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ABSTRACT 3D object reconstruction is a very rapidly developing field, especially from a single perspective.
Yet the majority of modern research is focused on developing algorithms around a single static object
reconstruction and in most of the cases derived from synthetically generated datasets, failing or at
least working insufficiently accurately in real-world data scenarios, regarding morphing the 3D object’s
restoration from a deficient real world frame. For solving that problem, we introduce an extended version
of the three-staged deep auto-refining adversarial neural network architecture that can denoise and refine
real-world depth sensor data current methods for a full human body pose reconstruction, in both Earth
Mover’s (0.059) and Chamfer (0.079) distances. Visual inspection of the reconstructed point-cloud proved
future adaptation potential to most of depth sensor noise defects for both structured light depth sensors and
LiDAR sensors.

INDEX TERMS Human shape reconstruction, pointcloud reconstruction, adversarial auto-refinement.

I. INTRODUCTION
Modern deep learning approaches pushed the research
field of computer vision beyond any expectation. With
most of the research focusing on adapting visible light
range sensors for solving object recognition problems, has
attracted much less research interest in the analysis of depth
sensor data. Past generation depth sensors, like Microsoft
Kinect [1] and Intel Realsense [2], have already been used
to tackle different depth recognition tasks, yet consumer
adoption beyond entertainment is still very rare [3], [4],
and one of the more common applications is medical data
processing, rehabilitation or physiotherapy [5]–[7]. Other
real-world applications range from such medical purposes as
posture recognition [8]–[10], lymph-edema intervention [11],
respiration abnormality tracking [12], to the identification of
breast cancer [13]. Furthermore researchers work on adopting
such data to various forms of robotics [14], [15], collision
avoidance for autonomous vehicles [16], [17]. Depth data is
also used for entertainment purposes, the enhancement of VR
experiences, like avoiding tripping over obstacles in the real
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world when wearing VR glasses [18], [19], reconstruction of
environments in augmented reality [20]. Another common
scenario is improving the experience of extended reality
applications [21]. One of the main drawbacks regarding
3D reconstruction is the required computational and data
burden for complete object reconstruction, which generally
requires having a batch of precisely calibrated sensors or
having the object or the whole filming setup rotated, until
the entire object is completely scanned. Such limitation
makes complete object reconstruction unfeasible for practical
use, exacerbated by the high price of arranging complex
multisensor setups and the need of high-end GPU grids to
process and fuse a range of multiple pointclouds acquired
from different camera arrays. Even if some of the existing
limitations can be solved by moving away from arrays of
monocular cameras, for example, by installing stereoscopic
cameras and other depth sensor-based solutions [22], [23],
invisible sides of the object might remain. This assertion
is supported by other research attempting to achieve a
similar task, by attempting to reconstruct three-dimensional
objects using only a single perspective frame. Most of the
researchers use black-box models with preexisting knowl-
edge to solve this problem, adapting a variant of machine
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learning, specifically deep neural networks, which have
proven themselves to be capable of leveraging reinforcement
learning to approximate the occluded object shape. This type
of object prediction is not dissimilar from the way a person
is capable of inspecting an object from a single perspective
and building an understanding of how the occluded parts
of the object look based on the mental model developed
using their own life experience. Several solutions already
exist which have this type of predictive capability, with
one of the most popular solutions for object reconstruction
being volumetric pixel (voxel) based reconstruction [24].
These are relatively easy to use in training deep learning
algorithms because of their loss function properties, but
unfortunately the higher fidelity model using voxel approach
in most cases will be constructed from very large amounts
of data, requiring a lot of RAM to process the voxel
grid, making the whole process very resource intensive.
Alternative solution is using pointclouds as computing these
data objects requires much less memory and often contains
none or very little overhead for the representation of an
object. The disadvantage of this data model is the unordered
makeup of the pointcloud vertices, which leads to problems
in training such a network, as every vertex of a pointcloud
can fill any coordinate in the three-dimensional space, while
one of the main reconstruction failures is multiple point
crowding in a single location. PointOutNet was the first
well adopted solution [25], capable of predicting plausible
3D object shapes, relying on hand-drawn segmentation
masks to isolate the reconstructed object and still being
not very practical for use in real-time applications. This
approach also required using monocular images, which did
not have any specific depth information and forced the
model to depend on unstable depth information depending on
material characteristics and ambient lightning settings. Other
researchers tried leveraging pointclouds as inputs to improve
generalization and predictive abilities [26], yet such models
were fully dependent on artificial or manually preprocessed
real world data, making them inadequate for real-life use.

To solve these problems, we extend our work presented
in [27] and propose an extended unsupervised adversarial
auto-refiner model that is capable of reconstructing a full
human body posture pointcloud while employing only an
individual self-occluding depth view from a depth sensor
with no additional masking or other external information.
The paper is structured as follows. Section II describes the
related work. Section III explains our synthetic and real world
datasets and the suggested methodology. Section IV demon-
strates the results. Section V discusses the implications of this
study. Section VI presents the conclusions, and Section VII
discusses future work.

