META 2022 Torremolinos - Spain The 12th International Conference on Metamaterials, Photonic Crystals and Plasmonics **Program Booklet** metaconferences.org # **META 2022 Torremolinos - Spain** | The 12 th | nternational | Conference on | Metamaterials, | Photonic Crysta | als and Plas | monics | |----------------------|--------------|---------------|----------------|-----------------|--------------|-----------| i | Edited by | ## **TABLE OF CONTENT** ### **ORGANIZATION I COMMITTEES** #### **Conference Chair** Said Zouhdi, Université Paris-Saclay (France) #### **Local Organizing Committee** Paula García Jiménez, UMA (Spain) Francisco José Martín Bayona, UMA (Spain) Carmen Márquez García, UMA (Spain) Tomás Márquez García, UMA (Spain) Alejandro Mesquida Jiménez, UMA (Spain) Mario Pérez Escribano, UMA (Spain) Alvaro Sánchez Cerrato, UMA (Spain) Lucia Schröeder Antúnez, UMA (Spain) #### **International Advisory Committee** Federico Capasso (USA) Nader Engheta (USA) Teruya Ishihara (Japan) Yuri Kivshar (Australia) Graeme W. Milton (USA) Manuel N.-Vesperinas (Spain) Susumu Noda (Japan) Franco Nori (Japan & USA) Masaya Notomi (Japan) Vladimir Shalaev (USA) David R. Smith (USA) Martin Wegener (Germany) Xiang Zhang (Hong Kong) Nikolay Zheludev (UK) #### **Technical Program Committee** Pierre-Michel Adam (France) Ishwar Aggarwal (USA) Antonio Ambrosio (Italy) Benfeng Bai (China) Mohamed Bakr (Canada) Xavier Begaud (France) Henri Benisty (France) Jamal Berakdar (Germany) Svetlana V. Boriskina (USA) Shah Nawaz Burokur (France) Che Ting Chan (Hong Kong) Debashis Chanda (USA) Pai-Yen Chen (USA) Johan Christensen (Spain) Alfredo De Rossi (France) Alexander Dmitriev (Sweden) Monika Fleischer (Germany) Denis Garoli (Italy) Alexander Govorov (USA) Ortwin Hess (UK) Eugene Kamenetskii (Israel) Howard (Ho Wai) Lee (USA) Jensen Li (Hong Kong) Qiang Li (China) Yang Li (China) Anatole Lupu (France) Nicolò Maccaferri (Luxembourg) Martin McCall (UK) Miguel Navarro-Cia (UK) Taiichi Otsuji (Japan) Willie Padilla (USA) Dorota Pawlak (Poland) Lucia Petti (Italy) Virginie Ponsinet (France) Min Qiu (China) Giorgio Quaranta (Switzerland) Jun Suk Rho (Korea) Almas Sadreev (Russia) Junichi Takahara (Japan) Takuo Tanaka (Japan) Hong Wei (China) #### **Special Sessions Organizers** Antonio Ambrosio (Italy) Henri Benisty (France) Debashis Chanda (USA) Hyuck Choo (Korea) Christoph Cobet (Austria) Nasim M. Estakhri (USA) MariaFarsa ri (Greece) Denis Garoli (Italy) Yuri Gorodetski (Israe)I Tatjana Gric (Lithuania) Jean-Philippe Groby (France) YaelG utierrez (Italy) KurtH ingerl (Austria) Noe Jimenez (Spain) Kotaro Kajikawa (Japan) Maxime Lanoy (France) Inigo Liberal (Spain) Maria Losurdo (Italy) Anatole Lupu (France) Alejandro Martinez (Spain) Marco Miniaci (France) Mircea Modreanu (Ireland) Willie Padilla (USA) Vincent Pagneux (France) Dorota Pawlak (Poland) Virginie Ponsinet (France) Edik Rafailov (UK) Vicente Romero-Garcia (France) Radwanul H.Siddique (USA) Junichi Takahara (Japan) Fernando Moreno (Spain) ### **Special Symposia Organizers** Jerome Plain France Alexander Govorov USA Davy Gérard France Pedro H. Martinez Singapore Junsuk Rho Korea Hakjoo Lee Korea Namkyoo Park Korea Howard Lee Korea Pin-Chieh Wu Taiwan Eugene Kamenetskii Israel Jensen Li Hong Kong Guoliang Huang USA ### SPONSORS I EXHIBITORS #### Silver attocube systems was founded in 2001 and is recognized for innovation and excellence in the development, the production, and the distribution of cutting-edge components and solutions for nanoscale applications in research and industry. The business sector 'Nanoscale Analytics' (formerly neaspec GmbH) designs, manufactures and distributes advanced microscopy solutions for nanoscale-resolved optical imaging and spectroscopy using ground-breaking and patented technologies that enable to surpass the diffraction-limited spatial resolution of conventional microscopes. neaspec instruments combine the best of two worlds – the nanoscale resolution of atomic force microscopy with the analytical power of optical spectroscopy in the visible, infrared and even THz spectral ranges, opening a new era in fundamental and applied research. The products received various prestigious awards and are highly regarded in the scientific community. A skilled team with decades of applications experience guarantees highest levels of instrument performance, consulting competence, comprehensive on-site installation service and excellent after-sales support. Phasics offers metrology and imaging solutions. Thanks to a full range of wavefront sensors, optic testing stations, and quantitative phase imaging cameras, Phasics covers a wide range of applications such as laser beam testing, adaptive optics, lens alignment, quality control, and surface characterization, as well as quantitative phase imaging for biology, material inspection, and plasma metrology. Every Phasics solution relies on our robust and patented QuadriWave Lateral Shearing Interferometry (QWLSI) technology. This technology was developed to overcome the Shack-Hartmann limitations: it offers ultra-high resolution (up to 852×720 measurement points), high sensitivity (sub-nanometric) and large dynamic range (hundreds of microns). We are <u>PlanOpSim</u>, experts in meta-lens software. We develop single workflow design software for planar and meta-optics. PlanOpSim unites the design of planar optics into an easy-to-use metalens software tool. PlanOpSim software integrates the different stages of designing metasurface and planar optics components. Multiscale simulations are used to efficiently model from the nano- to the macro scale. Full wave solution of nano-structures seamlessly integrated to fourier optics for large components. Easy interaction with ray-tracing and manufacturing files for system integration. Next to that PlanOpSim offers meta-surface design and R &D as a service. PlanOpSim's primary expertise is numerical modelling and design of photonics and optical components. With a unified workflow, meta-surface design with PlanOpSim gets rid of gluing together different tools. Available on the cloud or in a local version. # **SYNOPSYS®** Synopsys' Optical Solutions Group, is a leading developer of optical design and analysis tools that model all aspects of light propagation, enabling users to produce accurate virtual prototypes leading to manufacturable optical systems. Our software packages include CODE V® imaging design software, LightTools® illumination design software, LucidShape® products for automotive lighting, the RSoft™ products for photonic device and optical communications design, and the PIC Design Suite for photonic integrated circuit design, simulation, layout, and verification, Scattering measurement tools including the development and sales of industrial products ("Mini-Diff" and "Reflet"). Fun-COMP (Functionally scaled COMPuting technology) is an EU (H2020, grant #780848) research collaboration involving seven academic and industrial partners – the Universities of Exeter, Oxford and Muenster, IMEC, C2C-CNRS, Thales-TRT and IBM Zurich. Fun-COMP is developing ground-breaking hardware technologies in the field of photonic computing. With applications ranging from ultra-fast, to ultra-low-latency convolutional processing, highly-parallel matrix-vector multiplication, in-memory and neuromorphic computing, Fun-COMP devices and technologies offer a new way of 'doing' computing - ideally suited to the modern-day needs of artificial intelligence and machine learning. #### **Other Sponsors** Université Paris-Saclay is a research university based in Paris, France. Université Paris-Saclay offers a comprehensive and varied range of Undergraduate, Master's and PhD degrees, renowned internationally thanks to the University's reputation for research excellence and the commitment of its academic staff. The University's constituent faculties, institutes and component institutions all contribute to the curricula with cutting-edge specialised courses in Science and Engineering, Life Sciences and Health, and Social Sciences and Humanities. Université Paris-Saclayis ranked 1st in France and 13th in the world according to the Academic Ranking of World Universities (ARWU). SAIT - Samsung Advanced Institute of Technology is Samsung Group's R&D hub, established as the incubator for cutting-edge technologies under the founding philosophy of "boundless search for breakthroughs' and the vision of "changing the world through creative research." The research scope of SAIT includes semiconductor/display/battery materials, nano-electronics, computing platforms, AI algorithms, and metaphotonics. With its extraordinary strength in theory and fabrication, the meta-photonics team at SAIT aims to provide disruptively innovative imaging devices and sensors by pushing the limit in pursuit of practical applications such as hyperspectral imaging devices in mobile, high-efficiency color routers for CMOS image sensors, solid state beam steering for LiDARs, and health sensors. With deep and extensive competencies in metasurfaces and nanomaterial technologies, we will keep ahead for the better future inspired and promised by cutting-edge technologies. AEM - Advanced Electromagnetics is a free, peer-reviewed, Gold Open Access journal. It covers recent international research results in the general field of Electromagnetic Waves, Antennas and Propagation. Authors of articles published in Advanced Electromagnetics retain the copyright of their articles and are free to reproduce and disseminate their work (under a Creative Commons Attribution License). AEM is widely indexed and has a Scopus CiteScore of
2.2 (2021). Nanophotonics (De Gruyter) covers recent international research results, specific developments in the field and novel applications. It publishes all article in a Gold Open Access model and belongs to the top journals in the field. Nanophotonics focuses on the interaction of photons with nano-structures, such as carbon nano-tubes, nano metal particles, nano crystals, semiconductor nano dots, photonic crystals, tissue and DNA. ### **PLENARY SPEAKERS** Harry Atwater California Institute of Technology, USA #### **Metasurface Laser Lightsails** Harry Atwater is the Otis Booth Leadership Chair of the Division of Engineering and Applied Science, and the Howard Hughes Professor of Applied Physics and Materials Science at the California Institute of Technology. Atwater's scientific effort focuses on nanophotonic light-matter interactions. His work spans fundamental nanophotonic phenomena and applications, including active wavefront shaping of light using metasurfaces, optical propulsion of lightsails, quantum and 2D nanophotonics as well as solar energy conversion. Atwater was an early pioneer in nanophotonics and plasmonics and gave a name to the field of plasmonics in 2001. He is Chair of the LightSail Committee for the Breakthrough Starshot program. Currently Atwater is also the Director for the Liquid Sunlight Alliance (LiSA), a Department of Energy Hub program for solar fuels, and was also the founding Editor in Chief of the journal ACS Photonics. Atwater is a Member of the US National Academy of Engineering, a Web of Science Highly Cited Researcher, and the recipient of the 2021 von Hippel Award of the Materials Research Society. #### **Metasurface Laser Lightsails** Nanophotonic design principles can enable self-stabilizing optical manipulation, levitation and propulsion of ultralight macroscopic-sized (i.e., mm, cm, or even meter-scale) metasurface 'lightsails' via radiation pressure from a high power density pump laser source. Here we examine stringent criteria for the lightsail metasurface design, and dynamical and opto-mechanical stability, and thermal management. We discuss the dynamical stability analysis, as well as first experimental steps in characterization of small (<1 mm) microscale lightsails. **Jeremy J. Baumberg** *University of Cambridge, UK* #### Picocavities: confining light below the size of an atom Jeremy J. Baumberg FRS, directs a UK Nano-Photonics Centre at the University of Cambridge and has extensive experience in developing optical materials structured on the nano-scale that can be assembled in large volume. He is also Director of the Cambridge Nano Doctoral Training Centre, a key UK site for training PhD students in interdisciplinary Nano research. Strong experience with Hitachi, IBM, his own spin-offs Mesophotonics and Base4, as well as strong industrial engagement give him a unique position to combine academic insight with industry application in a two-way flow. With over 20000 citations, he is a leading innovator in Nano. This has led to awards of the IoP Faraday gold Medal (2017), Royal Society Rumford Medal (2014), IoP Young Medal (2013), Royal Society Mullard Prize (2005), the IoP Charles Vernon Boys Medal (2000) and the IoP Mott Lectureship (2005). He frequently talks on NanoScience to the media, and is a strategic advisor on NanoTechnology to the UK Research Councils. He is a Fellow of the Royal Society, the Optical Society of America, and the Institute of Physics. His recent popular science book "The Secret Life of Science: How Science Really Works and Why it Matters" is just published by PUP, see np.phy.cam.ac.uk. #### Picocavities: confining light below the size of an atom We show how plasmonically-enhanced light-induced van-der-Waals forces pull single adatoms from metal facets, to create picocavities which confine light to volumes < 1nm3. The thousand-fold stronger optical forces depend on nearby molecules as well as temperature and local optical field, and offer a route to single molecule optical tweezers. Alexandra Boltasseva Purdue University, USA ## Advancing Photonic Design and Quantum Circuitry with Machine Learning Alexandra Boltasseva is a Professor at the School of Electrical & Computer Engineering at Purdue University. She received her PhD in electrical engineering at Technical University of Denmark, DTU in 2004. Boltasseva specializes in nanophotonics, nanofabrication, optical materials, plasmonics and metamateri- als. She is 2018 Blavatnik National Award for Young Scientists Finalist and received the 2013 IEEE Photonics Society Young Investigator Award, 2013 Materials Research Society (MRS) Outstanding Young Investigator Award, the MIT Technology Review Top Young Innovator (TR35), the Young Researcher Award in Advanced Optical Technologies from the University of Erlangen-Nuremberg, Germany, and the Young Elite-Researcher Award from the Danish Council for Independent Research. She is a Fellow of the Optical Society of America (OSA) and Fellow of SPIE. She served on MRS Board of Directors and is Editor-in-Chief for OSA's Optical Materials Express. #### **Advancing Photonic Design and Quantum Circuitry with Machine Learning** In this talk, we discuss photonic design approaches and emerging material platforms for showcasing machine-learning-assisted topology optimization for optical metasurface designs with applications in thermophotovoltaics, reflective optics, and lightsail technology. We demonstrate the effectiveness of autoencoders for compressing the vast design space of metasurfaces into a smaller search space. By employing global optimization via adjoint methods or quantum annealing, one can find the optimal metasurface designs within the smaller space constructed by the autoencoder. The quantum-assisted machine learning framework, named bVAE-QUBO, presented in this work is the first demonstration of a generic machine learning framework that compresses an arbitrary continuous optimization problem into an Ising-model formalism for quantum sampling. **Duheon Song**Samsung Advanced Institute of Technology, Korea ## Device technology and vision for a better life empowered by meta-photonics Duheon Song received B.S., M.S., and Ph.D. in Electronics Engineering from Seoul National University in Korea. Before joining Samsung, he worked at LG Semicon Company, and worked as a postdoc at MIT. Since joining Samsung Electronics in 2000, he has made significant contributions to the development of the next-generation DRAM/NAND-flash memories and their successful mass production. Since 2020, he has been leading the Device Research Center at Samsung Advanced Institute of Technology, and his current research effort focuses on developing beyond-Si semiconductor devices, Si-/nano-/meta-photonic devices for diverse mobile applications, and quantum computing technologies. #### Device technology and vision for a better life empowered by meta-photonics In this talk, I will present noticeable advances in the device technology for information and vision applications based on meta-photonics. The development in the field of integrated electronics devices has been incredibly fast, and this rapid development has been driven and accelerated by pioneering semiconductor manufacturing technologies that allow extreme scale-downs and creation of 3 dimensional structures. Meta-photonics can provide innovative platforms to produce unprecedented synergetic effect with electronics due to its distinguished capability of manipulating the control of light at the deep subwavelength scale. I will address how device technologies based on meta-photonics can contribute to making a better life, and share remarkable achievements and future goals we are working on. Päivi Törmä Aalto University, Finland ## **Bose-Einstein Condensation, Lasing and Topological Photonics with Plasmonic Lattices** Päivi Törmä is a professor at the Department of Applied Physics, Aalto University, Finland. Her research ranges from theoretical quantum many-body physics to experiments in nanophotonics. Her theory work has revealed a new connection between quantum geometry and superconductivity that explains why flat bands can carry supercurrent. In her experiments, Törmä has worked on strong coupling of surface plasmon polariton modes and molecules, and her group has realized lasing and Bose-Einstein condensation phenomena in plasmonic nanoparticle arrays. Törmä has a PhD from the University of Helsinki. She obtained the EURYI award in 2005, the ERC Advanced Grant in 2013, and the Academy Professorship of the Academy of Finland in 2017. She led the Nanoscience Centre of University of Jyväskylä 2002-2005 and the Finnish Centre of Excellence in Computational Nanoscience 2014-2017 and was a guest professor at ETH Zürich in 2015. In 2021, Törmä was elected as a member of the Academia Europaea. #### Bose-Einstein Condensation, Lasing and Topological Photonics with Plasmonic Lattices Arrays of metal nanoparticles host collective plasmonic-optical modes. We have observed lasing and Bose-Einstein condensation when such plasmonic lattices are combined with organic molecules, showing unique sub-picosecond dynamics, coherence properties and polarization textures. Recently, we have observed lasing in bound-state-in-continuum modes with a topological charge. We have also shown that magnetic field opens a gap between degenerate modes and can be used for on-off switching of lasing, which opens new prospects for studies of topological photonics. Nikolay Zheludev University of Southampton, UK & NTU, Singapore #### **Picophotonics** Nikolay Zheludev's research interest are in nanophotonics and metamaterials. He is the Director of the Centre for Photonic metamaterials and Deputy Director of the Optoelectronics Research Centre in Southampton University, UK. He is also co-Director of The Photonics Institute and directs the Centre for Disruptive Photonic Technologies at Nanyang Technological University. His personal awards include the Thomas
Young medal (IOP) for "global leadership and pioneering, seminal work in optical metamaterials and nanophotonics", the Leverhulme Trust Senior Research Fellowship; Senior Research Professorship of the EPSRC; The Royal Society Wolfson Research Merit Award & Fellowship. He is a Fellow of the European Physical Society (EPS), the Optical Society (OSA) and the Institute of Physics (London). He is Editor-in-Chief of the Journal of Optics (IOP) and an Advisory Board Member for Nanophotonics, ACS Photonics and Nature Publishing Group Scientific Reports. In 2007 created European Physical Society international meeting at the crossroads of nanophotonics and metamaterials, NANOMETA. He was among a small group of research community leaders who provided initial impetus to the International Year of Light, declared by United Nations for 2015. #### **Picophotonics** Optical imaging and metrology of nanostructures exhibiting Brownian motion is possible with resolution beyond thermal fluctuations and speed to resolve their dynamics. This opens the case for picophotonics (atomic scale photonics), the science of interactions of picometer-scale objects and events with light. ### **KEYNOTE SPEAKERS** Mark Brongersma Stanford University, USA #### Flat Optics for Dynamic Wavefront Manipulation Mark Brongersma is the Stephen Harris Professor in the Departments of Materials Science and Applied Physics at Stanford University. He leads a research team of ten students and five postdocs. Their research is directed towards the development and physical analysis of new materials and structures that find use in nanoscale electronic and photonic devices. He is on the list of Global Highly Cited Researchers (Clarivate Analytics). He received a National Science Foundation Career Award, the Walter J. Gores Award for Excellence in Teaching, the International Raymond and Beverly Sackler Prize in the Physical Sciences (Physics) for his work on plasmonics, and is a Fellow of the OSA, the SPIE, and the APS. Dr. Brongersma received his PhD from the FOM Institute AMOLF in Amsterdam, The Netherlands, in 1998. From 1998-2001 he was a postdoctoral research fellow at the California Institute of Technology. #### Flat Optics for Dynamic Wavefront Manipulation In this presentation, I will highlight recent efforts in our group to realize electrically-tunable metasurfaces employing nanomechanics, tunable transparent oxides, microfluidics, phase change materials, and atomically-thin semiconductors. Such elements are capable of dynamic wavefront manipulation for optical beam steering and holography. The proposed optical elements can be fabricated by scalable fabrication technologies, opening the door to a wide range of commercial applications. **Thomas Brunet** *Bordeaux University, France* ## 3D wavefront shaping with soft sub-wavelength acoustic lenses Thomas Brunet, After completing his PhD in physics about acoustics of granular media at University Paris-Est in 2006, Thomas Brunet spent three years as a postdoctoral researcher at Institut des NanoSciences de Paris where he started to pay attention to phononic crystals & metamaterials. In 2010, he joined Bor- deaux INP as Associate Professor of Mechanical Engineering and, since then, he has extended his activities about acoustic waves in complex media to various materials designed and achieved in an original way by combining several soft matter techniques. He is known particularly to have reported the first (soft) 3D acoustic metamaterial with a negative index and (soft) gradient-index metasurfaces. He is also interested in more fundamental aspects about wave physics such as Anderson localization likely to occur in strongly resonant scattering media. #### Flat 3D wavefront shaping with soft sub-wavelength acoustic lenses In this talk, I will report a class of flat (or quasi-flat) acoustic lenses with sub-wavelength thicknesses, engineered from soft porous silicone rubbers, for broadband underwater 3D wavefront shaping of ultrasound. The functionalities of these soft gradient-index (or high-index) metasurfaces will be illustrated through variousultrasonic experiments in a large water tank, thus demonstrating acoustic focusing and vortex beam generation. Federico Capasso Harvard University, USA #### Advances in High-performance Flat optics: from Metalsurfaces to High-volume Manufacturing for Consumer electronics and Communications Federico Capasso is the Robert Wallace Professor of Applied Physics at Harvard University, which he joined in 2003 after 27 years at Bell Labs where he was Member of Technical Staff, Department Head and Vice President for Phys- ical Research. He is visiting professor at NTU with both the School of Physical and Mathematical Sciences and Electrical and Electronic Engineering. His research has focused on nanoscale science and technology encompassing a broad range of topics. He pioneered band-structure engineering of semiconductor nanostructures and devices, invented and first demonstrated the quantum cascade laser and investigated QED forces including the first measurement of a repulsive Casimir force. His most recent contributions are new plasmonic devices and flat optics based on metasurfaces. He is a member of the National Academy of Sciences, the National Academy of Engineering, the American Academy of Arts and Sciences. His awards include the King Faisal Prize, the IEEE Edison Medal, the SPIE Gold Medal, the American Physical Society Arthur Schawlow Prize in Laser Science, the Jan Czochralski Award for lifetime achievements in Materials Science, the IEEE Sarnoff Award in Electronics, the Materials Research Society Medal, the Wetherill Medal of the Franklin Institute, the Rank Prize in Optoelectronics, the Optical Society Wood Prize, the Berthold Leibinger Future Prize, the Julius Springer Prize in Applied Physics, the European Physical Society Quantum Electronics Prize. ## Advances in High-performance Flat optics: from Metalsurfaces to High-volume Manufacturing for Consumer electronics and Communications I will present recent major advances in cm scale achromatic RGB metalenses for VR by inverse design and 10 cm metalenses for space optics consisting of 20 billion metatoms. A compact and highly integrated metasurface-based inverse designed mode multiplexer that takes three single-mode fiber inputs and converts them into the first three linearly polarized spatial modes of a few-mode fiber with high fidelity the C-band (1530-1565 nm) of fiber optics will be presented. Che Ting Chan HKUST, Hong Kong ## One-way photonic crystal waveguide modes with and without magnetic material Che Ting Chan received his PhD degree from the UC Berkeley in 1985. He is currently serving as the Associate Vice-President for Research & Development at HKUST, Hong Kong. He was elected a Fellow of the American Physical Society and the Hong Kong Physical Society. He is a member of the Hong Kong Academy of Sciences. He works on the theory a variety of advanced materials, including photonic crystals, metamaterials and nano-materials. #### One-way photonic crystal waveguide modes with and without magnetic material Robust transport of edge modes is an important signature of topological materials. The bulk-edge correspondence states that the number of topological edge modes is determined by the bulk topological invariants and such edge modes decay exponentially into the bulk. Here, we discuss some examples in which one-way going modes can be realized with and without magnetic materials, but they are not "edge" modes in the sense that the wave is not exponentially localized on the edge. Javier García de Abajo ICFO-Institut de Ciencies Fotoniques, Spain #### **Atomically Thin Materials for Nanophotonics** Javier García de Abajo received his PhD from the University of the Basque Country in 1993 and then visited Berkeley National Lab for three years. He was a Research Professor at the Spanish CSIC and in 2013 moved to ICFO-Institut de Ciencies Fotoniques (Barcelona) as an ICREA Research Professor and Group Leader. He is Fellow of both the American Physical Society and the Optical Society of America, and he has co-authored 300+ articles on different aspects of nanophotonics, atomic physics, surface science, and electron microscope spectroscopies. See http://www.nanophotonics.es for more details. #### **Atomically Thin Materials for Nanophotonics** We will discuss the opportunities opened by atomic-scale materials for the control of light at unprecedentedly small length scales, and in particular their application in optical sensing and nonlinear nanophotonics. Recent advances in fabrication and conceptual design of materials benefiting from quantum hybridization with the environment will be also presented. Patrice Genevet Université Côte d'Azur - CNRS, France #### **Topological Metasurfaces** Patrice Genevet obtained his PhD at University of Nice Sophia Antipolis in France on localized spatial solitons in semiconductor lasers and amplifiers. After his PhD, he did five years of postdoctorate fellowship (2009-2014) in the Capasso group (SEAS, Harvard University) in collaboration with Prof. Scully (Texas A&M University). In 2014, he obtained the position of senior research scientist at A*STAR, Singapore. In 2015, He joined CNRS as 'Chargé de Recherche de Première classe'. He is the recipient of the ERC starting Grant 2015 on Functional flat optical components and applications, the ERC Proof of Concept 2019 and the Aimé-Cotton Price 2017 from the French Optical Society. He serves as an associate editor for Optics Letters and Science Advances. P. Genevet research activities concern the development of optical metasurfaces for sensing, imaging, and LiDAR applications. #### **Topological Metasurfaces** New degrees of freedom in the design of optical components are attained by considering the response of topological nanostructures. Relying on symmetry-breaking arguments and topological properties of non-Hermitian metasurfaces, we
provide new guidelines for achieving 2π phase coverage in transmission and reflection. Crossing of the branch cut is shown to provide a very intuitive design approach for achieving full resonant phase scattering. Our results highlight the role of topological defects for achieving realistic and insightful metasurface designs. Stephen K. Gray Argonne National Laboratory, USA #### Hybrid quantum dot/plasmonic systems Stephen K. Gray is a Senior Scientist and an Argonne Distinguished Fellow at the Center for Nanoscale Materials, Argonne National Laboratory. He received a Ph.D. in Chemistry in 1982 from the University of California at Berkeley, and did post-doctoral work at Oxford University and the University of Chicago before joining the chemistry faculty of Northern Illinois University in 1986. He subsequently moved to Argonne in 1990 and has been on its staff ever since, first in the Chemical Sciences and Engineering Division and then joining the Center for Nanoscale Materials in 2009. He was made Fellow of the American Physical Society in 2007. Much of his work focuses on the theory of nanoscale light-matter interactions, including aspects of plasmonics and quantum plasmonics. #### Hybrid quantum dot/plasmonic systems Several aspects of the spectroscopy and dynamics of quantum dot/plasmonic nanoparticle systems are outlined, including joint experimental and theoretical work on photoluminescence from a hybrid system of CdSe/ZnS quantum dots layered on an array of silver nanoparticles. The array of nanoparticles exhibits a surface lattice resonance and with appropriate design this resonance can be strongly coupled to the quantum dot exciton. It is also shown how the photoluminescence can be observed at surprisingly long distances away from the excitation source. **Varvara Kouznetsova** *Eindhoven University of Technology, Netherlands* ## Emergent phenomena in locally resonant acoustic metamaterials due to subharmonic energy exchange Varvara Kouznetsova, holds a degree in Applied Mathematics from Perm State Technical University, Russia, and a PhD in Mechanical Engineering from Eindhoven University of Technology in the Netherlands. From 2002 to 2009 she was a research fellow at the Netherlands Institute for Metals Research (NIMR) and the Materials innovation institute (M2i). Currently she is an Associate Professor of Multi-scale Solid Mechanics at the Department of Mechanical Engineering of Eindhoven University of Technology, Netherlands and he is a Guest Associate Professor at Keio University, Japan. Dr. Kouznetsova's research is in the field of multi-scale mechanics focusing on the emergent multiscale behavior due to non-trivial interactions across different space and time scales with particular application to mechanical and acoustic metamaterials. ## Emergent phenomena in locally resonant acoustic metamaterials due to subharmonic energy exchange This work investigates the emergent phenomena in non-linear locally resonant elasto-acoustic metamaterials. The energy exchange between the propagative and subharmonic evanescent wave modes is studied, which has been shown to originate from the autoparametric resonance promoted by the non-linearity in the resonator. The phenomenon is analysed semi-analytically (using the multiple scales method), numerically, and experimentally. Silvia Viola Kusminskiy Max Planck Institute for the Science of Light, Germany #### **Cavity Magnonics** Silvia Viola Kusminskiy, is Professor for Theoretical Condensed Matter Physics at RWTH Aachen University and head of the Research Group "Theory of Hybrid Quantum Systems" at the Max Planck Institute for the Science of Light (MPL) in Erlangen, Germany. After undergraduate studies at the Universidad de la República in Uruguay, she obtained her PhD in Physics from Boston University in the USA. She continued her academic career in Germany, where she held postdoctoral positions at the Freie Universitaet Berlin, the Friedrich-Alexander University Erlangen-Nuernberg, and MPL. Her research comprises mesoscopic systems and light-matter interaction, with emphasis on collective phenomena and a focus on hybrid quantum systems including magnetic degrees of freedom. #### **Cavity Magnonics** Cavity Magnonics strives to control the elementary excitations of magnetic materials (magnons) and to interface them coherently to other elementary excitations such as photons or phonons. This can allow us to explore magnetism in new ways and regimes, has the potential of unraveling quantum phenomena at unprecedented scales, and could lead to breakthroughs for quantum technologies. I will introduce the field and present theoretical results from our group aimed to push the boundaries of the current state of the art. **Svetlana Kuznetsova** *Université du Mans, France* ## Complex resonance samples of coupled Helmholtz resonators Svetlana Kuznetsova, obtained her PhD in radiophysics focusing on electromagnetic response of dielectric metamaterials in 2016 from Lobachevsky State University of Nizhny Novgorod (NNSU), Russia. In the following two years she has been teaching general physics at NNSU. From 2019 to the present she is a post-doctoral researcher in Laboratoire d'Acoustique de l'Université du Mans (LAUM), France. She has conducted research on the scattering properties of acoustic disordered hyperuniform materials and now her research focuses on theoretical and numerical study of acoustic metamaterials possessing complex resonances. In general her scientific interests involve waves in acoustic and electromagnetic complex media, photonic and phononic structures. #### Complex resonance samples of coupled Helmholtz resonators Complex resonances of Helmholtz resonators coupled to a waveguide are studied. The scatteringmatrix approach is used to obtain the trajectories of the complex resonance poles with the variation of the the the trajectories. For two resonators they are shaped as Cassini ovals. Fano-type peaks in the transmission spectrum and the occurrence of the Dicke effect are observed. Variation of the distance between the resonators is shown to be capable of the tuning of the resonant properties. Alberto Naldoni Alberto Naldoni Palacký University Olomouc, Czech Republic ## Advanced plasmonic photocatalysts for solar-to-chemical energy conversion Alberto Naldoni is the co-leader of the photoelectrochemistry group at the Regional Centre of Advanced Technologies and Materials of Palacký University Olomouc. He obtained his Ph.D. (2010) in Chemical Sciences from University of Milan before moving to the Italian National Research Council to study photocatalysis and photoelectrochemical water splitting. He spent three years as a visiting faculty in the Nanophotonics group at the Birck Nanotechnology Center of Purdue University to investigate alternative plasmonic materials for solar energy conversion. His research interests focus on nanomaterials for energy and environment, plasmonics, photocatalysis, photoelectrochemistry, defects and doping in metal oxides, charge transfer at solid-solid and solid-liquid interfaces. His scientific achievements include investigation of plasmonic metal nitrides and metasurfaces for photocatalysis. Alberto Naldoni has authored 75 papers in peerreviewed journals including Science, Advanced Materials, JACS, Angewandte Chemie, Nano Energy, Nano Letters, and ACS Catalysis. He gave 25 invited talks in international conferences and research institutions. #### Advanced plasmonic photocatalysts for solar-to-chemical energy conversion Plasmonic nanostructures provide enhanced light-matter interaction offering exciting opportunities in the conversion and storage of solar energy in the form of chemical bonds. In this talk, I will overview our recentprogress on the understanding of plasmonic effects such as near fields, non-thermal carriers, and local heating generated both in nanocrystals and metasurfaces and on their use in chemical reactions relevant for energy applications. **Manuel Nieto-Vesperinas** Instituto de Ciencia de Materiales de Madrid (CSIC), Spain #### Reactive quantities in nanooptics Manuel Nieto-Vesperinas is Research Professor at the Instituto de Ciencia de Materiales de Madrid, CSIC, Spain. He studies light-matter interactions both in macroscopic and nano-scales. He predicted weak photon localization in rough surface scattering, and is a pioneer of optical forces at the nanoscale. His group was the first to discover the magnetoelectric properties of high index dielectric particles and their effect on anomalous directional scattering (Kerker phenom- ena) opening the door for the present intensive research on this subject. He obtained his PhD from the University of London and is a fellow of the Optical Society of America, having served as editor or board member for some of its journals, as well as for journals of the IOP. #### Reactive quantities in nanooptics In this talk we discuss the reactive helicity of chiral electromagnetic fields and its alternating flow, as well as its conservation law: the reactive helicity optical theorem, which governs the build-up of this quantity through its zero time-average flow. Masaya Notomi NTT Basic Research Labs., Japan ## Non-Hermitian Control of Chiral Singular Points in Periodic Nanophotonic Systems Masaya Notomi received his B.E., M.E. and Ph.D. degrees in applied physics from The University of Tokyo, Japan in 1986, 1988, and 1997, respectively. He joined NTT Optoelectronics Laboratories, Nippon Telegraph and Telephone Cor- poration in 1988 and moved to NTT Basic Research Laboratories in 1999. Since then, his research interest has been to control the optical properties of materials and devices by using artificial nanostructures, and engaged in research on quantum wires/dots and photonic crystal structures. In 1996-1997, he was a visiting researcher of Linkoping University, Sweden. He was a guest associate professor of Applied Electronics in 2003-2009 and is currently a guest professor
