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Abstract: The COVID-19 pandemic is one of the most disruptive outbreaks of the 21st century
considering its impacts on our freedoms and social lifestyle. Several methods have been used
to monitor and diagnose this virus, which includes the use of RT-PCR test and chest CT/CXR
scans. Recent studies have employed various crowdsourced sound data types such as coughing,
breathing, sneezing, etc., for the detection of COVID-19. However, the application of artificial
intelligence methods and machine learning algorithms on these sound datasets still suffer some
limitations such as the poor performance of the test results due to increase of misclassified data,
limited datasets resulting in the overfitting of deep learning methods, the high computational cost of
some augmentation models, and varying quality feature-extracted images resulting in poor reliability.
We propose a simple yet effective deep learning model, called DeepShufNet, for COVID-19 detection.
A data augmentation method based on the color transformation and noise addition was used for
generating synthetic image datasets from sound data. The efficiencies of the synthetic dataset
were evaluated using two feature extraction approaches, namely Mel spectrogram and GFCC. The
performance of the proposed DeepShufNet model was evaluated using a deep breathing COSWARA
dataset, which shows improved performance with a lower misclassification rate of the minority class.
The proposed model achieved an accuracy, precision, recall, specificity, and f-score of 90.1%, 77.1%,
62.7%, 95.98%, and 69.1%, respectively, for positive COVID-19 detection using the Mel COCOA-2
augmented training datasets. The proposed model showed an improved performance compared to
some of the state-of-the-art-methods.

Keywords: sound classification; audio processing; small data; data augmentation; transfer learning;
deep learning; COVID-19 recognition

1. Introduction

The coronavirus (COVID-19) pandemic can be described as a respiratory infection
majorly caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and
has infected more than 44 million individuals globally [1]. The effect of this 21st-century
pandemic has negatively affected global economic activities such as finance [2], security [3],
food security, education, and global peace [4], with some positive results in reducing urban
pollution [5]. The influence of this virus from the alpha to the beta variant has affected
both the health and the welfare status of citizens around the world [6]. The World Health
Organization (WHO) declared it to be a novel coronavirus disease and named it as a Public
Health Emergency of International Concern (PHEIC) on 30 January 2020 due to the easy
spread and high transmission rate and communicability of this disease [7].

Previous studies have shown that some of the clinical signs of patients infected with
COVID-19 are closely related to other viral upper respiratory diseases such as a respiratory
syncytial virus (RSV), influenza, and bacterial pneumonia, while other common symptoms
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are sore throat, pleurisy, shortness of breath, dry cough, fever, headache, etc. [8]. Different
tools and methods have been used for monitoring and diagnosing this virus, such as
Real-Time Polymerase Chain Reaction (RT-PCR) [9], medical imaging such as computer
tomography (CT) scan images [10,11], chest X-ray [12,13], and lung ultrasonography [14],
as well as blood samples [15], urine [16], feces [17], etc. However, some of the limitations
of previous studies include inaccuracies of results, cost implications, varying quality and
reliability of available SARS-CoV-2 nucleic acid detection kits, and the insufficient number
and throughput of laboratories performing the RT-PCR test, etc. [18]. Similarly, the use of
medical images for diagnosis has its share of limitations, such as the cost implications of
setup, and insufficient machines in hospitals for conducting timely COVID-19 screening [19].
These medical images are processed using various machine learning, deep learning [20],
and other artificial intelligence methods [21], making them more effective.

Recently, the use of respiratory sound or human audio samples such as coughing,
breathing, counting, and vowel sounds for the detection of COVID-19 [22–24], are be-
ing presented as alternative, simple and inexpensive methods for monitoring the disease.
Sound or audio classification tasks have continued to increase thanks to their wide span of
applications in our everyday lives, including medical diagnostics for cognitive decline [25]
and laryngeal cancer [26]. The concept of sound or audio recognition involves recogniz-
ing the audio stream, related to various environmental sounds. Thus, the advancement
of deep convolutional neural network (CNN) applications in sound classification have
shown very impressive performances. This is based on the strong capabilities of deep CNN
architectures in identifying key features that are mapping audio spectrograms to relative
or different sound labels such as the time and frequency energy modulation patterns over
spectrogram data inputs [27]. The need for a deep CNN model in sound classification is
due to some of the challenges posed by conventional machine learning methods, which
include the inability to effectively identify features in Spectro-temporal patterns for dif-
ferent sounds [28]. The recent adoption of a deep network is basically due to its stronger
representational ability, thereby achieving better classification performance [29]. However,
the real-life applications of deep neural networks suffer from overfitting, which is always a
result of limited datasets (data starvation), class imbalance, and the challenges of proper
annotations in many practical scenarios due to the cost and time complexity of carrying out
such annotations [30]. In addition to these challenges, there are also some shortcomings in
traditional audio features techniques, such as Mel Frequency Cepstral Coefficients (MFCC),
which is the problem of identifying important features within different audio/sounds for
efficient classification. Therefore, alternative methods such as cochleagrams are sought for
audio feature extraction [31].

