = 160 kHz) dispersion curve for the A0 and
S0 modes.

Velocity, m/s Mean Absolute Error
¯
∆c, m/s Standard Deviation σ∆c ,m/s Mean Relative Error

¯
δc, %

A0 mode

1590 9.85 1.67 0.62

S0 mode

5315 −86.84 34.77 1.61

By analyzing the data presented in Table 1, the negative mean systematic error of
the S0 mode was obtained. As values of the reconstructed dispersion curve from the
experimental signals at the corresponding points for the S0 mode were lower than the
corresponding values of the reference dispersion curve (Figure 10c), a negative mean
systematic error for the S0 mode was obtained.

5. Analysis of Uncertainties

The uncertainty calculation methodology defined in our previous work [13] was ap-
plied for the uncertainty calculation. Uncertainties were calculated for a homogeneous ma-
terial whose density and elastic constants were specified in the previous section. A complete
uncertainty budget was determined for each mode. The cases under consideration include
the clearly expressed dispersion and ‘non-dispersion’ zones of the reconstructed curves.

To evaluate the influence of extraneous factors or errors on the uncertainty of the
measurement result, the function of velocity variation was investigated. The components
of uncertainty discussed above, such as the standard deviation (σ∆cmod

) of velocity errors
reflecting the influence of the mathematical model and the standard deviation ( σ∆c ) of
velocity errors obtained from repeated experimental measurements, are included in the
combined standard uncertainty. In order to estimate fluctuations of frequency of the
Lamb waves and their influence on the phase velocity, which is directly affected by the
receiver characteristics [13], the maximum deviation from the average error for one point
σ
(

∆cphmax

)
was calculated. To estimate the limits of actual variability of the obtained

results, the difference between the limit value of the absolute error and the mean absolute
error was used. The statistical distribution associated with the input sources, namely σ∆cph

,
σ∆cmod

, and u∆cphmax
, is considered to be normal or Gaussian. The difference between two

neighboring points at which signals were received was l = 0.1 mm. The distance, l, was
determined with a standard uncertainty of (∆l) = ± ∆l√

3
, where ∆l is the error of step setting

equal to 0.05 mm. The sensitivity coefficient, W∆l, is equal to 1/t, where t is a rectangular
single pulse duration of 1.67 µs. The uniform distribution is used for sources related to the
test object parameters because the range of values is known, that is, an interval with the
minimum and maximum values. The sensitivity coefficient of the measurement in relation
to the test object parameters was determined experimentally. The dispersion curves of
the Lamb waves are non-linear functions of the test object parameters (density, ρ; Young’s
modulus, E; the Poisson’s ratio, υ; the plate thickness, d; and distance between two points,
l) and the ultrasonic signal frequency, f. Likewise, the approximate ∆F(xi) is evaluated with
a small deflection, ∆xi, of the variable xi:

∆F(xi) =
[F(xi)− F(xi − ∆xi)]

2
+

[F(xi + ∆xi)− F(xi)]

2
. (8)

The sensitivity coefficients can be evaluated as follows:

Wi(xi) =
∆F(xi)

∆xi
, (9)
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where ∆xi is the small change of the variable xi, and ∆F(xi) is the function change due to
the change of the variable xi. The input data used to estimate the sensitivity coefficient of
the test object parameters are presented in Table 4. The reference phase velocity is 1590 m/s
for the A0 mode and 5402 m/s for the S0 mode at the central frequency, f = 160 kHz. The
change of the parameter ∆xi is equal to 20% of the actual value.

Table 4. Phase-velocity dependence on the material density, ρ; Young’s modulus, E; the Poisson’s
ratio, υ; and the plate thickness, d, for the A0 and S0 modes.

Object
Parameter xi

Parameter Change ∆xi
Velocity Change

∆Fxi, m/s
Sensitivity

Coefficient Wxi

ρ = 2780 kg/m3 ∆ρ = 556 kg/m3

A0 mode

110 0.2 m4/s·kg

S0 mode

640 1.2 m4/s·kg

υ = 0.3435 ∆υ = 0.0687

A0 mode

14 200 m/s

S0 mode

122 170 m/s

E = 71.787 GPa ∆E = 14.357 GPa

A0 mode

105 7.3 m/s·GPa

S0 mode

572 40 m/s·GPa

d = 2 mm ∆d = 1.6 mm

A0 mode

137 34, 000 1/s

S0 mode

3 7500 1/s

The components of the combined uncertainty were processed and analyzed by using
GUM Workbench version 2.4.1.384 software (Metrodata GmbH, Braunschweig, Germany).
The GUM uncertainty framework is based on the law of propagation of uncertainties
(LPUs) [21]. The combined uncertainty of each reconstructed frequency range was also
calculated by using the Monte Carlo simulation. We determined that this methodology car-
ries more information than the simple propagation of uncertainties and generally provides
results that are closer to reality [22]. This mathematical technique is integrated into the
GUM Workbench version 2.4.1.384 software. The input values used for data processing ac-
cording to GUM methodology and Monte Carlo simulation are described in Tables 5 and 6
and Figure 11. The characteristics evaluated by both methods are comparable. Therefore,
we consider the results obtained to be reliable. All results are displayed in Tables 5 and 6
and Figure 11. Implementation of the 2D-FFT is more accurate in the clearly expressed
dispersion zone. The result of the velocity measurement for the A0 mode in the range
(114.3–213.6) kHz is (1590 m/s + 0.6%) ± 2.6%. The result of the velocity measurement for
the S0 mode in the range (137.5–186.5) kHz is (5402 m/s − 1.6%) ± 1.6%. These results
are presented in the following form: (c ± δc) ± U(δc), where c is the measured value of
velocity, δc is the mean relative error, and the range ±U(δc) is the expanded uncertainty.
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Table 5. The uncertainty budget of the combined uncertainty of the reconstructed frequency range
(114.3–213.6) kHz for the A0 mode. The shadows represent the dominant components.