of Physics in Tokyo Institute of Technology. He was appointed as Senior Distinguished Scientist of NTT since 2010. He is currently a director of NTT Nanophotonics Center. He received IEEE/LEOS Distinguished Lecturer Award in 2006, Japan Society for the Promotion of Science (JSPS) prize in 2009, Japan Academy Medal in 2009, the Commendation for Science and Technology by the Minister of Education, Culture, Sports, Science and Technology (Prize for Science and Technology, Research Category) in 2010, and IEEE Fellow grade in 2013. He served as a member of National University Corporation Evaluation Committee in the Japanese government. He is a research director of JST CREST program from 2015. He is also a member of the Japan Society of Applied Physics, APS, IEEE, and OSA. #### Non-Hermitian Control of Chiral Singular Points in Periodic Nanophotonic Systems We have investigated various interplays of polarization singular points and exceptional points in the momentum space of non-Hermitian periodic nanophotonic systems, both theoretically and experimentally. We manipulate chiral singular points in the momentum space by varying the symmetry of non-Hermitian periodic systems, resulting interesting polarization properties that cannot be achieved in Hermitian systems. Dorota Anna Pawlak ENSEMBLE3 Centre of Excellence, Poland ## **ENSEMBLE3 - Novel materials for photonics - possibilities provided by crystal growth** Dorota Anna Pawlak is a materials scientist. She received her PhD (1999) in chemistry and her habilitation (2011) in physicochemistry of solid state, both from the University of Warsaw. She worked for 2 years at the Institute of Materials Research, Sendai, Japan. She currently holds a professorship position at the Institute of Electronic Materials Technology (ITME). She has created a group of young scientists aiming at developing novel materials and novel technologies to be used in such fields as metamaterials, plasmonics and energy systems. DAP coordinated the efforts of FP7 EU Collaborative project ENSEMBLE: ENgineered SElf-organised Multi-component structures with novel controllaBLe Electromagnetic functionalities. The project included 7 Partners from 6 EU countries. She is a laureate of highly competitive projects: TEAM project from the Foundation for Polish Science, and Maestro project from the National Science Centre in Poland. She is president-elect of the Polish Society of Crystal Growth. #### Non-Hermitian Control of Chiral Singular Points in Periodic Nanophotonic Systems Possibilities of producing novel photonic materials provided by the crystal growth will be discussed including examples of materials exhibiting various interesting optical and electromagnetic properties. Vladimir M. Shalaev Purdue University, USA #### **Hybrid Quantum Photonics** Vladimir M. Shalaev, Scientific Director for Nanophotonics at Birck Nanotechnology Center and Distinguished Professor of Electrical and Computer Engineering at Purdue University, specializes in nanophotonics, plasmonics, and optical metamaterials. Vladimir M. Shalaev has received several awards for his research in the field of nanophotonics and metamaterials, including the Max Born Award of the Optical Society of America for his pioneering contributions to the field of optical metamaterials, the Willis E. Lamb Award for Laser Science and Quantum Optics, IEEE Photonics Society William Streifer Scientific Achievement Award, Rolf Landauer medal of the ETOPIM (Electrical, Transport and Optical Properties of Inhomogeneous Media) International Association, the UNESCO Medal for the development of nanosciences and nanotechnologies, OSA and SPIE Goodman Book Writing Award. He is a Fellow of the IEEE, APS, SPIE, MRS and OSA. Prof. Shalaev has authored three books, thirty invited book chapters and over 500 research publications. #### **Hybrid Quantum Photonics** We show that plasmonic enhancement and speedup opens up a means to outpace quantum decoherence 1,2 and discuss new opportunities for SiN quantum photonic circuitry enabled by recently discovered single-photon sources 3 in this technologically important platform. ### **TUTORIALS** Vladimir M. Shalaev Purdue University, USA Wednesday 20th July 14:00 - 15:00 — Torremolinos #### **Quantum Meta-Photonics** Vladimir M. Shalaev, Scientific Director for Nanophotonics at Birck Nanotechnology Center and Distinguished Professor of Electrical and Computer Engineering at Purdue University, specializes in nanophotonics, plasmonics, and optical metamaterials. Vladimir M. Shalaev has received several awards for his research in the field of nanophotonics and metamaterials, including the Max Born Award of the Optical Society of America for his pioneering contributions to the field of optical metamaterials, the Willis E. Lamb Award for Laser Science and Quantum Optics, IEEE Photonics Society William Streifer Scientific Achievement Award, Rolf Landauer medal of the ETOPIM (Electrical, Transport and Optical Properties of Inhomogeneous Media) International Association, the UNESCO Medal for the development of nanosciences and nanotechnologies, OSA and SPIE Goodman Book Writing Award. He is a Fellow of the IEEE, APS, SPIE, MRS and OSA. Prof. Shalaev has authored three books, thirty invited book chapters and over 500 research publications. #### **Quantum Meta-Photonics** We discuss important challenges in the emerging quantum technology and possible means to address them with ultrafast plasmonic metamaterials, scalable photonic material platforms and advanced machine-learning designs. Mark Brongersma Stanford University, USA Thursday 21st July Thursday 21st July 14:00 - 15:00 — Torremolinos #### The Road from Resonant Metamaterials to Metadevices Mark Brongersma is the Stephen Harris Professor in the Departments of Materials Science and Applied Physics at Stanford University. He leads a research team of ten students and five postdocs. Their research is directed towards the development and physical analysis of new materials and structures that find use in nanoscale electronic and photonic devices. He is on the list of Global Highly Cited Researchers (Clarivate Analytics). He received a National Science Foundation Career Award, the Walter J. Gores Award for Excellence in Teaching, the International Raymond and Beverly Sackler Prize in the Physical Sciences (Physics) for his work on plasmonics, and is a Fellow of the OSA, the SPIE, and the APS. Dr. Brongersma received his PhD from the FOM Institute AMOLF in Amsterdam, The Netherlands, in 1998. From 1998-2001 he was a postdoctoral research fellow at the California Institute of Technology. #### The Road from Resonant Metamaterials to Metadevices In this tutorial, I will illustrate how 2-dimensional (2D) metamaterials can be created from optically-resonant nanostructures made from semiconductor, metallic, and 2D quantum materials. The resulting metafilms and metasurfaces are ideal building blocks for optoelectronic devices that are commonly constructed from continuous layers of metal and semiconductor. The use of nanostructured metamaterials opens opportunities to dramatically modify the optical emission, transmission, absorption, reflection, and refraction properties of continuous films. For this reason, we can now create a new class of optoelectronic devices that offer an improved performance and allow for new functionalities. ### **GUIDELINES FOR PRESENTERS I IN-PERSON** #### **In-person Oral Presentations** Each session room is equipped with a stationary computer connected to a LCD projector. Presenters must load their presentation files in advance onto the session computer. Technician personnel will be available to assist you. Scheduled time slots for oral presentations are 15 mn for regular, 20 mn for invited presentations, 30 mn for keynote talks and 35 mn for plenary talks, including questions and discussions. Presenters are required to report to their session room and to their session Chair at least 15 minutes prior to the start of their session. The session chair must be present in the session room at least 15 minutes before the start of the session and must strictly observe the starting time and time limit of each paper. #### **In-person Poster Presentations** Presenters are requested to stand by their posters during their session. One poster board, A0 size (118.9 x 84.1 cm), in portrait orientation, will be available for each poster. Pins or thumbtacks are provided to mount your posters on the board. All presenters are required to mount their papers 30mn before the session and remove them at the end of their sessions. Posters must prepared using the standard META poster template (available on the conference website). ### **GUIDELINES FOR PRESENTERS I ONLINE** We will use the online event platform **Whova** and **Zoom** to livestream all the presentations. You will need to: - Download the Zoom Desktop client (http://zoom.us). You may also download the Zoom App on your Mobile. - · Download the Whova app on you mobile. - Sign into Whova Web App on your PC (using the Link we will send you by email). Please use Chrome Browser (optional but recommended). **IMPORTANT**: Links to the conference live sessions (Zoom) or to the recorded videos will be available on the Whova App (Web/desktop and Mobile) **exclusively**. **The links will not be displayed on the conference website**. You will need to install both Zoom and Whova Apps (both Desktop and Mobile versions). #### **Online Oral Presentations** **On-line oral presenters** are required to submit a pre-recorded presentation (regular oral: 10-minutes, invited: 15-minutes, keynote: 25-minutes and plenary: 30-minutes; A 5-minute live Q&A session will follow each presentation). All speakers have the possibility to give their talk **live** in the allotted time specified in the technical program. At the time of the presentation, the session chairperson will allow the speaker to share their computer screen with the audience (the pre-recording
will be used as a backup in case of a no-show or technical difficulty). Speakers also have the option to have their **pre-recorded** presentation played during the live session. **However, all authors, no matter what format they select (live or on replay) should submit a pre-recorded presentation by the deadline of 30 June**. For both live or on-demand presentations, a 5-minute Question and Answer (Q&A) session will follow each presentation. At least one of the paper's authors must be online to answer questions after the talk. Detailed instructions are available on the conference website. #### **Online Poster Presentations** **Poster presenters** will be required to use a poster in **digital format**. They will also have the opportunity to provide a **pre-recorded presentation** (5-minute duration). Both poster and video presentations will be made available for viewing by participants up to three weeks after the conference. Questions can be posted at any time via special chat channels. During the conference, there will be poster sessions scheduled over different time zones where poster presenters will discuss their posters with the attendees via video conferencing. Additional information on poster presentations can be found <a href="https://example.com/here/new/memory-new/memory You are required to finalize your poster on your Whova booth using the link we will send to you. You can addionnaly post your poster on Twitter (#meta2022 @metaconference is our official hashtag). On the Whova platform you have the possibility to discuss your posters using the Chat and/or live videoconferencing. You may schedule your own live meeting on your personal Zoom account and upload the link on your Whova booth. ### **META ONLINE PLATFORM** The online platform Whova will allow you to join the conference from the comfort of your own home or office and at the convenience of your own schedule all streamlined through one seamless platform. In addition to all poster and regular oral presentations the single interface will provide around-the-clock access to: | □ Plenary lectures | |---| | ☐ Keynote lectures | | ☐ Conference tutorials | | ☐ Breakout rooms for networking or further discussions 1-on-1 or in a group | | ☐ Social and networking activities | All live sessions and lectures will be recorded and available for our participants for viewing after the conference so that they don't miss a thing! ### **USEFUL INFORMATION** #### Venue META 2022 will be held at **Palacio de Congresos y Exposiciones de la Costa del Sol** 3 Calle Mexico, 29620 Torremolinos (Spain) https://palacio-congresos.es Opened in October 1970, the Palacio de Congresos y Exposiciones de Torremolinos (Congress and Exhibition Centre) was the result of a project designed in 1967 by the architects Rafael de la Hoz and Gerardo Olivares James. The building, which became the state heritage property in 1971. The complex is built on an estate of 70,000 square meters, of which 18,000 square meters are gardens. Situated in a privileged location in the municipality of Torremolinos and located in the upper area of the town on a hill overlooking the sea, the Congress Center is an icon of Malaga's coastal landscape. The building is arranged in a circular format around which the various auditoriums, meeting rooms, administrative offices and annexed buildings are distributed. The central hall is presided over by its most iconic visual symbol, an emblem of convention and business tourism in Spain: a large translucent dome with an unprecedented crystal lamp hanging from the center of the exposed radial roof, falling like drops in a waterfall spilling over the center of the composition. #### **Getting to Venue** #### **Getting to Torremolinos from Malaga Airport** Torremolinos is around 8km away from Malaga international airport. You can go from the airport to the city center by taxi, by train or by bus. #### Taxi The airport has a well-signposted taxi rank outside the arrivals area of Terminal T3. Make sure that the taxi driver has started the taximeter at the beginning of the journey (minimum fare). We recommend requesting a receipt for any complaint or claim. #### Train The new suburban train station in the new Terminal T3 building links the airport with Torremolinos city centre and other cities like Benalmadena and Fuengirola in one direction, and it links Malaga city center in the other direction. The train station is situated underground and accessed via escalators. It is well signposted and can be reached via the square outside arrivals or outside departures. Before the station entry barriers you will see several self-service tickets machines on your right where you can buy your tickets. The first train to Torremolinos leaves the airport at 05:32, leaving every 20-30 minutes until the last train at 23.42. Line: C1. Estimated travel time: 10 minutes. #### Bus You will find the bus stop straight in front of you outside the arrivals area of Terminal T3 on the side of the road where there are a couple of shelters with seats. You will also see a ticket office in the left hand corner of the arrivals forecourt where you should purchase your tickets for the journey. Line: Torremolinos-Benalmadena-Airport. Estimated travel time: 30 minutes. #### **Getting to Torremolinos from Malaga train station** There are two train stations in the centre of Malaga: Maria Zambrano and Centro Alameda. Maria Zambrano station provides high-speed (AVE) and long-distance links to many Spanish cities like Barcelona, Cordoba, Madrid, Santiago de Compostela, Seville, etc, as well as local and regional routes. You can take Line C1 from any of the two stations to reach Torremolinos. The estimated travel time is 20 minutes. You can check the timetables on the website of the national rail company RENFE #### **Getting to Torremolinos from Malaga bus station** Malaga bus station is located at the street "Paseo de los Tilos" very near Maria Zambrano train station. So it will be very easy to take a bus or a train from this station. You can take bus line Malaga-Torremolinos. Estimated travel time: 20 minutes. ## **TECHNICAL PROGRAM** All sessions in the program are scheduled in Central European Time (CET/GMT+2/UTC+2). The program has been put together considering the online authors respective time zones. ### **European School on Plasmonics and Phase Change Materials** **Room: Manantiales** 17 July 2022 08:15 - 19:30 ### **European School on Plasmonics and Phase Change Materials** **Room: Manantiales** 18 July 2022 08:30 - 14:15 ## Monday 18th July, 2022 Registration **Reception Desk** 15:00 - 18:00 ## Tuesday 19th July, 2022 Registration **Reception Desk** 07:00 - 17:30 #### **Opening Address** **Torremolinos** 08:45 - 09:00 #### 09:00 - 10:10 — Torremolinos #### **Session 1A1** #### **Plenary Session I** Chaired by: Masaya Notomi 09:00 : Plenary talk Picocavities: confining light below the size of an atom **Jeremy Baumberg** University of Cambridge (United Kingdom) We show how plasmonically-enhanced light-induced van-der-Waals forces pull single adatoms from metal facets, to create picocavities which confine light to volumes <1nm3. The thousand-fold stronger optical forces depend on nearby molecules as well as temperature and local optical field, and offer a route to single molecule optical tweezers. 09:35 : Plenary talk ### Bose-Einstein Condensation, Lasing and Topological Photonics with Plasmonic Lattices Paivi Torma Aalto University (Finland) Arrays of metal nanoparticles host collective plasmonic-optical modes. We have observed lasing and Bose-Einstein condensation when such plasmonic lattices are combined with organic molecules, showing unique sub-picosecond dynamics, coherence properties and polarization textures. Recently, we have observed lasing in bound-state-in-continuum modes with a topological charge. We have also shown that magnetic field opens a gap between degenerate modes and can be used for on-off switching of lasing, which opens new prospects for studies of topological photonics. #### **Coffee Break** **Session 1P1** Poster session I 10:10 - 10:50 P1: Metasurface design of capillary assisted nanoparticle assembly and the application in Displays Juan Xin¹, Anne-Laure Baudrion¹, Jérémie Béal¹, Abdelhamid Hmima¹, Julien Proust¹, Xiaowei Sun², Jérôme Plain¹ ¹ Université de Technologie de Troyes (France), ² Southern University of Science and Technology (China) Metasurfaces for display applications have rapidly advanced in the past decade. However, high cost of top-down
approaches such as EBL, focused ion beam milling (FIB) hindered practical application of the metasurfaces. In this project, nanoparticles are synthesized by solution method and assembled into metasurface structure assisted by capillary force, which will overcome the disadvantages brought by EBL method. At the same time, qualitative analysis of plasmonic metasurface and dielectric metasurface will be carried out. ## P2: Fabrication of Hybrid Nanostructures Based on The Polymer Template of Two Photon Polymerization #### BoRui Li¹, Safi Jradi¹, Serge Ravaine², Ali Issa¹ ¹Universite de Technologie de Troyes (France), ²University of Bordeaux (France) In this article, we report on fabrication of hybrid micro-nanostructures based on the polymer template. One strategy involves functionalizated photopolymers selectively attract nanoparticals on the surface, allowing their reliability and uniformity even within complex 3D structures. One strategy involves metal material fills polymer pre-patterning voids on conductive substrate by eletrodeposition method. #### P3: Trimer Su-Schrieffer-Heeger model and application to acoustics Adamantios Anastasiadis¹, Georgios Styliaris², Rajesh Chaunsali³, Georgios Theocharis¹, Fotios Diakonos⁴ ¹ Universite du Mans (LAUM) (France), ² Max-Planck-Institut fur Quantenoptik (Germany), ³ Indian Institute of Science (India), ⁴ University of Athens (Greece) The trimer Su-Schrieffer-Heeger model is the simplest extension of the well-known Su-Schrieffer-Heeger model model. Due to the absence of inversion and chiral symmetry, ordinary Zak's phase cannot be used to establish bulk-edge correspondence. Here we utilize the sublattice Zak's phase instead, which has been successfully employed towards a bulk-edge correspondence, and explore possible applications to acoustics with the use of waveguides with alternating cross-sections. #### P4: Enhancement of multiphoton photoluminescence with resonant metastructures Pavel Tonkaev¹, Yubin Fan², Yuhan Wang², Jiecai Han², Anastasia Zalogina¹, Aditya Tripathi¹, Hoo-Cheol Lee³, Hong-Gyu Park³, Sergey Makarov⁴, Sergey Kruk¹, Qinghai Song², Shumin Xiao², Yuri Kivshar¹ ¹ Australian National University (Australia), ² Harbin Institute of Technology (China), ³ Korea University (Korea), ⁴ ITMO University (Russia) Multiphoton photoluminescence is a fundamentally important nonlinear process applied in microfabrication, data storage, and biological imaging. In general, nonlinear processes are much weaker compared with linear ones. We have studied multiphoton photoluminescence in perovskite metasurface and single AlGaAs nanoresonator and achieved significant enhancement in the vicinity of the Mie resonances. #### P5: High-amplitude Broadband Directional Thermal Radiation Yun-Jo Lee, Jin Woo Cho, Sun-Kyung Kim KyungHee University (Korea) Achieving angular selectivity with broad bandwidth from thermal radiation sources has been a long-standing challenge. Here, we achieved laterally directive (θ >60°), broad bandwidth (λ = 5-24 μ m) polarization-independent thermal radiation from a thin-film-oxide-based hollow cavity array. The hollow cavity array allows light to strongly couple with phonon mode and Berreman mode at specific wavelengths and angles. These results will be further exploited for several radiative heat transfer applications, such as thermal camouflage, radiative cooling, and waste heat recovery. #### P6: Perfect transmission microwave metamaterial based radar heaters Eun-Joo Lee, Young-Bin Kim, Sun-Kyung Kim Kyung Hee University (Korea) A rational arrangement of well-known constituent materials, which is called metamaterial, can exhibit novel and effective material dispersions. Here, we report a metamaterial-based transparent radar heater working at microwave frequencies, as opposed to microwave shielding applications. The metamaterial transparent heater provides an effective route to achieve high conductivity and low signal attenuation, which ensures the reliable performance of radar systems under demanding environments. #### P7: Geometric nature of electron hydrodynamics and 2D plasmonic metamaterials Riki Toshio, Norio Kawakami Kyoto University (Japan) We formulate an electron hydrodynamic theory in noncentrosymmetric layered systems and clarify what a role the quantum geometry of Bloch electons plays in plasmonic metamaterial devices. #### P8: Large Scale Fabrication of Extraordinary Transmission Plasmonic Metasurfaces Employing Ultrafast Lasers Carlota Ruiz de Galarreta¹, Noemi Casquero¹, Euan Humphreys², Jacopo Bertolotti², Javier Solis¹, C. David Wright², Jan Siegel¹ ¹CSIC (Spain), ²University of Exeter (United Kingdom) We demonstrate a versatile micro-fabrication technique based on ultrafast direct laser writing, towards the reliable, large-scale and low-cost fabrication of high-performance extraordinary transmission metasurfaces. Contrary to well-established lithographic-based fabrication methodologies, our technique enables the single-step realization of the EOT devices of several mm2 in a few minutes. Our fabrication methodology can be carried out in cleanroom-free environments and without generating chemical residues: conditions which reduce fabrication costs and are therefore affordable for a vast majority of industrial entities. # P9: Resonant phonon-magnon interactions in free-standing metal-ferromagnet multilayer structures Urban Vernik¹, Alexey Lomonosov¹, Vladimir Vlasov¹, Leonid Kotov¹, Dimitry Kuzmin¹, Igor Bychkov¹, Paolo Vavassori², Vasily Temnov¹ ¹ Ecole Polytechnique (France), ² CIC nanoGUNE (Spain) We theoretically analyze resonant magneto-elastic interactions between standing perpendicular spin wave modes (exchange magnons) and longitudinal acoustic phonon modes in free-standing metal-ferromagnet multilayer structures. Whereas the ferromagnetic layer acts as a magnetic cavity, all metal layers control the acoustic frequencies and eigenmodes. Efficient resonant phonon-magnon interactions are governed by spectral and spatial mode overlap. Realistic simulations for gold-nickel multilayers show that sweeping the external magnetic field should allow for observing resonantly enhanced interactions between individual magnon and phonon modes. # P10: From antiferromagnetic to ferromagnetic fs-laser properties switching of FeRh thin films Pavel Varlamov¹, Stephan Lempereur¹, Anna Semisalova², Michael Farle², Iliass Fendi¹, Ian Aupiais¹, Yannis Laplace¹, Anh Dung Nguyen³, Olivier Noel³, Michele Raynaud-Brun¹, Paolo Vavassori⁴, Vasily **Temnov**¹ ¹ Ecole Polytechnique (France), ² University of Duisburg-Essen (Germany), ³Le Mans Universite (France), ⁴ CIC nanoGUNE (Spain) We demonstrate the switching of ferromagnetic properties of FeRh thin films caused by fs-laser nanostructuring. The change of reflectivity, structure, and magneto-optical response of modified samples was observed. The correlation of reflectivity, magneto-optical signals, and relief depths of obtained structures was analyzed as a function of laser pulsed fluence. #### P11: Active metasurface using ITO device in visible wavelength Yong-Hae Kim, Chi-Sun Hwang, Jong-Heon Yang, Joo-Yeon Kim, Kyung-Hee Choi, Jaeheon Moon, Ji-Hun Choi Electronics and Telecommunications Research Institute (Korea) We propose a new ITO device for an active metasurface in a visible wavelength. New ITO device is consisted of Al/Al2O3/hyperbolic meta material (HMM)/Al2O3/Al antenna and can modulate the reflectivity' phase of 360o and the reflectivity's amplitude up to $10\,\%$. #### P12: Applications of Metasurfaces with Quadrupolar Moments Ville Tiukuvaara, Olivier J. F. Martin, Karim Achouri EPFL (Switzerland) An extension of the generalized sheet transition conditions (GSTCs) to include multipolar moments has recently been shown, along with extensions of the Lorentz reciprocity and Poynting theorems to provide insights into the higher-order susceptibility terms involved. The additional susceptibility components provide new degrees of freedom for applications such as manipulation of the Brewster angle at a dielectric interface, and generalized refraction. In our presentation, we will show our latest developments in the modelling and applications of multipolar metasurfaces. # P13: Light scattering from rough silver surfaces in multilayered systems Matin Dehghani, Christin David Friedrich-Schiller-University Jena (Germany) A theoretical approach to simulate the light scattering from multilayers of thin films with one rough surface is presented. Image processing is applied to calculate absorption for samples with different surface morphologies. # P14: Wide angle, polarization independent Metamaterial Absorber unit-cell for RCS reduction and energy harvesting applications Said Choukri¹, Otman El Mrabet², Hakim Takhedmit¹, Mariem Aznabet², Laurent Cirio¹ ¹Gustave Eiffel University (France), ²Abdelmalek Essaadi University (Morocco) In this work, a new design of Metamaterial Absorber unit-cell is presented with a high absorption coefficient of 99.78 % at 10 GHz. The numerical results show that the proposed unit-cell has constant performances regardless the polarization state of the incoming waves, a wide angle of absorption up to for TE polarized waves, and for TM, RHCP, LHCP polarized waves. Analytical circuit model has been developed to describe the matching process between the unit-cell and free space impedances. ### P15: Inverse-gain cavity oscillators for efficient micro and nano lasers Gunpyo Kim, Seok Ho Song, Jae Woong Yoon Hanyang University (Korea) For realization of ultracompact lasers, we propose a new design principle for laser oscillators requiring lower threshold gain as reducing the cavity length. We explain the inverse-gain mechanism and show nanophotonic and plasmonic cavity structures applying inverse-gain mechanism. Using numerical analyses, our proposed cavity structures show significant reduction of threshold gain constants by one or three order of magnitude compared to
conventional laser cavities. # P16: Plasmonic topological resonance states in a deep subwavelength structure Yu Sung Choi, Ki Young Lee, Jae Woong Yoon Hanyang University (Korea) We theoretically demonstrate surface-plasmonic Jackiw-Rebbi-state resonances that take advantages ofdeep-subwavelength confinement and topological robustness properties. We make use of a metal-insulator-metal gratingstructure in which the surface plasmon-polariton mode resonantly couples with the radiation continuum and its topologicalphase is controllable with geometrical parameters. We provide a promising design for the telecommunicationsIR domain. Importantly, the proposed design shows a strongly confined resonance state in both lateral and vertical axes, andhighly robust Q-factor against decreasing in-plane footprint size. # P17: Assessing the performance of metalenses to enhance light collection by silicon photomultipliers Augusto Martins¹, Chris Stanford¹, Taylor Contreras¹, Benjamin L. Sanderson², Carlos Ecobar², Adam Para², Michelle D. Stancari², Justo Martin-Albo Simon³, Joon-Suh Park¹, Federico Capasso¹, Roxanne Guenette⁴ ¹ Harvard University (USA), ² Fermi National Accelerator Laboratory (USA), ³ Instituto de Fisica Corpuscular (Spain), ⁴ University of Manchester (United Kingdom) We present a method of robust and effective simulation of large area metalenses for light collection enhancement. This method relies on splitting the metalens into smaller sectors that can be approximated by linear phase patches. Our method shows good agreement with experimental data for a metalens operating at 632 nm. We intend to use this method to characterize metalenses operating at VUV wavelenghts. # P18: Plasmonic response of metallic nanoparticles from UV to NIR range Gaurav Pal Singh, Neha Sardana IIT Ropar (India) The optical properties of nanoparticles (NPs) metals displaying the highest plasmonic response (silver, gold, copper, and aluminum) were simulated in air, glass, and a-Si environment from the ultraviolet (UV) to the near-infrared (NIR) range. Embedding the metal NPs in a dielectric medium provides prevention from agglomeration, increased absorption, and protection from environmental effects. The effect of the material, size, shape, and environment was observed quantitively by analyzing the peak shifts of the dipole and higher-order poles. #### P19: Plasmonic metasurface tailored for fluorescent enhancement Roxana Tomescu, Veronica Anastasoaie, Cristian Kusko, Stefan Caramizoiu, Adrian Dinescu, Catalin Parvulescu, Cosmin Obreja, Dana Cristea IMT Bucharest (Romania) Plasmonic metasurfaces are often used in a variety of applications which require light processing, with miniaturized devices integrable in various systems. In this work, we propose metasurface structures specifically tailored for fluorescent enhancement of Rhodamine 6G. Using finite-difference time-domain simulations we observed that we could obtain an improvement of the localized electromagnetic field of 5.76 times with silver resonators of 60 nm height. The investigation performed with a fluorescent scanner confirm that the proposed and fabricated structures offer fluorescent enhancement. # P20: Simultaneous optical and mechanical sensing based on nano-optomechanical disks Elena Sentre Arribas¹, Eduardo Gil Santos¹, Ivan Favero², Aristide Lemaitre², Montserrat Calleja¹, Javier Tamavo¹ ¹ Instituto de Micro y Nanotecnologia (CSIC) (Spain), ² Universite Paris-Saclay (France) In this work, we demonstrate that by bringing together optical and mechanical resonances in single sensing platforms, their performances are significantly enhanced. In particular, we use nano-optomechanical disks, which simultaneously support high quality optical and mechanical modes. First, we apply the simultaneous or dual optical and mechanical sensing technique for monitoring environmental changes. Then, we employ it for detecting individual bacteria, accessing to its optical and mechanical properties. # P21: Ultrathin-film cavity metastructures for high quality absorbers and tunable structural colors Fernando Chacon Sanchez, Rosalia Serna IO-CSIC (Spain) Traditionally dielectric cavities were used to achieve structural colors. Recently, the use of sub-quarter wave cavities with high-refractive index lossy media has shown excellent results based on an abrupt phase change on the interfaces. Here we present a hybrid approach to achieve quasi-perfect wide band absorbers and tunable structural colors by integrating dielectric cavities and high-refractive index media, while keeping a sub-quarter-wave thickness. The structures are based on high-quality ultrathin Bi films (10nm) and built on Si without back-metal mirror. # P22: Silver Nanoparticle Arrays for Wavelength Taylored Enhancement of Raman Scattering Nadzeya Khinevich¹, Mindaugas Juodėnas¹, Asta Tamulevicienė¹, Tomas Tamulevicius¹, Martynas Talaikis², Gediminas Niaura², Sigitas Tamulevicius¹ ¹ Kaunas University of Technology (Lithuania), ² Vilnius University (Lithuania) Chemically synthesized silver nanoparticles of different average sizes (70 nm - 130 nm) were deposited into regular lattices on PDMS templates by the CAPA method. The fabricated arrays exhibited SLR. The effect of the nanoparticle size on the SLR peak position and the SERS activity related to the excitation wavelength and SLR peak position overlap was investigated. The overlapping positions at 532 nm excitation wavelength, the enhancement factor reached 108, and the detection limit for 2-naphthalenethiol molecules - 10-8 M ### P23: Interaction of complex beams with strongly anisotropic ENZ metamaterials Vittorio Aita¹, Diane Roth¹, Anastasiia Zaleska¹, Alexey V. Krasavin¹, Luke H. Nicholls¹, Nikita A. Shevchenko², Francisco J. Rodriguez-Fortuño¹, Anatoly V. Zayats¹ ¹ King's College London (United Kingdom), ² University of Cambridge (United Kingdom) We theoretically and experimentally investigate the interactions of cylindrical vortex beams (CVBs) with a strongly anisotropic plasmonic metamaterial, concentrating on radially and azimuthally polarised beams, under weak and tight focusing regimes. Extinction properties of the metamaterial show sensitivity to different polarisation states and a strong dichroism resulting in variations of the beam modal structure and polarisation. Experimental results show good agreement with theoretical predictions, proving the promising potential of anisotropic metamaterials for complex vector beams shaping. # P24: Excitation-dependent emissive FeSe nanoparticles induced by chiral interlayer expansion and their multi-color bio-imaging Junyoung Kwon¹, Jeonghyo Kim², Youngeun Choi², Jeong Yoon Park², Chul-Hong Park², Jaebeom Lee² ¹KAIST (Korea), ²Chungnam National University (Korea) We report layered FeSe nanoparticles (NPs) coupled by L- or D-cysteine as a chiral stabilizer to show multi-colored excitation dependent emission (MEDE) for both 1- and 2-photon photoluminescence breaking conventional Kasha and Vavilov rules of luminescence, which is the first report in inorganic nanostructure system. The MEDE is revealed to originate from the impurity coupled to the Mott insulator character of FeSe and chiral interlayer expansion, utilized for multi-colored imaging of neuron cells / tissues from visible to near-infrared range. ## P25: Non-invasive Point-of-Care nanobiosensing of cervical cancer as an auxiliary to pap-smear test ### Mitali Basak¹, Monika Sachdev², Dipankar Bandyopadhyay¹ ¹ Indian Institute of Technology Guwahati (India), ² Endocrinology Division, Central Drug Research Institute Lucknow (India) The present work focuses on the development of a point of care testing unit for non-invasive screening of cervical cancer from the urine sample of the targeted patient. Here, a plasmonic immunobiosensor has been fabricated using gold nanoparticles immobilized with antibodies specific to a potential biomarker of cervical cancer, Protein-Phosphatase-1-gamma-2. The developed device is capable to identify the positivity of the test from crude urine sample of the affected patient. ### P26: Acoustic helical dichroism in chiral structures online ### Qing Tong, Shubo Wang City University of Hong Kong (China) We demonstrate acoustic helical dichroism, i.e., differential absorption of acoustic vortices carryingopposite orbital angular momentum (OAM), in a one-dimensional lattice formed of chiral resonators. Thephenomenon originates from the OAM band gaps and non-Hermitian exceptional points under the breaking of ## P27: Arbitrary order exceptional point in coupled spinning cylinders online ### Zheng Yang¹, Hongkang Shi², Yuntian Chen², Shubo Wang¹ ¹City University of Hong Kong (China), ²Huazhong University of Science and Technology (China) In this talk, I will report a robust method to realize arbitrary order exceptional points (EPs) by employing spinning motion of resonators. The proposed method does not rely on selective excitation of chiral modes and is robust against spin-flipping perturbations. We show that higher-order EPs in the proposed system are accompanied by enhanced optical isolation, which may find applications in designing novel optical isolators, nonreciprocal optical devices, and topological photonics. ### P28: Chiral discrimination by polarization singularities of a metal sphere online #### Shiqi Jia, Jie Peng, Yuqiong Cheng, Shubo Wang City University of Hong Kong (China) In this talk, we will report a method of detecting small chiral particles by using the C lines (i.e., lines of polarization singularities) in the scattering field of a metal sphere. We will show the absorption dissymmetry of deep-subwavelength helices at different positions on the C lines, which can be much larger than that induced by circularly polarized plane wave excitation. We will also discuss the effect of the helix's anisotropic properties on the absorption dissymmetry. # P29: Color modulation based on dynamic plasmon resonance tuning in inter-cubes of Ag nanocube