CNNs are effective at learning from images. Deep CNNs are particularly well suited to
the problem of sound classification for two reasons: first, when used with spectrogram-like
image inputs, they can capture energy modulation patterns across time and frequency,
which has been shown to be a key characteristic for differentiating between different
sounds [32]. Deep CNNs are particularly suited for sound classification because they can
learn discriminative spectro-temporal patterns [27]. The human body is too complex for per-
forming effective classification, making it difficult to spot data′s underlying patterns. The
introduction of image-based sound classification allows for the efficient recording of a vari-
ety of sound patterns, including those coming from the heart and lungs [33,34]. However,
in many situations, data augmentation is required to accomplish generalization [35].

Data augmentation has consistently shown its relevance in improving data gener-
alization based on the application of one or more deformations properties in a set of
labelled training samples, thus generating additional training data samples. Some of the
most effective data augmentation methods proposed in existing studies for audio/sound
dataset include the following: semantics-preserving deformations in music datasets, ran-
dom time-shifting [36], pitch shifting and time stretching, etc. Some of the traditional data
augmentation techniques have proven to be insufficient in other sound datasets with very
high time complexity for training, and to have an insignificant impact on the performance
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of some state-of-the-art models [27]. Wang et al. [30] applied GAN-based semi-supervised
learning using a low-density sample annealing scheme for generating a new fake audio
spectrogram with labelled IFER data. Other studies also adopted image augmentation
techniques for increasing spectrogram images. Mushtaq et al. [37] applied some of the
most widely used image augmentation techniques on the converted audio files to spectro-
gram images. The authors also applied five of the most popular deformation approach
to the audio files which include the pitch shift, time stretch, trim silence, etc. The study
concluded that their proposed data augmentation method improved the performance of
the DCNN model more than the traditional image augmentation methods with increasing
accuracy for training, validation and test datasets. Based on some of the findings deduced
from recent studies, we can agree that the combination of appropriate feature extraction
methods with deep learning models using suitable data augmentation technique(s) can
aid the performance of classifiers in sound classification. Therefore, this paper introduces
effective and improved data augmentation schemes on deep learning models for sound
record classification in COVID-19 detection.

In summary, the main contributions of our study are as follows: Firstly, applied simple
and effective data augmentation schemes for efficient data generalizations for COVID-19
detection. Secondly, a pre-trained CNN architecture called DeepShufNet was analyzed
and evaluated. The experimental analysis of the augmented datasets in comparison with
baseline results showed significant improvement in performance metrics, better data gener-
alization and enhanced optimal test results. In addition, we compared and investigated
the impact of data augmentation on two methods (Mel-spectrograms and GFCC) for the
detection of COVID-19 symptomatic cases, positive asymptotic cases, and fully recovered
cases. The results showed an impressive result with near-optimal performance, espe-
cially in the rate of recall, precision, and F1-Score. The remaining part of this paper is
sectioned as follows.

The related work is presented in Section 2, where we discuss in detail all significant
approaches used for data augmentation, and learning classifiers concerning audio/sound
classification. In Section 3, an introduction to our proposed methodology is fully discussed
with emphasis on the dataset used, as well as our proposed data augmentation and deep
learning methods. Detailed results from and discussions on the comparison of the proposed
method with others’ published results are presented in Section 4. In Section 5, conclusive
remarks are given.

2. Related Work

This section discusses in detail some of the state-of-the-art methods used by previous
researchers for data augmentation techniques and classification models in sound/audio
classification. Research trends in COVID-19 detection include the use of conventional
machine learning algorithms in sound datasets, which include but are not limited to
coughing, deep breathing, sneezing, etc. Machine learning algorithms have been applied
in the detection of COVID-19 with improved results, such as a study by Sharma et al. [22],
who analyzed audio texture for COVID-19 detection using datasets with different sound
samples and a weighted KNN classifier. Tena et al. [38] conducted COVID-19 detection
using five classifiers, namely: Random Forest, SVM, LDA, LR, and Naïve Bayes algorithms.
RF classifier outperformed other machine learning methods with significant improvement
in the accuracy on five datasets; however, the shortfall is lower specificity rates. Chowdhury
et al. [39] presented an ensemble method using the multi-criteria decision making (MCDM)
method, and the best performance was obtained with extra tree classifier.

The authors of [40] applied Gaussian noise augmentation techniques and AUCORes-
Net for the detection of COVID-19. Loey and Mirjalili [41] compared six deep learning
architectures such as GoogleNet, ResNet 18, 50 and 101, MobileNet and NasNetmobile for
detection of COVID-19 using the Coughdataset. The study shows that ResNet-18 outper-
forms the other models with a significant performance result. Pahar et al. [42] presented
three pre-trained deep neural networks CNN, an LSTM and a Resnet50 architecture for
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detection of COVID-19 using five datasets. Erdogan and Narin [43] applied deep fea-
ture ResNet 50 and MobileNet architecture on support vector machine in the detection of
COVID-19 and the feature extraction method used two conventional approaches, which
are empirical mode decomposition (EMD) and discrete wavelet transform (DWT). The
study shows a high-performance result with ResNet50 deep features. Sait et al. [44] pro-
posed a transfer learning model called CovScanNet for classification of COVID-19 using
multimodal datasets. Soltanian and Borna [45] investigated the impact of the lightweight
deep learning model on classification of Covid from non-Covid cough Virufy datasets. The
authors combined separable kernels in deep neural networks for COVID-19 detection.