II. RELATED WORK
This section focuses on analysing the main methods for 3D
object reconstruction: voxel based methods and pointcloud
based methods. Both of which at the end can be transformed
into 3D mesh for using in common computer graphics

interfaces, making the primary data representation for
real-life application immaterial. 3D-R2N2 [28] is one of
the pioneers in the field of object reconstruction, it uses
voxel-based method to restore the object from a single
view or from multiple perspectives. 3D-R2N2 uses Sanford
Online Products [29] and ShapeNet [30] datasets as a priori
knowledge for the training of neural network by revealing its
recurrent layers, specifically Long Short Term Memory [31],
[32] (LSTM), to multiple perspectives of the same object,
this makes the network able of reconstructing objects from
both single and multiple perspective frames. Thanks in large
part to this paper, ShapeNet has become the go-to benchmark
to evaluate the effectiveness of a given object reconstruction
approach. While the network is capable of reconstructing
from a single perspective, it requires supplementary masking
information to segregate the Region-of-Interest (RoI) that
the object is rebuilt from, thus making it not practical
in real-world scenarios. To solve for this, one of the
methods suggests the addition of object classification task
using extended YoloV3 [33] network by merging the object
reconstruction and prediction tasks (YoloExt) [34]. The result
does not depend upon outside interference in contrast to
3D-R2N2 by creating the masks on its own accord. Other
methods involve hybridized neural networks [35] for much
faster model convergence by training on look-alike shaped
objects in batches and the ability to reconstruct the voxel grid
in real-time due to reduced network complexity. Whereas the
voxel based methods have been validated to be efficient in
terms of object reconstruction, they have a big weak spot
that far outpaces their loss function simplicity — high coarse
models need a high fidelity grid that exponentially expands
the memory requirements for voxel grid representation. Some
attempts have tried compacting the voxel data in more
memory efficient data structures such as octrees [36], [37],
greatly decreasing the size of the required data to store the
same model, but they still are affected by high memory
overheads, making them unworkable for use on modern
hardware.

A more compressed 3D volume representation when
compared to voxels is pointcloud. It has a very small memory
requirement in both training and prediction steps, while
admitting for much higher fidelity information to be per-
formed by reconstructing the object shell only. Nevertheless,
the training of unordered pointclouds has proven to be
complicated due to the complexity and of the loss function
to match the ground truth and prediction. Moreover, any
grid vertex can occupy any spatial position in the three-
dimensional space, thus training them using optimizers, such
as stochastic gradient descent, is very vulnerable to the initial
conditions and convergence of multiple vertices to a single
spatial point. One of the first solutions to these problems was
PointOutNet. As with 3D-R2N2 it requires an external mask
to be provided as an input for object reconstruction, however,
unlike previous state-of-the-art approaches involving voxels
it was able to reconstruct unstructured pointcloud. In the
paper both Chamfer [38] and Earth Mover’s [39] distances
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(CD and EMD) were suggested as loss metrics. However,
the latter while providing much more uniform vertex spread
requires high computational cost, thus was only used as an
evaluation metric in subsequent research. Further pointcloud
reconstruction research rather than concentrating on RGB
frames (which do not have depth information), attempted
to use pointclouds as inputs [40], [41]. One of the major
drawbacks when using unstructured pointclouds as model
inputs is the fact that you can not adopt well known
feature extracting convolutional networks, as both 2D and
3D convolution kernels demand adjacent data points to
be correlated, which can not be satisfied by unordered
pointclouds. To tackle this issue, PointNet uses symmetric
function for local learning, where the encoder layer of the
PointNet is linked to a fully-connected layer it was able
to fill in missing chunks of the malformed pointclouds.
The study [42] suggested fine-grained pointcloud completion
method, where PCN manages to reduce the number of latent
parameters during training by carrying-out coarse-to-fine
reconstruction. First, it reconstructs the coarse object features
and then uses coarse output together and the residual features
for finer reconstruction of a given object. Another study
proposed instead opting for patch-based reconstruction. As a
result, AtlasNet [43] is capable of mapping 2D features into
parametric 3D object groups. As Earth Mover’s distance has
a complexity of O(n2) it was generally not used as a loss
metric and instead an evaluation metric. Together with evenly
distributed point-subsampling method MSN [44] an EMD
approximation has been proposed.

We believe that one of the most important feature is
the ability of performing sensor-to-screen prediction, where
the solution is capable of predicting the full object shape
with no further information provided, leading to the main
benefit of our approach as the only other standalone solution
able of performing sensor-to-screen prediction (requiring no
external ‘‘help’’ in data processing) is YoloExt. Further on,
our solution was designed to use EMD as a loss function for
our ground truth comparison in addition to PointOutNet and
MSN. Finally, we can maintain sensitivity to high density
distributions, proving another novelty factor to our approach.
The comparison of data versus processing is offered in
Table 1.

Object surface is another important field of study with
methods ranging from classical algorithms [45], [46] to
deep neural network-based ones [47]–[49], with state-of-
the-art being Points2Mesh [50] where Poisson sampling
reinforced deep learning computerized model is used for
object reconstruction. However, the latter does not support
noisy inputs.

We summarize the 3D object reconstruction datasets in
Table 2. Note that the ITOP [51] and EVAL [52] datasets were
recorded using Kinect v1 sensor, which was discontinued.
HHOPE [53] dataset is small and incomplete, and MoVi [54]
dataset does not contain depth information. The shortcomings
of the existing datasets have motivated us to collect our own
dataset as described in Section III.

TABLE 1. Comparison different state-of-the-art object reconstruction
approaches to our proposed solution.