monolayer ^{online} #### Ayana Mizuno, Atsushi Ono Shizuoka University (Japan) We demonstrated color modulation by dynamically tuning a plasmon resonance excited in an assembled Ag nanocube monolayer. The plasmon resonance of the monolayer depends on inter-cube distances. This study fabricated a crystalline Ag nanocube monolayer in a stretchable and transparent substrate and continuously controlled the inter-cube distance by stretching the substrate. The transmitted light color modulated from magenta, orange, to yellow by stretching the substrate from 0% to 20%. ### 10:50 - 12:40 — Torremolinos ### Session 1A2 ### Symposium II: New trends in nanophotonics and advanced materials Organized by: Junsuk Rho, Hakjoo Lee and Namkyoo Park Chaired by: Paivi Torma 10:50: Keynote talk Atomically Thin Materials for Nanophotonics online F. Javier Garcia de Abajo ICFO-Institut de Ciencies Fotoniques (Spain) We will discuss the opportunities opened by atomic-scale materials for the control of light at unprecedentedly small length scales, and in particular their application in optical sensing and nonlinear nanophotonics. Recent advances in fabrication and conceptual design of materials benefiting from quantum hybridization with the environment will be also presented. #### 11:20: Invited talk Electrical control of second harmonic generation using intersubband polaritonic metasurfaces Jaeyeon Yu¹, Seongjin Park¹, Inyong Hwang¹, Gerhard Boehm², Mikhail Belkin², Jongwon Lee¹ 1 Ulsan National Institute of Science and Technology (Korea), 2 Technical University of Munich (Germany) We report nonlinear intersubband polaritonic metasurfaces capable of electrical control of the local intensity and phase of second-harmonic-generation (SHG). Experimentally, we achieved over 2900 % of SHG intensity modulation depth and beam-steering from electrically induced phase gradient metasurfaces. #### 11:40: Invited talk #### Al-powered metasurface hyperspectral imaging system for food inspection Suyeon Lee¹, Yeon-Geun Roh¹, Hyochul Kim¹, Hojung Kim¹, Yeonsang Park², Unjeong Kim¹ ¹ Samsung Advanced Institute of Technology (Korea), ² Chungnam National University (Korea) Hyperspectral imaging surpasses human vision and provides detailed information such as material composition or biochemical conditions of the test object, especially when empowered by artificial intelligence (AI). We have implemented a compact, AI-powered, camera-type 16-channel hyperspectral imaging system (HIS) which has periodically repeating arrays of 16 different metasurface spectral filters directly fabricated on top of its 5M-pixel CMOS-image sensor. With this AI-powered meta-HIS, we have continuously monitored and successfully classified the edibility of the red meat over 20 days. #### 12:00 : Invited talk #### Free electron heating for photomodulation in the infrared ### **Euan Hendry** University of Exeter (United Kingdom) Transparent conductive oxides such as Indium Tin Oxide (ITO) have been found to have exceptionally strong optical nonlinearity at frequencies near where the permittivity changes sign (referred to as the epsilon near zero, ENZ, frequency). Here, we study the pump dependent properties of the plasmon resonance in the ENZ region in ITO. We demonstrate a free electron heating mechanism, which results in a shift in the plasmon resonance frequency of 20 THz for relatively small pump intensity \sim 70 GW cm-2. #### 12:20 : Invited talk #### A flexible terahertz imaging sheet for multi-view visualization and inspection online #### Yukio Kawano Chuo University (Japan) We present flexible and stretchable terahertz imaging sheets utilizing broadband photo-absorption of carbon nanotubes. This technology has enabled multi-view terahertz imaging and its applications to non-destructive inspections without using bulky systems. 10:50 - 12:25 — Alamos #### Session 1A3 #### Functional metamaterials Organized by: Tatjana Gric, Edik Rafailov and Maria Farsari Chaired by: Tatjana Gric 10:50: Invited talk Advanced hybrid plasmonic nano-sources of light: on the importance of controlling the spatial distribution of the active medium Dandan Ge¹, Minyu Chen², Sylvie Marguet³, Christophe Couteau², Ali Issa², Safi Jradi², Renaud Bachelot² ¹ Tokyo Institute of Technology (Japan), ² Universite de Technologie de Troyes (France), ³ Universite Paris Saclay (France) The talk deals with the possibility to control the spatial distribution of the active medium in hybrid nanoplasmonics. #### 11:10: Invited talk Directing the propagation of light with particles for near-infrared sensors Kevin Conley¹, Vaibhav Thakore², Fahime Seyedheydari¹, Mikko Karttunen², Tapio Ala-Nissila¹ ¹ Aalto University (Finland), ² The University of Western Ontario (Canada) Nano- and microparticles particles embedded in compact layers interact with light in diverse ways. We investigate the scattering by semiconductor, metal, or oxide particles to direct near-infrared light without excessive heating. Optical responses under irradiation by solar and blackbody emitters are calculated. Reflectance efficiency factors of over 80 % are predicted in 200 μ m thick compact layers with only 1 % volume fraction. The computational results are validated with experiments and implemented in near-infrared sensing applications. # 11:30 : Periodically nanostructured single- and multi-layers for angular selectivity of light Lina Grineviciute¹, Julianija Nikitina¹, Darius Gailevicius², Kestutis Staliunas³ ¹Center for Physical Sciences and Technology (Lithuania), ²Vilnius University (Lithuania), ³ICREA (Spain) This study was aimed to investigate the growth process of thin films on a nanostructured surface. Optical characterization revealed the presence of Fano-like resonance phenomenon in such single-layer structure, surrounded by a lower refractive index media. Moreover, we demonstrate a 5 μ m thick photonic multilayer structure composed of alternating high- and low-index materials, providing angular selectivity of light. The proposed 2D photonic structure can be considered as a promising component for intracavity spatial filtering even in high power microlasers. #### 11:45 : Invited talk Constructing active metasurfaces and dynamically tunable metadevices online Ruwen Peng, Mu Wang Nanjing University (China) In this work, we present several active metasurfaces and dynamically tunable metadevices based on the following approaches: 1) from thermal tuning to electrical tuning based on phase change materials, 2) real-time mechanical tuning, and 3) dynamically adjusting the ambient environments of the materials and devices. The investigations here can be applied in constructing novel dynamically-tuning metasurfaces and metamaterials, and are expected to promote the further development of new-generation active optoelectrionic devices. #### 12:05: Invited talk Chiral Metasurfaces of Nanohelices with Giant Intrinsic Chiro-Optical Activity online Thu H. H. Le¹, Hisako Sato² ¹National Institute of Advanced Industrial Science and Technology (AIST) (Japan), ²Ehime University (Japan) This study reports the fabrication of metasurfaces composed of metal nanohelices that exhibit giant intrinsic chiro-optical properties in mid-infrared (IR) regime. Our fabrication method exploits the stress-driven self-folding of metal thin films to generate helical structures with tunable diameters, controllable handedness and alignment directions. This approach allows the high-throughput fabrication of 3-dimensional nanostructures for mass-production of metasurfaces in wafer-scale. The fabricated metasurface opens new perspectives for practical applications of chiral metamaterials in chiroptical spectroscopies and chiral chemistry. ## 10:50 - 12:30 — Playamar #### **Session 1A4** # Symposium I: Hybrid Nanomaterials and Metastructures for Photonics, Sensing and Energy Organized by: Jerome Plain, Alexander Govorov, Davy Gerard and Pedro Hernandez Martinez Chaired by: Jerome Plain 10:50: Invited talk # Novel 2D Materials Enabled All-Optical Nonlinear Activation Functions for On-Chip Photonic Deep Neural Networks #### A. Karabchevsky Ben-Gurion University (Israel) In my talk, I will discuss the challenges and novel approaches for implementing an all-optical neural nonlinear activation function based on utilising unique light-matter interactions with new class of 2D materials towards the realization of all-optically implemented deep neural networks. #### 11:10 : Invited talk #### **Towards Efficient and Active Nonlinear Metasurfaces** #### Mikko Huttunen, Timo Stolt, Jussi Kelavuori, Anna Vesala Tampere University (Finland) Collective responses known as surface lattice resonances (SLRs) have recently emerged as an interesting approach to realize high-Q factor metasurface resonators. Here, we show how SLRs can be utilized to realize flat resonators with Q-factors exceeding 2400 and how such resonances can be controlled via ambient temperature of fabricated devices. We will also demonstrate how SLRs can be realized in CMOS-compatible systems based on aluminium-based metasurfaces and discuss the potential of SLR-based metasurfaces for nonlinear optics. #### 11:30: Invited talk ### Generation of hot electrons in plasmonic nanoparticles with complex shapes Eva Yazmin Santiago Santos¹, Lucas V. Besteiro², Xiang-Tian Kong², Miguel A. Correa-Duarte³, Zhiming Wang¹, Alexander O. Govorov¹ ¹Ohio University (USA), ²University of Electronic Science and Technology (China), ³Universidade de Vigo (Spain) The generation of hot electrons in plasmonic nanoparticles is an intrinsic response to light, which strongly depends on the nanoparticle shape, material, and excitation wavelength. In this study, we present a formalism that describes the hot-electron generation for gold nanospheres, nanorods and nanostars. Among them, the nanostars are the most efficient, with an internal energy efficiency of approximately 25%, owing to multiple factors, including the presence of hot spots. ###
11:50 : Invited talk #### Plasmonic Gold Trimers and Dimers with Air-Filled Nanogaps ### Svetlana Neretina, Zachary Lawson, Walker Tuff University of Notre Dame (USA) We demonstrate a fabrication process of substrate-based aligned gold trimers with sub-5 nm air-filled vertical nanogaps. The devised procedure uses a sacrificial oxide layer to define the nanogap, a glancing angle deposition to impose a directionality on trimer formation, and a sacrificial antimony layer whose sublimation regulates the gold assembly process. The work advances the possibility of developing a low-cost, high-throughput, and scalable nanomanufacturing platform for nanogap fabrication. #### 12:10 : Invited talk Reconfigurable dielectric nanoresonators for dynamic manipulation of light wavefronts at visible frequencies Ramon Paniagua Dominguez, Parikshit Moitra, Xuewu Xu, Tobias Mass, Shampy Mansha, Rasna Maruthiyodan Veetil, Xinan Liang, Damien Eschimese, Anton Baranikov, Arseniy Kuznetsov Institute of Materials Research and Engineering, Agency for Science, Technology and Research (Singapore) In this talk we will present our latest results on dynamic manipulation of light wavefronts using reconfigurable nanocavities. In particular, we will present how interfacing dielectric nanoantennas with liquid crystals can serve this purpose, and present alternative approaches to achieve multi-spectral operation and devices with memory based on Fabry-Perot nanocavities and phase change materials, respectively. ### 10:50 - 12:30 — Bajondillo ### **Session 1A5** ## **Challenges of Phase Change Materials and Plasmonics for Nanophotonics** Organized by: Maria Losurdo, Yael Gutierrez, Kurt Hingerl, Christoph Cobet, Mircea Modreanu and Fernando Moreno Chaired by: Maria Losurdo and Fernando Moreno #### 10:50 : Invited talk VO2 based dielectric metasurfaces and metamaterials for reconfigurable optical systems applications Jimmy John¹, Aditya Tripathi², Sergey Kruk², Yael Gutierrez³, Helmut Karl⁴, Fernando Moreno Gracia⁵, Yuri Kivshar², Zhen Zhang⁶, Shriram Ramanathan⁶, Hai Son Nguyen¹, Lotfi Berguiga¹, Pedro Rojo Romeo¹, Regis Orobtchouk¹, Sebastien Cueff¹ ¹INSA de Lyon (France), ²Australian National University (Australia), ³CNR-NANOTEC (Spain), ⁴Universitat Augsburg (Germany), ⁵Universidad de Cantabria (Spain), ⁶Purdue University (USA) We demonstrate two strategies for creating highly tunable VO2-based building blocks for metamaterial-based optical system. First strategy is based on VO2 nanocrystals embedded in SiO2, wherein we show the multipole resonances supported by VO2 NCs can be actively tuned by its insulator-to-metal transition. Second strategy is on the integration of a VO2 layer coupled to a dielectric metasurface consisting of silicon resonators, the interaction between these resonances and the incident light can be tuned depending upon the transition of VO2. ### 11:10: Invited talk #### Spin-momentum locking in chiralitonic metasurfaces Fernando Loren¹, G. L. Paravicini-Bagliani², L. Martin-Moreno¹, C. Genet² ¹SIC-Universidad de Zaragoza (Spain), ²Universite de Strasbourg (France) We revisit the optical properties of a chiralitonic metasurface. We focus on the spin-orbit coupling as a result of the local rotation of the coordinate system induced by the rotation of the nanoapertures. The most striking result is that the widely-used spin-momentum locking is not exact in spin. It is exact in momentum but approximate in spin. The results are experimentally confirmed with Mueller polarimetry measurements, which allows to capture the full polarization, energy and momentum response of the metasurface. #### 11:30: Invited talk #### Dynamic response of reversibly switched ultra-low loss phase change materials Daniel Lawson, Daniel Hewak, Otto Muskens, Ioannis Zeimpekis University of Southampton (United Kingdom) Antimony-based chalcogenides such as Sb2Se3 and Sb2Se3 are rapidly emerging materials for photonic applications owing to their ultra-low optical losses at telecommunication wavelengths in both crystalline and amorphous phases. In this work, we investigate their dynamic response from nanoseconds to milliseconds under optical pumping to study their optical performance during phase transitions induced by direct pulsed optical switching. Our aim is to provide fundamental insights for the optimization of the material family and its employment in photonic applications. #### 11:50: Invited talk Fast and nanoscale-controllable insulator-to-metal transition of VO2 enabled by plasmonic nanoantennas Luca Bergamini¹, Bigeng Chen², Daniel Traviss², Yudong Wang², Cornelis H. de Groot², Jeffrey M. Gaskell³, David W. Sheel³, Nerea Zabala¹, Javier Aizpurua⁴, Otto L. Muskens² ¹FCT-ZTF (Spain), ²University of Southampton (United Kingdom), ³University of Salford (United Kingdom), ⁴CSIC-UPV/EHU (Spain) The VO2 attracts wide interest for its insulator-to-metal transition when heated-up above the relatively low critical temperature of 68°C. Plasmonic nanoantennas are known to concentrate light at the nanoscale around their surface when resonantly illuminated in the Vis-NIR. Here we show how this nanoantennas plasmonic feature can be used to steer and control a fast and nanoscaled insulator-to-metal transition in a VO2 film. We investigated the effect of both an array and a single nanoantenna, which is the smallest unit-block. #### 12:10 : Invited talk ### Bound states in the continuum and related phenomenology in resonant metasurfaces Diego R. Abujetas¹, Jose A. Sanchez-Gil² ¹ Fribourg University (Switzerland), ² IEM-CSIC (Spain) We explore the emergence of bound states in the continuum (BICs) in metasurfaces consisting of dipolar meta-atoms, through a coupled electric and magnetic dipole theoretical formulation. Robust symmetry-protected BICs at the Gamma point are investigated through different mechanisms in various kinds of arrays of interest throughout the electromagnetic spectrum, all exhibiting a variety of dipolar resonances. BIC-induced phenomenology leading to applications such as mirrorless lasing and high-Q electromagnetically-induced transparency will be also discussed. #### 10:50 - 12:10 — Carihuela #### Session 1A6 Symposium IV: Chirality, magnetism, and magnetoelectricity: Separate phenomena and joint effects in metamaterial structures Organized by: Eugene Kamenetskii Chaired by: Eugene Kamenetskii ### 10:50: Invited talk Semiconductor topological nanophotonics incorporating light emitters online Yasutomo Ota¹, Yasuhiko Arakawa², Satoshi Iwamoto² ¹ Keio University (Japan), ² The University of Tokyo (Japan) Topological photonic crystals made of compound semiconductors are a fascinating platform to develop topological nanophotonic devices with active functionalities. In this contribution, will discuss recent progress in IIIV-semiconductor topological nanophotonics incorporating optical gain media and quantum emitters. We will review several ways to realize topological nanocavities and topological slow light waveguides, both of which can significantly enhance light-matter interactions with embedded light emitters. These photonic structures enable the realization of topological nano/microlasers and quantum light sources capable of robust operation. #### 11:10: Invited talk Nonreciprocal responses in superconductors: diode effect, Meissner effect, and nonlinear optics online Akito Daido¹, Hikaru Watanabe², Hiroto Tanaka¹, Yuhei Ikeda¹, Youichi Yanase¹ ¹Kyoto University (Japan), ²RIKEN (Japan) We show the theoretical framework of various nonreciprocal responses in superconductors. The superconducting diode effect, nonlinear superconducting optics, and nonreciprocal Meissner effect are studied, and observation in parity-breaking superconductors is proposed. 11:30: Invited talk ### Time-resolved microscopy of plasmonic spin quasiparticles online **Chen-Bin Huang** National Tsing Hua University (Taiwan) Skyrmions and merons are stable quasiparticles of interest to fundamental physics, and with potential applications to data storage and quantum computing. Here in this talk, I will demonstrate orbital angular momenta contributed purely through the geometrical chirality leads to the generation of plasmonic spin merons. I will also address various other spin quasiparticles. The experiments are carried out through time-resolved two-photon photoemission electron microscopy. #### 11:50: Invited talk Manipulating the guidance of circularly polarized fields by magneto-electric coupling effects in metasurfaces ^{online} Zuojia Wang¹, Liqiao Jing¹, Hao Yan² ¹Zhejiang University (China), ²Shandong Universi (China) We demonstrate the polarization shaping abilities of metasurfaces on circularly polarized field. By tailoring the magneto-electric coupling effects in meta-atoms, we can achieve beam deflectors for circularly polarized fields bounded at moving free electrons, nonreciprocal phase shifters for spoof surface plasmon polaritons, as well as nonreciprocal absorbers for circularly polarized propagating waves. The underlying mechanism is explained by the coupled mode theory established for magneto-electric metastructures. Our findings may offer an alternate approach to lightweight, reconfigurable, and deployable metadevices. #### 10:50 - 12:25 — Montemar ### **Session 1A7** ## **Extreme meta-photonics** Organized by: Nasim Mohammadi Estakhri and Inigo Liberal Chaired by: Nasim Mohammadi Estakhri and Inigo Liberal 10:50: Invited talk #### Quantum optics in extreme media Iñigo Liberal Public University of Navarre (Spain) Metamaterials with extreme characteristics (e.g., near-zero constitutive parameters, atomically-thin geometry, ultra-fast temporal variations, extreme anisotropy, etc) represent a fertile playground for controlling quantum light-matter interactions. In our talk, we will review our latest result in the control of quantum radiative processes mediated by metamaterials with extreme characteristics. #### 11:10 : Invited talk # Effect of Dielectric Losses in
the Sensing Performance of THz All-Dielectric Quasi-BIC Metasurfaces Jose Antonio Alvarez Sanchis, Borja Vidal Rodriguez, Ana Diaz Rubio Universitat Politecnica de Valencia (Spain) We study the effect of losses on the resonances of an all-dielectric metasurface with ideally high-quality factor in the THz frequency range, considering realistic materials. In addition, we compare the resonances in this structure with the extraordinary optical transmission resonance supported by a metallic structure, reaching the conclusion that the sensing performance of the former can be surpassed by the latter. ### 11:30: Invited talk Fundamental radiative processes and momentum consideration inside near-zero index media Michael Lobet¹, Inigo Liberal², Larissa Vertchenko³, Andrei Lavrinenko³, Nader Engheta⁴, Eric Mazur⁵ ¹ University of Namur (Belgium), ² Universidad Pública de Navarra (Spain), ³ Technical University of Denmark (Denmark), ⁴ University of Pennsylvania (USA), ⁵ Harvard University (USA) Fundamental radiative processes are important light-matter interactions encountered in photonics. Here, we theoretically work out those processes inside unbounded media with a vanishingly small refractive index. Our formalism also includes the effect of the spatial dimensionality as well as the class of NZI materials. Spontaneous emission enhancement/inhibition is shown to be dependent on the refractive index, the impedance and the dimensionality of the material. Furthermore, momentum considerations inside NZI materials are discussed and related to the Abraham-Minkowski debate. ## 11:50 : Massively Radiant Upconversion Luminescence Driven by Strongly-Coupled Bound States in the Continuum Chiara Schiattarella¹, Silvia Romano¹, Luigi Sirleto¹, Vito Mocella¹, Ivo Rendina¹, Vittorino Lanzio², Fabrizio Riminucci², Stefano Cabrini², Liangliang Liang³, Xiaogang Liu³, Gianluigi Zito¹ ¹National Research Council (Italy), ²Lawrence Berkeley National Laboratory (USA), ³National University of Singapore (Singapore) A giant enhancement of upconversion luminescence is demonstrated in an all-dielectric metasurface supporting bound states in the continuum (BICs) engineered with lanthanide-doped nanocrystals. The strong-coupling occurring between a Friedrich-Wintgen BIC and a leaky wave partner at the edge of the photonic superstructure allows in-plane pump feeding of the high-Q mode without resorting to loss-tailoring strategies and generating supercollimated radiation with a radiance enhancement factor of $\sim\!108$. This mechanism overcomes the constraint of forbidden radiation coupling in BIC-sustaining photonic systems. #### 12:05: Invited talk # Investigation of Overcoming the Chu Lower Bound on Quality Factor for Antennas Tuned with Highly Dispersive Lossy Material Younes Radi, Ahmed Mekawy, Andrea Alù City University of New York (USA) In this talk, we will introduce a new concept using which one can enhance the bandwidth of electrically small inductive or capacitive antennas beyond what is possible using conventional approaches in a very simple and compact platform without any need for active elements. #### 10:50 - 12:50 — Litoral #### Session 1A8 #### Symposium II: New trends in nanophotonics and advanced materials Organized by: Junsuk Rho, Hakjoo Lee and Namkyoo Park Chaired by: Emiliano Cortes ### 10:50: Invited talk Topological optical fields generated by topological structures online Shubo Wang¹, Jie Peng¹, Ruo-Yang Zhang², Shiqi Jia¹, Wei Liu³ ¹City University of Hong Kong (Hong Kong), ²The Hong Kong University of Science and Technology (Hong Kong), ³National University of Defense Technology (China) In this talk, I will discuss optical properties solely decided by the overall topology of structures and are irrelevant to their material constituents or specific geometries. I will show that there is a subtle and inextricable connection between the topology of optical fields and the topology of optical structures. #### 11:10: Invited talk # Metastructured Photonic Devices for Tailoring Spatial Structures of Light ^{online} Jian Wang Huazhong University of Science and Technology (China) Metastructured photonic devices, such as metamaterials and metasurfaces, are promising candidates for robust light manipulation with enhanced functionalities. In this talk, we review recent progress in tailoring spatial structures of light with metastructured photonic devices: 1) plasmonic metasurfaces on thin metal film for twisting/vectoring light, 2) dielectric metasurfaces on silicon platform enabling twisted light generation/detection/(de)multiplexing/lasing, 3) meta-facet fiber for structuring light, 4) Silicon-based ultra-compact broadband polarization diversity orbital angular momentum (OAM) generator, 5) 3D-metastructures by direct femtosecond laser writing technique. #### 11:30 : Invited talk ## Inverse design enables simple, single-celled metasurfaces for multifunctionalities online #### Sunae So, Junsuk Rho Pohang University of Science and Technology (Korea) Here, we discuss a novel inverse design method to design multifunctional metasurfaces using a gradient-descent optimization. Using the inverse design method, we present simple and single-celled metasurfaces for high numerical aperture metalens and full-color holograms in multi-plane projections. Finally, we experimentally demonstrate the designed metasurfaces, and up to nine distinct metasurface-generated hologram images are achieved with high fidelity. #### 11:50 : Invited talk # Ultraviolet violet applications utilizing high refractive index subwavelength structure with ultra-thin thickness online #### Yuusuke Takashima, Kentaro Nagamatsu, Masanobu Haraguchi, Yoshiki Naoi Tokushima University (Japan) High refractive index subwavelength structures can provide very attractive optical characteristics due to its unique light propagation. The highly polarized emitter and near-unity absorber have been demonstrated around deep to near UV wavelength by the effect of interference in high contrast grating and multilayers. #### 12:10: Invited talk #### Magnetic topological photonic crystals online #### **Baile Zhang** Nanyang Technological University (Singapore) The field of topological photonics was initiated with a design of magnetic photonic crystal followed by its experimental demonstration at microwave frequencies. Magnetic photonic crystals provide a unique platform with broken time reversal symmetry for many emerging phenomena that are difficult in other platforms. Here I will introduce some of our recent studies in magnetic topological photonic crystals with simple demonstrations. #### 12:30 : Invited talk # Indoor 3D human surface shapes capture from Wi-Fi signal using 1-bit metasurface ^{online} Hanting Zhao, Zhuo Wang, Hongrui Zhang, Menglin Wei, Siyuan Jiang, Lianlin Li Peking University (China) This paper introduced a Wi-Fi band metasurface-based perception system that can capture the human pose and position as a 3D mesh format in an indoor scene with rooms partitioned by a 30 cm concrete wall. The system can detect the position and the identification of the Wi-Fi signal transmitter automatically and retrieve the human outline information from two coherent receivers of the system without disturbing the communication functioning of the commercial wi-fi router. #### 10:50 - 12:10 — Manantiales #### Session 1A9 # Acoustic and elastic phononic crystals, metamaterials and other structured media Organized by: Marco Miniaci, Vicente Romero-Garcia, Vincent Pagneux, Maxime Lanoy, Jean-Philippe Groby and Noe Jimenez Chaired by: Vincent Pagneux and Marco Miniaci 10:50: Invited talk Helmholtz resonator analogue for water waves Leo-Paul Euve¹, Kim Pham², Philippe Petitjeans¹, Vincent Pagneux³, Agnes Maurel⁴ ¹PMMH (France), ²IMSIA (France), ³LAUM (France), ⁴Institut Langevin (France) In the context of water waves, we present a theoretical and experimental study of a resonator with deep subwavelength resonance, analogue to the Helmholtz resonator in acoustics. As its acoustic analog, this resonator can be used as the building block of devices able to control the energy flow of the swell. We illustrate its capability to reduce the transmission up to almost zero at a single frequency. #### 11:10: Invited talk Metamaterial structures with Willis coupling for wave waves online Yan Meng¹, Yiran Hao¹, Sebastien Guenneau², Shubo Wang³, Jensen Li¹ ¹ Hong Kong University of Science and Technology (China), ² Imperial College London (United Kingdom), ³ City University of Hong Kong (China) Willis coupling has been recently realized for acoustic waves and elastic flexural waves as the analogy of bianisotropy originally in electromagnetism. For further extension, we investigate its formulation in water waves and other kinds of elastic waves. Possible designs and numerical formulation in extracting the effective media with Willis coupling will also be discussed. #### 11:30 : Invited talk Employing metamaterial concepts for seismic isolation online Fernando Fraternali, Ada Amendola University of Salerno (Italy) This work presents the design, modeling and experimental validation of novel seismic isolators, which mimic the mechanics of human locomotion. We discuss their potential for the design of next-generation, tunable seismic isolators that can be fully or partially manufactured through additive manufacturing. #### 11:50: Invited talk Tunable shape memory auxetics: from 4D printing to numerical simulations online Giulia Scalet¹, Chiara Pasini², Nicoletta Inverardi², Davide Battini², Stefania Marconi¹, Marica Bianchi³, Fabio Bignotti², Ferdinando Auricchio¹, Stefano Pandini² ¹University of Pavia (Italy), ²University of Brescia (Italy), ³University of Trento (Italy) The present work discusses our recent advances on auxetics with tunable shape reconfigurability. To this purpose, 4D printing and multiple shape memory effect are combined. A methodological approach, including a comprehensive experimental and numerical
investigation, is proposed. Results are helpful in guiding towards the design of single-material auxetic structures capable of controlled and autonomous in-plane and out-of-plane motions. #### Lunch 12:30 - 14:00 ### 14:00 - 16:00 — Torremolinos #### Session 1A10 Acoustic and elastic phononic crystals, metamaterials and other structured media Organized by: Marco Miniaci, Vicente Romero-Garcia, Vincent Pagneux, Maxime Lanoy, Jean-Philippe Groby and Noe Jimenez Chaired by: Vicente Romero-Garcia and Jean-Philippe Groby 14:00 : Keynote talk ### Complex resonance samples of coupled Helmholtz resonators Svetlana Kuznetsova, Yves Auregan, Vincent Pagneux Le Mans Universite (France) Complex resonances of Helmholtz resonators coupled to a waveguide are studied. The scatteringmatrix approach is used to obtain the trajectories of the complex resonance poles with the variation of the distance between the resonators. For two resonators they are shaped as Cassini ovals. Fano-type peaks in the transmission spectrum and the occurrence of the Dicke effect are observed. Variation of the distance between the resonators is shown to be capable of the tuning of the resonant properties. #### 14:30 : Invited talk Non-reciprocity of fundamental dynamic modes in gyroscopic elastic systems with boundaries online Michael Nieves¹, G. Carta², V. Pagneux², M. Brun² ¹ Keele University (United Kingdom), ² University of Cagliari (Italy) We study both Rayleigh and Lamb waves produced by a point force applied along the boundaries of an elastic microstructured half-space and strip, respectively, attached to arrays of gyroscopes. The analytical method for determining the dynamic response of such media is presented. While the dispersive features of these systems possess the usual symmetries, remarkably, the symmetry of the associated dynamic response with respect to the loading is broken. Numerical illustrations demonstrating these atypical elastodynamic responses are given. #### 14:50 : Invited talk Controlling MHz acoustic waves with plant-derived phononic materials online Maroun Abi Ghanem¹, Samuel Raetz², Olivier Hamant³, Thomas Dehoux¹ ¹ Universite Claude Bernard Lyon 1 (France), ²Le Mans Universite (France), ³ENS de Lyon (France) We study surface acoustic wave (SAW) propagation in plant-derived materials composed of decellularized plant cells scaffolds. Laser-based opto-acoustic techniques are used to excite and measure MHz acoustic waves in these biocomposites. We demonstrate that these bio-derived structures behave as an organic phononic material, with the presence of bandgaps due locally-resonant phenomena. #### 15:10: Keynote talk 3D wavefront shaping with soft sub-wavelength acoustic lenses Thomas Brunet, Yabin Jin, Olivier Lombard, Raj Kumar, Olivier Poncelet, Olivier Mondain-Monval University of Bordeaux (France) In this talk, I will report a class of flat (or quasi-flat) acoustic lenses with sub-wavelength thicknesses, engineered from soft porous silicone rubbers, for broadband underwater 3D wavefront shaping of ultrasound. The functionalities of these soft gradient-index (or high-index) metasurfaces will be illustrated through variousultrasonic experiments in a large water tank, thus demonstrating acoustic focusing and vortex beam generation. #### 15:40 : Invited talk #### Elastic body waves control via the Topological Rainbow Effect Bogdan Ungureanu¹, M. P. Makwana², R. V. Craster², S. Guenneau² ¹LAUM (France), ²Imperial College London (United Kingdom) We propose a form of topological guidance for flexural waves in thin perforated elastic plates, which can be viewed as an approximate model for surface Rayleigh waves propagating through an array of boreholes drilled in soft soil atop bedrock. We do so by considering a square perforation within a square unit cell that is then extended periodically upon a square lattice, and when combined with the rainbow effect offers a pragmatic route to energy harvesting. ### 14:00 - 15:55 — Alamos #### Session 1A11 # Symposium I: Hybrid Nanomaterials and Metastructures for Photonics, Sensing and Energy Organized by: Jerome Plain, Alexander Govorov, Davy Gerard and Pedro Hernandez Martinez Chaired by: Alexander Govorov 14:00 : Invited talk #### Linear and nonlinear photonics in bottom-up assemblies of nanoparticles Andrea Morandi, Romolo Savo, Jolanda Simone Muller, Andrea Scheidegger, Paolo Fischer, Artemios Karvounis, Ngoc My Hanh Duoeng, Rachel Grange ETH Zurich (Switzerland) Nanocrystals can be assembled with bottom-up techniques into three dimensional photonic structures with specific functionalities. Here, we present spherical micro resonators built from randomly oriented non-centrosymmetric nanocrystals that generate broadband and efficient second-harmonics even in the presence of scattering. Besides, we show all-dielectric assemblies coupled with NV centers that display enhanced photon emission rate. Our assemblies represent a playground for photonics: from fundamental investigation of the interplay between nonlinearity and disorder to the production of scalable quantum sources. #### 14:20 : Invited talk Tailoring the visual appearance of a surface by using plasmonic particles onto a stratified substrate Adrian Hereu¹, Adrian Agreda¹, Etienne Duguet¹, Kevin Vynck², Philippe Lalanne¹, Glenna L. Drisko¹, Mona Trequer-Delapierre¹ ¹Institut de Chimie de la Matiere Condensee de Bordeaux (France), ²Universite Claude Bernard Lyon 1 (France) Mastering visual appearance by controlling the composition of matter is a major challenge in diverse areas such as vehicle design, cosmetics, or luxury goods. Considerable efforts are currently made to develop scalable fabrication techniques to produce new coatings offering exotic visual effects. In this communication, we will show how to exploit the rich optical properties of disordered assemblies of resonant nanoparticles in optical stacks to generate new visual effects in reflection. The influence of two structural parameters will be discussed. #### 14:40 : Invited talk All-organic biomimetic photonic structures tailored by near-zero index organic materials Miguel Castillo¹, Carla Estevez-Varela², William P. Wardley³, Rosalia Serna⁴, Isabel Pastoriza², Sara Nunez-Sanchez², Martin Lopez Garcia¹ ¹ INL- International Iberian Nanotechnology Laboratory (Portugal), ² Universidade de Vigo (Spain), ³ University of Exeter (United Kingdom), ⁴ IO-CSIC (Spain) In this paper, we present an all-organic photonic platform inspired by the optical properties and geometrical arrangements of photosynthetic membranes in nature. Using thin polymer films doped with J-aggregate cyanine dyes we demonstrate how to create a unique photonic structure in which properties such as photonic bandgap and enhanced absorption by slow-light are modified by near-zero-index optical properties of the dye-doped polymer thin films. #### 15:00: Invited talk Metallic nanostructures embedded in dielectrics for Surface Enhanced Raman signals Sophie Camelio¹, David Babonneau¹, Sophie Rousselet¹, Frederic Pailloux¹, Emmanuel De Los Santos Vazquez¹, Maxime Bayle², Bernard Humbert² ¹ Institut Pprime (France), ² Institut des Materiaux Jean Rouxel (France) The presentation reports on Surface Enhanced Raman substrates, reusable and washable, consisting on Periodic Lines of Ag Nanoparticles Embedded in Dielectric (PLANEDSERS) that can be used for SERS applications in analytical chemistry with a good level of repeatability, and with a detection of a concentration range between 10-6 to 10-3 M for non-resonant molecules. 15:20: Invited talk #### Near Field Probing of Optical (Super)Chirality For Enhanced Bio-detection Victor Tabouillot, Rahul Kumar, Paula Laborda Lalgauna, Maryam Hajji, Rebecca Clarke, Drew Thomson, Andrew Sutherland, Nikolaj Gadegaard, Malcolm Kadodwala University of Glasgow (United Kingdom) We exploit an intriguing phenomenon, plasmonic circularly polarised luminescence (PCPL), which is an incisive local probe of near field chirality. This allow chiral detection of monolayer quantities of a de novo designed peptide, which is not achieved with a far field response. Our work demonstrates that by leveraging the capabilities of nanophotonic platforms with the near field sensitivity of PCPL, optimal biomolecular detection performance can be achieved, opening new avenues for nanometrology. # 15:40 : Electrically Switchable, Polarization-Sensitive Encryption Based on Aluminum Nanoaperture Arrays Integrated with Polymer-Dispersed Liquid Crystals Ke Li¹, Jiawei Wang¹, Wenfeng Cai¹, Huilin He¹, Mengjia Cen¹, Jianxun Liu¹, Dan Luo¹, Quanquan Mu², Davy Gerard³, Yan Jun Liu¹ ¹ Southern University of Science and Technology (China), ² Chinese Academy of Sciences (China), ³ Universite de Technologie de Troyes (France) Metasurface-based structural coloration is a promising enabling technology for advanced optical encryption with a high-security level. Herein, we propose a paradigm of electrically switchable, polarization-sensitive optical encryption based on designed metasurfaces integrated with polymer-dispersed liquid crystals (PDLCs). The proposed technique can be applied to many fields including high-security optical encryption, security tags, anti-counterfeiting, multichannel imaging, and dynamic displays. ### 14:00 - 16:00 — Playamar #### Session 1A12 Symposium IV: Chirality, magnetism, and magnetoelectricity: Separate phenomena and joint effects in metamaterial structures Organized by: Eugene Kamenetskii Chaired by: Eugene Kamenetskii 14:00 : Invited talk ## Optical and mechanical wave manipulation in an optomechanical chiral metasurface Alessandro Pitanti CNR - Istituto Nanoscienze (Italy) We report on a minimal dielectric optomechanical membrane metasurface with chiral patterning. Low frequency membrane modes combined with optical chirality are used for polarization modulation and fast polarimetry. Excitation of high frequency mechanical GHz modes reveals a more complex landscape, where both mechanical