Despotovic et al. [46] applied a CNN model based on VGGish in a Cough and Voice
Analysis (CDCVA dataset) and the study gave an improved performance of 88.52% accuracy,
while Mohammed et al. [47] presented shallow machine learning, Convolutional Neural
Network (CNN), and pre-trained CNN models on Virufy and Coswara datasets with
performance metrics showing 77% accuracy. Brown et al. [48] presented ML algorithms
such as Logistic Regression (LR), Gradient Boosting Trees, and Support Vector Machines in
the detection of COVID-19.

Some of the data augmentation techniques presented by previous researchers include
studies by Lella and Pja [49], which applied traditional audio augmentation methods on
a one-dimensional CNN for diagnosing respiratory diseases of COVID-19 using human-
generated sounds such as voice/speech, cough and breath datasets. Salamon and Bello [27]
examined the impact of different data augmentation methods on the CNN model. Authors
concluded that there is a need for class-conditional data augmentation for improved
performance of deep learning models. Leng et al. [29] proposed a Latent Dirichlet Allocation
(LDA) approach for augmentation of audio events from audio recordings. The authors
compared the performance of the proposed LDA algorithm to other data augmentation
techniques such as time and pitch shifting and Gaussian noise. Based on this thorough
literature review, we can agree that to a great extent, existing data augmentation and
classification methods in COVID-19 using sound/audio datasets still suffer from setbacks
in identifying an appropriate and lightweight data augmentation method to overcome the
problem of limited training data and data imbalance. The issue of background noise on
sound datasets affects effective feature extraction; therefore, creating synthetic datasets from
such noisy datasets would also affect the efficiency of the classification of deep learning
models. There is a need to collect more quality data and thereby improve the performance
of the learning models [38,50]. Therefore, this study proposed a simple and efficient deep
learning architecture referred to as DeepShufNet model for improved classification of
COVID-19. In addition, we applied effective data augmentation techniques using noise
and color transformation methods in generating better synthetic datasets, thus improving
data generalization and COVID-19 detection.

3. Methodology
3.1. Dataset

This experimental study was conducted using the publicly available Coswara dataset
generated by Sharma et al. [51] which consists of nine different audio/sound samples
collected from 2130 recordings. The different audio/sound samples include the follow-
ing: breathing (two types: deep and shallow), cough (two types: heavy or shallow), digit
counting (two types: fast and normal), and finally vowel phonation (three types: a, e,
and o), respectively. The audio recordings from the Coswara dataset consist of seven
categories which are as follows: healthy (1372), positive_moderate (72), positive_mild (231),
positive_asymp (42), recovered_full (99), respiratory_illness_not_identified (RINI) (150),
and no_respiratory_illness_exposed (NRIE) (164). The summary of each category of audio
samples for the entire Coswara dataset is described in Figure 1 and Table 1 summarizes
the selected classes used for this study. However, in this study, our experiment is ma-
jorly focused on deep breathing audio samples (coined as COCOA-DB). The architectural
framework for our proposed model is presented in Figure 2.
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Figure 1. Summary of classes in Coswara Dataset.

Table 1. Summary of the selected audio recordings for this study.

Classes Size # of Audio Samples

Positive Asymptotic 48 kHz 42
Positive Mild 48 kHz 231

Positive Moderate 48 kHz 72
Healthy 48 kHz 1372

Figure 2. Proposed Architectural framework.

For this study, we merged some classes, as we will see in the next section. The reason
for this merger is due to the similarity in the names and the audio spectrum; therefore,
later in this study, classes such as positive mild and positive moderate were merged and
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represented as a COVID-19 positive class. The information of our proposed architecture
model is stated in the remaining subsection and the specifics or key blocks in the architecture
are discussed in detail.

3.2. Data Pre-Processing

For each audio recording file within the Coswara dataset, there is an uneven time
of audio signal, and to determine the different time duration for each file, we used the
expression L = (N(Y)./ f (s)), where N(Y) is the sample length and f (s) is the sampling
frequency for each audio sample, which is 48 kHz. Based on the mathematical expression to
calculate L s, the minimum and maximum length of audio files are 4 and 29 s, respectively.
To ensure that all relevant features are captured during the analysis, we applied a simple
pre-processing and normalization method by scaling speech by its peak value with an
amplitude maximum value of 1 [52]. Secondly, we applied a silent region deletion method
which allows the elimination of the silent part of the signal speech and uses only the voiced
portion. Progress in previous studies using silent region elimination has shown its complete
usefulness in improving the performance of the system and reducing processing time.

3.3. Feature Extraction

This study considered three categories of audio signal features, which are based on
Mel-spectrograms, and the Gammatone Frequency Cepstral Coefficient (GFCC) image
described below as well as a sample of generated images for each class using the two
feature extraction methods is depicted in Figures 3 and 4.

3.3.1. Mel Spectrogram

One of the most widely used time–frequency spectra in sound classification is the Mel
spectrogram [53]. This input representation has continuously shown its effectiveness and
importance when compared to other structures such as short-time Fourier transform (STFT).
Based on this knowledge, we transformed all our selected Coswara audio recordings into
spectrograms using the default Mel spectrograms function in the MATLAB toolbox. The Mel
spectrogram images were created with an FFT window, frequency range up to 2.0 × 104 Hz,
and an average length of audio files varies ranging from 10 s to 25 s. The samples of the Mel
spectrogram created are depicted in Figure 3, showing the time–frequency spectrogram
for each class category in the Coswara dataset. We can also agree that the power spectral
energy density P( f , t) for each audio file differs with increasing power for healthy samples
in comparison with other class samples to the number of points around the spaced times t
and frequencies f .