TABLE 2. Summary of 3D object reconstruction datasets.

III. MATERIALS AND METHODS
A. DATASET
The training process of a neural network relies on a
collection of a large good quality dataset. Multiple datasets
exist for the task of object detection, e.g., COCO [55]
and Pascal VOC [56], however, the selection of 3D object
databases is quite limited, one of the biggest being ShapeNet,
which contains labeled 3D model meshes starting with
various household appliances, like bathtubs, dishwashers and
ranging to larger scale objects like airplanes and vehicles.
Other 3D object databases also provide labeled voxel-space
representations [57]. Unfortunately, these do not fit the goal
that we are attempting to achieve which is the reconstruction
of the full human body posture from a single depth frame.
This requires ground-truth information, in addition to depth
frames. However, while a few publicly available datasets
exist for example ITOP [51] and EVAL [52], in both cases
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FIGURE 1. An example of real world depth frame. Left frame is captured
using L515 LiDAR, while the right frame is captured using structured light
D435i depth sensor.

they rely on Microsoft Kinect depth sensor, which has been
discontinued making such datasets obsolete as different
types of sensors tend to exert different types of depth
noise behavior. For this reason, we have opted instead to
create our own datasets that would fit our machine learning
needs. As the creation of real world data-set would require
a costly and time-consuming process, of manually created
and processed ground truth pointclouds, we have instead
opted to split our dataset into two parts. First one being
real world-dataset, which contains depth field recording of
various exercises from multiple camera angles. The second
is synthetic dataset, which contains depth frame samples
created using Blender [58] and their ground-truth pairs.

1) REAL-LIFE DATASET
Real-life dataset has 168 recordings from three human
subjects performing various exercises. Videos have been
captured using two Intel Realsense sensors from different
viewpoints. The first depth sensor (L515) being directly in
front of the subject, the second (D435i) one being directly to
the right of the subject. Both depth sensors are placed roughly
1.4 meters above the ground level and roughly 1.8 meters
away from the subject. An example of both sensor depth
frames can be seen in Figure 1. This setup produced us
168 different recordings, i.e., 84 for each sensor/perspective
type. Additionally, because L515 is LiDAR [59] based sensor,
while D435i is structured light based [60], this produces
us two different depth field error models which we need
to account for. Each of the subjects were asked to perform
each of the seven exercise tasks: 1) shoulder flexion;
2) shoulder flexion and internal rotation; 3) shoulder flexion
and internal rotation with elbow flexion; 4) shoulder exten-
sion and internal rotation; 5) shoulder flexion; 6) full shoulder
flexion; 7) shoulder adduction. Each of the exercises were
done four times, producing 28 recordings of a subject from
each camera. For the recordings to be used in our training
process, firstly, we acquire stand-alone depth frames from
the recording, this is done by capturing a single still depth
frame for each 0.5 seconds of the recording. The analysis of
the extracted dataset is given in Table 3.
As we can see from the table, each of the sensors has

captured 3316 frames from both perspectives. As we do
not use full depth frames as our inputs and instead we use
pointclouds, we need to turn the input depth image into

TABLE 3. Real-world dataset breakdown captured for a single
perspective. Each of the subjects were asked to repeat each of the
exercises for four times: 1) shoulder flexion; 2) shoulder flexion and
internal rotation; 3) shoulder flexion and internal rotation, with elbow
flexion; 4) shoulder extension and internal rotation; 5) shoulder flexion;
6) full shoulder flexion; 7) shoulder adduction.

one. To do this, firstly we discard, by setting z value to
zero, while all pixels have depth z > 2.5 this greatly
decreases the amount of noise that was captured far away
in the room. Once this is done, we apply Algorithm 1
using the intrinsic camera matrix K , (see Equation 1)
to convert the input depth into pointcloud, where fx and
fy are the cameras focal points cx and cy is the sensor
center point. Because our initial depth resolution is 640 ×
480, the pointcloud has 307200 vertices in total, which
is too large to be used as an effective neural network
input. To downsample the pointcloud we use Farthest Point
Sampling [61] (FPS) to decrease the pointcloud size to the
required resolution pointcloud, in our case 2048 vertices.
No further augmentation or postprocessing is applied to the
real-world dataset.

K =

fx 0 cx
0 fy cy
0 0 1

 (1)

An actual example of resampled depth frames obtained
from each of the sensors is shown in Figure 2. Both devices
exhibited noisy depth data streams (real-life conditions),
showing a reason why existing methods fail or achieve
miserable results when trained on artificial datasets.

2) SYNTHETIC DATASET
Synthetic dataset was based on MoVi [54], which is a big
dataset of motion captured (mocap) exercises. Unfortunately,
MoVi database did not contain depth sensor information.
This was solved by binding the mocap skeleton to the
AMASS [62] triangle meshes (see the example in Figure 3).
Blender was used for rendering depth frames for each of the
motion capture frames, which were rendered from multiple
perspectives to produce human body representation to train
the model. Multi-step process was used to generate the date.
At first the human model was rotated at [0◦, 360◦) in 45◦

increments on Up (z) axis, while in parallel the camera
itself was rotated [−35◦, 35◦] at the increments of 15◦ on
Up (z) axis. As with real-life dataset, we had to place the
camera in 1.8 meter radius away from the rendered mesh
and 1.4 meters above the ground to ‘‘replicate’’ the same
conditions and achieve similar scale properties. The same
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Algorithm 1 Convert the Depth Image to Pointcloud Vertices
1: procedure TO_POINTS(w, h, fx , fy, cx , cy,D)