and optical asymmetric Bloch waves can interact. From the mechanical side, surface acoustic waves can be manipulated according to their excitation frequency in a combination of symmetric and asymmetric, ordinary and negative refraction at the metasurface edges. 14:20 : Invited talk ## Emergent chiral interaction and ultrafast optical generation of antiferromagnetic spin-spiral Sumit Ghosh PGI and IAS Forschungszentrum Julich and JARA (Germany) By combining quantum evolution of states with classical magnetization dynamics we managed to capture both fast sub-picosecond dynamics governed by electronic interactions as well as the slow magnetization dynamics that can survive for several picoseconds leading to a steady chiral formation. We identify the emergent interactions appearing at different timescales and also estimate the lifetime of quasi-stable chiral configurations. 14:40: Invited talk #### Photochemical imaging of chiral near-fields near plasmonic nanostructures #### T. Aoudjit, A. Horrer, R. Bachelot, J. Plain, Davy Gerard Universite de Technologie de Troyes (France) We report on the use of a photosensitive polymer to directly image the optical near-field around metallic chiral nanostructures. #### 15:00 : Invited talk Annihilation of topological solitons in magnetism with spin-wave burst finale and electronic spin pumping over ultrabroadband frequency range #### **Branislav Nikolic** University of Delaware (USA) This talk introduces recently developed multiscale quantum-classical hybrid formalism where time-dependent nonequilibrium Green functions describe quantum-mechanically conduction electrons while they interact with dynamical noncollinear magnetic textures of localized magnetic moments described by the classical Landau-Lifshitz-Gilbert equation. #### 15:20 : Invited talk #### Topological effects in plasmonic metasurfaces #### Yuri Gorodetski Ariel Photonics center (Israel) Light-matter interactions in chiral structure can induce strong polarization selectivity. Specifically, an optical activity in a form of polarization rotation and a circular dichroism may be controlled by the the mirror symmetry breaking of the unit-cell . We design and experimentally investigate plasmonic metasurfaces with spatially varying chiral geometry and demonstrate how this may lead to a geometric phase. Our structure produces a polarization-dependent diffraction of linear states. We examine the diffraction orders and show that their topological nature. #### 15:40: Invited talk #### A theory of skyrmion crystal formation #### Xiangrong Wang The Hong Kong University of Science and Technology (China) A generic theory about skyrmion crystal (SkX) formation in chiral magnetic thin films is presented. We show that a chiral magnetic film can have many metastable states with an arbitrary skyrmion density up to a maximal value when the relative Dzyaloshinskii-Moriya interaction strength is large enough. We reveal critical role of a magnetic field in SkX formation and explain why a film prefers a stripy (helical) state such that SkXs become metastable at low temperature. ### 14:00 - 16:00 — Bajondillo #### Session 1A13 #### Symposium II: New trends in nanophotonics and advanced materials Organized by: Junsuk Rho, Hakjoo Lee and Namkyoo Park Chaired by: Silvia Viola Kusminskiy #### 14:00 : Invited talk Physical mechanisms of nanostructuring ferromagnetic thin films and hybrid multilayers using single ultrashort laser pulses Stephan Lempereur¹, Pavel Varlamov¹, Alexey Lomonosov¹, Ilias Fendi¹, Ian Aupiais¹, Yannis Laplace¹, Michele Raynaud-Brun¹, Tat Loon Chng¹, Svetlana Starikovskaja¹, Alexandr Alekhin², Anh Dung Nguyen², Olivier Noel², Evgenii Modin³, Paolo Vavassori³, Denys Makarov⁴, Vasily Temnov¹ 1 Ecole Polytechnique (France), 2 Le Mans Universite (France), 3 CIC nanoGUNE-BRTA (Spain), 4 Helmholtz-Zentrum Dresden-Rossendorf (Germany) Irradiation of ferromagnetic thin films and metal/ferromagnet bilayers with ultrashort laser pulses through an optically transparent substrate results in the formation of closed spallation or delamination cavities possibly enclosing ultrahigh vacuum. Their physical properties are investigated by the optical interferometric, magneto-optical, atomic force and SEM microscopies and ultrafast pump-probe techniques. The topology of these cavities can be controlled through the laser pulse duration and/or the internal structure of irradiated films. Their acoustic and magneto-optical properties will be revealed as well. 14:20 : Invited talk #### **Dielectric and Plasmonic Silicon Nanoantennas** #### **Zhaogang Dong** A*STAR (Singapore) In this talk, we will present our recent research results on the nanostructured silicon optical nanoantennas with Mie resonance at visible regime, such as mix antenna array for fluorescence enhancement, imaging of the inaccessible bound-states-in-the-continuum (BIC) mode, quasi BIC resonance for the strong enhancements of cathodoluminescence emission and achieving the ultra-highly saturated red color pixels, as well as the interband plasmonic characteristics of silicon nanostructures at ultra-violet (UV) regime. 14:40: Invited talk ### **Optical Metasurfaces for Engineered 3D Polarization Profiles** Xianzhong Chen, Yuttana Intaravanne, Chunmei Zhang Heriot-Watt University (United Kingdom) The unprecedented capability of optical metasurfaces has provided an unusual approach for arbitrary manipulation of polarization profiles. Light beams with 3D polarization structures have recently attracted big attention due to their peculiar optical features and extra degrees of freedom for carrying information. Here we experimentally demonstrated a metasurface approach to generate 3D polarization structures. The efficacy of this approach was exemplified through the demonstration of 3D polarization knots. Our demonstration may find applications in beam engineering and integrated optics. #### 15:00: Invited talk Near-field analysis of dipole emission near an all-dielectric metasurface by means of dual-tip scanning near-field optical microscopy Angela Barreda¹, Najmeh Abbasirad¹, Dennis Arslan¹, Michael Steinert¹, Stefan Fasold¹, Carsten Rockstuhl², Frank Setzpfandt¹, Thomas Pertsch¹, Isabelle Staude¹ ¹ Friedrich Schiller University Jena (Germany), ² Karlsruhe Institute of Technology (Germany) Over the last years, all-dielectric metasurfaces have been designed to enhance the emission of quantum emitters located in the surrounding of the metasurface or inside the nanoparticles of which the metasurface is composed. Here, we analyze, through dual-tip scanning near-field optical microscopy, the near-field intensity distribution in an all-dielectric metasurface excited by a dipole. This work finds applications in the development of single-photon sources for quantum communication purposes. 15:20 : Invited talk ### Chiral sensing with semiconductor nanophotonics Alberto G. Curto Ghent University and imec (Belgium) Detecting molecular chirality is crucial in biochemistry. It is, however, limited by low sensitivity at low concentrations. I will discuss our progress to push the limits of chiral sensing by exploiting semiconductor nanophotonics. 15:40: Invited talk ### Nanoporous gold as an active plasmonic metamaterial Alexander Yu Petrov, Maurice Pfeiffer, Xinyan Wu, Manfred Eich Hamburg University of Technology (Germany) Nanoporous gold is a sponge-like material obtained by dealloying process with ligaments dimensions down to 10 nm range. The large surface to volume ration of this metamaterial gives possibility to strongly alter its optical properties by surface functionalization, so called chemical interface damping. We show that reversible surface oxidation of nanoporous gold can be used to switch its color. #### 14:00 - 16:00 — Carihuela #### Session 1A14 ## Challenges of Phase Change Materials and Plasmonics for Nanophotonics Organized by: Maria Losurdo, Yael Gutierrez, Kurt Hingerl, Christoph Cobet, Mircea Modreanu and Fernando Moreno Chaired by: Wolfram Pernice 14:00 : Invited talk Ultrafast manipulation of light with nanorod plasmonic metamaterials Alexey Krasavin, Luke Nicholls, Andres Neira, Francisco Rodríguez-Fortuño, Mazhar Nasir, Gregory Wurtz, Anatoly Zayats King's College London (United Kingdom) Plasmonic metamaterials open a new avenue for engineering of enhanced optical nonlinearity largely surpassing that of optical materials composing them, or indeed any other natural material. In this talk we overview our recent results on achieving ultrafast intensity and polarization control in plasmonic nanorod metamaterials, which are highly sensitive to the nonlinear changes in the epsilon-near-zero regime. Combining this approach with Kerr-type metallic nonlinearities based on free-electron energy dynamics, we demonstrate ultrafast all-optical switching with femtosecond response times. #### 14:20 : Invited talk Exploiting Mie resonances in VO2 nanoantennas for achieving optically tunable metasurfaces in the visible range Peter Kepic¹, Filip Ligmajer¹, Martin Hrton¹, Haoran Ren², Leonardo de Souza Menezes³, Stefan Alexander Maier⁴, Tomas Sikola¹ ¹Brno University of Technology (Czech Republic), ²Macquarie University (Australia), ³Ludwig-Maximilians University Munich (Germany), ⁴Germany (Germany) We study the optical properties of VO2 nanodiscs in the visible range. These nanostructures present strong Mie resonances not only in the known high-temperature, plasmonic phase, but also in the low-temperature phase, in which the material's behavior is predominantly dielectric. A large extinction modulation is observed when the nanodiscs go upon phase transition. The nanodiscs present large potential for being used as building blocks of a metasurface which can be tuned by shining a CW laser on it. #### 14:40 : Invited talk Localized Surface Plasmon Resonance in Perovskite Thin Film Embedding Metallic Nanoparticles Laura Calio, A. Bayles, S. Carretero-Palacios, A. Jimenez-Solano, G. Lozano, M. E.
Calvo, Hernan Miguez ICMS-CSIC (Spain) The theoretical design of light surface plasmon resonance (LSPR) effects in perovskite based optoelectronic devices is discussed, by exploring different size, shape and concentration of metallic nanoparticles embedded in perovskite thin film. Also, direct experimental evidence obtained for perovskite film embedding silver nanocubes is unambiguously demonstrated, showing absorption enhancement at well-defined spectral ranges. A reliable measure of the magnitude of the LSPR effects expected for perovskite films is presented, with the aim of reducing environmental impact of lead-based optoelectronic devices. #### 15:00: Invited talk Design and Characterization of Electrically Programmable Phase Change Photonic Devices Nicholas Nobile¹, John Erickson¹, Carlos Rios Ocampo², Yifei Zhang³, Juejun Hu³, Feng Xiong¹, Nathan Youngblood¹ ¹University of Pittsburgh (USA). ²University of Maryland (USA). ³Massachusetts Institute of Technology (USA) We present methods for designing and characterizing foundry-compatible waveguide-integrated microheaters for electrically programmable phase-change photonic devices. In the first part of this talk, computational modeling approaches will be applied to various microheater designs (metallic, resistive, and diode-based microheaters) and insights for optimizing switching speed and energy efficiency will be presented. In the se- cond part of this talk, recent experimental work on optically mapping the dynamic thermal response of these microheaters will be presented and compared with our computational models. 15:20 : Invited talk **Nonthermal Photoinduced Phase Transition** Mario Graml, K. Hingerl, C. Cobet Johannes Kepler University (Austria) We review and adapt the well-established ideas by Ginzburg [1] to model ultra-fast, non-thermal phase transitions for the EU's Horizon 2020 research and innovation program PHEMTRONICS. 15:40: Invited talk Reconfigurable nano-photonics enabled by electrically and optically active phase-change materials. Nikolaos Farmakidis, Harish Bhaskaran Oxford University (United Kingdom) Photonic circuits have the potential to transform the way we process information through data multiplexing and parallelisation of computational tasks. Yet, the ability to electrically program, reconfigure and store information in conventional dielectric photonics remains challenging. Here we explore hybrid structures combining electrically and optically active phase-change materials, with nanoplasmonic components which are designed to enhance light-matter interactions and confine optical fields to dimensions compatible with CMOS nanoelectronics. #### 14:00 - 15:20 — Montemar #### Session 1A15 ### **Extreme meta-photonics** Organized by: Nasim Mohammadi Estakhri and Inigo Liberal Chaired by: Nasim Mohammadi Estakhri and Inigo Liberal 14:00 : Invited talk Metasurfaces, Multipoles and Symmetries online Karim Achouri, Ville Tiukuvaara, Olivier Martin EPFL (Switzerland) The majority of metasurface modelling techniques only consider dipolar polarizations. While this usually provides excellent modelling accuracy within the paraxial limit, we will show that it leads to significant errors for large incidence angles and/or large unit cell period-to-wavelength ratios. To overcome this limitation, we derive an extension of our previously developed dipolar metasurface model to include multipolar contributions. Combined with reciprocity, structural symmetries and spatial dispersion, this model provides a significant accuracy improvement and new opportunities for wave transformations. 14:20 : Invited talk Non-conventional phase matching in low-index materials online Larissa Vertchenko, Andrei Lavrinenko Technical University of Denmark (Denmark) The possibility to confine light in extremely small scales without compromising the level of losses has led to an increasing interest in all-dielectric platforms for nanophononics applications. Materials with effective refractive index near-zero (NZI) are known to exhibit peculiar phenomena such as, high transmission through distorted waveguides and enhancement of effective nonlinearities. In this work, we report on our advances in investigating the third harmonic generation conversion in a NZI material. 14:40: Invited talk Wave Scattering in Dynamical Media online Emanuele Galiffi¹, Shixiong Yin¹, Paloma Arroyo Huidobro², John Pendry³, Andrea Alu¹ ¹ City University of New York (USA), ² Instituto Superior Tecnico (Portugal), ³ Imperial College London (United Kingdom) In this talk we report on recent theoretical explorations in the context of time-varying media, aiming at offering a few perspectives on the peculiarities of wave scattering from abrupt, continuous, periodic, chiral and dispersive temporal inhomogeneities, as well as their implications for distinct forms of wave amplification, localization, nonreciprocity, frequency modulation and harmonic generation. #### 15:00 : Invited talk Space-time metamaterials: dragging and amplifying light online Paloma A. Huidobro¹, Emanuele Galiffi², Mario G. Silveirinha¹, John Pendry³ ¹ University of Lisbon (Portugal), ² City University of New York (USA), ³ Imperial College London (United Kingdom) An homogenization theory of space-time metamaterials will be presented. This framework will unveil regimes of synthetic motion yielding different physical properties such as light dragging or non-reciprocal and chiral amplification mechanisms.: An homogenization theory of space-time metamaterials will be presented. This framework will unveil regimes of synthetic motion yielding different physical properties such as light dragging or non-reciprocal and chiral amplification mechanisms. #### 14:00 - 16:00 — Litoral ### **Session 1A16** #### **Functional metamaterials** Organized by: Tatjana Gric, Edik Rafailov and Maria Farsari Chaired by: Tatjana Gric ### 14:00 : Invited talk #### Hot carriers from interband and intraband transitions in metallic nanoparticles #### **Johannes Lischner** Imperial College London (United Kingdom) Hot electrons generated from the decay of localized surface plasmons in metallic nanostructures have the potential to transform photocatalysis, photodetection and other optoelectronic applications. However, the understanding of hot-carrier generation in realistic nanostructures, in particular the relative importance of interband and intraband transitions, remains incomplete. Here we report theoretical predictions of hot-carrier generation rates in spherical nanoparticles of the noble metals silver, gold and copper with diameters up to 30 nanometers obtained from a novel atomistic linear-scaling approach. #### 14:20 : Invited talk Towards New Regimes in Cavity Optomechanics with Photonic Bound States in the Continuum in Photonic Crystal Membranes Jamie M. Fitzgerald, Sushanth Kini Manjeshwar, Witlef Wieczorek, Philippe Tassin Chalmers University (Sweden) We will present an optomechanics platform based on photonic bound states in the continuum and show that this platform is very flexible and makes it possible to reach different regimes of cavity optomechanics, e.g., with linear or quadratic coupling of either dispersive or dissipative type. Bound states in the continuum enable to build compact optomechanical devices, resulting in linear optomechanical coupling strengths that are orders of magnitude larger than conventional out-of-plane systems and comparable to values observed for in-plane geometries. #### 14:40: Invited talk Why James Bond ordered his Martinis shaken, not stirred (Computer simulations in the theory of composites) Vladimir Mityushev, Natalia Rylko Cracow University of Technology (Poland) The talk is devoted to constructive formulas for the effective constants of 2D multi-phase composites. The effective constants are obtained as linear combinations of structural sums expressed in terms of geometrical distribution of inclusions with the contrast parameters weights. Such an approach leads to a rigorous theory of representative volume element (RVE) when a class of dispersed composites is determined by its set of structural sums. #### 15:00 : Invited talk #### **Colloidal Aluminum Nanoparticles for UV plasmonics** Jerome Plain¹, Marion Castilla¹, Silvere Schuermans¹, Gil Markovich², Uri Hananel², Davy Gerard¹, Jerôme Martin¹, Julien Proust¹ ¹ UTT (France), ² Tel-Aviv University (Israel) We present a new and simple route to synthetize aluminum nanoparticles showing a plasmon resonance in the UV range. #### 15:20 : Invited talk #### Complete measurement of chirality using achiral metasurfaces online #### **Sotiris Droulias** Foundation for Research and Technology (FORTH) (Greece) Metasurfaces are ideal platforms for enhancing the inherently weak chiroptical signals of natural optically active molecules, as they can provide the necessary strong resonances for coupling the probing radiation with the chiral molecules. In this work, we derive analytically, and verify numerically, expressions that provide insight into the enhancement mechanism, we explain why circular dichroism measurements in metasurfaces with chiral inclusions must be interpreted with care and we propose a scheme for the unambiguous determination of an unknown chirality. #### 15:40: Invited talk ### Enhancement of Optical Nonlinearities in Two-dimensional Layered Materials online #### Zhipei Sun Aalto University (Finland) I will present our recent advances on the enhancement of various optical nonlinearities in different twodimensional layered materials. #### 14:00 - 15:45 — Manantiales #### **Session 1A17** #### Plasmonics and nano-optics Chaired by: Agustin Mihi 14:00 : Enhanced optical effects in doped plasmonic materials fabricated by crystal growth techniques Piotr Piotrowski¹, R. Nowaczynski¹, K. Sadecka², B. Surma², M. Raczkiewicz², P. Paszke¹, J. Toudert², N. Kongsuwan³, O. Hess⁴, D. Pawlak¹ ¹ University of Warsaw (Poland), ² ENSEMBLE (Poland), ³ Quantum Technology Foundation
(Thailand), ⁴ Imperial College London (United Kingdom) Here, we demonstrate optically active volumetric materials obtained with micro-pulling down method. By applying NanoParticle Direct Doping Method, nanocomposites with plasmonic properties are fabricated, which allows us to observe enhanced optical features 14:15 : Scattering-type scanning near-field optical microscopy and spectroscopy with 10 nm resolution with vis, NIR, MIR and THz wavelengths Philip Schaefer, S. Mastel, A. Cernescu, A. Huber ALX (neaspec) (Germany) Scattering-type Scanning Near-field Optical Microscopy and Spectroscopy is the revolutionizing technology that allows the nanoscale real-space optical analysis of sub-wavelength excitations in 2D-materials and metamaterials. Confining an incident light beam to the apex of a metallic AFM tip allows the local excitation as well as the local detection of phonon polaritons, exciton polaritons and surface plasmons. Operating at midinfrared (MIR) wavelengths permits also the chemical analysis of various nanostructured materials with 10 nm resolution. ## 14:30 : Probing nanoscale polymer redox using plasmonics Yuling Xiong, Qianqi Lin, Kunli Xiong, Jeremy Baumberg University of Cambridge-NanoPhotonics group (United Kingdom) We integrate poly(3,4-ethylenedioxythiophene) (PEDOT) into plasmonic nanocavities to systematically study its redox mechanisms via in-situ spectro-electrochemistry. Both dark-field and surface-enhanced Raman scattering (SERS) are tracked during repeated redox cycles for PEDOT thicknesses from 2-20 nm. Surprisingly our data shows systematic changes in these spectra for sub-10nm polymer thicknesses, showing how extreme anisotropies and inverted orientations are produced for conducting polymer chains close to the interface. # 14:45: On hot carriers generation in strongly coupled Nanoparticle - molecule systems Katarzyna Kluczyk-Korch, Maria Bancerek, Rania Zaier, Tomasz Antosiewicz University of Warsaw (Poland) Strongly coupled systems exhibit hybridization of electronic energy levels and following appearance of new resonance frequencies. Hot carriers are preferably generated for excitation frequencies matching the new resonances. The hot carrier energy distribution deviates from the one corresponding to the non-interacting system, indicating existence of new decay paths, due to nanoparticle - molecule hybridized states. This suggests a possibility of manipulation of the energy of the generated hot carriers via strong interaction with the molecules. # 15:00 : Boron doped diamond-based sensing platform for SERS Sini Nanadath Shibu¹, Samvit G. Menon¹, Xiaojun Hu², Tomasz J. Ochalski¹ ¹ Munster Technological University (Ireland), ² Zhejiang University (China) In this work, we report the fabrication of a diamond-based versatile molecular sensing platform for the detection of organic molecules. In the case of semiconductors, electromagnetic effects are involved or cooperate with the chemical enhancement to amplify the overall Surface-Enhanced Raman Scattering response. Diamond is a dielectric substrate with a wide bandgap, high chemical stability, and biocompatibility. Boron-doped diamond substrates with surface functionalization can manipulate the resonant energy levels for the target molecules to achieve enhancement of sample-surface interaction. # 15:15 : All-optical control of phase singularities using strong light-matter coupling ^{online} Philip Thomas, Kishan Menghrajani, Bill Barnes University of Exeter (United Kingdom) We utilise cavity-free strong coupling, where electromagnetic modes sustained by a material are strong enough to strongly couple to the material's own molecular resonance, to create phase singularities in a simple thin film of organic molecules. We show that the use of photochromic molecules allows for all-optical control of phase singularities. We suggest that this opens a new application for strong light-matter coupling and a new, simplified, more versatile means of manipulating phase singularities. ## 15:30 : Tunable plasmonic surface lattice resonances online Jose Francisco Algorri¹, Jose Manuel Sanchez-Pena², Jose Miguel Lopez-Higuera¹, Dimtiris Zografopoulos³ ¹ Universidad de Cantabria (Spain), ² Universidad Carlos III de Madrid (Spain), ³ IMM-CNR (Italy) In this work, a plasmonic metasurface with an ultra-high Q factor (\sim 3.103) is designed and demonstrated to be tunable by liquid crystals (LC). The high-Q factor is produced by collective surface lattice resonances (SLRs). This type of resonance is very dependent on the surrounding refractive index, and for this reason, the LC birefringence produces a broad spectral tunability (50 nm). Furthermore, the simple voltage control opens new avenues for applying SLR in wavelength control. **Coffee Break** **Session 1P2** Poster session II 16:00 - 16:40 #### P1: Radiative Properties of Surface Doped Black Silicon Sreyash Sarkar¹, Elyes Nefzaoui², Frederic Marty², Georges Hamaoui², Philippe Basset², Tarik Bourouina² ¹ University of Luxembourg (Luxembourg), ² Universite Gustave Eiffel (France) In this study we aim to characterize the radiative properties of the surface of an innovative metamaterial, Black Silicon, that can be employed for IR applications requiring enhanced radiation absorptance such us IR photodetectors, solar thermal applications, solar photovoltaics, and solar thermo-photovoltaics. # P2: Structured nano-grating into a Silicon Nitride (SiN) membrane for atom physics experiments Nathalie Fabre¹, Charles Garcion¹, Julien Lecoffre¹, Karine Blary², Francisco Perales¹, Quentin Bouton¹, Martial Ducloy¹, G. Dutier¹ ¹ Universite Sorbonne Paris Nord (France), ² Universite Lille 1 (France) Nano-gratings enable matter-wave diffraction similarly to light in optics and allows to explore the Casimir Polder interactions when atoms come close to the surface. This atom-surface interaction, originating from the quantum fluctuations of the vacuum, enlarges drastically the envelop of the diffraction pattern. Here, we focus on the fabrication method to achieve over a million of nano-slits etched into SiN membrane. We report an extreme sensitive measurement of the CP interactions and discuss the applications in regards to metrology. # P3: Tailoring the Spectral Response of Multilayered Chiral Mid-Infrared Metamaterials Hannah Barnard, Geoff Nash University of Exeter (United Kingdom) A simulation and experimental study of multilayered chiral metamaterial stacks, optically active in the important mid-IR region of the spectrum. We demonstrate the ability to tune the spectral response based on layer configuration. # P4: Accidental Degeneracies and Band Inversion with a Microwave Metasurface Joshua Glasbey, A. P. Hibbins, J. R. Sambles University of Exeter (United Kingdom) Here we explore a bi-layer metasurface that exhibits accidental degeneracies in the lowest order bands for certain geometries. These accidental degeneracy points can be opened, creating a band gap, in both an inverted and non-inverted state. # P5: Superdirective Helical Dimers Fabricated using 3D printed Molds with Liquid Metal Injection Jenner Gudge-Brooke¹, Alistair Hibbins¹, Roy Sambles¹, Alex Powell¹, Nathan Clow² ¹ University of Exeter (United Kingdom), ² DSTL (United Kingdom) Antennas made of two coupled helical elements have been shown to have very high directivity while being much smaller than their radiative wavelength. We replicate this system using a method of fabrication involving a 3D printed dielectric mold which is then filled with liquid metal at a low temperature (61 $^{\circ}$ C) in order to facilitate more complex designs in the future. # P6: Phase-Change Extraordinary Optical Transmission Metasurfaces for Active Filtering and Modulation from the Visible to Terahertz Regimes #### Euan Humphreys, Jacopo Bertolotti, David Wright University of Exeter (United Kingdom) Periodic arrays of sub-wavelength-scale holes in plasmonic metal films can designed to provide resonant transmission/reflectance peaks via the extraordinary optical transmission (EOT) effect. The addition of phase-change materials (PCMs) to such devices can provide a degree of tuneability, cycles of heating and quenching shifting the peak position and/or amplitude depending on the phase-state of the PCM layer. This opens up new application potential in the fields of active filtering and sensing (e.g. for multispectral imaging), displays and optical modulation. # P7: Grazing incident waves on a material are usually completely reflected Dean Patient, Simon Horsley University of Exeter (United Kingdom) In this work, we show that removing the reflection of waves in this delicate limit can be achieved by adopting quantum mechanical techniques to factorise the Helmholtz equation into raising and lowering operators. Doing so allows the design of dielectric profiles that support optical analogues of half-bound states, which will not reflect grazing incidence waves. # P8: Amplitude-only spatial light modulation using phase-change meta-films Joe Shields, Carlota Ruiz de Galarreta, Harry Penketh, Jacopo Bertolotti, David Wright University of Exeter (United Kingdom) Current spatial light modulator (SLM) technology offers off-the-shelf spatial phase control of light, but amplitude control is much more limited. The development of amplitude-only modulators would enable devices to perform full-wavefront control. Here we present an approach to the realization of such modulators, using a phase-change material based approach. Fabricated devices allow for the control of the amplitude, with near zero effect on the phase of the reflected wave, offering a potential route to ultra-fast, solid-state wavefront control. # P9: Phase-Change Metasurfaces for the Active Control of Lens Numerical Aperture George Braid¹, Carlota Ruiz de Galarreta², Andrew Comley³, Jacopo Bertolotti¹, David Wright¹ ¹ University of Exeter (United Kingdom), ² IO-CSIC (Spain), ³ Atomic Weapons Establishment (United Kingdom)