Figure 3. Samples of Mel Spectrogram images generated from the audio files in each class (a) Positive
Asymptotic; (b) Positive mild; (c) Positive Moderate; (d) Recovered full; (e) healthy.

3.3.2. Gammatone Frequency Cepstral Coefficients (GFCC)

Gammatone Frequency Cepstral Coefficients (GFCC) was developed by Patterson
et al. using Gammatone filter banks which model the auditory system of humans as an
overlapping band-pass filter [54]. In the GFCC feature extraction process, the speech signal
is expanded to the Gammatone filterbanks in the frequency domain. The output of the
Gammatone filterbanks is used in achieving the cochleagram, which is a representation of
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a frequency–time signal. Therefore, the impulse response for each gammatone filter can be
expressed mathematically in Equation (1).

g(t) = mty−1e−2πnt cos(2π fct +∅), (1)

where: m is constant (mostly equal to 1), controlling the gain and the order of the filters
and is defined by the value of y, which is mostly set to a value less than 4; the bandwidth
is represented as n and can be expressed in Equation (2); ∅ is the phase but is generally
set to zero. The samples of the GFCC created are depicted in Figure 4, showing the
time–frequency spectrum for each class category in the Coswara dataset.

n = 25.17
(

4.37 fc

1000
+ 1

)
, (2)

Figure 4. Samples of GFCC images generated from the audio files in each class (a) Positive Asymptotic;
(b) Positive mild; (c) Positive Moderate; (d) Recovered full (e) healthy.

3.4. Data Augmentation Scheme

After the feature extraction steps, there is a problem with the data distribution of each
class, as shown in Figure 1, with a huge factor of class imbalance among the seven different
classes. In the worst case, the number of samples of the majority class is an average of
10 times more than the minority classes. This factor plays a crucial role in the difficulty of
the classification task and thus influences the performance of our model. Therefore, the
application of data augmentation will not only provide more training data samples, or
reduce the overfitting of models during the training, but it will also improve the accuracy
and overall performance of the models [37]. Basically, for this study, we applied the two
categories of data augmentation methods to increase the training images of the minority
class as depicted in Figure 1, and as a result, we achieved a newly synthetic dataset referred
to as COCOA (Table 2), COswara-COvid-Augmented datasets, which are as follows:

• Color transformation method: In this category of data transformation, there are three
popularly used color models in the literature; however, in this study, we adopted
rgb2lab and grayscale transformation methods. These transformer methods are also
referred to as monochrome simply because they are made of 256 shades of grey and
have a brightness value between 0 (black) to 1 (white). In this research, several types of
color transformation techniques were applied, namely, brightness, contrast, rgb2gray,
and rgb2lab. Horizontal flip, zoom, and shear transforms were applied to each image
in the dataset to generate a new dataset called COCOA-1.

• Noise Addition: We applied Gaussian noise and salt–pepper noise with different param-
eters to each image in the dataset to generate a new synthetic dataset, called COCOA-2.

In addition to these two categories of data augmentation techniques, we also applied
some of the traditional data augmentation methods such as horizontal flip, vertical flip,
and random reflection to each image in the datasets. Table 3 shows the summary of the
total data samples used in this study with the number of augmented samples per class.
The number of synthetic data generated by each of the transformation methods using
the training datasets are 1098, 760, and 760 synthetic samples for All positive COVID-19,
positive asymptomatic, and recovered full classes, respectively.
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Table 2. Summary of Augmented dataset and reference names of image augmentations used.

Augmented Dataset Description

COCOA-1 Color transformation: Grayscale and Rgb2lab
COCOA-2 Noise: Gaussian, salt and pepper
COCOA-3 Combo (combination of color transformation, and Noise)

Table 3. Summary of sample sizes used for each classes.

Category Total Samples Train/Validation (80%) Augmented Data Test (20%)

Healthy 1372 1098 - 274

All positive
COVID-19 303 243 1098 60

Positive
Asymp 42 34 760 8

Recovered Full 99 79 760 20

3.5. Structure of The Proposed DeepShufNet Model

This study proposed the DeepShufNet model, which is a lightweight deep CNN model
as shown in Figure 5. Our choice of proposed pretrained ShuffleNet architecture in this
study is based on the concept of pointwise Group Convolution, which has been described
in recent studies as a light-weighted network that assigns models over two GPUs and
uses repeated building blocks and channel shuffle. In addition, the use of pointwise group
convolution and channel shuffling has helped in minimizing computational cost and still
improving overall accuracy. The network has been initially pre-trained using ImageNet. As
audio recording is a one-dimensional time series, we train a one-dimensional convolutional
neural network for binary classification.

Figure 5. The proposed deepShuffleNet architecture consists of several building blocks.