2: x ← 0

3: y← 0

4: V ← {∅}

5: for x < w do

6: for y < h do

7: zi← D(x, y) F Get depth value from depth

frame

8: xi← (x − cx) · zi/fx

9: yi← (y− cy) · zi/fy

10: insert (xi, yi, zi) into V

11: end for

12: end for

13: return V

14: end procedure

process was repeated for all AMASS polygonal meshes (again
to replicate real-life dataset), with a benefit of providing some
resistance against female and male body type variations.
Raytracing was used to render the depth frames and to
export it as OpenEXR [63] file format, resulting in a much
higher depth precision than ‘‘traditional’’ 8-bit channel image
formats. At a final step, ground truths were established for
each model by uniformly sampling the mesh to the desired
density, which is at 2048 points in our case.

As in the real-life dataset, the resulting synthetic depth
field has the resolution 640 × 480, because every point
pixel in the image matches to a vertex in the pointcloud
using it as an input to the deep learning model. To help
improve performance, the depth frames were downsampled,
first converting the data into a pointcloud, then applying
the same procedures as we would with real depth sensors,
because the raytracer used to render the depth is identical
to a pinhole camera. Finally, the converted pointcloud was
down-sampled to 2048 vertex pointcloud.

B. PROPOSED EXTENDED ADVERSARIAL AUTO-REFINER
NETWORK
By refining real-world data to be more synthetic like,
a priorietary adversarial auto-refiner network model with
three primary stages was developed to overcome the problem
of real-life datasets lacking ground-truths (to help perform
the reconstruction). The noisy input depth field obtained by
the sensors is refined to make it more synthetic-like during
the refining stage (Figure 5). The encoder then extracts
hidden vectors from the improved pointcloud, which are

FIGURE 2. Depth frame conversion into pointcloud using the intrinsic
parameter matrix K of camera.

eventually used for reconstruction in the second stage. The
decoder stage (Figure 6) is the third step, in which previously
recovered hidden features are used for coarse object feature
reconstruction, followed by fine-grained reconstruction using
a residual connection.

These are the three deliverable phases that were used in the
final experimental evaluation. However, to train the refiner
model, our network requires an additional discriminator
stage. We discovered that using our refined output results
as inputs for surface mesh reconstruction using Point2Mesh
allows us to reconstruct the mesh with acceptable distortion
levels, as opposed to using only the clean ground-truth,
which frequently causes the chosen surface reconstruction
method to fail completely. The whole network architecture is
depicted in Figure 7. Using the pinhole model, we extract the
pointcloud from the input depth field by applying the cameras
intrinsic matrix K. For a given refiner output, an encoder is
then used to extract the most relevant features. Following
that, we apply a two-part decoder procedure in which we
reconstruct the course object features first, then the residual
fine pointcloud reconstruction. The result is used to recreate
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FIGURE 3. An example from MoVi dataset. Mocap posture was applied to
models from AMASS (both female and male body type).

FIGURE 4. Depth frame produced by Blender and transformed into
pointcloud using an intrinsic parameter matrix K of camera.

FIGURE 5. Overview of refining stage.

FIGURE 6. Overview of the discriminator stage.

the surface mesh of an item using Points2Mesh. We also
employ the generated fine pointcloud reconstruction as an
input for the discriminator throughout the training process,
which alters the refiner’s weights.

The suggested approach can do entirely independent
sensor-to-screen reconstruction; for a full UML sequence
diagram, see Figure 8. As can be seen, a full round of object
reconstruction begins with the loading of training weights,
followed by the initialization of the depth sensor. We then
acquire a depth frame and process it pixel-by-pixel after
initialization. This is accomplished by setting any pixels with
a value of z > 2.5 to z = 0. This eliminates pixels that
are more than 2.5 meters away from the camera, lowering
the amount of noise the ANN has to cope with while also
boosting the fidelity of the input pointcloud. K is then used
to transform the depth frame to a pointcloud. Any points
with a depth component of 0 are then deleted, lowering the
overall number of points in the pointcloud. Because the FPS
operation is slow, we delete as many points as possible before
running it. The final output is a vertex pointcloud with a value
of 2048 that can be used for reconstruction.

1) REFINER AND ENCODER
Our main contribution and the main novelty in the subject
of object reconstruction discourse is the proprietary refiner
architecture. The primary application of adversarial neural
networks involves the creation of new samples [64]–[67], and
this can be achieved typically either from randomnoise, hand-
drawn inputs, or other similar methods. However, very few
papers exist that concentrate on the refinement of the initial
input without the addition of distortions. There have been a
couple attempts regarding the refinement of synthetic data
to make it real-world like, yet the given solutions were not
fully unsupervised, as in the case of [68], synthetic and real
samples had pupil direction in common. Instead, our solution
involves the refinement of real-world data to make it more
artificial like the architecture of our refiner can be seen in
Figure 9.