Lens numerical aperture (NA) control has applications in many fields, such as photography, imaging, and laser processing. Active metasurfaces offer the prospect for dynamic control of numerical aperture, in a flat, compact and low-cost format. Here, we design and simulate an active focusing meta-mirror using phase-change materials to provide this control. Designs for use in both the infrared (3000 nm) and visible (632.8 nm) are shown. # P10: Photolithography utilizing on up-conversion luminescence in Tm3+ and Yb3+ doped NaYF4 nanoparticles mixed with SU8 photoresist with/without organic compounds Jurgis Grube, K. Vitols, V. T. Viksna, J. Teterovskis, J. Pervenecka, E. Tropins, J. Butikova, A. Vembris University of Latvia (Latvia) This work demonstrates a method which is essential to build up an experimental setup for the up-conversion luminescence photolithography system. Core-shell structured NaYF4 nanoparticles (core NaYF4 doped with Tm3+ and Yb3+) mixed with negative SU8 photoresist with/without organic compounds allows to expose photosensitive material in volume. This is highly perspective for the fabrication of various types of microstructures from such hybrid systems as organic-chromophores/nanoparticles/SU8, without damaging the light sensitive organic compound, demanded in photonic applications. # P11: Generation of Diffraction Free Topological Beams Based on Nanophotonics Ping Yu University of Missouri (USA) A method to generate diffraction free orbital angular momentum (OAM) beams is proposed using a specially designed nanophotonic structure in a momentum space. The structure includes amplitude modulation and phase modulation in series in nanoscale, and the structure is used in a reflection geometry. By designing the phase and amplitude modulation patterns, diffraction free beams with orthogonal topological charges can be generated. The developed structure shows a potential in applications of fiber-based telecommunication and quantum communication. # P12: Tailoring of electric dipoles for highly directional propagation in parity-time symmetric waveguides #### Alice De Corte, Bjorn Maes University of Mons (Belgium) Electric dipoles are often used as accurate models for electromagnetic sources in integrated photonic structures. We tailor an electric dipole source to create a contrast between wave propagation on both sides of the dipole in parity-time-symmetric waveguides. The unique features of parity-time symmetry enable the creation of various types of contrasting behavior, which can be exploited in integrated photonics applications. # P13: A semi-analytical model for unidirectional guided resonances based on multimodal interference Thomas Delplace, Bjorn Maes University of Mons (Belgium) Recently, optical bound states in the continuum (BICs) have been produced in photonic crystal slabs. A variation, unidirectional guided resonances (UGRs), has been reported, where the symmetry is broken, leading to leakage in a specific direction. We explore a microscopic semi-analytical model to understand these resonances, by extending a multimodal interference approach of BICs. #### P14: Adaptive magnonic networks for nanoscale reservoir computing Dmitrii Raskhodchikov, S. O. Demokritov, W. Pernice University of Muenster (Germany) We are realizing nanoscale adaptive magnonic networks in a complex system comprised of a large number of coupled spin-waveguides with embedded memory functionality, which transform the input of electrical data into spatiotemporal patterns in a high-dimensional space using nonlinear interference of spin-waves. # P15: Polypropylene-Based Array-HIS Antenna for mmWave Imaging Applications Alicia Florez Berdasco, Maria Elena de Cos Gomez, Fernando Las-Heras Andres University of Oviedo (Spain) A compact and environmentally friendly uniplanar wearable antenna for an assistance system to support visually impaired people is presented. The antenna operates in the mmWave ISM frequency band (24.05-24.25 GHz). Polypropylene was selected as the antenna substrate due to its low-cost, flexibility and environmental advantages. A HIS metasurface has been designed to combine with the basic array antenna. Different unit-cell arrangements have been analyzed and compared. The resulting array-HIS antenna outperforms the basic array antenna in radiation properties and bandwidth. # P16: Role of metal-nanostructure features on tip-enhanced photoluminescence of single molecules Marco Romanelli, Giulia Dall'Osto, Stefano Corni University of Padova (Italy) Tip-enhanced photoluminescence (TEPL) is a recently developed tool useful to investigate single molecule response down to sub-molecular level. This technique takes advantage of the metal nanostructures ability to enhance an electromagnetic radiation due to the generation of localized surface plasmons. We propose a theoretical analysis of TEPL, coupling the quantum mechanical description of the target molecule, Zinc-Phthalocyanine, with a continuum description of two nanostructures that mimic the nanocavity usually employed in STM microscopes. #### P17: Enhancing functionalities of plasmonic devices by design techniques Cornel Cobianu¹, Marin Gheorghe¹, Gonzalo Santos², Yael Gutierrez³, Mircea Modreanu⁴, Fernando Moreno², Maria Losurdo³ ¹NANOM MEMS (Romania), ²Universidad de Cantabria (Spain), ³CNR-NANOTEC (Italy), ⁴University College Cork (Ireland) The plasmonic photodetectors are an attractive novel approach as their photocurrent can be over one order of magnitude higher than in conventional devices. However, this enhanced sensitivity is unfortunately accompanied by a strong selectivity to wavelength, incidence angle, and polarization, which limits their use in wideband photonic applications. We are discussing in this paper an original design and modeling methodology of the interdigitated surface plasmon enhanced photodetectors which will allow wideband detection and minimization of the light polarization effect. ### P18: Efficiency and scalability of optical neural networks Michal Matuszewski, Andrzej Opala Polish Academy of Sciences (Poland) Photonic information processing benefits from high speed, parallelization, low communication losses, and high bandwidth. Fully functional photonic neurons, including spiking neurons, as well as neural networks, have been already realized in laboratories. We show why using the exceptionally strong interactions, such as in polariton systems in place of standard nonlinear optical phenomena can help allow to achieve exceptionally high performance in terms of computational speed, energy efficiency, and latency. # P19: Advanced Magnetic Metamaterials for Microwave Applications Katie Lewis, J. R. Sambles, A. P. Hibbins, I. Youngs, F. Y. Ogrin University of Exeter (United Kingdom) This work focuses on using meta-structuring of conventional soft magnetic materials to provide the required high permeability for applications at higher frequencies. Varying the structure on the microscale creates magnetic domain structures with high frequency resonances. These high resonant frequencies are predicted to arise from a vortex ground state in soft magnetic hemispherical shells. For Permalloy thicknesses between 30 and 50 nm the switching field is above 0 Oe, and vortex structures can be formed with no bias field. # P20: Glass poling and Electric field assisted dissolution for micro and nano structuring of metal thin films Vesna Janicki, Ivana Fabijanic, Boris Okorn, Tamilselvi Selvam, Jordi Sancho-Parramon Ruder Boskovic Institute (Croatia) This work presents a short summary of glass poling and electric field dissolution as techniques that can be employed for fabrication of micro and nanostructures not only consisting of metal nanoparticles, but of conductive metal films as well. Although the use of alkali containing glass is pre-condition for these two processes, it is not necessary that the resulting structure is supported exclusively on glass. ## P21: One-Pot Synthesis of Magnetoplasmonic Au@FexOy Nanowires: Bioinspired Bouligand Chiral Stack Huu-Quang Nguyen, Dajeong Hwang, Sejeong Park, My-Chi Nguyen, Jaebeom Lee Chungnam National University (Korea) One-dimensional hybrid nanostructures composed of a plasmonic gold nanowire core covered by a shell of magnetic oxide nanoparticles (Au@FexOy NWs) were synthesized by a one-pot solvothermal synthesis process. A Bouligand-type chiral nematic film consisting of multistacked unidirectional layers of achiral NWs was fabricated using a modified layer-by-layer deposition method, which displays circular dichroism (CD) and chiral sensing capability. These intriguing properties of magnetoplasmonic anisotropic NWs and their self-assemblies could be consequently valuable for solid-state chiral sensing devices. # P22: Circularly polarized luminescence from nanopatterned semiconductor nanocrystals ^{online} Vivian Ferry University of Minnesota (USA) This talk will discuss strategies to realize circularly polarized photoluminescence from nanocrystals coupled to plasmonic arrays. The nanocrystals are patterned into nanostructures using direct write electron beam lithography. We show that the use of these patterns creates structures with simultaneously high photoluminescence intensity and degrees of circular polarization. ## P23: Generation and Manipulation of Optical Ring Vortex Beams online Yuttana Intaravanne¹, Jin Han², Xianzhong Chen¹ ¹ Heriot-Watt University (United Kingdom), ² Kunming University of Science and Technology (China) A facile metasurface approach is demonstrated to generate and manipulate ring vortex beams. The generation of ring vortex beams is realized by combining the functionalities of an axicon, a vortex beam generator, and a beam deflector onto a single reflective metasurface. The superposition of multiple ring vortex beams is used to detect the polarization state of incident light. The unique property of the developed device renders this technology very attractive for
polarization detection and quantum science-related applications. # P24: Designing robust flat-optics for flexible substrates and their performance under stress ^{online} Fedor Getman, Arturo Burguete Lopez, Qizhou Wang, Maksim Makarenko, Andrea Fratalocchi *KAUST (Saudi Arabia)* We present an inverse design platform that enables the fast design of flexible flat-optics thatmaintain high performance under deformations and are tolerant to fabrication errors. Theplatform is based on evolutionary large-scale optimizers, and neural network predictors. Wedemonstrate both the of the design methods and the experimental performance of fabricateddevices, over a 200nm bandwidth in the visible under mechanical deformations # P25: Optical Filtering Properties in Quasi Periodic and Hybrid Periodic/Quasi Periodic One-Dimensional Photonic Crystals online #### **Mohammad Alanzi** King Abdulaziz City for Science and Technology (Saudi Arabia) All dielectric Fibonacci quasi-periodic and hybrid periodic/quasi periodic photonic crystal has been numerically studied. Omnidirectional reflection properties in the infrared region is compared and discussed. Our results show the promise of using hybrid photonic hetero structure for extending the omnidirectional reflection, which has various application in photovoltaic and sensing devices. ### P26: Propagation of pulsed and continuous waves in a time-varying string online ### Ruben Pico Vila, Javier Redondo, Victor Jose Sanchez Morcillo Universitat Politecnica d Valencia (Spain) Time-varying elastic media show unusual wave propagation properties. A simple but generic 1D system is a taut string where wave propagation velocity is modulated in time by changing one of its constitutive parameters. It is shown that a wave propagating in such a spatially uniform medium is split into two scattered waves when an abrupt temporal interface is induced by an external action. Scattering coefficients are formulated in a transfer matrix scheme to predict the propagation of the waves. # P27: Low frequency acoustic beam focusing using an acoustic metamaterial lens with cross-shape units ^{online} #### Feng Qin, Bruce W. Drinkwater, Jie Zhang University of Bristol (United Kingdom) We propose an acoustic metamaterial lens to focus acoustic beams at 40 kHz. The lens is built by cross-shape unit cells with different refractive indices that were calculated by retrieval method. The layout of unit cells is based on the time delay of a requested acoustic beam focusing. The lens performance was assessed by its achieved focusing ability and energy transmission rate. This lens shows the potential application for defect detection with the benefit of consistent and efficient acoustic coupling. # P28: Silicon Nitride-based dielectric waveguides integrating monolayer graphene for near-infrared wavelength tuning online Artem Vorobev¹, G. V. Bianco¹, G. Bruno¹, A. D'Orazio¹, L. O'Faolain², M. Grande¹ ¹ Polytechnic University of Bari (Italy), ² Munster Technological University (Ireland) The combination of Silicon Nitride-based waveguides integrating monolayer graphene could be exploited for wavelength and phase shift in tunable devices. In this paper, we investigate three different configurations operating in the NIR. The numerical results show the possibility to obtain wavelength shift in the order of few hundred to several thousand picometers for a waveguide length of 50 μ m. These results could pave the way for the realization of tunable resonant structures and tunable lasers based on external cavity. ### P29: Meta-Programmable Analog Differentiation online Jerôme Sol¹, David R. Smith², Philipp del Hougne³ ¹ INSA Rennes (France), ² Duke University (USA), ³ Universite de Rennes (France) We experimentally achieve wave-based analog differentiation with unprecedented precision and program-mability. Instead of designing a few-mode structure with few tunable degrees of freedom (DOFs), we take a random overmoded scattering system as starting point and tune it in situ to the desired response with hundreds of tunable DOFs. Thereby, we simultaneously overcome two vexing weaknesses of wave processors: their vulnerability (fabrication inaccuracies, environmental perturbations) and their lack of in-situ programma-bility. We experimentally demonstrate programmable parallelized high-fidelity differentiation and higher-order differentiation. # P30: Comparison of Effectiveness of Shielding Periodic Metal Structures on Dielectric Substrate ^{online} Valdeth S. Sousa, L. K. Kretly, G. M. B. Silva, M. G. Villalva University of Campinas (Brazil) The study was to verify the parameters and possible adaptation for application of structures for EMC VEHI-CULAR. The study compared the shielding effectiveness of a metallic panel with holes and a metallic panel with dots, both on a dielectric substrate in a frequency range 0 - 1.5 GHz. ### P31: Observation and Modelling of Thermo-Optically Induced Transparency online Simone ladanza¹, Marco Clementi², Sebastian A. Schulz³, Giulia Urbinati⁴, Changyu Hu⁵, Dario Gerace⁴, Matteo Galli⁴, Liam O'Faolain¹ ¹Munster Technological University (Ireland), ²EPFL (Switzerland), ³University of St. Andrews (United Kingdom), ⁴University of Pavia (Italy), ⁵University College Cork (Ireland) The thermo-optic dynamics of optically pumped on-chip integrated microcavities is being investigated and modelled and a novel form of induced transparency observed. The presented phenomenon provides a group delay as high as $0.5 \mu s$ in a silicon-on-insulator (SOI) photonic crystal cavity at room temperature. #### 16:40 - 18:50 — Torremolinos #### Session 1A18 ### Symposium II: New trends in nanophotonics and advanced materials Organized by: Junsuk Rho, Hakjoo Lee and Namkyoo Park Chaired by: Philippe Tassin #### 16:40 : Keynote talk Advances in High-performance Flat optics: from Metalsurfaces to High-volume Manufacturing for Consumer electronics and Communications online #### **Federico Capasso** Harvard University (USA) I will present recent major advances in cm scale achromatic RGB metalenses for VR by inverse design and 10 cm metalenses for space optics consisting of 20 billion metatoms. A compact and highly integrated metasurface-based inverse designed mode multiplexer that takes three single-mode fiber inputs and converts them into the first three linearly polarized spatial modes of a few-mode fiber with high fidelity the C-band (1530-1565 nm) of fiber optics will be presented. #### 17:10 : Invited talk Tailoring polarization changes in all-dielectric metasurfaces by using quasi bound states in the continuum Jose Luis Pura¹, Ruhinda Kabonire¹, Diego R. Abujetas², Jose A. Sanchez-Gil¹ ¹ IEM-CSIC (Spain), ² Fribourg University (Switzerland) The possibility of inducing polarization changes in all-dielectric metasurfaces by using quasi bound states in the continuum (quasi-BICs) is explored. A simple square array of dielectric disks is analyzed as a proof of concept. The results reveal that a $\pi/2$ phase shift is induced in the reflected radiation within the narrow bandwidth of a transverse-electric (TE) quasi-BIC state, enabling the conversion of linear to circularly polarized light and vice-versa. #### 17:30: Invited talk #### Templated colloidal assembly of 2D Photonic Architectures Jose Mendoza-Carreño, Ylli Conti, Pau Molet, Leonardo Scarabelli, Agustin Mihi *ICMAB-CSIC (Spain)* Template-assisted self-assembly is a scalable nanofabrication technique in which elastomeric pre-patterned stamps are used to induce long range order from a colloidal dispersion used as ink. Metal colloids or perovskite nanocrystals are used herein to fabricate high quality and large area 2D photonic crystals supporting narrow lattice resonances and chiral metasurfaces in which circularly polarized luminescence is observed. #### 17:50: Invited talk **Metasurfaces to Control Multiple Aspects of Visual Appearance** Adrian Agreda¹, Tong Wu¹, Adrian Hereu², Mona Treguer-Delapierre², Glenna L. Drisko², Kevin Vynck³, Philippe Lalanne¹ ¹Institut d'Optique Graduate School (France), ²Institut de Chimie de la Matiere Condensee de Bordeaux (France), ³Universite Claude Bernard Lyon 1 (France) Metasurfaces have flourished over the last few years thanks to their extraordinary capabilities to manipulate light. In fact, the rich color tuning possibilities offered by metasurfaces have been largely confirmed. In this work, we go beyond purely chromatic properties of metasurfaces and focus on their complete visual appearance. We theoretically model and experimentally demonstrate unusual and novel visual effects by exploiting the large number of degrees of freedom available. 18:10 : Invited talk ### THz charge, spin, and magnon currents in magnetic heterostructures Kyusup Lee, Yi Wang, Hyunsoo Yang National University of Singapore (Singapore) We show a high-performance THz emitter based on ferromagnetic/nonmagnetic heterostructures. By changing the nonmagnetic layer with a 2D material, topological insulator, and Weyl semimetal, the intriguing features of exotic materials, such as THz spin currents and spin-to-charge conversion time scales, can be revealed from emitted THz signals. By inserting an antiferromagnet between the ferromagnet and nonmagnet, magnon currents can be identified from THz emission, and the magnon currents are strong enough to manipulate the state of magnetic memory. 18:30 : Invited talk Spectral flow of a localized elastic mode online Marco Miniaci¹, Florian Allein¹, Raj Kumar Pal² ¹ Université de Lille (France), ² Kansas State University (USA) The introduction of structural defects in otherwise periodic media is well known to grant exceptional space control and localization of waves in various physical fields, including elasticity. We theoretically predict and experimentally demonstrate the spectral flow of a localized mode across a bulk frequency gap by modulating a single structural parameter at any chosen location in the structure. ####
16:40 - 18:40 — Alamos #### Session 1A19 #### Plasmonics and nano-optics Chaired by: Zhaogang Dong # 16:40 : Spatio-spectral electron energy loss spectroscopy as a tool to resolve nearly degenerate plasmon modes in dimer plasmonic antennas Michal Horak, Andrea Konecna, Tomas Sikola, Vlastimil Krapek Brno University of Technology (Czech Republic) Electron energy loss spectroscopy is often utilized to characterize localized surface plasmon modes supported by plasmonic antennas. However, the spectral resolution of this technique is rather mediocre. We address this issue by employing the spectral and spatial distribution of the loss probability simultaneously. We propose several spatio-spectral metrics and demonstrate their ability to resolve nearly degenerate modes supported by a dimer of plasmonic discs. ### 16:55 : Plasmonic response of topological insulator Bi2Se3 Gaurav Pal Singh, Neha Sardana Indian Institute of Technology Ropar (India) Topological insulators (TIs) are new-age materials having an electronic gapless conducting surface and an insulating bulk. TIs can potentially improve the conventional surface plasmon resonance (SPR) sensors. The plasmonic response of TI (Bi2Se3) with varying thickness was studied in sandwich coupling with Au layer and Au gratings. The thickness of the TI was optimized, and the effect of the change in grating width was reported by calculating the sensitivity of the system. # 17:10 : Enhancing free electron nonlinear response of heavily doped semiconductors via surface charge depletion #### Federico De Luca, Cristian Ciraci Istituto Italiano di Tecnologia (Italy) We study surface modulation of the equilibrium charge density of heavily doped semiconductors as a method to control and enhance the free electron nonlinear response of these materials. Using a hydrodynamic perturbative approach, we predict a two order of magnitude increase of free electron third-harmonic generation. # 17:25 : Quality factor enhancement in finite vertically nonsymmetric subwavelength gratings Weronika Glowadzka, Tomasz Czyszanowski Lodz University of Technology (Poland) Infinite subwavelength gratings are known for its infinite quality factor feature. When the structure becomes finite, its Q-factor decreases rapidly. To date, it was shown that high Q-factors are only possible in designs where the refractive index contrast between membrane and substrate is high. In this work we present two different approaches to enhance quality factor of Fano resonance in low refractive index contrast vertically nonsymmetric subwavelength gratings. The calculations are carried out using arsenide-based materials as an example. # 17:40 : Infrared nanoplasmonic properties of hyperdoped embedded Si nanocrystals in the few electrons regime Meiling Zhang¹, Jean-Marie Poumirol¹, Nicolas Chery¹, Clement Majorel¹, Remi Demoulin², Etienne Talbot², Herve Rinnert³, Christian Girard¹, Fuccio Cristiano¹, Peter R. Wiecha¹, Vincent Paillard¹, Arnaud Arbouet¹, Fabrice Gourbilleau², Caroline Bonafos¹ ¹Universite de Toulouse (France), ²Universite de Normandie (France), ³Universite de Lorraine (France) Using Localized Surface Plasmon Resonance (LSPR) as an optical probe we demonstrate the presence of free carriers in phosphorus doped silicon nanocrystals embedded in silica. We demonstrate that LSP resonances can be supported with only about 10 free electrons per nanocrystal, and the appearance of an avoided crossing behavior linked to the hybridization of the LSP and the silica matrix phonon modes. Finally, the scattering time dependence versus carrier density allows us to discriminate different scattering process. ### 17:55 : Plasmonic Optomechanical Switch Irene Castro, Antonio Garcia-Martin, Daniel Ramos CSIC (Spain) In this work we theoretically demonstrate the use of a two-level optomechanical system actuated by plasmon-mediated optical forces as a reconfigurable nanophotonic switch. We have simulated a nanostructured suspended gold membrane allowing the normal excitation of a Surface Plasmon Polariton by patterning an air nanohole array. By placing the membrane in a close proximity of a reflecting substrate, we observe a mode splitting which provides two stable mechanical states accessible by tunning the illuminating wavelength. # 18:10 : Soft Plasmonics: Investigating the surface plasmon effects and nonlocality in planar electrolyte systems #### Preethi Ramesh Narayan, Christin David Friedrich-Schiller-Universitat Jena (Germany) We discuss the surface plasmon activity and nonlocal interactions between the ionic systems and active planar solid interfaces induced by optical excitation, using a multi-fluid model. These plasmonic effects are studied under various ionic system parameters and optical conditions which are highly tunable. #### 18:25: Design and optimization of broadband optical antennas Henna Farheen¹, Lok-Yee Yan², Till Leuteritz², Siqi Qiao², Florian Spreyer¹, Christian Schlickriede¹, Viktor Quiring¹, Christof Eigner¹, Thomas Zentgraf¹, Stefan Linden², Jens Forstner¹, Viktor Myroshnychenko¹ Paderborn University (Germany), ²Universitat Bonn (Germany) We present the numerical and experimental realization of broadband optical traveling-wave antennas made from low-loss dielectric materials, which exhibit highly directive patterns. The high directivity comes from the interplay between two dominant TE- and leaky-modes present in the antenna director. These antennas possess near unity radiation efficiency at the operational wavelength of 780 nm, maintaining a broad bandwidth. We envision that our all-dielectric approach demonstrates a new class of antennas that are excellent candidates for optical-communication and sensing. ### 16:40 - 19:00 — Playamar #### Session 1A20 # Acoustic and elastic phononic crystals, metamaterials and other structured media Organized by: Marco Miniaci, Vicente Romero-Garcia, Vincent Pagneux, Maxime Lanoy, Jean-Philippe Groby and Noe Jimenez Chaired by: Noe Jimenez and Marco Miniaci #### 16:40 : Invited talk On the application of periodic electrical boundary conditions as a means of achieving tunable RF SAW devices Ricardo Alcorta Galván, Charles Croënne, Bertrand Dubus, Brigitte Loiseaux, Etienne Eustache, Matthieu Bertrand, Anne Christine Hladky-Hennion Universite de Lille (France) A single port SAW resonator is designed, due to its simplicity, a method for extracting the reflection coefficient of its mirrors is developed. Through this method, the mirror response as a function of different periodic electrical boundary conditions is studied and tunable Bragg band gaps as well as bands of high reflection coefficient due to local resonances of the mirror electrodes are shown. #### 17:00 : Invited talk # Asymmetric Elastic Wave Propagation in Spatiotemporally Modulated Nonlinear Granular Phononic Crystal Florian Allein¹, Georgios Theocharis², Nicholas Boechler³ ¹ Universite de Lille (France), ²Le Mans Universite (France), ³ University of California San Diego (USA) We study the propagation of transverse-rotational waves in a granular phononic crystal in which the shear stiffnesses are spatiotemporally modulated by a longitudinal propagating wave. Asymmetric wave propagation is investigated as well as one-way conversion and transmission. The combination of different polarized waves and the potential of strongly nonlinear behavior opens the way for the construction of novel nonlinear mechanical metamaterials. #### 17:20 : Invited talk ### High Quality Resonances in Quasi-Periodic Distributions of Scatterers Marc Marti-Sabate¹, Sebastien Guenneau², Daniel Torrent¹ We present a systematic study of the different modes that can present clusters of scatterers arranged in quasi-periodic distributions of scatterers. Although we focus our study in flexural waves, our approach can be applied to any kind of classical waves. #### 17:40 : Invited talk Coupled-resonator elastic metamaterial: a paradigmatic model for molecular and condensed matter physics Rafael Mendez-Sanchez¹, Diego Cortes-Reyna¹, Angel Martinez-Arguello¹, Enrique Flores-Olmedo², Gabriela Baez² ¹Universidad Nacional Autonoma de Mexico (Mexico), ²Universidad Autonoma Metropolitana-Azcapotzalco (Mexico) A coupled-resonator elastic metamaterial (CREM) that satisfies the tight-binding model, is presented. The CREM is composed of resonators connected through finite phononic crystals (FPC). When a normal-mode frequency of the resonator falls within the gap of the FPC the normal-mode wave amplitude localizes in the resonators since the connectors act as quasi-one-dimensional elastic Bragg reflectors. When several resonators are connected through FPCs, the waves of the resonators couple weakly to each other, and the elastic-waves tight-binding regime emerges. 18:00: Invited talk ¹ Universitat Jaume I (Spain), ² Imperial College (United Kingdom) ### Wave propagation in elastic quasicrystals Matheus I. N. Rosa¹, Danilo Beli², Carlos de Marqui Jr², Massimo Ruzzene¹ ¹ University of Colorado Boulder (USA), ² University of Sao Paulo (Brazil) In this talk, we present numerical and experimental investigations on the wave propagation properties of elastic quasicrystals. First, we illustrate directional wave behavior, i.e. beaming and diffraction, along high-order rotational symmetries of quasicrystalline elastic metamaterial plates. These structures are obtained by growing pillars on an elastic plate following a particular rotational symmetry arrangement, such as 8-fold and 10-fold rotational symmetries, as enforced by a design procedure in reciprocal space. 18:20 : Invited talk Experimental demonstration of nonreciprocal propagation in a piezoelectric phononic crystal with spatio-temporal modulation of electrical conditions Sarah Tessier, C. Croënne, F. Allein, J. Vasseur, B. Dubus Universite de Lille (France) This work concerns the experimental study of the propagation of elastic waves in a piezoelectric phononic crystal made of several identical piezoelectric
elements separated by thin electrodes. We analyze the effect of spatio-temporal modulation of electrical conditions on wave propagation. The experimental results show the presence of directional band gaps on the dispersion curves for certain modulation speeds. 18:40: Invited talk On the impact of air in double-leaf panels with structural metamaterial cores ^{online} Vanessa Cool, Claus Claeys, Lucas Van Belle, Wim Desmet, Elke Deckers *KU Leuven (Belgium)* In the search for lightweight and compact partitions with both favorable vibro-acoustic characteristics and a load-carrying capacity, an increasing trend towards double-leaf panels with structural metamaterial cores is emerging. Generally, these partitions are designed and analyzed by only considering the attenuation along the structural path, disregarding the influence of the air inside. This work investigates the impact of the air in these partitions on their performance, which reveals that the acoustic path needs to be included during the design phase. ### 16:40 - 19:00 — Bajondillo ### **Session 1A21** Symposium I: Hybrid Nanomaterials and Metastructures for Photonics, Sensing and Energy Organized by: Jerome Plain, Alexander Govorov, Davy Gerard and Pedro Hernandez Martinez Chaired by: Davy Gerard 16:40: Invited talk **Plasmonic and Photonic Catalytic Metasurfaces** **Emiliano Cortes** Ludwig-Maximilians-Universitat Munchen (Germany) For millions of years, nature has used the sun as its primary energy source to split water and produce energy-rich chemical compounds from CO2. Inspired on this, artificial photosynthesis gained momentum in the last decades aiming to mimic this process. However, we are still looking for ideas and materials in order to transduce photons-into-chemical energy. Here, I will show our recent attempts in using plasmonic/photonic structures - from single particles to metasurfaces - in order to optimize the photons-to-molecules cycle. 17:00 : Invited talk Near-field excitation and manipulation: from Janus multipoles to near-field coldspots Michela Picardi, Sinuhe Perea-Puente, Alexander Vernon, Francisco Jose Rodriguez-Fortuno King's College London (United Kingdom) Polarisation properties of near-fields can be exploited to achieve near-field directionality from subwavelength sources: recent works explored dipolar sources like circular and Janus dipoles, later extended to circular multipoles. In this work we generalize the concept to combinations of electric and magnetic dipoles and quadrupoles, such as Janus multipoles, and near-field directionality in lossy waveguides. We also propose the use of polarized illumination of nanoparticles to create and manipulate near-field coldspots, whose topology and surrounding polarisation properties we explore. #### 17:20: Invited talk ### Anisotropic multicomponent quantum nanoheterostructures Xue Bai, Finn Purcell-Milton, Yurii Gun'ko Trinity College Dublin (Ireland) Copper based ternary and quaternary quantum nanostructures have attracted huge attention over recent years due to their potential applications in photonics, photovoltaics, imaging, sensing and other areas. However, anisotropic nanoheterostructures of this type are still poorly explored to date, despite numerous predictions of the distinctive optical properties of these fluorescent nanostructures. Here, we present a range of new fluorescent multicomponent Cu-In-(Zn)-S/ZnS (CIZS/ZnS/ZnS) nanoheterostructures with unique anisotropic morphologies (e.g. tetrahedrons, nanonails and ice-cream cone"like") and interesting photonic properties. #### 17:40 : Invited talk ### Thermoplasmonic approach for preparing metal-semiconductor nanocomposites Laurent Noel¹, Ching-Fu Lin², Amine Khitous¹, Celine Molinaro¹, Hsiao-Wen Zan², Olivier Soppera¹ Universite de Haute-Alsace (France), ² National Yang Ming Chiao Tung University (Taiwan) The plasmonic effect can be used to trigger chemical reactions. In specific conditions, thermoplasmonic effect can obtained resulting in a local heating of the material, sometimes very high for certain wavelengths of the excitation source corresponding to the resonance conditions of the material. Metal-semiconductor (ZnO, TiO2, IZO) nanocomposite structures were prepared by thermoplasmonic effect to prepare photodetector for visible to near-infrared range. #### 18:00 : Invited talk #### Multimodal Plasmonic Hybrids: Efficient and Selective Photocatalysts ### Miguel Comesana-Hermo Universite Paris Cite (France) Plasmonic nanoparticles can be used as photosensitizers in order to expand the photocatalytic activityof large bandgap semiconductors into a broader electromagnetic spectrum. Nevertheless, the elucidation of themechanisms behind such interaction is complex, given the possible coexistence of multiple photoactivationchannels (generation of hot charge carriers, enhancement of the local electromagnetic field and photothermalgeneration of heat). In this presentation we will discuss the fundamental aspects involved in plasmonic photosensitization #### 18:20 : Invited talk #### DNA origami for plasmonic and photonic applications Gregor Posnjak¹, Mihir Dass¹, Xin Yin¹, Alexander Govorov², Tim Liedl¹ ¹Ludwig-Maximilian-Universitat Munchen (Germany), ²Ohio University (USA) DNA origami is a unique programmable material which enables precise assembly on the nanoscale. It can be combined with nanoparticles or molecules to form functional structures which interact with light in different ways. In the Liedl lab at LMU Munich we have designed chiral structures, plasmonic hot spots, self-assembled crystals and sensors based on DNA origami. I will review our recent work and present some of the current projects. ### 18:40: Invited talk Structural colors with unconventional materials online P. Lyu, T. Gong, M. A. Duncan, Marina Leite UC Davis (USA) We present two classes of materials for structural colors. The first is based on Mg and MgO, both are earth-abundant and biodegradable. Vivid hues are attained by changing the dielectric spacer thickness. All shades can disappear on demand by etching both materials in water. The second system is based on refractory metals. We fabricate the primary colors for printing and analyze in detail how refractory metals and their oxides enable pixels resistant to 600 oC, while maintaining angle-insensitive optical response. #### 16:40 - 17:20 — Carihuela #### **Session 1A22** #### **Functional metamaterials** Organized by: Tatjana Gric, Edik Rafailov and Maria Farsari Chaired by: Tatjana Gric #### 16:40 : Invited talk Statistical Analysis of NIR to Visible Upconversion Luminescence from Single NaYF4:Yb3+,Tm3+ Nanoparticles on Plasmonic Nanowire Composites K. Y. Chiok¹, A. Haghizadeh¹, A. Baride², S. May², Steve Smith¹ ¹SD Mines (USA), ²University of South Dakota (USA) We use single particle spectroscopic imaging to assess the plasmonic enhancement of NIR-to-visible upconversion luminescence (UCL) from single β -NaYF4:Yb3+:Tm3+ upconverting nanoparticles (UCNPs) supported on substrates consisting of random arrangements of Ag nanowires (NWCs) and Au nano-cavity arrays. By examining the effects at the single particle level, and accumulating a statistical sampling of single particle emitters, we obtain a statistical description of UCL emission enhancement and compare energy and time resolved emission to FDTD simulations and nonlinear coupled rate equation analysis. #### 17:00 : Invited talk # Tunable metasurface with gap and collective surface plasmon modes Anatoliy Pinchuk¹, Oleg Yeshchenko² ¹University of Colorado Colorado Springs (USA), ²National University of Kyiv (Ukraine) Tunable metasurface made of a monolayer of gold nanoparticles on a glass substrate in close proximity to a thin aluminum film is studied numerically and experimentally. We observe three angle and polarization dependent peaks in the extinction spectra of the metasurface. By using a FDTD method we confirm the position of both the collective surface plasmon and the gap modes. Changing the polarization of the incident light leads to a shift of the wavelength of the peaks. #### 17:25 - 18:55 — Carihuela #### **Session 1A23** ### Metasurfaces and flat optics, FSS and HIS Chaired by: Xianzhong Chen ### 17:25 : Mass-produced optical metasurfaces for time-of-flight devices James Downing¹, Enrico Carnemolla¹, Matteo Fissore¹, Habib Mohamad¹, Lucie Dilhan¹, John Graff², Pawel Latawiec² ¹STMicroelectronics (United Kingdom), ²Metalenz (USA) We demonstrate the performance of our NIR compatible optical metasurface design and fabrication on a dedicated 300mm process in mass production. This technology has been developed to support our time-of-flight product line, providing performant optical components for beam-shaping and imaging functions. The technology is functionally flexible and can realise any arbitrary spatial phase modulation requirement within 1 wave. In high-volume manufacture our optics achieve zeroth order average <0.2 % and transmission >80 % measured at wafer level. #### 17:40 : Polarization Conversion Metalens for millimeter waves Maria Ruiz-Fernández-de-Arcaya¹, Cristina Yepes¹, Alexia Moreno-Peñarrubia¹, Jorge Teniente¹, Sergei Kuznetsov², Bakhtiyar Orazbayev³, Miguel Beruete¹ ¹Public University of Navarre (Spain), ²Novosibirsk State University (Russia), ³Nazarbayev University (Kazakhstan) This paper presents the theoretical and simulation results of a system formed by a thin metalens and a horn antenna with right-handed circular polarization (RHCP), working in the millimeter-wave band at 87 GHz. The metalens unit cells are composed of two H-shaped aluminum elements printed on both faces of a thin polypropylene slab, and combined thereafter with a horn antenna to test its properties. The structure presents an excellent behavior at the working frequency. # 17:55: Thin-film PZT MEMS for tunable metasurfaces: Offering large displacements at low voltages Christopher Dirdal, Paul Conrad Vaagen Thrane, Firehun Tsige Dullo,