The DeepShufNet consists of an input layer of a 224 × 224 × 3 image, and multiple
hidden layers which include a convolutional layer, batch normalization layer, pooling layer,
flatten layer, fully connected layer, and an output layer. However, the original size of each
image is 875 × 656 pixels, but this paper applied an imresize to resize all images to the
size 224 × 224, which is enough to identify all target ranges. In addition, based on the
literature, the use of smaller input aids in improving computational speed, reduction of the
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number of parameters, and finally minimizing the possibilities of overfitting. The proposed
DeepShuffleNet used in our experiment has a total number of 172 layers and a total number
of 1.4 million learnable parameters. We applied 50% dropout layers to the hidden neurons,
which helps to prevent overfitting. Despite the larger numbers of layers, the DeepShuffleNet
architecture utilizes some interesting operations such as grouped convolution, channel
shuffle, and depth concatenation which significantly minimize computational complexity
and improve accuracy.

In this study, we utilize the training options with Adam (adaptive momentum algo-
rithm), and a minibatch size of 250 for searching and final training. The learning rate of our
optimizer is subject to a warm start ranging from 1× e−4 to 0.001, a total number of epochs
of 50, and an L2 regularization parameter of h = 2× e−4. To ensure the optimal training of
our model and to prevent overfitting, which is a major challenge for deep neural network
models, we applied a drop-out rate of 50%. The shuffleNet architectural layers are made
up of 172 layers and 1.4 million total learnable parameters, as summarized in Table 4.

Table 4. Summary of ShuffleNet architecture layers.

S/n Type of Layer # Layers

1 Input Layer 1

2 Convolution 1

3 Batch Normalization 49

4 Activation 32

5 Max/Average Pooling 6

6 Grouped Convolution 49

7 Channel shuffling 16

8 Depth concatenation 2

9 Addition 13

10 Fully Connected 1

11 Softmax 1

12 Output Layer 1

Total 172

3.6. Performance Evaluation

In this paper, we assess the performance of our proposed method using three datasets,
which are the original Coswara datasets for deep breathing recordings, COCOA1 (offline
data augmentation based on time shift, pitch shift, noise), and COCOA2 (using image
augmentations). We investigated the performance of our classification task using some of
the state-of-the-art evaluation metrics, namely Accuracy, Recall, Precision, F1-Score, and
Confusion matrix. The mathematical expression and the description of the performance
metrics used in this study are represented in Table 5.

Table 5. Summary of the Evaluation Metrics.

Metrics Description Mathematical Expression

Accuracy Degree of true values (correctness of COVID-19)
measurements against all the evaluated instances. Acc =

Tp + Tn
Tp + Tn + Fp + Fn

Sensitivity/Recall Proportion of true positive (COVID-19) people against
the actual number of people with the disease. Sen =

Tp
Tp + Fn

Precision Proportion of true positive (COVID-19) people against
the predicted number of people with the disease. Prec =

Tp
Tp + Fp
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Table 5. Cont.

Metrics Description Mathematical Expression

Specificity Proportion of true negative (non-COVID-19) people
against the actual number of people without the disease. Spec =

Tn
Tn + Fp

F1-Score The weighted average of precision and recall. F1− Score = 2 ∗ Sen ∗ Spec
Sen + Spec

4. Experimental Results and Discussion

This section is based on an extensive experiment and effective investigation of all
the different datasets on the proposed DeepShufNet. All experiments were conducted in
MATLAB R2020b on a desktop PC built with an Intel(R) core i5 (3.2 GHz) processor, 8 GB
of RAM, and an NVIDIA GeForce GTX 1070 GPU server with 120 G memory.

Taking into consideration the condition of the hardware and the issue of out-of-
memory errors, we reduced the batch size to 200 for both training and testing. Considering
the huge data sparsity within the Coswara dataset classes, the repeated experiments were
conducted five times.

4.1. Training and Testing Prediction

The proposed DeepShufNet model was trained and tested on the feature-extracted
images combined from all Coswara datasets. Cross-validation method was applied to find
the optimal parameter configuration and the model was trained and validated on 80% of
the total images extracted from the sound dataset, which consist of 1706 data samples
comprising healthy, positive asymptotic, positive mild, positive moderate, recovered full,
RINI, and NRIE with 1098, 34, 185, 58, 79, 120, and 132, respectively. The adaptive momen-
tum algorithm ADAM was used as the training algorithm, and different hyperparameter
values as summarized in Table 6. The learning rate controls the rate of the weights update,
therefore reducing the prediction error, while the batch size helps to determine the number
of sample rows processed/time before updating the parameters of the internal network.
The baseline experiment was evaluated using the raw feature-extracted images, the training
process was with and without fine-tuning. The final DeepShuffleNet model was selected
using the model with the least loss in the validation set during training.

Table 6. Training hyperparameter settings.

Parameters Values

Optimization
Optimizer name ADAM

Loss function Cross-entropy
Learning rate 1 × 10−4

Fitting
Batch size 200
Dropout 50%
Epoch 50

The training model for each experiment was analyzed and observations of improve-
ment in the classification results to validation accuracy and losses were noted. The results
of the original dataset without augmentation suffer from the increasing misclassification
rate of the minority class, especially in the case of classifying positive asymptotic and
positive COVID-19 classes with a recall and precision rate of almost NA to less than 10%.
However, training the DeepShufNet model with our categories of synthetic dataset gave a
near-optimal result with a better performance in detection of COVID-19.