Quantity Value Standard
Uncertainty Distribution Sensitivity

Coefficient
Uncertainty

Contribution

∆cph 9.85 m/s 1.67 m/s normal 1.0 1.7 m/s
∆cmod 0.0 m/s 3.28 m/s normal 1.0 3.3 m/s

∆cphmax 0.0 m/s 1.2 m/s normal 1.0 1.2 m/s
∆l 0.0 m 28.9 × 10−6 m rectangular 600 × 103 s−1 17 m/s
∆d 0.0 m 289 × 10−6 m rectangular 34 × 103 s−1 9.9 m/s
∆ 0.0 kg/m3 0.289 kg/m3 rectangular 0.2 m4/s·kg 0.06 m/s
∆ 0.0 m 28.9 × 10−6 rectangular 200 m/s 5.9 × 10−3 m/s

∆E 0.0 GPa 289 × 10−6 GPa rectangular 7.3 m/s·GPa 2.1 × 10−3 m/s
cph 1599.8 m/s 20.3 m/s

Result value: Expanded uncertainty: Coverage factor: Coverage:
1600 m/s ±41 m/s 2.00 95% (normal)

Table 6. The uncertainty budget of the combined uncertainty of the reconstructed frequency range
(137.5–186.5) kHz for the S0 mode. The shadows represent the dominant components.

Quantity Value Standard
Uncertainty Distribution Sensitivity

Coefficient
Uncertainty

Contribution
∆cph −86.8 m/s 34.8 m/s normal 1.0 35 m/s
∆cmod 0.0 m/s 5.79 m/s normal 1.0 5.8 m/s

∆cphmax 0.0 m/s 19.1 m/s normal 1.0 19 m/s
∆l 0.0 m 28.9 × 10−6 m rectangular 600 × 103 s−1 17 m/s
∆d 0.0 m 289 × 10−6 m rectangular 7500 s−1 2.2 m/s
∆ 0.0 kg/m3 0.289 kg/m3 rectangular 1.2 m4/s·kg 0.33 m/s
∆ 0.0 m 28.9 × 10−6 rectangular 1700 m/s 0.05 m/s

∆E 0.0 GPa 289 × 10−6 GPa rectangular 40 m/s·GPa 0.01 m/s
cph 5315.2 m/s 43.7 m/s

Result value: Expanded uncertainty: Coverage factor: Coverage:
5315 m/s ±87 m/s 2.00 95% (normal)
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As observed in Tables 5 and 6, the dominant influence on the overall uncertainty is
attributed to the plate thickness, mathematical modeling, and step of the scanner, which
is directly related to the distance between two points. The overall uncertainty in the
‘non-dispersion’ zone particularly depends on several factors, including the uncertainty
attributed to the repetition of velocity variations, fluctuations of the Lamb wave’s frequency,
and the scanning step of the mechanical scanner.

We performed a comparison between the obtained results for our method and the
results obtained by using other phase velocity evaluation methods. Using the zero-crossing
technique, we determined that the excitation frequency for both modes was 300 kHz, which
means that the S0 mode was studied in the non-dispersive zone; meanwhile the A0 was in
the clearly expressed dispersion zone [18]. Thus, the comparison of the obtained systematic
errors shows that the 2D-FFT technique lets us reconstruct the phase-velocity dispersion
curves for the A0 mode more accurately, only with a 0.6% mean relative error. Meanwhile,
the phase velocity of the S0 mode was reconstructed with a 0.65% mean systematic error,
using the zero-crossing technique. Moreover, it is 2.5 times more accurate than in the case of
the 2D-FFT method. The assessment of the reliability of developed methods indicates that
the 2D-FFT method is more suitable to be used in the studies, which provide an evaluation
of the clearly express dispersive zones. Thus, assessing the reliability of developed methods
is a necessary task that can be used to assess the accuracy of developed methods compared
to other methods and to make it easier to choose the most appropriate method needed to
solve the specific problem or task.

6. Conclusions

An implementation of the 2D-FFT method based on the technique of peak detection
of the spectrum magnitude at particular frequencies was presented. Mathematical and
experimental verifications using signals of Lamb waves propagating in the aluminum
plate were performed. A major focus was given to the experimental results obtained
for the systematic error, which plays a significant role in the overall error contribution
and expanded uncertainty, which characterizes the quality of measurement results. The
obtained mean systematic error of 0.6% for the A0 mode at 160 kHz and 0.05% for the
S0 mode at 700 kHz in the mathematical investigation indicate that the proposed method
is particularly suitable for evaluating the phase-velocity dispersion by reconstructing
dispersion curves in clearly expressed dispersion zones. The uncertainty analysis has shown
the components that significantly affect the measurement result under different conditions.
The plate thickness, mathematical modeling, and scanning step of the mechanical scanner
have a significant impact on the estimated uncertainty of the phase velocity for the A0 mode.
Those components dominate and make about ~92% of the total standard uncertainty.
The combined uncertainty in the non-dispersive zone for the S0 mode is sensitive to the
repeatability of velocity variations, fluctuations of the Lamb wave’s frequency, and the
scanning step of the scanner. These three components represent 98% of the total uncertainty.
The obtained results for the phase-velocity measurement for the A0 mode in the range
(114.3–213.6) kHz and the S0 mode in the range (137.5–186.5) indicate that the proposed
method is a reliable tool for the quantitative evaluation of the phase velocity using Lamb
waves. This will facilitate the selection of the method according to the required parameters,
solving one or another problem in various future studies.
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