Jo Gjessing, Anand Summanwar. Jon Tschudi SINTEF Smart Sensors and Microsystems (Norway) The metasurface research field is currently investigating many modalities of tunability which will help to unlock the full potential of the unprecedented field control offered by the technology platform. We demonstrate the use of thin-film piezoelectric PZT for twice the state-of-the-art out-of-plane displacement at a quarter of the required voltage: 7.2μ m piston movement under a voltage application of 23V. Using this functionality, we demonstrate a tunable dielectric metasurface lens with a focal shift of 250μ m at a wavelength of 1.55μ m. # 18:10 : Metasurface filter design using quasi-normal mode theory Mohammed Benzaouia, John D. Joannopoulos, Steven G. Johnson, Aristeidis Karalis Massachusetts Institute of Technology (USA) For the scattering matrix of a lossless reciprocal multi-resonance system, we develop a phenomenological quasi-normal mode theory (QNMT), whose applicability supersedes coupled mode theory (CMT), by directly using the system true modes instead of requiring identification of the üncoupled modes. For the QNMT parameters, we then derive analytical criteria, satisfied for most common two-port scattering spectra. We use them to design microwave metasurfaces implementing accurate standard (Chebyshev, elliptic) filters configured for polarization-preserving transmission, reflective polarization conversion, and diffractive .anomalous reflection. # 18:25 : Scalable Fano-Resonant Metasurface Hybrids for Tunable Structural Color ^{online} Mark Griep¹, Ben Cerjan², Sravya Nuguri³, Burak Gerislioglu², Daniel Shreiber¹, Stephan Link², Peter Nordlander², James Watkins³, Naomi Halas² ¹DEVCOM ARL (USA), ²Rice University (USA), ³UMass Amherst (USA) In this work we demonstrate how the combination of a plasmonic Fano-resonance metasurface and Bragg reflector substrates can contribute to the generation of narrowband visible colors. Active tuning of reflected colors is achieved by stretching the array in the x- and y- directions and the reflector in z- shifts colorimetric response of both elements. The combination of these two types of photonic structures allows for substantially increased flexibility in design and color-space tuning. # 18:40 : Optical Metasurfaces for Generating Composite Optical Vortex Beams ^{online} Hammad Ahmed¹, Yang Ming², Yuttana Intaravanne¹, Muhammad Afnan Ansari¹, Xianzhong Chen¹ 1 Heriot-Watt University (United Kingdom), ² Changshu Institute of Technology (China) Composite optical vortex beams (COVBs) have attracted considerable interest owing to their peculiar optical features and extra degree of freedom for carrying information. Optical metasurfaces have shown much promise for generating these COVBs due to their unprecedented capability in the arbitrary control of light's amplitude, phase and polarization at a subwavelength scale. Recently, we have proposed and experimentally demonstrated a facile metasurface approach to generating COVBs based on the superposition of multiple circularly polarized vortex beams with different topological charges. 16:40 - 19:00 — Montemar #### Session 1A24 ### Symposium II: New trends in nanophotonics and advanced materials Organized by: Junsuk Rho, Hakjoo Lee and Namkyoo Park Chaired by: Alberto G. Curto 16:40: Invited talk Multiphysics analysis of phase change materials and hydrogels based composite photonic components online #### **Dmitry Chigrin** WTH Aachen University (Germany) The growing demand on reconfigurability in neuromorphic computing, integrated photonics and microwave photonics is attracting increasing attention towards design of active photonic components. By changing a phase of the phase change material or a state of the hydrogel near a functional photonics building block, it is possible to realize (re)programmable components and materials. Here, we report on our recent developments of a multiphysics description of complex composite active photonic components incorporating phase change materials and hydrogels as their building blocks. 17:00 : Invited talk ### Probing leaky and guided exciton-polaritons in resonant planar structures online #### **Anton Samusev** ITMO University (Russia) Planar periodic structures such as metasurfaces and photonic crystal slabs strongly coupled to an exciton resonance attract particular attention since they provide vast opportunities for on-demand engineering of the dispersion of guided and leaky polariton resonances. In this regard, experimental characterization and control of the over modes' dispersion is of great importance. In this talk, I will show both what new physical phenomena appear in such systems and how these effects can be directly observed in the experiment. 17:20: Invited talk ### Nonlinear Exciton-Polaritons in Chiral Microcavities online #### Sergei Tikhodeev Lomonosov Moscow State University (Russia) In this talk the exciton-polariton multistabitity in chiral microcavity under resonant pump will be demonstrated. It appears that even at linearly polarized pump one can expect sharp transitions from linear to circular-polarized photoluminescence in such chiral modulated microcavities. 17:40: Invited talk ### Electrochromic WO3 for dynamic and functional photonics online #### Eric Hopmann, Abdulhakem Y. Elezzabi University of Alberta (Canada) Many materials have been investigated to conceptualize and introduce functionality and dynamic responses to photonic devices. Materials that react to an outside stimulus, for instance heat, an electric field or optical pulse, are highly sought after for tunable on-chip telecommunication and computing applications. Electrochromic oxides have just gained attention and created a new field of active plasmonic and photonic applications. Here, we delve into the opportunities, electrochromic WO3 provides for integrated, functional photonics such as ion sensing and transmission modulation. 18:00: Invited talk # Compact Representations of Terahertz Polarization in Semiconductor Nanoparticles online Z. Hu 1 , Z. Wang 2 , Y. Li 3 , Thomas Wong 2 ¹Keysight Technologies (USA), ²Illinois Institute of Technology (USA), ³Qorvo (USA) Space-charge interactions in semiconductor nanoparticles (SNP) lead to surface plasmon resonance occurring in the terahertz frequency range. Collective response of mobile charges in SNPs and their derivatives can be accounted for by the total induced dipole moment, which has complex relation to the material parameters and the geometry of the nanostructure. Effective field formulation and equivalent circuits are employed to arrive at compact representations to characterize the collective response of SNP and their derivatives. 18:20 : Invited talk # Exciton-plasmon hybridization effects in a system of gold nanostars and J-aggregates ^{online} Yury Rakovich CSIC-UPV/EHU (Spain) Report on the investigation of the interaction between localized and hybridized plasmons in gold nanostars and excitons in J-aggregates with a complex mechanism of hybridization of states. Our findings demonstrate the quality performance of the formed plexitonic system with multiple hybridization channels in terms of the parameters of strong-coupling such as Rabi splitting (230 meV), coupling-strength-to-transition energy ratio (0.07) and cooperativity (2.03). The results of time-resolved experiments elucidate the observed enhanced spontaneous emission rate with regard to the Purcell effect. 18:40 : Invited talk # Non-Markovian Effects for Hybrid Plasmonic Systems in Strong Coupling Regime ^{online} Tigran V. Shahbazyan Jackson State University (USA) We study the role of non-Markovian effects in the emission spectrum of a quantum emitter resonantly, coupled to a surface plasmon as the system transitions to strong coupling regime. We use a quantum approach to, interacting plasmons that incorporates the effects of host material's optical dispersion and losses in the coupling, parameters to show that the non-Markovian effects strongly affect the emission spectra in the strong coupling, regime by shifting the spectral weight towards the lower frequency polaritonic band. ## 16:40 - 18:20 — Litoral #### Session 1A25 # **Challenges of Phase Change Materials and Plasmonics for Nanophotonics** Organized by: Maria Losurdo, Yael Gutierrez, Kurt Hingerl, Christoph Cobet, Mircea Modreanu and Fernando Moreno Chaired by: Kurt Hingerl and Pablo Albella 16:40 : Invited talk # Controlling electric and magnetic resonances of individual meta-atoms with Phase-Change Materials Andreas Hessler, Thomas Taubner RWTH Aachen University (Germany) Phase-Change Materials (PCMs) enable local addressing of individual meta-atoms in metallic and low-loss dielectric metasurfaces. Here, we focus on tuning of electric dipole (ED) and magnetic dipole (MD) resonances. We introduce the non-volatile PCM In3SbTe2 (IST) whose optical properties change from dielectric to metallic upon crystallization in the whole infrared spectral range. With multiple optical writing steps, we demonstrate reconfiguration of complex antenna shapes like split ring resonators and spectrally tune their MD resonances, while keeping their ED resonances fixed. 17:00 : Invited talk # Nonvolatile Phase-change Materials for Reconfigurable Nanophotonic Devices Sajjad Abdollahramezani, Ali Adibi Georgia Institute of Technology (USA) The large variation of the optical properties of nonvolatile phase-change materials enables new classes of reconfigurable nanophotonic and metaphotonic devices with subwavelength feature sizes. This talk is dedicated to demonstration of hybrid material and device platforms that enable such reconfigurable devices. The fundamental properties of such devices and their ability for dynamic wavefront engineering as a major functionality for enabling state-of-the-art applications like switching, structural color, and ranging will be discussed. 17:20 : Invited talk Extraordinarily transparent compact metallic
metamaterials online Vincenzo Giannini CSIC (Spain) Metals are highly opaque, yet we show numerically and experimentally that densely packed arrays ofmetallic nanoparticles can be more transparent to infrared radiation than dielectrics such as germanium, even for arrays that are over $75\,\%$ metal by volume. Despite strong interactions between the metallicparticles, these arrays form effective dielectrics that are virtually dispersion-free, making possible thedesign of optical components that are achromatic over ultra-broadband ranges of wavelengths from afew microns up to millimetres or more. 17:40 : Invited talk Neural network assisted design of scattering properties in plasmonic nanostructures ^{online} Sergio Gutierrez Rodrigo CSIC-Universidad de Zaragoza (Spain) We demonstrate the use of neural networks (NN) to improve the design of plasmonic nanostructures (PN). The scattering properties of a PN calculated by a slow numerical method is subrogated by a trained NN. The NN results are almost indistinguishable from those calculated with the numerical solver, but up to 106 times faster. We illustrate the capabilities of this approach by optimizing infrared light absorption of a Transition Edge Sensor, which could be bring interesting applications for single photon detection. 18:00: Invited talk Tuning phases in topological materials: fundamental aspects and application to nanophotonics online Johann Toudert¹, Rosalia Serna², Jan Siegel² ¹ENSEMBLE3 (Poland), ²IO-CSIC (Spain) Topological materials, such as semi-metals and topological insulators, display outstanding electronic band structure and optical properties, which can be tuned by adjusting the material's composition and structure. This makes them great candidates for applications in nanophotonics. Herein, after introducing their specific electronic structure and optical properties, we explain how they enable designing nanophotonic devices beyond the state of the art. We discuss how to harness crystal phase tuning in such materials for switchable nanophotonic solutions. #### 16:40 - 18:40 — Manantiales #### Session 1A26 Symposium IV: Chirality, magnetism, and magnetoelectricity: Separate phenomena and joint effects in metamaterial structures Organized by: Eugene Kamenetskii Chaired by: Eugene Kamenetskii 16:40: Invited talk Three-dimensional antiferromagnetic architectures Oleksandr V. Pylypovskyi Helmholtz-Zentrum Dresden-Rossendorf (Germany) Emergent geometry-driven responses in curvilinear antiferromagnets offer new possibilities to tailor chiral and anisotropic properties of the ground state and non-collinear textures. This includes a possibility to tailor weak ferromagnetism and Dzyaloshinskii-Moriya interaction by means of selection of sample's shape. 17:00: Invited talk Flat bands in one-dimensional chiral magnonic crystals Silvia Tacchi¹, Jorge Flores-Farias², Daniela Petti³, Felipe Brevis¹, Andrea Cattoni⁴, Rodolfo Gallardo², Edoardo Albisetti³, Giovanni Carlotti¹, Pedro Landeros² Spin waves represent the collective excitations of the magnetization within a magnetic material, providing characteristic dispersion curves that can be manipulated by design and external stimuli. Spin waves exhibit strongly localized flat bands in arrays of magnetic nanowires and quantum spin systems, which is demonstrated experimentally and theoretically for a chiral magnonic crystal. It is further revealed that magnon modes are detectable only in one direction, allowing for unidirectional steering of spin waves. 17:20 : Invited talk ### Optical Chirality Enhancement through Scalable Nanoantenna Designs online ### **Bjoern Reinhard** Boston University (USA) Rationally designed nanoantennas can enhance optical chirality density and intensify light-matter interactions. It remains, however, challenging to generate resonant structures in the ultraviolet (UV) spectral range where important molecular absorptions lie. This presentation summarizes our recent efforts to engineer strong near-field chirality in the UV through scalable nanoantennas. 17:40 : Invited talk ### Waveguides for chiral quantum optics online #### Nir Rotenberg Queen's University (Canada) We report on the functionality of different photonic crystal waveguides as quantum chiral light-matter interfaces. In particular, we motivate the different metrics by which such an interface can be measured and then systematically study the performance of the different structures, including photonic crystal waveguides with broken symmetries or topological natures. Finally, we consider the connection of these metrics to quantum devices that rely on chiral light-matter interactions. 18:00 : Invited talk ## Mode attraction and exceptional points in periodically driven systems online #### Igor Proskurin, Jephthah Iyaro, Robert Stamps University of Manitoba (Canada) We discuss how mode-attraction picture of hybridization between energy levels of a periodically driven system can appear for linear excitations around dynamics stationary states. We develop a general formalism based on a master equation for open systems and provide an example in the context of cavity magnonics, where we show that magnetic excitations in systems driven far from the equilibrium may show level attraction with cavity photons. 18:20: Invited talk ### Spintronic THz emitters for the generation of structured electromagnetic pulses online #### Dominik Schulz, Schwager Benjamin, Jamal Berakdar Martin-Luther University (Germany) Spin current buildup and decay in magnetically active structures (spintronic emitters) can lead to coherent THz radiation. In this work we demonstrate via numerical micromagnetic/electromagnetic simulations, that metastructures of spintronic THz emitters are capable of molding the vectorial distribution and the phase of the emitted THz fields. The simulations evidence the generation of THz fields with tunable magnetic, magnetoelectric or chiral properties by appropriate material engineering. ¹ Università di Perugia (Italy), ² Universidad Tecnica Federico Santa Maria (Chile), ³ Politecnico di Milano (Italy), ⁴ Universite Paris-Saclay (France) # Wednesday 20th July, 2022 08:30 - 09:40 — Torremolinos #### **Session 2A1** #### Plenary Session II Chaired by: Jeremy Baumberg 08:30 : Plenary talk **Advancing Photonic Design and Quantum Circuitry with Machine Learning** Alexandra Boltasseva Purdue University (USA) In this talk, we discuss photonic design approaches and emerging material platforms for showcasing machine-learning-assisted topology optimization for optical metasurface designs with applications in thermophotovoltaics, reflective optics, and lightsail technology. We demonstrate the effectiveness of autoencoders for compressing the vast design space of metasurfaces into a smaller search space. By employing global optimization via adjoint methods or quantum annealing, one can find the optimal metasurface designs within the smaller space constructed by the autoencoder. The quantum-assisted machine learning framework, named bVAE-QUBO, presented in this work is the first demonstration of a generic machine learning framework that compresses an arbitrary continuous optimization problem into an Ising-model formalism for quantum sampling. 09:05 : Plenary talk Picophotonics online Nikolay Zheludev University of Southampton (United Kingdom) Optical imaging and metrology of nanostructures exhibiting Brownian motion is possible with resolution beyond thermal fluctuations and speed to resolve their dynamics. This opens the case for picophotonics (atomic scale photonics), the science of interactions of picometer-scale objects and events with light. #### **Coffee Break** **Session 2P1** Poster session III 9:40 - 10:20 P1: Harvesting of infrared solar energy by thermoplasmonic nanoantenna for enhanced photovoltaicthermoelectric systems Sebastien Hanauer¹, Ines Massiot¹, Adnen Mlayah¹, Franck Carcenac¹, Jean-Baptiste Doucet¹, Emmanuelle Daran¹, Ihar Faniayeu², Alexander Dmitriev² ¹LAAS-CNRS (France), ²University of Gothenburg (Sweden) Our work aims at using thermoplasmonic nanoantennas to create a photothermal interface able to effectively absorb infrared radiation from the sun and generate heat. This interface could then be integrated to increase the efficiency of hybrid photovoltaic-thermoelectric systems. Numerical simulations were used to identify an optimal design by studying the impact of the material, geometry and dimensions on the optical and thermal properties of the nanoantenna. First demonstrators of nanostructured photothermal interfaces were then fabricated and characterized. P2: Single-element gas sensor based on high-contrast grating VCSEL with Fano effect Magdalena Marciniak, Weronika Glowadzka, lukasz Piskorski, Tomasz Czyszanowski Lodz University of Technology (Poland) We propose a new design for a single-element gas detector, based on a VCSEL with high contrast grating (HCG) as top mirror. HCG supports Fano resonance that is characterised by a sharp variation in the power reflectance spectrum of mirror and enables high sensitivity to the modification of the surroundings. The presence of gas in the proximity of the mirror deteriorates the Fano resonance and reduces quality factor of the VCSEL which affects its threshold condition and modifies electrical characteristics. # P3: Fine tuning the optical properties of single Au nanoparticles by plasmon-driven growth in closed-loop control Luciana P. Martinez¹, Julian Gargiulo², Mariano Barella¹, Ianina L. Violi¹, Fernando D. Stefani¹ Instituto de Nanosistemas (INS) (Argentina), ²Ludwig Maximilians Universitat (Germany) We present the control of plasmon-driven growth of Au nanoparticles by live monitoring their photoluminescence emission in a closed-loop. We find that the final emission maximum of single nanoparticles can be tuned with a precision of 2-3 nm, and that the tuning is also reflected in their scattering maximum. In comparison to controlling the growth by irradiation time
and/or reaction conditions, the closed-loop control delivers superior reproducibility and a 3-to-4-fold higher precision in the final properties of the nanoparticles. # P4: Generation of optical vortex by plasmonic metalens for beam shaping Chun Hui Wei, Chin Kai Chang National Cheng Kung University (Taiwan) Metalens which consist of two concentric elliptical nanohole arrays in silver film are proposed to generate an optical vortex for beam shaping by incident light with circular polarization. The generated optical filed from metalens can be altered by rotation of elliptical nanohole. The metalens will generate a tiny spot with a favorable depth of focus as major axis of elliptical nanohole in the inner concentric array is perpendicular to the major axis of elliptical nanohole in the outer concentric array. # P5: Optimization of the cryogenic etching process for metalenses development Angela Baracu¹, Andrei Avram¹, Adrian Dinescu¹, Oana Rasoga¹, Paul Thrane², Firehun Tsige Dullo², Christopher Dirdal² ¹National Institute for Research and Development in Microtechnologies-IMT Bucharest (Romania), ²SINTEF Microsystems and Nanotechnology (Norway) Metasurfaces are promising alternative to bulky, heavy and expensive optical components. High aspect ratio structures can be obtained by planar silicon processing techniques such as EBL and DRIE. This paper presents the optimization of the cryogenic etching process for metalenses development. We obtained silicon nanopillars arrays (metalenses) with perfect vertical profile of nanopillars and smooth sidewalls. The developed structures were manufactured on 4-inches silicon wafers, therefore they can be directly used as metalenses or as master wafers for UV-NIL processing. # P6: Different approaches of UV-Nanoimprint Lithography in order to reach 30 nm residual layer for IR metasurface lenses fabricated on silicon substrates Oana Rasoga¹, A. Obendorfer², Adrian Dinescu³, Christopher Andrew Dirdal⁴, Irina Zgura¹, Carmen Breazu¹, Angela Mihaela Baracu³, Andrei Marius Avram³, Paul Conrad Vaagen Thrane⁴, Marcela Socol¹, Anca Stanculescu¹ ¹ National Institute of Materials Physics (Romania), ² EVGroup (Germany), ³ IMT Bucharest (Romania), ⁴ Smart Sensors and Microsystems (Norway) In this study we try to reduce the thickness of the residual layer, specific for the nanoimprint lithography processes, using different resists and UV-NIL machines. The results show that passing from the classical UV-nanoimprint machine with rigid mask to an automated one that uses a flexible backplane, the meta-atoms with height of 1.2 μ m can be reproduced with more accurate fidelity. #### P7: Luneburg lens antenna system in Gap Waveguide technology at 60 GHz Dayan Perez-Quintana¹, Christos Bilitos², Jorge Ruiz-Garcia², David Gonzalez-Ovejero², Miguel Beruete¹ Public University of Navarra (Spain), ² Universite de Rennes (France) In this paper, a flat lens antenna using Gap Waveguide (GW) technology working in the millimeter waves band is designed. The metamaterial lens is fed using a Groove Gap Waveguide (GGW) horn antenna in order to achieve a planar wavefront at broadside. Both devices, metalens and GGW antenna achieve excellent radiation results when combined together. Due to the fully metallic composition, the structure presents more robustness, low loss, and adaptability to a flat surface, apt for millimeter wave application. # P8: Identifying Nanoscale Deformation within Key Plasmonic Materials in Response to Thermal Stress Tiernan McCaughery, R. Bowman Queen's University (United Kingdom) Plasmonic materials have gathered increased attention due to their sub-diffraction limited heat generation. However, the nanoscale deformation which these materials exhibit at elevated temperatures has stopped plasmonic materials from being more widely used for such heat generation within certain applications. This work outlines a method which can indirectly identify nanoscale deformation in plasmonic materials through a toolkit which can easily be fabricated and integrated into CMOS device production as part of wider research investigating thermally stable plasmonic materials. # P9: Design of Plasmonic Materials Using the Real-Space Real-Time TDDFT+U Method Ryan Duddy, Lorenzo Stella, Myrta Gruning Queen's University Belfast (Ireland) Real-space real-time TDDFT+U is proposed as a method of calculating the bulk and thin-film dielectric function of titanium nitride as a potential plasmonic material outside of the commonly used Nobel metals. The linear scaling with system size, mixed boundary conditions and the Hubbard U makes the presented approach computationally feasible for the study of titanium nitride thin films. # P10: Investigation into the Optical and Plasmonic Properties of Titanium Nitride - A promising alternative material to Gold and Silver ### Arthur Lipinski, Achyut Maity, C. Lambert, R. M. Bowman, W. R. Hendren Queen's University Belfast (United Kingdom) This work focuses on investigating the optical and plasmonic properties of titanium nitride (TiN) thin films. These materials offer much better thermal stability than the conventional plasmonic materials such as gold (Au) and silver (Ag). The optical properties of the thin plasmonic films are determined using Spectroscopic Ellipsometry (SE) and plasmonic measurements are done using Spectral Attenuated Total Reflectance (ATR). # P11: Bringing Ab-Initio Design Into the Lab: Temperature Dependence of Plasmonic Response Daniel Murphy, M. Gruning, L. Stella Queens University Belfast (United Kingdom) The next generation of hard drive technologies for Seagate Technologies, heat assisted magnetic recording (HAMR) relies on the novel combination of plasmonics and material design. The NFT is subjected to intense environmental conditions. This work uses ab-initio techniques to discover new materials for plasmonic applications. Using density functional theory, many-body perturbation theory and including electron-phonon interactions, the effect of temperature the plasmonic performance will be evaluated through a range of temperatures in a fully ab-initio way. # P12: A Design Automation and Simulation Flow for Lens Systems containing Multi-Layer Metasurfaces ### Jan Bos¹, Rob Scarmozzino², Mayank Bahl², Evan Heller², Chenglin Xu² ¹Synopsys Inc. (The Netherlands), ²Synopsys Inc. (USA) A design automation flow has been developed using inverse design techniques adapted for systems containing cascaded metasurfaces with arbitrary configurations of parameterized meta-atoms. The optimized layout is obtained automatically based on specified target functions. The performance of the optimized metalens system can then be validated by different simulation approaches. Several design examples will be presented to demonstrate the capability and usability of this powerful design flow. #### P13: Elastic coiling-up space #### Geunju Jeon, Joo Hwan Oh Ulsan National Institute of Science and Technology (Korea) Coiling-up space is one of the major design methods of acoustic metamaterial that utilizes a labyrinthine structure to achieve high-refractive index. Accordingly, coiling-up space has been widely used in acoustic metamaterials and metasurfaces. Despite its usefulness, however, elastic coiling-up space has never been studied nor realized so far owing to its tensor-based physics. In this study, we theoretically derived the specific conditions that enable the elastic coiling-up space and successfully realized it with experimental supports. # P14: Strong coupling of Bloch surface waves and excitons in ZnO up to 430 K Sebastian Henn, Marius Grundmann, Chris Sturm Uni Leipzig (Germany) We report on observation of Bloch surface wave polaritons (BSWP) in samples consisting of a distributed Bragg reflector with a thin ZnO top layer. By extracting mode energies from polarization-resolved reflectivity measurements, it was possible to detect BSWP up to 430 K. Within a coupled oscillator model corresponding Rabi splittings between 100-192 meV at 294 K are derived. Combining stable polaritons at high temperatures with the low-loss nature of Bloch surface waves is useful for on-chip polaritonic devices. # P15: Single-layer Metasurface and Antenna Arrangement for Wearable Millimeter Wave Radar Applications # Maria Elena de Cos Gomez, Humberto Fernandez alvarez, Fernando Las-Heras Andres Universidad de Oviedo (Spain) Two metasurfaces (MTS) and a series end-fed 1x10 array antenna with a modified Dolph-Chebyshev distribution for improved beam-width are designed for imaging applications in 24.05GHz-24.25GHz. Each single-layer MTS-array provides secondary lobes reduction and FTBR increase while preserves Gain, radiation efficiency, SLL and size. Moreover, operation bandwidth is widened, with Gain and radiation efficiency enhancement. The overall devices' size is 86.8 x 12 x 0.762 mm3. The envisioned application is collision avoidance in aid to visually impaired people at medium-long distance. # P16: Observation of higher-order anapole resonances in single silicon disks driven by integrated waveguides ### Evelyn Diaz Escobar¹, Angela Barreda², Amadeu Griol¹, Alejandro Martinez¹ ¹ Universidad Politecnica de Valencia (Spain), ² Friedrich Schiller University Jena (Germany) Anapole resonances in high-index dielectric nanoparticles arise from the destructive interference between electric (or magnetic) and toroidal dipole moments. So far, the magnetic anapole and the high-order electric anapoles has been solely observed using normal incidence free-space radiation. Here we show that these anapole resonances can also arise in silicon disks being excited by an in-plane oriented waveguide. This work paves the way towards the use of the anapole resonances in on-chip silicon photonics. # P17: Ensembles of PT-dipoles for sound propagation management Helena Arias Casals¹, Ramon Herrero Simon¹, Muriel Botey¹, Kestutis Staliunas² ¹Universitat Politecnica de Catalunya (Spain), ²ICREA (Spain) Among other
possible designs, metamaterials constructed from ensembles of meta-dipoles emerged as a flexible platform to redirect wave fields. We present an acoustic PT-dipole constructed from two Helmholtz resonators with different losses for such acoustic metamaterials. We explore dipole ensembles in a two dimensional space to either concentrate the field in a predefined area or create a silent area. Numerical simulations agree with experimental results and confirm the sound directivity created by the PT-dipole ensembles. # P18: Taming turbulence with non-Hermitian potentials with parabolic and fractal dispersion Salim Benadouda Ivars, Muriel Botey, Ramon Herrero, Kestutis Staliunas Universitat Politecnica de Catalunya (Spain) In this work we take advantage of the asymmetric properties of non-Hermitian physics to control turbulence in nonlinear systems. The proposed mechanism consists in the introduction of a complex modulation in space and time. This allows us to affect the excitation cascade increasing turbulence or reducing it depending on the phase shift of the real part and the imaginary part of the temporal modulation. The method is proved for the Complex Ginzburg Landau Equation and its fractional counterpart. ### P19: Method for accurate transfer of gold nanoparticles on photonics nanostructures Javier Abilio Redolat Querol, Alejandro Jose Martinez Abietar, Elena Pinilla Cienfuegos Universitat Politecnica de Valencia (Spain) Nanoparticle on a mirror (NPoM) cavities offer unrivalled performance in terms of extreme photon confinement in nm-scale gaps. The easiest way to produce them - drop-casting of Nanoparticles (NPs) on a metallic surface covered by a molecular monolayer - fails when the NPoM cavity has to be created on a nanostructure with finite boundaries. Here we report a method to position single metallic NPs on top of photonic nanostructures covered by a self-assembled monolayer with sub-micron resolution. # P20: Chiral magnetic nanocomposites: toward magneto-chiral dichroism Gautier Duroux, Lucas Robin, Reiko Oda, Elizabeth Hillard, Emilie Pouget Universite de Bordeaux (France) Magnetochiral Dichroism (MChD) is the differential absorption of non-polarized light according to the direction of an external magnetic field. As well as being of interest for novel magneto-optical technologies, MChD is a hypothesis for the origin of the homochirality of life. Requiring a system which is simultaneously chiral and magnetic, MChD has only been rarely observed. Here, we use a composite approach where a magnetochiral response is induced in achiral magneto-optical objects by interaction with a chiral silica nanoplatform. #### P21: Diverse interactions of sub-nm spaced plasmonic dimers with 2D materials Priyanka Suri¹, Eklavy Vashist¹, Biswanath Chakraborty², Vinod Menon³, Ambarish Ghosh¹ ¹ Indian Institute of Science (India), ² Indian Institute of Technology (India), ³ City College of New York (USA) Light-matter interaction of two-dimensional materials with metal nanoparticles has been a topic of growing interest owing to several potential applications of the system and the fundamentals involved. Here we explore the possibility of monolayer tungsten diselenide (WSe2) as a strain-induced single-photon emitter by embedding it in a hetero- plasmonic dimer cavity. At the same time, a homo-plasmonic dimer cavity geometry allows us to study the strong light-matter coupling with TMD monolayer and enabling us to realize possible exciton-based devices. ### P22: Tuning surface plasmons in Ag-Cu alloy thin films Bandaru Pravallika, Govind Ummethala, S. R. K Malladi, Shourya Dutta-Gupta Indian Institute of Technology Hyderabad (India) The tunability of propagating surface plasmons in optical range is limited by the available materials supporting strong plasmon resonances. Alloying is an alternative viable method for increasing the materials library available for tuning the plasmon resonance. We show that immiscible Ag-Cu alloy provides multiple degrees of freedom to tune the plasmon resonance by controlling the composition, microstructure, and phase morphology of thin films. The implications of various parameters on the microstructure and the plasmon resonance behavior are investigated in detail. # P23: A clamped embedded seismic metamaterial with broadband ultra-low frequency bandgaps Kamal Kishor, M.S.S.A. Ali, P. Rajagopal Indian Institute of Technology Madras (India) Metamaterials based seismic isolation concepts have evolved in the last decade. However, due to the larger size of resonators, the practical implementation remains a challenge. This research aims to develop clamped metamaterial with realistic resonator size to achieve a low-frequency bandgap. Numerical simulations are used to determine the shape, geometry, and material of the resonator. The proposed brick metamaterial with a resonator size of 2.5 m is shown to achieve a low-frequency bandgap of 0-23 Hz through the local resonance #### P24: Defect Modes in Elastic Waveguide Metamaterial Rod Subrahmanyam Gantasala, Sandeep Kumar S. R., Krishnan Balasubramaniam, Prabhu Rajagopal Institute of Technology Madras (India) This paper investigates the presence of defect modes in an elastic waveguide metamaterial rod. The proposed waveguide metamaterial rod consists of baffles that are periodically arranged along the direction of wave propagation, thereby creating an ultrasonic bandgap. A defect is created by varying the geometrical parameters of the central baffle. A strong energy localization is observed within the bandgap at defect frequency modes. The existence of these defect modes can be varied by altering the size of the defects. # P25: Experimental analysis of conductive ink pattering process for mass production of microwave absorbing metamaterial J. S. Han¹, H. J. Park², J. -Y. Jeong¹, J. Jung², E. -J. Gwak¹, E. -C. Jeon³, T. -J. Je¹, J. H. Shin², D. -S. Choi¹ ¹KIMM (Korea), ²KAIST (Korea), ³University of Ulsan (Korea) Conductive ink patterning process was developed for mass production of ultra-bandwidth microwave absorbing metamaterial. Effects of patterning parameters including blade type, ink viscosity, pattern depth, and blade speed were experimentally characterized to achieve uniformly filled double square loop array. Based on optimized conductive ink patterning process, ink-filled 200mm x 200mm scale microwave absorbing me- tamaterial was fabricated. # P26: Rapid Assembly of Magnetoplasmonic Photonic Arrays for Brilliant, Noniridescent, and Stimuli-Responsive Structural Colors Van Tan Tran¹, Jeonghyo Kim², Sangjin Oh², Ki-Jae Jeong², Jaebeom Lee² ¹Phenikaa University (Vietnam), ²Chungnam National University (Korea) A magnetic field-induced assembly for the rapid formation of scalable, uniform amorphous photonic arrays (APAs) featuring unique structural colors is demonstrated. The synergistic combination of surface plasmonic resonance of the Ag core and broadband light absorption of high refractive index (RI) Fe3O4 shell in hybrid magnetoplasmonic nanoparticles (MagPlas NPs) enables to produce brilliant, noniridescent structural colors with high tunability and responsiveness, which enables the fabrication of highly sensitive and reliable colorimetric sensors for naked-eye detection. # P27: A General Mathematical treatment for the Existence of Symmetric Transverse Magnetic Surface States at the Interface between Air and Semiconductor Photonic Hypercrystal. online Hasnain Haider, Munazza Zulfigar Ali Punjab University (Pakistan) The existence of electromagnetic surface waves at the interface between air and photonic hypercrystal is investigated theoretically by using a general mathematical treatment. Photonic hypercrsytals are shaped by presenting a periodic variation in hyperbolic metamaterial. Surface waves under investigation are found to show negligible losses and are symmetric for positive and negative wave vectors on the surface. The dispersion curves can be tailored by a proper choice of parameters that is elaborated by curve plotting. # P28: Broadband near-zero-index waveguide online Chih-Zong Deng, Eri Igarashi SONY (Japan) Dirac-cone-based zero-index materials (ZIM) consisting of dielectric with air-hole array have been demonstrated to overcome the difficulties in ZIM such as ohmic losses and low integrability. However, Dirac-cone-based ZIMs suffer from narrow bandwidth in the near-zero-index (NZI) region. The proposed broadband NZI wave-guide, which can sustain multiple Dirac-cone resonances, achieves the broadband (105 nm in the telecommunication region) NZI behavior, which is around 2 times larger than that of the reported Dirac-cone-based ZIMs. # P29: Spin-decoupled omnidirectional anomalous refraction based on a single metasurface ^{online} Lili Tang, Zheng-Gao Dong Southeast University (China) Spin-decoupled metasurfaces can only spatially split and deflect beams in coplanar directions not in non-coplanar, limiting further applications. Here, a single metasurface is proposed to experimentally and numerically demonstrate the spin-decoupled omnidirectional anomalous refraction. The results indicate that the three-dimensionally omnidirectional dual-beam refractions are attributed to arbitrary engineering of spin-independent phase gradients along any in-plane orientations of the single metasurface. It is believed that the proposed spin-decoupled omnidirectional metasurfaces are promising candidates for multifunctional applications in compact spin-based nanophotonic systems. # P30: Generation of microwave and THz radiations by surface plasmon waves propagating in lightning and spark discharges ^{online} ### Nikolai Petrov, Galina Petrova Russian Academy of Sciences (Russia) The mechanism of high-frequency (microwave and THz) electromagnetic radiation in lightning and spark discharges is proposed. The existence of fast electromagnetic surface waves propagating along the discharge channel at a speed close to the speed of light in a vacuum is shown. The