The experimental results are presented in four comparative categories and all results
were obtained based on the experiments with the test dataset. The overall performance
of the model with each category of dataset is compared using an optimal model in five
recorded experiments in this research. In each comparative experiment, the combination of
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accuracy, recall and specificity is the main metric to judge the performance of the model in
each dataset’s categories, since it examines both classes′ outcomes and improvement in the
classification results for the minority class. The detailed summary of all measures for each
category is all stated as follows.

• All Positive vs. Healthy;
• Positive Asymptotic vs. Healthy;
• Healthy vs. Recovered Full.

4.2. Classification Deep Breath Sound (All Positive COVID-19 vs. Healthy)

This section compares the results of the transfer learning DeepShufNet on 224× 224 pixels
for binary classification of healthy versus all positive classes. Due to the similarities between
the positive mild and moderate classes, we combined these two classes to create a new
class called the All-positive-Covid class. A comparison of the detection power of our
proposed DeepShufNet on the Mel spectrogram feature images and GFCC features is
shown in Table 7. The classification results reflect some improvement and stability of the
DeepShuffleNet in the data augmentation datasets.

Table 7. Results Analysis of Positive COVID-19 vs. Healthy on applied feature extraction methods.

Feature
Extraction

Data
Augmentation Accuracy (%) Recall (%) Precision (%) Specificity (%) F1-Score (%)

Mel
Spectrogram

No Aug 71.2 ± 7.3 60.2 ± 12.6 51.8 ± 15.1 85.22 ± 11.3 53.47 ± 6.1
Color

Transformation
(COCOA-1)

78.7 ± 6.1 57.9 ± 13.5 45.41 ± 9.6 83.19 ± 9.4 49.2 ± 5.8

Noise Addition
(COCOA-2) 85.1 ± 4.2 70.85 ± 7.7 59.64 ± 13.1 88.25 ± 6.14 63.61 ± 6.7

Combo
(COCOA-3) 87.8 ± 1.3 69.49 ± 4.9 64.82 ± 4.7 91.75 ± 1.9 66.9 ± 2.8

GFCC

No Aug 74.9 ± 3.8 48.7 ± 14.1 40.1 ± 10.16 86.99 ± 1.55 42.4 ± 6.3
Color

Transformation
(COCOA-1)

76.4 ± 2.5 71.33 ± 2.2 41.23 ± 3.4 77.51 ± 3.3 52.17 ± 2.6

Noise Addition
(COCOA-2) 83.1 ± 0.9 46.7 ± 11.5 53.3 ± 2.32 91.06 ± 2.01 49.27 ± 6.5

Combo
(COCOA-3) 83.1 ± 1.4 38.33 ± 9.3 50.21 ± 1.6 92.21 ± 1.7 43.1 ± 6.5

On the test set, the best performance for DeepShufNet was achieved using the Mel
spectrogram image in the COCOA-2 dataset (see Table 6), with an enriching positive
COVID-19 detection case summarized as mean accuracy with 85.1 (standard deviation
[SD], 4.23), 70.85 (SD, 7.7) for recall/sensitivity, 59.64 (SD, 13.12) for precision, 88.25 (6.14)
for specificity, and 63.61 (SD, 6.7) for F1-score. However, the test set results of our proposed
model on COCOA-3 show a substantial improvement in accuracy mean of 87.82 (SD, 1.3),
69.49 (SD, 4.9) for recall/sensitivity, 64.82 (SD, 4.7) for precision, 91.75 (1.9) for specificity,
and 66.9 (SD, 2.8) for F1-score. Therefore, the test set comparison of the original dataset
without augmentation can be said to perform the worst when compared with the outcome
of the other datasets. The datasets using the GFCC images with augmentation still outper-
forms the original datasets with significant comparison result of accuracy as 83.1 (SD, 1.4),
83.05 (SD, 0.9), 76.4 (SD, 2.5), and 74.9 (SD, 3.8) for COCOA-3, COCOA-2, COCOA-1, and
raw data (no augmentation), respectively. More interesting is the increasing mean recall
for DeepShufNet being 71.33 (SD, 2.2), 48.7 (SD, 14.1), 46.7 (SD, 11.5), and 38.8 (SD, 9.3) for
COCOA-1, no aug, COCOA-2, and COCOA-3, respectively.

The summary of DeepShufNet on the Mel spectrogram images is presented in Figure 6,
which reflects the best experimental outcome for COCOA-2 with values for accuracy,
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recall, specificity, precision, and F1-score being 90.1%, 62.71%, 95.99%, 77.1%, and 69.2%,
respectively. The second-best results were achieved with COCOA-3, with an accuracy of
89.5%, 71.2% recall, 93.4% specificity, 70% precision, and 70.6% F1-score. The worst result
was achieved by the raw dataset without augmentation, with an accuracy of 79%, 54.23%
recall, 84.3% specificity, 42.67% precision, and 47.76% F1-score.

Figure 6. Comparison of performance metrics for Mel-spectrogram (Healthy vs. positive COVID-19).

In the same manner, Figure 7 shows comparison results of DeepShufNet for GFCC
images. The application of noise augmentation COCOA-2 and the combo datasets (COCOA-
3) show 84.1% and 84.7% accuracy, respectively. The two best recall results were achieved
by COCOA-1 and COCOA-2, which depicts that the application of the data augmentation
approach helps to improve classification results.

Figure 7. Comparison of performance metrics for GFCC (Healthy against positive COVID-19).