We get 256 hidden features using the PointNetFeat
pointcloud feature extraction architecture [26], whichwe then
immediately connect into a fully-connected layer for our
size 256 bottleneck. Following that, a batch normalization
is performed to improve generalization and reduce training
time [69], [70], followed by a non-linearity activation
function. We utilize textitRectified Linear Units [71] (ReLU)
because they are faster to compute and produce better
results than other non-linear functions, such as sigmoid.
The resulting latent feature vector is then coupled to a
modified random grid (RandGrid) block for reconstruction,
as suggested by Liu et al. [44]. The result is then resampled
using Minimum Density Sampling (MDS) to produce a more
consistently distributed pointcloud. The key change we made
to the random grid decoder was to choose a beginning
position spread in the range of [−0.5, 0.5] while shifting all
points to the pointcloud’s mass center.

Another novel aspect is that our RandGrid solution
generates patches on all three dimensional axes instead
of two-dimensional axes. We have established, that such
changes to the architecture have significantly improved
our models convergence and robustness by making the
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FIGURE 7. A condensed overview of the proposed extended deep adversarial auto-refiner model architecture. Captured depth field and
sensors intrinsic matrix is employed to transform depth frame into a pointcloud, which is then used for refiner stage. Refined pointclouds
hidden features are then acquired using encoder and fed to decoder for coarse-to-fine object reconstruction. The obtained fine
reconstruction is then used as an input for Points2Mesh for surface mesh reconstruction and evaluated by the discriminator which makes
the refiner to fine-tune its weights.

FIGURE 8. UML sequence diagram of the proposed method for human posture reconstruction: whole process (left); mesh data preparation (middle);
reconstruction process (right).

randomized reconstruction points to become more uniformly
distributed.

The refiner output is a given random grid output that
still contains the initial input data that has been denoised
and cleaned up. On the cleaned-up pointcloud, another
PointNetFeat feature extractor was used to retrieve the feature
vectors for reconstruction using the encoder. The model now
has two hidden feature vectors, one from the real input and the

other from the improved input. Finally, both feature vectors
are concatenated into a single hidden feature vector with the
shape 512.

2) DECODER
The decoder network is somewhat similar to the one proposed
by Liu et al. [44], with the main differences being in the
random grid (RandGrid) decoder. We have established, that

VOLUME 10, 2022 87089



A. Kulikajevas et al.: Auto-Refining 3D Mesh Reconstruction Algorithm From Limited Angle Depth Data

FIGURE 9. Network architecture for refiner and encoder. The original input feature vector is recovered from a pointcloud, and the ANN attempts to
predict a cleaned up input. An additional feature vector is then extracted for the cleaned-up output. Both of these are subsequently put to use
throughout the decoding process.

the architecture works much more efficiently if the random
pointcloud is to be generated on all three axes, in the range
of [−0.5, 0.5] with the vector offset of refined pointcloud’s
center of mass. This proprietary approach is displayed in
Figure 10. The cleaned up output by the refinement stage
and encoders feature vector are fed into RandGrid decoder,
which uses 8 primitives for performing a coarse point
reconstruction.

The pointcloud as the predicted object is then fused
with the refined pointcloud instead of the input pointcloud,
and then resampled using minimum density sampling. The
final result of fine pointcloud reconstruction is produced
by feeding the resampled pointcloud through the residual
decoder (PointNetRes). Figure 11 shows the full architecture
of the decoder we utilized.

3) DISCRIMINATOR
The main purpose of our auxiliary discriminator neural
network is the evaluation of whether a given pointcloud
sample is either from artificial or real-life datasets. The
architecture of our discriminator ANN is shown in Figure 12.
Decoder’s fine-grained reconstruction pointcloud is fed to
the discriminator. Next, it is fed to the feature extraction
block, and then to the connected fully-connected layer. Fully-
connected layer only has a single neuron output, which is then
passed through the sigmoid function. This output function
indicates if the produced pointcloud is artificial (1) or if it is
real (0). This additional ANN allows us to train the decoder on
the artificial samples, while the encoder and refiner networks
are trained on both real and artificial datasets. It means

FIGURE 10. Abbreviated decoder architecture. Given feature vectors from
refiner a coarse objects pointcloud is predicted. The coarse features with
cleaned up features are then resampled and passed through the residual
block. The output is a fine-grained point reconstruction.

that we do not need to have ground-truths for real-life
datasets.

The final complexity of our neural network architecture
can be seen in Table 4, GLOPs have been used to compare
the complexity as opposed to Big-O notation, for the network
complexity is constant, making GFLOPs a more expressive
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FIGURE 11. Full decoder network architecture.

FIGURE 12. Proposed discriminator architecture. Fine-grained pointcloud
reconstruction is used as input for the discriminator. Inputs latent
features are extracted and sent through a fully-connected layer, followed
by sigmoid activation function.

complexity measure. As we can see, our network architecture
is overall more lightweight than MSN which ours is in part
based off of, due to an additional refinement stage allowing
us to greatly reduce the number of trainable parameters. This

TABLE 4. Comparison of model complexity by number of parameters (No.
of Pars), number of operations (No. of Ops) and model size (in MB).

reduces the risk of the network having too high capacity
and learning from noise instead of useful features, which is
important due to the inherently noisy real-depth sensor data,
in addition to making it more lightweight.