possibility of generating radio, microwave, and THz radiation caused by a polarization current pulse and the associated field of a surface wave moving with relativistic velocity along a curved discharge channel is shown. # P31: Fabrication and Characterization of Multifunctional Copper Thin film by Direct Current Sputtering Abdullah Aljishi, Mohammad Hossain King Fahd University of Petroleum and Minerals (Saudi Arabia) Copper (Cu) is an earth abundant element and widely used in different areas of research. Nanostructured Cu thin film possesses multifunctional characteristics such as luminescent down shifting, UV protection and hydrophobicity, a few to mention amongst others. Here in this work, we have fabricated ultrathin layer of Cu on glass substrate by direct current sputtering technique. Optical, structural and topographical investigations have been carried out thoroughly. A series of characterization techniques were carried out to confirm the multifunctional characteristics. # P32: Acoustic imaging assisted by unsupervised learning approach ^{online} Jiawei Xi, Yongzhong Li, Casey Ka Wun Leung, Tan Li, Wing Yim Tam, Jensen Li The Hong Kong University of Science and Technology (China) We demonstrate extraction of spatially dependent material parameters by using unsupervised neural network in learning the data structure of the wave propagating data from a given wave equation. A 2D spring mass model is used to image mass or modulus distribution, as a simplified model for acoustic imaging. The approach facilitates the discovery of spatially dependent differential equation coefficients and can be applied to different waves, without prior knowledge of scattering mechanism and is applicable to inverse scattering with metamaterials. #### 10:20 - 12:40 — Torremolinos #### **Session 2A2** ### Challenges of Phase Change Materials and Plasmonics for Nanophotonics Organized by: Maria Losurdo, Yael Gutierrez, Kurt Hingerl, Christoph Cobet, Mircea Modreanu and Fernando Moreno Chaired by: Christoph Cobet and Mircea Modreanu #### 10:20: Invited talk # Merging Phase-Change and Metamaterial Concepts for Novel Devices to Control and Manipulate Light C. David Wright University of Exeter (United Kingdom) Phase-change materials (PCMs) are used very successfully for optical and electrical memories. Such success arises due to large electro-optical contrast between their amorphous and crystalline states, non-volatility, fast switching and large cycling endurance. These same properties can also be exploited to deliver a form of active dielectric, which, combined with metamaterials concepts, leads to novel devices for the control of light: LiDAR, displays, holography, imaging, sensing, photonic computing and more. Here we discuss development of some of these novel devices #### 10:40: Invited talk # **Tailoring Phase Change Materials for Nanophotonic Applications Matthias Wuttig** RWTH Aachen University (Germany) Here, we identify systematic stoichiometry trends for these processes in phase change materials, i.e. along the GeTe-GeSe, GeTe-SnTe, and GeTe-Sb2Te3 pseudo-binary lines employing a pump-probe laser setup and calorimetry. We discover a clear stoichiometry dependence of optical properties and crystallization speed along a line connecting regions characterized by two fundamental bonding types, metallic and covalent bonding. Increasing covalency slows down crystallization by six orders of magnitude and promotes vitrification. ### 11:00: Invited talk From phase change nanophotonic to phase change nano-opto-mechanics online Tongjun Liu, Dimitrios Papas, Jinxiang Li, Jun-Yu Ou, Eric Plum, Kevin MacDonald, Nikolay Zheludev University of Southampton (United Kingdom) The changing balance of forces at the nanoscale allows nanomachines that can alter optical properties of metamaterials with electromagnetic and acoustic forces and heat. We overview recent results in this field and report new metamaterials with volatile and non-volatile optical bistability previously seen in phase change media and explore optical parametric phenomena and controlling light with light in such media. #### 11:20 : Invited talk Prediction of promising phase change materials candidates for active optical devices via DFT calculations Dilson Juan¹, Yael Gutierrez Vela², Gonzalo Santos¹, Pablo Garcia Fernandez¹, Javier Junquera¹, Maria Losurdo², Fernando Moreno¹ ¹ Universidad de Cantabria (Spain), ² Università degli Studi di Bari (Italy) Group-III monochalcogenides compounds are layered van der Waals semiconductors intensively studied for development of optoelectronic applications. Their large optical contrast between crystalline-amorphous phases is among the desirable properties for the new paradigm of reconfigurable devices. In this contribution we will present band and dielectric function simulations of GaX (X=S, Se, Te) using density-functional theory. Although the description of optical response poses a great challenge for single-particle formalisms, insight gained from detailed and orbital contributing is very useful in material engineering. #### 11:40 : Invited talk #### Plasmon-Enhanced photothermal response based on Janus-Nanoheaters Javier Gonzalez-Colsa¹, Jose M. Saiz¹, Dolores Ortiz¹, Francisco Gonzalez¹, Fernando Moreno¹, Fernando Bresme², Pablo Albella¹ ¹ University of Cantabria (Spain), ² Imperial College London (United Kingdom) Combination of materials with radically different physical properties in the same nanostructure gives rise to the so-called Janus effects, allowing phenomena of contrasting nature to occur in the same architecture. Here we will report on how Janus-based nanoheaters possess superior photothermal conversion features and directional heating capacities that can be exploited in highly demanded applications such as photothermal cancer therapies, drug-delivery or heat-gradient-free metasurfaces to control transitions in phase change films without the need of local resistive heaters and external electronics. #### 12:00: Invited talk ### Anapolar excitation for an enhanced thermo-optical response Javier Gonzalez-Colsa¹, Juan D. Olarte-Plata², Fernando Bresme², Pablo Albella¹ ¹ University of Cantabria (Spain), ² Imperial College London (United Kingdom) High Refractive Index (HRI) nanostructures are ideal platforms to generate strong electric and magnetic field modes applicable in a wide range of applications such as biosensing or opto-thermal conversion. In this work, we perform a theoretical analysis of anapolar excitations in disk-ring hybrid nanostructures to enhance the temperature generated by a plasmonic resonator. We also present this mode as a simple mechanism to shift the thermal response of these structures to the NIR range. #### 12:20 : Invited talk Interplay between Structure, Dielectric Function and Amorphous-to-Crystalline Phase Change in Sb2S3 Yael Gutierrez¹, Stefano Dicorato¹, Saul A. Rosales², Dilson Juan², Maria Michelaria Giangregorio¹, Marin Georghe³, Cornel Cobianu³, Mircea Modreanu⁴, Fernando Moreno², Maria Losurdo¹ ¹Università degli Studi di Bari (Italy), ²Universidad de Cantabria (Spain), ³NANOM MEMS srl (Romania), ⁴University College Cork (Ireland) Antimony trisulfide, Sb2S3, has been recently proposed as low-loss phase-change material due to its wide band gap value and high refractive index contrast. Nevertheless, optical properties of this material in its amorphous, crystalline, and crystallized phases are still widely scattered. In this work we analyze the interplay between the structure and the dielectric function of this material in its crystalline and amorphous phases as well as its dependence on the crystallization process and its stability when exposed to ambient conditions. #### 10:20 - 12:40 — Alamos ### Session 2A3 ### Symposium II: New trends in nanophotonics and advanced materials Organized by: Junsuk Rho, Hakjoo Lee and Namkyoo Park Chaired by: Wei Chen 10:20: Invited talk **Hydrogen Evolution Reactions under Plasmon Excitation** Hiro Minamimoto, Daiki Sato, Kei Murakoshi Hokkaido University (Japan) The visible-light driven hydrogen evolution reaction is one of the important reactions for the sustainable society. Recently, various photocatalytic systems, such as molecular catalysts, semiconductors, or plasmonic systems, have been established. In this study, we have established the visible light driven efficient hydrogen evolution under plasmon excitation. Through the examination of isotopic effects, we have successfully clarified the unique and interesting molecular processes which were quite different from the commonly proposed ones. 10:40 : Invited talk Flat Bands: Finetuning, Anti-PT, Wannier-Stark, Disorder Sergej Flach IBS (Korea) Certain lattice wave systems in translationally invariant settings have one or more spectral bands that are strictly flat or independent of momentum in the tight binding approximation, arising from either internal symmetries or fine-tuned coupling. These flat bands display remarkable strongly interacting phases of matter. I will discuss recent advance in the finetuning properties of flat band models including All- Bands-Flat ones, weak disorder, Anti-PT flatbands and on Wannier-Stark flatbands. 11:00: Invited talk ### **Geometric Phase Dislocations in One-Dimensional Lattices** ### Tileubek Uakhitov, Abdybek Urmanov, Serik E. Kumekov, Anton Desyatnikov Nazarbayev University (Kazakhstan) We demonstrate Zak phase carrying quantized screw-type dislocations winding around degeneracies in parameter space of trimer lattices. Closed adiabatic path in parameter space is characterized by a Chern number equal the negative total winding number of Zak phase dislocations enclosed by the loop. 11:20: Invited talk Enhancing the wavelength resolution of a chirped photonic crystal waveguide based spectrometer by employing fabrication error Takasumi Tanabe, Takumasa Kodama, Ryo Sugano Keio University (Japan) The presence of fabrication errors often degrades the performance of
nanophotonic devices. Fabrication errors in the photonic crystal waveguide often appear as the Anderson localization of light. We show that the random localization of light can enhance the resolution of a photonic crystal spectrometer by utilizing this localization information in advance of the measurement. 11:40 : Invited talk # Unusual Chemical Reactions Induced by Plasmonic Hot Carriers of Metallic Nanoparticles Zee Hwan Kim Seoul National University (Korea) The plasmon-induced hot carriers, the high-energy electrons and holes of metallic nanoparticles created by the non-radiative decay of plasmon oscillation, is known to induce highly exotic chemical reactions that no other heterogeneous (photo) catalysts can do. However, the underlying reaction mechanism is largely unverified thus far. In this talk, I will present my research group's recent endeavor to uncover the hot carrier and energy transfer mechanisms of hot-electron induced chemical reactions. 12:00 : Invited talk Indirect imaging of plasmonic resonances modes in terahertz inkjet printed metasurfaces using an infrared camera. #### Cyprien Brulon, Baptiste Fix, Patrick Bouchon Universite Paris-Saclay (France) We investigate the use of an ultrafast infrared camera to map the electromagnetic losses induced by terahertz plasmonic resonators. We demonstrate its application to a periodic array of "dolmen"type resonators showing two near-field modes whose coupling gives rise to an electromagnetically induced transparency. The response of these resonators fabricated by inkjet printing is compared with electromagnetic simulations. This non-invasive mode-mapping method appears to be effective for studying the near-fields of sub-wavelength plasmonic terahertz resonators on macrometric scales. #### 12:20 : Invited talk Blue InGaN light-emitting diodes: from flexible/on-glass form factor to UHD micro-displays Jun Hee Choi, Kiho Kong, Jinjoo Park, Eunsung Lee, Joo Hun Han, Jung Hun Park, Nakhyun Kim, Joosung Kim, Dong Chul Shin, Younghwan Park, Sunil Kim, Yongsung Kim Samsung Advanced Institute of Technology (Korea) We discuss GaN-based blue light emitters formed on various unconventional substrates and related transfer techniques. Next, we discuss core technologies for ultra-high density (UHD, >5,000 ppi) micro-displays based on monolithic integration of LEDs, TFTs, and QDs. We anticipate these will pave the way for low-cost, large sized process for UHD micro-displays for augmented reality (AR) glasses. ### 10:20 - 12:35 — Playamar #### **Session 2A4** # Acoustic and elastic phononic crystals, metamaterials and other structured media Organized by: Marco Miniaci, Vicente Romero-Garcia, Vincent Pagneux, Maxime Lanoy, Jean-Philippe Groby and Noe Jimenez Chaired by: Maxime Lanoy and Jean-Philippe Groby 10:20 : Invited talk Acoustic drills by dynamic high-order Bessel beam mixing Kestutis Staliunas¹, Gabrielius Kontenis², Noe Jimenez³ ¹ICREA (Spain). ²Vilnius University (Lithuania). ³Universitat Politecnica de Valencia (Spain) We propose and experimentally demonstrate dynamical acoustic "drill" beams presenting nonstationary intensity distributions that resemble the spinning mechanical drill. The drills appear as the spatiotemporal interference of two Bessel-vortex beams of different topological charges and different carrier frequencies. By mixing a pair of high-order Bessel beams, synthesized using two concentric 3D-printed acoustic holograms, acoustic drills of tuned helicities were experimentally observed. # 10:40 : Elastic structures you can talk to: Speech classification with mechanical neural networks Tena Dubcek¹, Daniel Moreno-Garcia², Luis Guillermo Villanueva², Dirk-Jan van Manen¹, Johan Robertsson¹, Marc Serra Garcia³ ¹ETH Zurich (Switzerland), ²EPFL (Switzerland), ³AMOLF (Netherlands) We report on a passive elastic metastructure that performs binary speech classification. The metastructure is a 7x7 lattice of plate resonators, fabricated using silicon micromachining technology. It can distinguish between pairs of spoken words with an (experimental) accuracy exceeding 90 %. This is possible with novel design methods combining machine learning and reduced-order modelling. We expect to initiate a new research direction in intelligent phononic metamaterials and to enable a new class of zero-power (batteryless) Internet of Things devices. # 10:55 : A Graded Metamaterial for Broadband and High-capability Piezoelectric Energy Harvesting Henrik Thomsen, Bao Zhao, Andrea Colombi ETH Zurich (Switzerland) We present a broadband multiresonant graded meta structure for piezoelectric energy harvesting at low-frequency vibrations <100 Hz. The device combines a graded metamaterial with beam-like resonators, piezoelectric patches and a self-powered, switch-less interface circuit with rectifiers. Furthermore, we actively cancel boundary reflections occurring at the ends of the graded meta structure to better analyze the modulation of the propagating wavefield within the structure. #### 11:10: Sculpting thermal and acoustic fields by 3D-printed holograms Noe Jimenez¹, Diana Andres¹, Sergio Jimenez-Gambin¹, Antonios Pouliopoulos², Elisa E. Konofagou², Jonathan Vappou³, Jose M. Benlloch¹, Alicia Garcia-Carrion¹, Francisco Camarena¹ ¹Universitat Politecnica de Valencia (Spain), ²Columbia University (USA), ³Universite de Strasbourg (France) We present the recent advances of acoustic holograms and structured media to engineer the acoustic wavefront to focus ultrasound beams for biomedical applications. We show how acoustic holograms can shape therapeutical acoustic images for the non-invasive treatment of neurological disorders, to produce cavitation patterns for localized drug delivery, and thermal patterns of arbitrary shape for targeted hyperthermia. In this way, acoustic holograms emerge as a disruptive and low-cost approach for biomedical ultrasound applications. #### 11:25 : Invited talk #### Latent symmetries and their application in wave physics Malte Rontgen¹, Maxim Pyzh¹, Christian V. Morfonios¹, Vincent Pagneux², Peter Schmelcher¹ *University of Hamburg (Germany)*, ² *Universite du Mans (France)* In this talk, I will give an overview over the emerging topic of latent symmetries. Although they are in general not apparent from a geometric inspection of the system, they still have a powerful impact. This includes the induction of local symmetries on the system's eigenstates or even degeneracies in the eigenvalue spectrum. Their study thus allows to gain knowledge about the system's structure that remains hidden from a direct observation. The concept is exemplified through several wave-physical examples. #### 11:45 : Invited talk ### Zero-mass metamaterial for subwavelength acoustic imaging Thibaut Devaux¹, E. Bok², J. J. Park², S. H. Lee², O. B. Wright³ ¹Universite de Tours (France), ²Yonsei University (Korea), ³Hokkaido University (Japan) By using a zero-mass metamaterial, we demonstrate the possibly of achieving subwavelength acoustic images based on the extraordinary acoustic transmission (EAT) phenomenon. A sub-wavelength diameter membrane is mounted on the extremity of an air-filled tube, allowing the experimental imaging of features with a lateral size 25 times smaller than the acoustic wavelength. Finite-element simulation and theoretical model confirm the role of the acoustic inertance in obtaining subwavelength resolution. 2D topography images are presented with different samples. Applications include nondestructive testing. ### 12:05 : Keynote talk # Emergent phenomena in locally resonant acoustic metamaterials due to subharmonic energy exchange Varvara Kouznetsova¹, Priscilla Silva¹, Valentina Zega², Michael Leamy³, Marc Geers¹ ¹Eindhoven University of Technology (The Netherlands), ²Politecnico di Milano (Italy), ³Georgia Institute of Technology (USA) This work investigates the emergent phenomena in non-linear locally resonant elasto-acoustic metamaterials. The energy exchange between the propagative and subharmonic evanescent wave modes is studied, which has been shown to originate from the autoparametric resonance promoted by the non-linearity in the resonator. The phenomenon is analysed semi-analytically (using the multiple scales method), numerically, and experimentally. ### 10:20 - 12:30 — Bajondillo ### Session 2A5 ### **Bio-Inspired Nanophotonics** Organized by: Debashis Chanda, Hyuck Choo and Radwanul Hasan Siddique Chaired by: Hyuck Choo 10:20: Invited talk # Bio-Inspired Optoelectronics: Butterfly Inspired Structural Colors to Viper Inspired Uncooled IR Vision #### Pablo Cencillo, Debashis Chanda University of Central Florida (USA) In recent years, several nanoengineered materials have been proposed as alternatives to chemical colorants. However, many suffer from severe angle and polarization-sensitivity, limited color palette, and are incompatible with industrial standards. Here, we present an approach to structural coloration that avoids these limitations by exploiting the strong hybridization of self-assembled plasmonic nanoparticles with an ultrathin cavity. Our approach offers a versatile platform for environmental-friendly, large-scale, and low-cost plasmonic paint that bridges the gap from proof-of-concept science to real-world industrial applications. #### 10:40: Invited talk # Learning from nature and a century-old Nobel Laureate to make mechanochromic materials at scale Benjamin Miller, Mathias Kolle MIT (USA) Dynamic optical appearance plays a critical role for many animals that rely on adaptive camouflage or bright and varying color displays for their survival. Inspired by this are mechanochromic photonic materials, which change their optical properties in response to mechanical forces, providing a versatile platform for colorimetric force sensing. We have developed a roll-to-roll manufacturing technique by combining Lippmann photography with holographic recording materials, providing a fast, scalable, low-cost method of producing these
materials with a variety of different properties. #### 11:00 : Invited talk #### Bio-inspired flat optics for an amphibious vision system #### **Young Min Song** Gwangju Institute of Science and Technology (Korea) We present a new type of flat optics, which has amphibious imaging capabilities, inspired by the eye of the fiddler crab. The flat surface and graded refractive index of the artificial microlens arrays effectively suppresses the defocusing effect under different environmental conditions (i.e., changes in refractive index). Experimental demonstration supports the effectiveness of amphibious imaging. #### 11:20: Structural Color from 3D Printed Single Low-Index Nanopillar ### Hao Wang, Qifeng Ruan, Soroosh Daqiqeh Rezaei, Joel Yang Singapore University of Technology and Design (Singapore) We observe structural color from single nanopillars made of a low-refractive-index material. These nanopillars were produced using two-photon polymerization lithography. Full color and grayscale were obtained by single nanopillars with different heights and diameters. The generated hue was nearly independent of collection angle, an effect that is consistent with scattering off the nanopillar structures. In addition to full color and grayscale prints, we demonstrate steganography using individual nanopillars. #### 11:35: Photonic Color Pixels on a Single Micro-Line by Programmable Topography ### Yujie Ke, Qifeng Ruan, Hao Wang, Joel K. W. Yang Singapore University of Technology and Design (Singapore) Developing mechnochromic nano-/micro-pixels under global deformation is challenging, while can add one more freedom and enrich the data density for optical information. Herein, we report a method to achieve the color pixels in a single photonic micro-line by dynamically controlling the local surface topography through a strain redistribution principle. The method is effective and applicable to diverse switchable-optical applications. #### 11:50 : Invited talk Reconfigurable structural color enabled by the multistate phase change material online Omar A. M. Abdelraouf¹, Xin Cai Wang¹, Weide Wang¹, Jeff Siu Kit Ng¹, Xiao Renshaw Wang², Qi Jie Wang², Hong Liu¹ ¹A*STAR (Singapore), ²Nanyang Technological University (Singapore) Low loss phase change material of Sb2S3 has enabled achieving efficient cavity resonator in the visible spectrum. In this work, we demonstrate fast switchable structural color via a metal-dielectric-metal cavity formed in a multilayer thin-film structure. The multistate of a phase change thin film of Sb2S3 embedded in the multilayer structure can be activated by CW and pulsed laser annealing, which enables ultrafast multi-color display at different states between amorphous, intermediate, and crystalline phases. #### 12:10: Invited talk # Using Optical-rotation Structural Colors for Steganography and Photorealistic Nanopainting ^{online} Maowen Song, Ting Xu Nanjing University (China) We experimentally demonstrate an all-aluminum metasurface that generates tunable plasmonic colors depending on the polarization states of the incident and reflected light. The metasurface produces high-resolution images and can be used to realize kaleidoscopic steganography. Besides, a TiO2 metasurface is proposed to enable full-color generation integrated with ultrasmooth color brightness variations. The reproduced famous artwork "girl with a pearl earring"features photorealistic color presentation and stereoscopic image impression, mimicking the oil painting texture. #### 10:20 - 12:10 — Carihuela #### Session 2A6 # Symposium I: Hybrid Nanomaterials and Metastructures for Photonics, Sensing and Energy Organized by: Jerome Plain, Alexander Govorov, Davy Gerard and Pedro Hernandez Martinez Chaired by: Alexander Govorov #### 10:20 : Keynote talk #### Hybrid quantum dot/plasmonic systems #### **Stephen Gray** Argonne National Laboratory (USA) Several aspects of the spectroscopy and dynamics of quantum dot/plasmonic nanoparticle systems are outlined, including joint experimental and theoretical work on photoluminescence from a hybrid system of Cd-Se/ZnS quantum dots layered on an array of silver nanoparticles. The array of nanoparticles exhibits a surface lattice resonance and with appropriate design this resonance can be strongly coupled to the quantum dot exciton. It is also shown how the photoluminescence can be observed at surprisingly long distances away from the excitation source. #### 10:50: Invited talk # Chiro-Optical Microscopic Imaging of Nano- and Micro-Sized Materials and Analyses of Chiro-Optical Functions online ### **Hiromi Okamoto** National Institutes of Natural Sciences (Japan) Chiro-optical microscopic imaging methods (near-field polarimetry microscopy, far-field high-precision circular dichroism microscopy, etc.) were developed and applied to several nano- and micro-scale materials, including chiral and achiral plasmonic materials, chiral assemblies of achiral plasmonic particles, chiral microcrystals, etc. Unique chiral properties of the materials were revealed for plasmonic materials. The far-field CD microscopy was found to be a powerful tool to identify chirality of microcrystalline materials. #### 11:10: Invited talk ### Photoluminescence Engineering with Nanoantenna Phosphors online Shunsuke Murai, F. Zhang, K. Aichi, K. Tanaka Kyoto University (Japan) We combined a phosphor plate with titania (TiO2) nanoantennae to harness the photoluminescence into a specific direction predefined by the antenna design. A notable (>10 times) enhancement in forward radiation intensity is demonstrated. We describe the mechanism using a simple analytical model. #### 11:30 : Invited talk # Semiconductor Nanocrystal Optoelectronics for Lighting and Displays: Pushing the Limits, Breaking Records online #### Hilmi Volkan Demir NTU (Singapore) In this talk, we will introduce the emerging field of semiconductor nanocrystal optoelectronics for lighting and displays. We will showcase most recent examples of their photonic structures and device architectures. Among extraordinary features important to applications in lighting and displays, we will show record high efficiency from their colloidal LEDs and record gain coefficients from their colloidal laser media. #### 11:50: Invited talk ## Nanophotonic chiral sensing: How does it actually work? online Steffen Both¹, Egor Muljarov², Thomas Weiss³ We present a general and rigorous theory of chiral light-matter interactions in arbitrary optical resonators. Our theory describes the chiral interaction as a perturbation of the resonant states, also known as quasi-normal modes. We observe two dominant contributions: A chirality-induced resonance shift and changes in the modes' excitation and emission efficiencies. Our theory brings new and deep insights for tailoring and enhancing the chiral light-matter interactions. Furthermore, it allows to predict spectra much more efficiently in comparison to conventional approaches. #### 10:20 - 12:30 — Montemar ### **Session 2A7** Symposium IV: Chirality, magnetism, and magnetoelectricity: Separate phenomena and joint effects in metamaterial structures Organized by: Eugene Kamenetskii Chaired by: Eugene Kamenetskii #### 10:20: Invited talk #### Emergence/control of topological spin textures in various spin systems online ### Yutaka Akagi The University of Tokyo (Japan) Recently, topological spin textures such as Skyrmions have attracted both scientific and technological interest. Firstly, we demonstrate the photocontrol of spin-scalar-chiral state in spin-charge coupled systems with spatial inversion symmetry. We also show that the sign of the scalar chirality can be selected by circular polarization. Secondly, we discuss general magnetic Skyrmions of spin nematic phases in localized spin systems with S=1. Examples include fractional Skyrmions with 1/3 topological charge, which is a generalization of the so-called meron. 10:40 : Invited talk Large Spin Current Rectification with Magnetic Resonance online Masahiro Sato¹, Hiroaki Ishizuka² ¹Chiba University (Japan), ²Tokyo Institute of Technology (Japan) ¹University of Stuttgart (Germany), ²Cardiff University (United Kingdom), ³University of Graz (Austria) Photogalvanic effects, especially, those in non-centrosymmetric crystals, have gathered attention. Recently, we have theoretically proposed their magnetic versions, namely, photogalvanic spin currents in magnetic insulators. In this conference, we discuss a new mechanism of photogalvanic spin current through magnetic resonance, focusing on van der Waals magnets, Cr trihalides (Crl3 and CrBr3). We demonstrate that the resulting spin current is several orders of magnitude larger than those of previous works. The magnetic-resonance mediated spin current would open new routes of opto-spintronics. #### 11:00 : Keynote talk # One-way photonic crystal waveguide modes with and without magnetic material online Che Ting Chan Hong Kong University of Science and Technology (Hong Kong) Robust transport of edge modes is an important signature of topological materials. The bulk-edge correspondence states that the number of topological edge modes is determined by the bulk topological invariants and such edge modes decay exponentially into the bulk. Here, we discuss some examples in which one-way going modes can be realized with and without magnetic materials, but they are not .edge"modes in the sense that the wave is not exponentially localized on the edge. #### 11:30 : Invited talk # Spin-motion interconversion in ferromagnetic-nanomechanical hybrid systems online Mamoru Matsuo University of Chinese Academy of Sciences (China) Recent developments in nanotechnology allow us to access microscopic spin relaxation processes to lattice in nanomechanical systems. This talk will discuss the interconversion phenomena between spin and motion in ferromagnetic systems, aiming to reveal microscopic angular momentum conversion mechanisms. #### 11:50: Invited talk ###
Superfluorescence of chiral emitter ensemble interacting with chiral environment online Hajime Ishihara, Hirofumi Shiraki, Nobuhiko Yokoshi Osaka University (Japan) Many-body correlation among quantum emitters through radiation generates cooperative emission of light, i.e., superfluorescence that is a burst of directional and coherent light. Recently, our theory have revealed a peculiar enhancement of the correlation among remote emitters sharing the radiation modes in a geometrically specific dielectric environment. This study applies the above theory for proposing the model to demonstrate a chiral selective superfluorescence of the emitter ensemble enhanced due to the localized surface plasmon resonance in metallic structures with chirality. #### 12:10: Invited talk Magnetoelectricity of domain walls with chirality reversals online A. S. Kaminskiy¹, D. P. Kulikova¹, A. I. Yadvichuk¹, R. M. Vakhitov², Alexander Pyatakov¹ ¹ Moscow University (Russia), ² Bashkir State University (Russia) The local inversion symmetry breaking in the magnetic domain wall induces the local ferroelectricity. This report illustrates how the sign of the magnetoelectric effect and the electric polarization observed at domain walls depends on their chirality. ### 10:20 - 12:35 — Litoral #### **Session 2A8** ### Symposium III: Advanced passive and active metasurfaces Organized by: Howard Lee and Pin-Chieh Wu Chaired by: Howard Lee 10:20: Invited talk ### Complete 2π tunable phase modulation using avoided crossing of resonances Min Seok Jang KAIST (Korea) I present an electrically tunable metasurface design strategy that operates near the avoided crossing of tworesonances, one a spectrally-narrow, over-coupled resonance and the other with a high resonance frequency tunability. This strategy displays an unprecedented upper limit of 4π phase modulation range with insignificant variations inoptical amplitude. A proof of concept metasurface is illustrated using quasi-bound states in the continuum andgraphene plasmon resonances, with results showing a full phase modulation with a uniform reflection amplitude of 0.65. #### 10:40: Invited talk # High Performance Mid-infrared Polarization-Resolved Photodetection assisted by Chiral Metasurfa- Mingjin Dai, Chongwu Wang, Bo Qiang, Fakun Wang, Ye Ming, Song Han, Yu Luo, Qijie Wang Nanyang Technological University (Singapore) Polarization-resolved photodetection are highly required for many interesting photonic applications such as imaging and spectroscopy. Here we provide an anisotropic platform relying on designed chiral metasurfaces integrated with two-dimensional (2D) materials to achieve polarization resolved photodetection via photothermoelectric effects in the mid-infrared region, an important "finger-printregion for sensing and imaging applications. Our work provides an alternative strategy for developing next-generation optoelectronic devices, especially for multifunctional photodetectors with bandgap-unlimited working wavelength in the mid-infrared regime. #### 11:00 : Invited talk #### Metasurface for multidimensional light field sensing online #### Yuanmu Yang Tsinghua University (China) I will present my group"s recent effort to replace conventional camera lenses with metalenses. By leveraging the unique capability of metasurface to tailor the vectorial field of light, in combination with advanced image retrieval algorithm, we aim to build a compact camera system that can capture multi-dimensional light field information of a target scene in a single shot under ambient illumination conditions. #### 11:20 : Invited talk ### Electromagnetic Multipolar Coupling in Plasmonic Metasurfaces for Flat Optics Applications online Pin-Chieh Wu National Cheng Kung University (Taiwan) We proposed that the introduction of toroidal-assisted response can address a state-of-the-art transmission efficiency of plasmonic metasurfaces. The advantage of Fano coupling between toroidal dipole and toroidal quadrupole enables a giant cross-polarization converter with a transmission efficiency of 22.9 % in a singlelayer plasmonic metasurface comparable to the theoretical bound. While a hybrid plasmonic meta-atom can be used to realize toroidal-assisted generalized Huygens"sources for forward radiation enhancement, thus achieving a transmission efficiency beyond 50% at the near-infrared region. #### 11:40: Invited talk ### Coupling of Dielectric Nanophotonic Mode and Surface Plasmonic Resonance for Photocatalysis online Wen-Hui Cheng National Cheng Kung University (Taiwan) A platform of plasmonic nanoparticles and p-type semiconductor heterojunction is introduced to harvest hot carriers for photocatalytic CO2 reduction without additional bias. Interfacial layer and co-catalysts can further enhance the conversion. The coupling between surface plasmon resonance and dielectric resonance will be discussed. #### 12:00: Invited talk ### Gate-Tunable Metasurface-Enhanced Plasmonic Phototransistors online #### Yu-Juna Lu Academia Sinica (Taiwan) We report a gate-tunable phototransistor with ultrahigh photoresponsivity consisting of a monolayer MoS2 photoFET integrated with a plasmonic metasurface. The results demonstrate a systematic methodology for next-generation ultra-compact optoelectronic devices in the trans-Moore era. ## 12:20 : Metasurface coincidence images with Hong-Ou-Mandel effect online Tsz Kit Yung, Wing Yim Tam, Jensen Li The Hong Kong University of Science and Technology (China) By using orthogonal linear-polarized photons, images with tailor-made second-order coherence signatures are generated as çoincidence images"from metasurfaces. The metasurfaces provide arbitrary control on the coincidence signal (correlated, anticorrelated, or uncorrelated photons) at different locations either on the metasurface or the focal plane of the metasurface. The ability to generate polarization coincidence images from metasurfaces is potentially useful for setting up quantum imaging schemes. #### 10:20 - 12:20 — Manantiales #### Session 2A9 ### Symposium II: New trends in nanophotonics and advanced materials Organized by: Junsuk Rho, Hakjoo Lee and Namkyoo Park Chaired by: Artur Movsesyan 10:20: Invited talk Enhanced fluorescence of fluorene-based pi-conjugated copolymer utilizing hyperbolic metamaterials online #### Tatsunosuke Matsui¹, Fumiya Hashikawa¹, Hirotake Kajii² ¹Mie University (Japan), ²Osaka University (Japan) We demonstrate the enhanced fluorescence of fluorene-based pi-conjugated copolymer utilizing hyperbolic metamaterials (HMMs). The HMMs were fabricated by alternately sputtering subwavelength thin layers of Au and Al2O3. As an active material, poly(9,9-dioctylfluorene-alt-benzothiadiazole) (F8BT), was spin-coated on the substrate with a thin layer of SiO2 inserted in between as a spacer. We have achieved a 3-fold enhancement of photoluminescence in the optimum device. Our findings may open the way for the development of a novel type of efficient organic light-emitting device. ### 10:40: Invited talk Non-Hermitian Topological Whispering Gallery: Experiments online Zhiwang Zhang¹, Ying Cheng¹, Xiaojun Liu¹, Johan Christensen² ¹Nanjing University (China), ²Universidad Carlos III de Madrid (Spain) Lately, intense research efforts have focused on exploring non-Hermitian systems with cleverly matched gain and loss. Likewise, the surge in physics using topological insulators have laid the groundwork in reshaping highly unconventional avenues for robust and reflection-free guiding. Here, we construct a topological gallery-insulator using sonic crystals made of thermoplastic rods that are decorated by carbon nanotube (CNT) films. By engineering specific non-Hermiticity textures, we are able to achieve topological .audio lasing modes with the handedness as one desires. #### 11:00 : Invited talk IC-Process-Compatible Single-Layer Broadband Optical Metalens Comprising 15:1 High Aspect-Ratio Metastructures online ### Hyeonsoo Park, Hyun Sung Park, Se-Um Kim, Hyuck Choo, Seunghoon Han Samsung Electronics (Korea) We have demonstrated a broadband optical metalens of near-ideal diffractive performance using IC-compatible processes. To achieve full modulation of the phase and balanced dispersion, we first optimized the high-aspect-ratio, pitch, and diameter of the metastructures. Then, the metalens was fabricated on a silicon wafer using ArF-immersion photolithography and transferred onto a fused-silica wafer for testing. The broadband diffraction efficiency over the wavelength range of 400-700 nm was measured 87.4%, bringing it closer to realizing commercial-grade metalens-enabled devices. 11:20 : Invited talk ### Metasurfaces with Maxwell's demon-like nonreciprocity online Kin Hung Fung The Hong Kong Polytechnic University (China) We show that Maxwell's demon-like nonreciprocity can be supported in a class of non-Hermitian gyrotropic metasurfaces in the linear regime. The proposed metasurface functions like a transmission-only Maxwell's demon operating at a pair of photon energies. Based on the multiple scattering theory, we construct a dual-dipole model to explain the underlying mechanism that leads to the anti-symmetric nonreciprocal transmission. The metasurface's effective medium parameters are also obtained. #### 11:40 : Invited talk # Individually Addressable Spatial Light Modulator Based on Active Metasurface with High Directivity online #### Minkyung Lee, Junghyun Park, Byung Gil Jeong, Sun II Kim, Hyuck Choo Samsung Advanced Institute of Technology (Korea) We have demonstrated a spatial light modulator (SLM) based on individually-addressable channels formed on a metasurface. It deflects light onto the intended directions by modulating refractive indices of individual channels and thereby systematically varying the phase distribution of reflected light. Using this device, we have achieved higher directivity and efficiency than previously reported solid-state SLMs. The strong performance of the technology