4.3. Experimental Results: Positive Asymptotic vs. Healthy

Aiming to indicate the contribution of our proposed DeepShufNet models, a second
experiment was conducted to classify the healthy versus positive asymptotic alone. The
wide margin in data sparsity between these two classes could result in serious overfitting
of the model. However, the growth in the performance metrics for both Mel-spectrogram
and GFCC images has not been continuous for the raw dataset, but the application of
data augmentation approach on training data has reduced overfitting with a training
accuracy much lower than the accuracy of testing in the last epoch. In summary, the
experimental results indicate that the training with augmented datasets has not had a
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significant influence on the improvement of classification accuracy; however, training the
model with COCOA-1 showed a good classification performance on the test sets in terms
of accuracy, but the second worst results for recall rate. On the other hand, training our
DeepShufNet with COCOA-2 slightly increases the test classification accuracy, specificity,
and F1-score. Considering the efficiency of the data augmentation methods, classification
using noise augmentation is more suitable for practical application when the dataset is
small, as reflected in Table 7. Figures 8 and 9 show an improvement in the augmentation
of Mel-spectrogram images with higher performance results in recall rate, precision, and
F1-score. Therefore, we can claim that the impact of data augmentation methods in both
feature extraction images achieved a more remarkable improvement in classification results
on the proposed DeepShufNet model.

Figure 8. Comparison of metrics for classification of Positive Asymptotic vs. Healthy (Mel-
spectrogram images).

Figure 9. Comparison of metrics for classification of Positive Asymptotic vs. Healthy (GFCC images).

The experimental results from Table 8 show an improvement using the data aug-
mentation method as compared to the baseline experiment with the best accuracy being
achieved by COCOA-1 with an accuracy of 97.15% (SD, 0.5); 95.8% (SD, 1.1) for COCOA-2;
92.7% (SD, 0.17) for COCOA-3; and 92.2% (SD, 0.9) for no aug data.
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Table 8. Results Analysis of Positive Asymptotic vs. Healthy on applied feature extraction methods.

Features
Extraction

Data
Augmentation Accuracy (%) Recall (%) Precision (%) Specificity (%) F1-Score (%)

Mel
Spectrogram

No
Augmentation 92.2 ± 0.9 18.75 ± 8.8 9.03 ± 4.9 94.3 ± 0.8 10.73 ± 4.1

Color
Transformation

(COCOA-1)
97.15 ± 0.5 25 ± 17.7 71.42 ± 20.4 99.27 ± 1.0 31.11 ± 12.6

Noise Addition
(COCOA-2) 95.8 ± 1.1 37.5 ± 15.3 30.43 ± 8.3 97.37 ± 1.1 32.45 ± 8.9

Combo
(COCOA-3) 92.7 ± 0.17 41.67 ± 7.2 17.19 ± 2.43 94.16 ± 0.0 24.34 ± 3.7

GFCC

No
Augmentation 88.54 ± 0.9 12.5 ± 3.3 12.5 ± 1.2 93.79 ± 0.77 12.18 ± 6.35

Color
Transformation

(COCOA-1)
91.15 ± 5.4 NA NA 93.79 ± 5.4 NA

Noise Addition
(COCOA-2) 92.86 ± 2.1 19.17 ± 6.3 17.84 ± 13.63 96.59 ± 2.35 17.06 ± 7.7

Combo
(COCOA-3) 89.0 ± 5.93 25.0 ± 12.5 9.96 ± 5.8 90.88 ± 6.5 12.01 ± 2.3

4.4. Experimental Results: Healthy vs. Recovered-Full

In this experiment, we tried to validate the effectiveness of our proposed model by
analyzing the detection rate of the DeepShufNet model in classifying healthy against
recovered. This experimental results of the applied model on the four datasets based on
MFCC feature-extracted images, namely raw data (no aug), COCOA-1, COCOA-2, and
COCOA-3, which gave the following performance results for accuracy: 93.45 (SD, 0.41) for
COCOA-2: 93.33 (SD, 0.51) for COCOA-1; 91.68 (SD, 4.0) for COCOA-3; and 91.03 (SD, 0.8)
for no augmentation (see Table 9). Figures 10 and 11 show the best results of all the four
datasets on the DeepShufNet model, and it reflects that the combination of the two data
augmentation techniques (COCOA-3) gave the best results.

Table 9. Results Analysis of Positive COVID-19 vs. Healthy on applied feature extraction methods.

Feature
Extraction

Data
Augmentation Accuracy (%) Recall (%) Precision (%) Specificity (%) F1-Score (%)

Mel
Spectrogram

No
Augmentation 91.03 ± 0.8 96.96 ± 2.7 94.56 ± 0.6 26.32 ± 0.0 95.72 ± 0.9

Color
Transformation

(COCOA-1)
93.33 ± 0.51 98.78 ± 1.1 94.31 ± 0.4 18.33 ± 7.6 96.49 ± 0.3

Noise Addition
(COCOA-2) 93.45 ± 0.41 96.42 ± 1.2 96.5 ± 1.0 52.5 ± 14.4 96.45 ± 0.2