C. TRAINING PROCEDURE
We found our ANN training in a single go to be difficult,
for this reason we have devised a five-phased training
methodology. Firstly, we train our encoder training, once
the encoder is considered trained satisfactorily, we begin the
decoder training, following the discriminator training and
then, in the end, the refiner training. This five-phased training
methodology has empowered our model to converge much
more easily and finally improve the trained prediction result
stability. Additionally, during training we perform augmen-
tation to the artificial input aiming to produce Realsense-
like depth deformities. We have two types of synthetic data
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augmentation. The first one involves either removing random
patches from pointcloud, this simulates the laser sensor as
well as structured light sensor noise. Moreover, we introduce
wavelet perturbations to the pointcloud, which emulates the
structured light depth field defects (see Equation 2).

We employ wavelets with an amplitude of A = (0, 0.03]
and a periodicity of ω = [2π, 32π ]. For pointcloud, there
is a 75% percent chance of deleting tiny patches, and a
50% percent chance of wavelet flaws. We anticipate that
these two sorts of augmentations will be cleaned during
the refiner/encoder network’s cleanup step. A third sort of
augmentation includes the addition of a random scale value
to the model. This is done because real persons are of varying
heights, but artificial models only contain individuals of
the same height. A 50% percent chance of applying height
scaling in the range of [0.8, 1.8] is also present in height
augmentation.

p(x, y, z) = (x + A · cos(ω · x), y+ A · sin(ω · y), z) (2)

1) PHASE I
The encoder element of the deep neural network is trained
in the first phase. The emphasis here is on passing the first
seeding weights encoder, which is used in the reconstruction
training’s final step. The discriminator and its weights are
kept unaltered during this phase. Instead, we train all three
stages of reconstruction (cleanup, coarse, and fine) to work
as an auto-encoder by feeding input values as close to the
input as the bottleneck allows. For comparison of prediction
to ground truth, the auto-encoder requires an unstructured
pointcloud loss function. While the Chamfer distance (CD)
has a low memory footprint and can be computed quickly,
we discovered that it provides incorrect features by forcing
vertices to cluster together instead of spreading evenly
throughout the required mesh. Therefore, as described in
Liu et al. [44], we have chosen to use an approximation
of Earth Mover’s distance (EMD) (see Eq.3) along with
suggested penalization criteria see Eq. 4), where d(u, v) is the
Euclidean distance between two vertices in 3D space; 1 is the
indicator function used to filter which is shorter than λli with
a suggested value of λ = 1.5.

εemd (S, Ŝ) = min
φ:S→Ŝ

1
|S|

∑
x∈S

||x − φ(x)||2 (3)

εexp(S, Ŝ) =
1
KN

∑
1≤i≤K

∑
(u,v∈τi)

1{d(u, v) ≥ λli}d(u, v) (4)

The loss function for Phase I training is 5, where Ŝclean is
the result of the cleaning stage, Ŝcoarse is the result of the
coarse reconstruction stage, Ŝfine is the result of fine point
reconstruction, and Sclean is the ground truth for the cleaned
pointcloud, because the input pointcloud can have additional
noise added to it during augmentation. The expansion penalty
hyperparameter was kept constant at γ = 0.1. Once ε81 <
0.13, the artificial neural network stops Phase I training.
During our studies, we chose this early stopping value since

we discovered that it is preferable to avoid the network
becoming totally converged during the final reconstruction
phase. When the criterion is met, Phase II begins training.

ε81 = εemd (Sclean, Ŝclean)+ εemd (Sclean, Ŝcoarse)

+ εemd (Sclean, Ŝfine)+ γ · (εexp(Sclean, Ŝclean)

+ εexp(Sclean, Ŝfine)) (5)

2) PHASE II
The second training phase aims to train the decoder network
on its own. As a result, no further model weight changes
are made to the refiner, encoder, or discriminator branches.
We also solely train on the artificial dataset, unlike the prior
phase. Weight re-initialization is required for the model after
Phase II begins for the first time in order to avoid any
local minimums throughout the subsequent training. We re-
initialize the decoder weights using Xavier initialization [72]
and biases using uniform distribution to erase the weights.
Furthermore, for both encoder and decoder optimizers,
we reset any accumulated optimizer state that has been
established up until this point.

We only update the weights for the decoder itself, without
backpropagating into the encoder, because Phase II only
trains the decoder. After this phase, a feasible profile is
created for both real and fake pointcloud reconstructions,
which will be employed during Phase III training, when the
discriminator is trained. Our loss equation may be simplified
to 6, where Sgt represents the synthetic ground truth for
the synthetic input, because only decoder weights are being
trained during this phase. Phase II training continues while
ε82 > 0.08, and Phase III training begins when the loss falls
below the threshold. The threshold value for early training
termination was set empirically, as it was in Phase I.

ε82 = εemd (Sgt , Ŝcoarse)+ εemd (Sgt , Ŝfine)

+ γ · εexp(Sclean, Ŝfine) (6)

3) PHASE III
We train the discriminator in the third step so that it can
distinguish between real and intentionally created data points.
We postponed discriminator training until Stage III because
the reconstruction network’s weights are still changing
dramatically. During training, the discriminator is given the
output of the decoder network’s reconstructed fine pointcloud
and must categorize it as 1 for synthetic dataset elements
or 0 for real dataset elements. As a result, we used binary
cross entropy as the loss function (see Eq. 7 below). After
the discriminator has been trained until ε83 < 0.05, the last
training phase can begin.

ε83=εbce(y, ŷ)=
N∑
i=1

ŷi · log(yi)+(1− ŷi) · log(1− yi) (7)

4) PHASE IV
In addition, we implemented the fourth phase of training,
which is when the actual adversarial training for refining of
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the input pointcloud takes place. We reset prior optimizer
states because we need to start optimizers from scratch.
If optimizers have built up local minimum states, this helps to
kick-start the training. During the adversarial training phase,
both artificially produced and real-life datasets are used.
The artificially created dataset is utilized to reinforce the
discriminator and further enforce the decoder state, whilst
real-life samples are used for refiner/encoder training and
discriminator reinforcement.

Phase IV is divided into three substeps for each training
batch, with the weights of each step changed separately.
To begin, we use the synthetic dataset to reinforce the entire
network, yielding the loss function for step one as 8. Second,
the refiner cleans up the input pointcloud with an adversarial
loss network in an attempt to convince the discriminator that
the given real-world sample is actually a synthetic one. Only
the refiner weights are updated in this step; the discriminator
is left untouched, and only its loss function is used (see
Equation 9). We also don’t want the refiner to distort the
original contour of the pointcloud, so we constrain it to a
pointcloud loss in relation to the input frame with a factor
of α = 0.4, which was chosen heuristically. This allows
the pointcloud to acquire adversarial features and develop the
model without losing its structure. Finally, we strengthen the
discriminator so that it can distinguish between real dataset
pointclouds and falsely produced ones (see Eq.10).

ε84a = εemd (Sclean, Ŝclean)+ ε82 + ε83 (8)

ε84b = α · εemd (Sclean, Ŝclean)+ γ · εexp(Sclean, Ŝfine)

+ εbce(1− y, ŷ) (9)

ε84c = ε83 (10)

5) PHASE V
As a training or prediction input, we use fine reconstruction
results from the Points2Mesh technique. Our model results
show that the inherent noise makes the surface mesh
reconstruction methodology more resilient to noisy input,
whereas utilizing synthetic noiseless training data would
cause the method to fail when applied straight to the rebuilt
pointcloud.

IV. RESULTS
The primary goal of our deep auto-refining adversarial neural
network is the reconstruction of self-occluding human body
poses by using real world depth frames. As our real-world
dataset has no ground truth information, it is not possible
to compare real-world reconstruction results in an objective
way. Therefore, wewill only be using an artificially generated
dataset for our quantitative evaluation. Whereas for real-
world (and synthetic) dataset evaluation, we will be using
expert knowledge to visually inspect the reconstruction
results. The quantitative evaluation will be performed using
two quality metrics, the first one being already discussed
Earth Mover’s distance and the second one being Chamfer
distance is seen in Equation 11. The quantitative results for

FIGURE 13. Reconstruction similarity using both Earth Mover’s Distance
and Chamfer Distance. Lower values are better.

FIGURE 14. Synthetic dataset reconstruction quality using Earth Mover’s
Distance and Chamfer Distance metrics breakdown by exercise.

the artificial dataset can be seen in Figure 13.

εcd (S, Ŝ) =
1
2

(
1
|S|

∑
x∈S

min
y∈Ŝ
‖x − y‖22 +

1

Ŝ

∑
y∈Ŝ

min
x∈S
‖x − y‖22

)
(11)

To further evaluate our synthetic dataset quantitative
reconstruction results, we break down the reconstruction
results by the performed exercise seen in Figure 14 and by
gender as shown in Figure 15. As we can see, there are no
obvious outliers in either case, this lets us assert that our
network has managed to learn the human pose characteristics
based on the given input pointcloud. In addition to that,
there are no major reconstruction discrepancies between
male and female datapoints. While the latter can partially be
attributed to similarities between the human shapes in both
genders, further visual inspection shows that the model can
differentiate between distinctly male and female secondary
body characteristics.
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FIGURE 15. Synthetic dataset reconstruction quality using Earth Mover’s
Distance and Chamfer Distance metrics breakdown by gender.

TABLE 5. Comparison of different reconstruction method metrics for
different reconstruction methods and ours. Our approach when applied
to AMASS dataset has very similar metrics to state-of-the-art approaches
on ShapeNet datasets, whereas other methods completely fail when
reconstructing AMASS dataset. Our method is not applicable to ShapeNet
as our data collection and training process is more complicated.

For the quantitative comparison of our reconstruction
results with other state-of-the-art methods, we contrast self-
reported ShapeNet dataset reconstruction results in addition
to the reconstruction results when they are given AMASS
dataset, against our approach AMASS dataset. As our
proposed method relies on the real-life and artificially
generated dataset symbiosis our method can not be adopted
the ShapeNet dataset, therefore the self-reported values are
used for assessment. As we can see from Table 5, other
state-of-the-art approaches completely fail when tasked to
reconstruct the human posture. Additionally, we can see
that while we cannot compare to the self-reported ShapeNet
reconstruction metrics, our reconstruction metrics on the
AMASS dataset are on par with the values reported by state-of-
the-art approaches. Moreover, by evaluating our modification
to the random grid neural network block (2D vs. 3D) we can
see a modest improvement in the reconstruction results.