Combo
(COCOA-3) 91.68 ± 4.0 92.89 ± 5.6 97.14 ± 1.4 61.25 ± 20.6 95.39 ± 2.4

GFCC

No
Augmentation 90.5 ± 1.9 95.86 ± 2.8 93.16 ± 0.6 18.33 ± 11.54 94.98 ± 1.1

Color
Transformation

(COCOA-1)
77.96 ± 12.9 81.47 ± 14.66 93.90 ± 0.5 27.0 ± 16.05 86.66 ± 8.5

Noise Addition
(COCOA-2) 91.15 ± 2.8 97.54 ± 3.1 93.28 ± 0.22 5.0 ± 0.0 95.34 ± 1.6

Combo
(COCOA-3) 91.04 ± 4.0 97.08 ± 4.3 93.53 ± 0.32 8.0 ± 4.5 95.23 ± 2.2
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Figure 10. Comparison of metrics for classification of Healthy vs. Recovered Full (Mel-spectrogram
images).

Figure 11. Comparison Metrics for classification of Healthy vs. Recovered Full (GFCC images).

4.5. Limitations

One of the major issues faced in this study is the problem of misclassification errors
associated with the poor generalization of some noisy images. As expected, the majority of
the error in misclassification can be attributed to a serious imbalance of classes and limited
data samples. The differences between each class of sound, when represented as either Mel-
spectrogram images or GFCC feature images, are almost similar to power representation
and this could impact the ability of the model to generalize the data efficiently. The
generated spectrogram for each audio file is a two-dimensional array of intensity values
that is majorly noisy because of environmental noises connected to audio signals [55].
Therefore, it is important to equalize values distribution to enhance feature learning.

The proposed model is designed based on existing data augmentation techniques
(color transformation and noise) and the features in the frequency domain, which makes
the model simple and intuitive with low space cost. On the one hand, image spectra for
sound signals could be a complex system, since some of the images cannot fully reflect the
characteristic information of sound signals, although the frequency-domain feature has
been used by previous researchers in sound classification tasks.

Regardless of these limitations, the proposed DeepShufNet model has proven to be
effective in terms of the detection of COVID-19, despite the gross imbalance in classes and
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the limited dataset. Moreover, it has low computational complexity in terms of resources
and time. In the future, there is still a need to explore more complex data augmentation
methods to overcome some of the errors due to the misclassification of the images by
generating a cleaner dataset for proper generalization.

4.6. Comparison to Related Work on COVID-Sound Databases and Discussion

Further comparison in terms of accuracy, recall, and precision was carried out between
our proposed system and other existing COVID-19 sound database systems. Despite apply-
ing different experimental conditions to each classification task, the proposed DeepShufNet
model shows improved and promising results with respect to COVID-19 detection com-
pared to the existing studies. The summary of the comparison table with related work is
presented in Table 10.

Table 10. Comparison with other works.

Reference Classifier Acc (%) Spec (%) Sens (%)

Chaudhari et al. [56] Ensemble deep learning model 77.1 NA NA
Bagad et al. [57] VGGish shallow 72 NA NA
Pahar et al. [42] ResNet 50, LR, KNN, SVM, LSTM 91 92 90

Our work CNN based on DeepShufNet 90.1 95.98 62.3

5. Conclusion

The increasing popularity of the application of different deep neural network models
in sound classification tasks is quite impressive. However, there has been some research
work on COVID-19 detection based on different CNN architectures and some of the
publicly available datasets still suffer from huge data imbalance, limited datasets, and poor
classification of some of the machine learning models. Therefore, this work aims to apply
a deep learning model, called DeepShufNet, to different categories of data augmentation
techniques. The main contributions of this work include:

1. Covering the gap between limited datasets and class imbalance by creating a larger
corpus of synthetic datasets using some simple and effective data augmentation
techniques. Additionally, three different synthetic datasets were created, namely
COCOA-1, COCOA-2, COCOA-3.

2. Deep learning based on pre-trained Shufflenet architecture, called the DeepShufNet
model, was trained and evaluated on the analyzed datasets for comparison. The
experimental analysis of the augmented datasets in comparison with baseline results
showed significant improvement in performance metrics, better data generalization
and enhanced optimal test results.

We compared and analyzed the effects of the two different feature extraction methods,
namely Mel-spectrogram and GFCC imaging, on the DeepShufNet model. This study
investigated the effects of augmented images in the detection of COVID-19, including posi-
tive asymptotic cases, and fully recovered cases. The results showed that the DeepShufNet
model had the highest accuracy on COCOA-2 Mel-spectrogram images for almost all the
comparison cases. The proposed DeepShufNet models showed an improved performance,
especially in the recall rate, precision, and F1-Score rate for all three types of augmented
images. The proposed model showed the highest test results, with scores for accuracy,
precision, recall, specificity, and f-score being 90.1%, 77.1%, 62.7%, 95.98%, and 69.1%,
respectively, for positive COVID-19 detection using the Mel COCOA-2 training datasets. In
the same manner, the experimental result for the detection of positive asymptotic achieved
the best recall rate of 62.5% and specificity rate of 97.1%, and a 48% F1-score.

In the future, we will explore advanced data augmentation techniques such as the
application of generative adversarial networks (GANs) to train and test the model. Fur-
thermore, more deep learning architectures will be implemented to improve and enhance
COVID-19 recognition performance. In addition, the proposed DeepShufNet deep learning
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model could also be applied and evaluated with the combination of all the different sound
datasets.
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