We’ve used expert knowledge to assess and validate
the reconstruction outcomes visually, in addition to the
quantitative evaluation of synthetic data. When then we
compare the reconstruction results (teal) to the expected
ground truth pointclouds (orange) (see Figure 16). We can
see that the neural network was able to reconstruct the
expected outcome with very few defects, the majority of
which occurred towards the limbs’ ends. According to our
findings, the discrepancy can be explained by two main
factors: first, human hands and feet are relatively small
body parts that require much higher fidelity pointclouds

FIGURE 16. Comparison of ground truth (left side/orange color) and
prediction (right side/teal color) from different viewpoints.

FIGURE 17. Surface mesh reconstruction from synthetic prediction using
5233, 2811 and 1357 faces.

to reconstruct appropriately, and second, the majority of
ambiguities can be explained by missing data that is required
for the correct hand and foot inference. Furthermore, we use
the output fine pointcloud reconstruction as the input for our
mesh recreation branch, as shown in Figure 17. As can be
seen, even though some facet normals are inverted, the overall
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FIGURE 18. Stacked views for synthetic input (blue color) and its
prediction (orange color).

shape has been reconstructed correctly, whereas if we used
the unmodified Point2Mesh training approach, the resulting
reconstruction fails completely.

As we can see from Figure 18, even though the ANN was
being given few input (orange) about the legs to predict from,
it was able to predict (in teal) the entirety of its orientation.
Additionally, the neural network was able to predict and
reconstruct full human posture while having less than half of
the body features.

Finally, we compare the reconstructed real-world data
items to the input depth 19). It’s worth noting that
our proposed solution was capable of reconstructing the

FIGURE 19. Stacked views for real depth sensor input (blue) and its
prediction (orange). Real input is quite distorted due to depth sensor
inaccuracies, the cleanup stage cleans up most of noise.

FIGURE 20. Surface mesh reconstruction from real dataset prediction
using 5032, 2832 and 1349 faces.

entire human posture and body while also correcting the
bulk of deformations observed in the input depth frame.
It was observed, that where the depth has more extreme
abnormalities, the most noticeable flaw in the real-life data
reconstruction is detected. For example, we can see in the
top row that there is an extra lump at the end of the hand
that was captured by the depth sensor. This flaw caused the
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FIGURE 21. Reconstructed mesh involving multiple subjects and clothing
support.

reconstruction forecast to fail, resulting in the ‘‘amputation’’
of a portion of the hand. Furthermore, there appears to be
a slight scaling mismatch between the input pointcloud and
reconstruction (results shown in Figure 20), but even with
professional expertise, these discrepancies are difficult to
evaluate. Despite the slight differences between projected
and expected reconstruction outcomes, we can confidently
state that adding adversarial refinement to the reconstruction
network enabled our method to reconstruct real-world depth
sensor data, whereas other approaches failed. While we
attempted to apply our method to the ITOP dataset, the
reconstruction results were inconsistent due to the extremely
different noise model and point distribution of the Microsoft
Kinect sensor compared to the Intel Realsense sensor. Using
the ITOP dataset to train the model would almost certainly
enhance these results. Unfortunately, the dataset has more
background noise, which we were unable to remove fully,
making it unsuitable for our model. Continued research may
be able to improve our technique by making it compatible
with other sensors, such as the Kinect, and the noise that
it generates. As a result of the Microsoft Kinect being
a discontinued device, we believe that pursuing such an
endeavor is not vital at this time.

V. DISCUSSION
The main difference in our approach compared to those
depicted in Table 1 is the power to reconstruct a complete
human body posture with no additional information, such
as RoI masks, using real-life depth sensors. The proposed
solution allows unsupervised training of the extended net-
work with the additional input refinement stage, without
providing ground-truth data of the expected result. This
approach also has another advantage as it does not require

prediction of the object transformation matrix to correctly
place it in the 3D environment, like most of the voxel based
approaches do, allowing easy code integration into already
existing 3D applications such as AR/VR environments.
Bandwidth overheadwas low because the algorithm produced
stable reconstruction results with as little data as half of
the object being visible in the frame with only smaller
object features like human hands or feet with some defects
due to inherent ambiguities. This might be further reused
in developing compression methods for future holographic
teleconferencing.

VI. CONCLUSION
The paper proposed an extended three-staged adversarial
auto-refining model architecture that can perform object
reconstruction using artificially generated and real-life sensor
data without the additional supplement of object mask.
A fully unsupervised five-phased approach was used for
training the network without using the ground-truth infor-
mation. This was achieved by exploiting the adversarial
competition between the discriminator and the refiner stage,
and allowed achieving 0.059 in Earth Mover’s distance
and 0.079 in Chamfer distance metrics, being on par with
other state-of-the-art methods in terms of reconstruction
quality, yet still benefiting from the ability to reconstruct
objects from real-life depth sensor data. Expert evaluation
has shown that objects were reconstructed with some minute
defects, high density of defects in the input pointcloud. Paper
also introduced proprietary modifications to the training
methodology of the Points2Mesh algorithm, making it more
resilient to noisy pointcloud data, allowing a reconstruction
of the full surface mesh of a partially self-occluded human
posture.

VII. FUTURE WORK
Our current approach currently focuses on single ‘‘naked’’
subject reconstruction. In future work, we plan on expanding
our approach to support clothing and multi-subject scenes.
As a proof of concept, we have incorporated an additional
dataset containing such cases [53] into our existing dataset.
Without anymodifications to our approach, we have achieved
the EMD and CD metric values of 0.057 and 0.080,
respectively. The visual inspection results can be seen in
Figure 21.
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