promises to advance 3D mapping applications such as light detection and ranging (LiDAR) necessary for autonomous driving. #### 12:00 : Invited talk ### Analog computing with short-pulsed metamaterials online Carlo Rizza¹, Giuseppe Castaldi², Vincenzo Galdi² ¹University of l'Aquila (Italy), ²University of Sannio (Italy) We investigate short-pulsed metamaterials (SPMs), a class of temporal metamaterials characterized by a time-varying dielectric permittivity waveform of duration much smaller than the characteristic wave-dynamical timescale. We investigate the electromagnetic scattering of a wavepacket interacting with an SPM, and we identify intriguing configurations for which an SPM can perform the first and second derivatives of the incident wavepacket. As the temporal counterpart of spatial metasurfaces, SPMs could open up new perspectives within the framework of space-time metastructures. #### Lunch 12:30 - 14:00 #### 14:00 - 15:00 — Torremolinos #### Session 2A10 ### **Conference Tutorials I** Chaired by: Mark Brongersma 14:00 : Tutorial **Quantum Meta-Photonics** **Vladimir Shalaev** Purdue University (USA) We discuss important challenges in the emerging quantum technology and possible means to address them with ultrafast plasmonic metamaterials, scalable photonic material platforms and advanced machine-learning designs. #### 15:05 - 16:15 — Torremolinos #### Session 2A11 ### Symposium II: New trends in nanophotonics and advanced materials Organized by: Junsuk Rho, Hakjoo Lee and Namkyoo Park Chaired by: Alberto Naldoni 15:05 : Keynote talk ENSEMBLE3 - Novel materials for photonics - possibilities provided by crystal growth **Dorota Anna Pawlak** Ensemble3 Centre of Excellence (Poland) Possibilities of producing novel photonic materials provided by the crystal growth will be discussed including examples of materials exhibiting various interesting optical and electromagnetic properties. 15:35 : Invited talk Confined graphene plasmons for few-electron strongly-coupled systems **Alessandro Tredicucci** Università di Pisa (Italy) Lateral confinement of the two-dimensional plasmons deeply affects the graphene dielectric function in the mid-to-far-infrared region of the electromagnetic spectrum. Beyond causing appreciable effects in the optical response of polycrystalline samples, which can be controlled by the application of strain, confined 2D plasmons can offer a viable approach to the development of deeply subwavelength cavities, where strong light-matter interaction can be established with intersubband transitions in a semiconductor heterostructure in the few-electron regime. #### 15:55: Invited talk Complete Dynamic Extensions to Maxwell Garnett's Mixing Formula and the Origin of Dependent Scattering in Nanofluids Augusto Garcia-Valenzuela¹, A. Acevedo-Barrera¹, O. Vazquez-Estrada², A. Nahmad-Rohen¹, R. G. Barrera¹ ¹Universidad Nacional Autonoma de Mexico (Mexico), ²Tecnologico Nacional de Mexico / ITS de Tantoyuca (Mexico) We derive an analytic approximation to the effective refractive index of nanofluids based on the quasicrystalline approximation and considering the dynamic dipolar response of the particles at the frequency of light. The new mixing formula embodies the well-known Maxwell Garnett formula but includes all the appropriate dynamic corrections to fully include scattering losses. We present numerical evaluations of the new formula illustrating "dependent-scattering. effects, compare with experimental data available in the literature and discuss the physical origin of these effects. #### 14:00 - 15:40 — Alamos #### Session 2A12 Symposium IV: Chirality, magnetism, and magnetoelectricity: Separate phenomena and joint effects in metamaterial structures Organized by: Eugene Kamenetskii Chaired by: Eugene Kamenetskii 14:00 : Invited talk Magnetic spiral phases as skyrmion tracks, spin pumps, and helitronics #### Jan Masell Karlsruhe Institute of Technology (Germany) Compared to other magnetic phases, magnetic spirals are widely underrepresented as they are often regarded useless for spintronics applications. I briefly review some of our recent progress in "helitronics", i.e., spintronics with helical or spiral magnetic phases. We explored magnetic spirals as natural lanes for guiding skyrmions, studied the multifaceted effects of electric currents on magnetic spirals, and analyzed the spin and electron pumping properties of rotating spin spirals. #### 14:20 : Invited talk ### Kinetic magnetoelectric effect in chiral topological insulators #### Ken Osumi, Tiantian Zhang, Shuichi Murakami Tokyo Institute of Technology (Japan) In metals without inversion symmetry, a current can induce magnetization, and it is called kinetic magnetoelectric effect or Edelstein effect. We theoretically propose a gigantic kinetic magnetoelectric effect in chiral topological insulators. We interpret our results in terms of topological surface currents. In chiral topological insulators without inversion symmetry, the current flows in a chiral manner along the surface, inducing orbital magnetization. We demonstrate the presence of said effect in a topological insulator, identifying Cu2ZnSnSe4 as a potential candidate. ### 14:40: Invited talk ## The total helicity of electromagnetic fields and matter #### **Ivan Fernandez-Corbaton** Karslruhe Institute of Technology (Germany) The electromagnetic helicity of the free electromagnetic field and the static magnetic helicity are shown to be two different embodiments of the same physical quantity. The total helicity is the sum of two terms: A term proportional to the difference between the number of left-handed and right-handed photons of the free field, and another term that measures the screwiness of the static magnetization density in matter. This unification enables studying the conversion between the two embodiments upon light-matter interaction. #### 15:00: Invited talk Mutual and symmetry-breaking magnetostatic interactions in hybrid, skyrmionics nanostructures Mateusz Zelent¹, Mathieu Moalic¹, Michal Mruczkiewicz², Xiaoguang Li³, Yan Zhou⁴, Maciej Krawczyk¹ Adam Mickiewicz University (Poland), ² Slovak Academy of Science (Slovakia), ³ Shenzhen Technology University (China), ⁴ The Chinese University of Hong Kong (China) We show that egg-shaped like deformed Neel skyrmions can be stabilized by magnetostatic interaction in a hybrid structure composed of a multilayered nanodot hosting a skyrmion and the in-plane magnetized thin stripe made of soft ferromagnetic material. Using micromagnetic simulations we described the skyrmion's symmetry-breaking mutual magnetostatic interactions in this system and unusual skyrmion properties. At the end, we presented a proof-of-concept technique for unconstrained transport of skyrmion along a racetrack composed of hybrid systems. ### 15:20: Invited talk ### Electric control of magnon phase and magnonic Aharonov-Casher effect Oleksandr (Alexander) Serha (Serga), Rostyslav Serha, Vitaliy Vasyuchka, Burkard Hillebrands Technische Universitat Kaiserslautern (Germany) The study of the possibilities of controlling the characteristics of magnon transport using an electric field is an exciting and essential direction of modern magnetic science. Previously, such control was carried outusing the influence of the electric field on the medium's magnetization. Here, we report the first experimental observation of the magnon Aharonov-Casher effect, which consists of the geometrical accumulation of the phase of the magnons as they pass through an electric field region. ### 14:00 - 15:35 — Playamar #### **Session 2A13** ### Challenges of Phase Change Materials and Plasmonics for Nanophotonics Organized by: Maria Losurdo, Yael Gutierrez, Kurt Hingerl, Christoph Cobet, Mircea Modreanu and Fernando Moreno Chaired by: Fernando Moreno #### 14:00 : Invited talk Advances in materials and applications for volatile and non-volatile switching in metasurfaces and silicon photonic integrated circuits #### **Otto Muskens** University of Southampton (United Kingdom) Advanced materials that can provide volatile or non-volatile switching capabilities are of extreme interest for many applications requiring active control of absorption, emission and flow of light. I will provide an overview of our recent efforts in developing new materials and integration into functional devices, including the newly emerging low-loss phase change material Sb2Se3, infrared metasurfaces using local plasma patterning of Al:ZnO, and atomic layer deposition of W-doped VO2 for non-volatile switching and thermal regulation. # 14:20 : Design and modelling of a Reconfigurable core/shell Nanoantenna made of High Refractive Index/Phase Change Material Gonzalo Santos Perodia¹, Yael Gutierrez Vela², Maria Losurdo², Fernando Moreno Gracia¹ Universidad de Cantabria (Spain), ² Università degli Studi di Bari (Italy) High Refractive Index (HRI) dielectric nanoparticles (NPs) can be considered as nanoantennas whose radiation directionality can be controlled depending on the incident wavelength, the surrounding medium, and the NP geometry. Here, a NP with a core-shell configuration is analysed. The core is made of an HRI material and the shell of different phase change materials (PCMs), such GaS and Sb2S3. We show how the scattered light direction can be controlled depending on the PCM phase (amorphous/crystalline). # 14:35 : Phase Change Memory Cells with Multiple States: Results, Challenges and Perspectives Aurelian Catalin Galca, Florinel Sava, Alin Velea National Institute of Materials Physics (Romania) Phase change nonvolatile memories rely on the ultrafast and reversible transitions between amorphous and crystalline phases. The increase in the storage capacity can be achieved by reducing the size or by storing multiple states in a recording cell. Multiple logical states can be achieved by stacking different films of chalcogenide materials or by controlling the crystalline to amorphous ratio in a single
chalcogenide cell, several results as well as methods to mitigate the identified issues being presented in this work. # 14:50 : Laser Heating, Melting and Quenching #### Josef Resl, C. Cobet Johannes Kepler University Linz (Austria) Phase transformations in chalcogenide phase change materials depend strongly on the right.amountand the dynamics of heating and cooling. This talk will touch on the fundamental principles of (laser) heating, melting, heat conduction and cooling and discuss the underlying macroscopic radiation absorption and heatequations. # 15:05 : Chalcogenide phase-change meta-grating for polarization insensitive and large angle beam switching # Arash Nemati, Guanghui Yuan, Jie Deng, Aihong Huang, Weide Wang, Yeow Teck Toh, Jinghua Teng, Qian Wang A*STAR (Singapore) Controllable beam splitting and switching provide basic beam tuning functionalities in many applications, such as communications, LiDAR, remote sensing, imaging processing. Here, we present a controllable near-infrared beam splitting and switching device based on chalcogenide phase-change metasurface operating in the telecommunication wavelength region. It exhibits polarization-insensitive and large-angle beam switching with a high modulation depth operating in transmission mode. #### 15:20: MoO2/MoO3 as Reconfigurable Materia Maria Losurdo¹, Gonzalo Santos², Yael Gutierrez¹, Mircea Modreanu³, Fernando Moreno² ¹Università degli Studi di Bari (Italy), ²Universidad de Cantabria (Spain), ³University College Cork (Ireland) Significant effort is being invested in developing alternative materials whose optical properties can be reversibly modified. Here, we demonstrate the reversible non-volatile MoO3 to MoO2 chemical "transition reporting a change from a metallic to a dielectric behavior in the dielectric function through cycles of annealing in different atmospheres. Applicability of the reversible cycling to reconfigurable color pixel displays is shown. ### 14:00 - 15:40 — Bajondillo #### Session 2A14 # Symposium I: Hybrid Nanomaterials and Metastructures for Photonics, Sensing and Energy Organized by: Jerome Plain, Alexander Govorov, Davy Gerard and Pedro Hernandez Martinez Chaired by: Jerome Plain #### 14:00: Invited talk Engineered Near- and Far-Field Optical Response of Dielectric Nanostructures using Focused Cylindrical Vector Beams Martin Montagnac¹, Gonzague Agez¹, Sebastien Weber¹, Aurelien Cuche¹, Arnaud Arbouet¹, Yoann Brule², Gerard Colas des Francs², Peter Wiecha¹, Guilhem Larrieu¹, Bruno Masenelli³, Vincent Larrey⁴, Vincent Paillard¹ ¹Universite de Toulouse (France), ²Universite de Bourgogne-Franche Comte (France), ³Universite de Lyon (France), ⁴Universite Grenoble-Alpes (France) We investigate by numerical simulations (FDTD) the optical properties of silicon nanoantennas excited by focused cylindrical vector beams. We present preliminary experimental results of photoluminescence mappings of rare-earth-doped thin films coupled to silicon nanorings obtained by raster scanning of focused cylindrical vector beams. We also show specific geometries for controlled Purcell effect obtained by evolutionary algorithms coupled to Green Dyadic Method simulations of the LDOS. #### 14:20: Invited talk # Simulation-based Comparison of the Performance of Various Phase-Change Materials on a SiN-based Photonic Platform Clement Zrounba¹, Fouad Bentata¹, Raphael Cardoso¹, Alberto Bosio¹, Sebastien Le Beux¹, Patrice Genevet², Stephane Monfray³, Lotfi Berguiga¹, X. Letartre¹, Ian O'Connor¹, Sebastien Cueff¹, Fabio Pavanello¹ $^1 \textit{Universite Claude Bernard Lyon 1 (France)}, ^2 \textit{Universite Côte d'Azur (France)}, ^3 \textit{STMicroelectronics (France)}$ We present a simulation-based performance assessment of various phase-change materials (PCMs) in the context of photonic integrated circuits. We study a device consisting of a thin rectangular patch of PCM deposited on a silicon nitride waveguide. This device is programmed using guided optical pulses to alter its optical transmission by partially changing the phase of the PCM. Using two application-aware figures of merit, we evaluate the programming efficiency for each PCM considered. #### 14:40: Invited talk # Nano-optics of 2D materials and van der Waals heterosturctures using free electron spectroscopies Luiz Tizei Universite Paris-Saclay (France) Electron spectroscopies have emerged as extremely useful tools for nanomaterials characterization. However, until recently, the limited spectral resolution available prevented wide-spread applications in the optical energy range. In this contribution, we will discuss how this techniques can be used to understand the physics of 2D materials and their heterostructures. More importantly, a new technique based on the temporal coincidence of absorption and emission events will be described, that allows one to map the relative quantum efficiency of different excitation pathways. 15:00 : Invited talk 3D Chiral Metamaterials for Biosensing M. Manoccio, M. Esposito, A. Passaseo, Vittorianna Tasco CNR Nanotec (Italy) This contribution will discuss the experimental application of 3D chiral metamaterials as high sensitivity biosensors, exploiting circular dichroism in transmission. 3D metamaterials with chiral features can be realized by highly accurate and highly localized bottom-up nanofabrication approach. Large chiroptical effects can be engineered, originating from the single element optical resonances, but collective interactions in arrayed configurations can play a significant role, further enhancing these effects. Capability of biomarker detection in the femtomolar range is demonstrated even in complex biofluid matrix. #### 15:20 : Invited talk ### Fingerprint - mimicked Chiral Elastomeric Grating Meta-Skin Ki-Jae Jeong¹, Juyong Gwak¹, Caifeng Wang¹, Young-Mi Kim¹, Van Tan Tran², Jaebeom Lee¹ ¹Chungnam National University (Korea), ²Phenikaa University (Vietnam) Fingerprint-inspired elastomeric grating meta-skin (EGMS) is fabricated to investigate the chirality of fingerprints. The chirality of the surface is caused by symmetry breaking, induced by the pattern (P) and curvature (T). Furthermore, the chiroptical properties of EGMS are reconfigurable through the control of the skew angle (θ). The chiroptical properties of a fingerprint are also shown and interpreted in this perspective. It will be a useful method to produce chirality in advance biometric recognition. # 14:00 - 15:40 — Carihuela #### Session 2A15 ### Symposium III: Advanced passive and active metasurfaces Organized by: Howard Lee and Pin-Chieh Wu Chaired by: Min Seok Jang 14:00 : Invited talk Radial bound states in the continuum for polarization-invariant nanophotonics online Lucca Kuhner¹, Luca Sortino¹, Rodrigo Berte¹, Juan Wang¹, Haoran Ren¹, Stefan Maier¹, Yuri Kivshar², Andreas Tittl¹ ¹Ludwig-Maximilians-Universitat Munchen (Germany), ²Australian National University (Australia) We demonstrate radial bound states in the continuum as a new concept for realizing resonances with high Q factors, strong near-field enhancements, and polarization invariance in a compact footprint, and utilize them for applications in biomolecular sensing and higher harmonic generation from 2D materials. ### 14:20 : Invited talk #### **Multiscale Optimization of Metaoptic Hybrid Lenses** Philip Hon¹, Stephane Larouche¹, Katherine Fountaine¹, Sze Wah Lee¹, Shu-I Wang², Edgar Bustamante³, Ihab El-Kady⁴, Ekaterina Poutrina⁴, Augustine Urbas⁵ ¹Northrop Grumman Corporation- Space Systems (USA), ²Northrop Grumman Corporation- Mission Systems (USA), ³Sandia National Laboratories (USA), ⁴UES, Inc. (USA), ⁵Air Force Research Lab (USA) Combining planar optics such as metalenses or metacorrectors with conventional lenses can improve the optical performance of imaging systems with additional benefits to cost, size and weight. Incorporating metacorrectors with conventional lens elements requires multiscale simulations to account for the different length scale features and interactions. Namely, full wave scattering and geometric optics (GO) analysis is needed. Multiscale inverse optimization using Sandia National Laboratories' MIRaGE along with different wave propagation and commercial-off-the-shelf GO tools are considered to accurately predict performance. 14:40: Invited talk Nonlinear wave mixing by monolayer transition metal dichalcogenides Francesco Tonelli¹, Alessandro Ciattoni¹, Andrea Marini² ¹CNR-SPIN (Italy), ²University of L'Aquila (Italy) We theoretically model the second- and third-order nonlinear response of monolayer transition metal dichalcogenides, demonstrating their potential for phase-matching free harmonic generation and difference frequency generation thanks to their atomic-layer thickness implying a surface-like nonlinear interaction. 15:00 : Invited talk Software Defined Meta-Optics online Arka Majumdar University of Washington (USA) By co-optimizing passive meta-optics with computational backend, we can correct for aberrations, demonstrate varifocal functionality and also perform object detection. 15:20: Invited talk Metasurfaces meet optical fibers: a novel platform for flexible optical trapping and boosting in-coupling efficiencies online Markus Schmidt¹, Schneidewind Henrik¹, Uwe Huebner¹, Matthias Zeisberger¹, Malte Plidschun¹, Jisoo Kim¹, Oleh Yermakov², Yuri Kivshar³, Andrey Bogdanov⁴, Haoran Ren⁵, Stefan A. Maier⁶ ¹Leibniz Institute of Photonic Technology (Germany), ²V. N. Karazin Kharkiv National University (Ukraine), ³Australian National University (Australia), ⁴ITMO University (Russia), ⁵Macquarie University (Australia), ⁶Ludwig-Maximilian University of Munich (Germany) In this talk, we show that the combination of optical fibers with nanostructures defines a new class of fiber integrated devices - nanostructured fibers - which opens up new application areas for optical fiber research. Using 3D nanoprinting and modified electron beam lithography, we integrate high-NA
meta-lenses and dielectric ring gratings onto the end faces of single-mode fibers. These devices enable efficient light coupling at angles up to 80° and trapping of Escherichia coli with an individual single-mode fiber device. #### 14:00 - 16:10 — Montemar #### Session 2A16 ### Local enhancement and control of light-matter interaction Organized by: Antonio Ambrosio Chaired by: Stefano Chiodini 14:00 : Invited talk Metal-Hydrogel-Metal Cavity for Dynamic Emission Control Dipa Ghindani, Ibrahim Issah, Semyon Chervinskii, Markus Lahikainen, Kim Kuntze, Arri Priimagi, Humeyra Caglayan Tampere University (Finland) Actively controllable photoluminescence is potent for a variety of applications from biosensing and imaging to optoelectronic components. Traditionally, methods to achieve active emission control are limited due to complex fabrication or irreversible tuning. Here, we demonstrate active emission tuning, achieved by changing the ambient humidity in a fluorescent dye-containing metal-hydrogel-metal integrated system. Altering the overlapping region of the MIM cavity resonance and the absorption and emission spectra of the dye used is underlying principle to achieve tunability of the emission. 14:20: Invited talk **Epsilon-Near-Zero Optics in Planar and Optical Fiber Platforms** Sudip Gurung, Aleksei Anopchenko, Christopher M. Gonzalez, David Dang, Leon Zhang, Kent Nguyen, Alexander Galkin, Tingwei Liu, Meena Salib, Howard Lee University of California (USA) Epsilon-near-zero materials have been shown to be as one of the most promising optical materials in the recent years as the electromagnetic field inside media with near-zero permittivity has been shown to exhibit unique optical properties. I will review our recent studies on the active linear, nonlinear, and emission properties of conducting oxide and metallic nitride epsilon-near-zero materials. #### 14:40 : Self-Assembled Meta-Atoms and Metasurfaces Maeva Lafitte, Rajam Elancheliyan, Cian Cummins, Alberto Alvarez Fernandez, Philippe Barois, Alexandre baron, Olivier Mondain-Monval, Guillaume Fleury, Virginie Ponsinet Universite de Bordeaux (France) Metamaterials rely on artificial assembled optical resonators, with strong interactions with light and local field enhancements. This presentation aims at pointing out how colloid- and polymer-based chemical engineering offers exciting routes to tailor the optical response, including polarizabilities and scattering diagram of such resonators, and transmission and absorption of their planar assemblies. We will discuss examples where bottom-up synthesis and assembly of tailored metallic nanoresonators leads to promising optical properties, specifically using self-assembled soft matter systems like emulsions and copolymers. # 14:55 : Enhancing photon avalanche in upconversion nanoparticles Conrad Corbella Bagot, Eric Rappeport, Taleb Ba Tis, Wounjhang Park University of Colorado Boulder (USA) Upconversion photon avalanche has recently been shown in highly Tm3+-doped upconverting nanoparticles. However, the threshold power for this mechanism is still high, limiting its range of applications. In this presentation, we will discuss the advantages of using plasmonics in order to enhance photon avalanche. We will also present the experimental results of a design that could reduce the threshold power for such phenomenon by up to two orders of magnitude. #### 15:10: Invited talk Ultrafast All-optical Reconfiguration of Plasmonic Metasurfaces online Andrea Schirato¹, Margherita Maiuri¹, Remo Proietti Zaccaria², Alessandro Alabastri³, Giulio Cerullo¹, Giuseppe Della Valle¹ ¹ Politecnico di Milano (Italy), ² Istituto Italiano di Tecnologia (Italy), ³ Rice University (USA) Light-matter interaction enhanced by resonant plasmonic effects in gold metaatoms is exploited to achieve all-optical control of light with unprecedented speed. Photoinduced broadband dichroism, fully reversible and transiently vanishing in less than 1 picosecond, has been experimentally demonstrated in plasmonic metasurfaces with nanocross metaatoms. Also, we designed a nonlinear plasmonic metagrating where the photoinduced hot-electron symmetry breaking enables ultrafast reconfiguration of diffraction orders via control laser pulses. Our results pave the way for the all-optical reconfiguration of plasmonic metasurfaces. #### 15:30 : Invited talk Strongly confined terahertz polaritons in topological insulators revealed by terahertz near-field nanoscopy online Eva Arianna Aurelia Pogna¹, Leonardo Viti², Antonio Politano³, Massimo Brambilla⁴, Gaetano Scamarcio⁴, Miriam Serena Vitiello² ¹CNR-IFN (Italy), ²NEST (Italy), ³University of L'Aquila (Italy), ⁴Università degli Studi e Politecnico di Bari (Italy) The terahertz collective excitations of thin films of Bi2Se3 and Bi2Te2.2Se0.8 topological insulators are investigated by a combination of hyperspectral nano-imaging and detectorless scattering-near-field optical microscopy. We provide first experimental evidence for the activation of propagating sub-diffractional bulk plasmons polaritons and hybridized collective modes formed by the coupling of bulk hyperbolic phonon-polaritons with the Dirac-plasmons associated with the topological surface-states, which can support low-loss, highly tunable and strongly confined terahertz electromagnetic modes. #### 15:50: Invited talk # On-Chip Circularly Polarized Single-Photon Sources with Quantum Metasurfaces online Fei Ding University of Southern Denmark (Denmark) We have demonstrated a conceptually new approach of quantum metasurfaces to the room-temperature generation of circularly polarized single photons entailing quantum emitters non-radiative coupling to surface plasmons that are transformed, by interacting with an optical metasurface, into a collimated stream of single photons with the designed spin and orbital angular momentum. #### 14:00 - 15:55 — Litoral #### Session 2A17 ### Bottom-up approaches, new fabrication routes and ENSEMBLE3 Organized by: Dorota Pawlak and Virginie Ponsinet Chaired by: Dorota Pawlak 14:00 : Invited talk Helical assemblies of plasmonic 1D-nanoobjects with giant circular dichroism Matthias Pauly, W. Wu, V. Lemaire, S. Sekar, G. Decher Universite de Strasbourg (France) Grazing Incidence Spraying combined to Layer-by-Layer assembly is used to assemble anisotropic plasmonic nanoparticles as mono- and multilayer thin films on large areas, in particular into helical (and thus chiral) multilayer thin films. The resulting giant chiroptical properties can be finely tuned over a broad wavelength range using simple design principles, reaching ellipticity values higher than 13° and g-factor values up to 1.6 in the visible and near-IR range. #### 14:20 : Design of Si-based particles for infrared-active metamaterials Cynthia Cibaka-Ndaya¹, Megan Parker¹, Lucien Roach¹, Maria Letizia De Marco¹, Brian A. Korgel², Raul Barbosa², Philippe Barois¹, Virginie Ponsinet¹, Cyril Aymonier¹, Glenna L. Drisko¹ Universite de Bordeaux (France), ² The University of Texas (USA) We report the synthesis and self-assembly of Si@SiOxNy core-shell particles, scattering infrared light. They were produced by decomposing a Si coordination complex alongside cyclohexasilane, under supercritical conditions. Core and shell dimensions were controlled through precursor stoichiometry and relative concentration. The electric and magnetic multipoles were characterized using a custom-built static light scattering spectrometer. Simulations show that the magnetic and electric responses are respectively located in the core and shell. The particles were self-assembled into metasurfaces and optically characterized using ellipsometry. #### 14:35 : Invited talk ### **Active and Extreme Plasmonics** ### Jeremy Baumberg University of Cambridge (United Kingdom) Integration of active polymers into the 1-10nm nanogaps of plasmonic self-assembled patch antennas opens up wide opportunities for building-scale applications. We demonstrate the construction and large-scale fabrication of such active films, and the large range of unusual properties that can result. #### 14:55: Invited talk #### Design of photonic nanostructures via chirality induction Jie Gao¹, Wenbing Wu², Vincent Lemaire², Alain Carvalho², Sylvain Nlate¹, Thierry Buffeteau¹, Reiko Oda¹, Yann Battie³, Matthias Pauly², Emilie Pouget¹ ¹Bordeaux University (France), ²Universite de Strasbourg (France), ³Universite de Lorraine (France) In this project, new nanomaterials based on gold nanoparticles organized on chiral colloidal nano-substrates are designed and organized on surfaces via Grazing Incidence Spraying in order to control the chiroptical properties. #### 15:15: Invited talk Narrowband visible and mid-infrared polarizing filters with self assembled Al doped Zno-ZnWO4 eutectic composites Maria Cristina Larciprete¹, Marco Centini², Grigore Leahu², Alessandro Belardini², Roberto Li Voti², Concita Sibilia², Dorota Pawlak¹ ¹Ensemble3 (Poland), ²University of Roma La Sapienza (Italy) We report an overview of optical properties of eutectics Al-ZnO/ZnWo4. Filtering properties and polarization dependent properties, as function of Al concentration are presented in the visible and I.R. range 15:35: Invited talk Functional nanostructures for photocatalysis and optical applications online S. H. Mir, B. D. Jennings, G. E. Akinoglu, A. Selkirk, R. Gatensby, Parvaneh Mokarian-Tabari *Trinity College Dublin (Ireland)* Nanostructures are well-known for their increased reactivity/interactivity compared to their bulk counterparts. They have stimulated the development of many fabrication techniques, including block copolymer (BCP) patterning. We will present a nanostructured photocatalytic device fabricated using BCP patterning. The device is comprised of a nanoporous silicon substrate infiltrated with gold nanoparticles (AuNPs) and achieved near complete photo-degradation of dye within 90 minutes1, significantly faster than for AuNPs on unstructured
Si. Other BCP-fabricated nanostructures2 which present near-zero reflectance will also be presented. #### 14:00 - 15:20 — Manantiales ### **Session 2A18** ### **Bio-Inspired Nanophotonics** Organized by: Debashis Chanda, Hyuck Choo and Radwanul Hasan Siddique Chaired by: Debashis Chanda 14:00 : Invited talk **Structural Color: A Revival** Joel Yang Singapore University of Technology and Design (Singapore) Despite its long history, we are now witnessing a revival in structural color research with numerous potential applications. Here, we provide a perspective of structural colors, highlighting some of the major achievements and new discoveries in the field. 14:20 : Invited talk Multifunctional Contact Lens Sensor for Tear Protein Analyses online V. Narasimhan, R. Siddique, Y. M. Wang, H. Choo Samsung Semiconductor, Inc. (USA) This work reports the development of the first multifunctional bioinspired contact lens sensor which combines enhanced optical and bactericidal properties as well as protein sensing in tears for ocular diagnostics. We created glasswing-butterfly-inspired (Greta oto1 and Chorinea faunus2) nanostructures using biocompatible parylene C and integrated them onto the surface of traditional scleral lenses. The nanostructure-integrated lenses minimize glare by 4.3-fold at 80o, improve VIS transmission by 1.1-fold, and block 2.8-fold more UVA compared to their traditional counterpart. #### 14:40 : Invited talk Theoretical analysis and experimental verification of anti-biofouling properties of bio-inspired nanophotonic structures ^{online} Shailabh Kumar¹, V. Narasimhan¹, R. Siddique¹, H. Choo² ¹Samsung Semiconductor, Inc. (USA), ²Samsung Semiconductor, Inc. (Korea) Here we show that butterfly-derived nanophotonic structures can act as functional optical sensors for providing real-time health signatures as well as resist biofouling as a result of their structural properties. We discuss the theoretical basis of their behavior which can help us optimize their performance, and show experimental data revealing biofouling resistance as well as long-term stability of the implants in-vivo. #### 15:00 : Invited talk Handheld, wide-angle visible-imaging and near-infrared spectroscopy using bioinspired nanostructures online Daniel Assumpcao¹, Radwanul Hasan Siddique¹, Hyochul Kim², Yeonsang Park², Un Jeong Kim², Young-Geun Roh², Michelle Y. Wang¹, Hyuck Choo¹ ¹ Samsung Semiconductor, Inc. (USA), ² Samsung Advanced Institute of Technology (SAIT) (Korea) High-performance compact spectrometers are crucial for numerous consumer applications. In this work we demonstrate an ultracompact spectrometer able to simultaneously perform visible imaging and near-infrared spectroscopy on a single conventional CMOS image sensor. We utilize a novel bio-inspired dispersive element combining disordered scattering nanostructures with ordered resonances. We demonstrate an angular tolerance of 30 degree, sub-5nm spectral resolution with 200 nm bandwidth, and high throughput, opening up a new way to achieve high-performance sensing and detection. #### **Coffee Break** Session 2P2 **Poster session IV** 16:00 - 16:40 #### P1: Transverse-electric surface plasmon modes in graphene grating Zeeshan Ahmad, Egor Muljarov, Sang Soon Oh Cardiff University (United Kingdom) Transverse-electric surface plasmon polaritons (SPPs), tunable with electronic chemical potential and temperature, have been recently discovered in homogeneous graphene sheets. The frequency of these modes lies below the light line, making them not coupled resonantly to the excitation field. Here, by considering a graphene grating with one-dimensional periodicity, we show that these modes become experimentally discernable. Applying the scattering matrix formalism, we study the dispersion of the SPP modes and their manifestation in transmission spectra. ### P2: Circular Polarization Antennas in Ridge Gap Waveguide at V-Band Dayan Perez-Quintana, Iñigo Ederra, Miguel Beruete Public University of Navarra (Spain) In this paper, three compact antennas using the ridge gap waveguide (RGW) technology working in the millimeter-wave band and generating circular polarization (CP) in either a wide or a narrow band are numerically and experimentally analyzed. The widest bandwidth achieved in CP is 14.48 %, with respect to the central frequency and the highest gain is around 18.4 dB. These designs are a strong alternative for medium/high gain CP antennas in a planar layout. ### P3: Bound State in the Continuum in Resonant hBN Antenna Arrays Harsh Gupta, Michele Tamagnone Istituto Italiano di Tecnologia (Italy) We demonstrate that arrays of pairs of elliptical hexagonal boron nitride antennas can support bound states in the continuum. We tune the coupling of the BIC modes with incident light using the angle of the major axis of the antennas and we demonstrate a trifold enhancement of the quality factor of the resonance. # P4: Correlative electron and optical spectroscopy of strongly-coupled mid-infrared plasmon and phonon polaritons Pavel Gallina¹, Andrea Konecna¹, Michal Horak¹, Michal Kvapil¹, Jiri Liska¹, Vlastimil Krapek¹, Radek Kalousek¹, Juan C. Idrobo², Tomas Sikola¹ ¹Brno University of Technology (Czech Republic), ²Oak Ridge National Laboratory (USA) We explored a system supporting low-energy excitations, in particular, mid-infrared localized plasmon modes and phonon polaritons that are tuned to be strongly coupled. We studied the coupled modes by using far-field infrared spectroscopy, state-of-the-art monochromated electron energy-loss spectroscopy, numerical simulations and analytical modeling. We demonstrated that the electron probe facilitates a precise characte- rization of polaritons constituting the coupled system, and enables an active control over the coupling and the resulting sample response both in frequency and space. #### P5: Tunable scattering-absorbing VO2 nanoantennas in the near-infrared Peter Kepic, Filip Ligmajer, Katarina Rovenska, Tomas Sikola Brno University of Technology (Czech Republic) The development of metasurfaces offers many novel optical functions provided by precisely fabricated nanostructures. One can tune the functionality of the metasurface after its fabrication by incorporating phase-transition materials. Vanadium dioxide (VO2), which undergoes the volatile dielectric-metallic phase transition, offers such potential for tunability already around 67°C. Here, we focus on the alignment of the dielectric and plasmonic resonances of VO2 nanostructures at near-infrared wavelengths that can be applied into a perfect tunable scattering-absorbing meta-grating. #### P6: Plasmon-excited near-field luminescence of semiconductor light sources Vlastimil Krapek, Petr Dvorak, Lukas Kejik, Zoltan edes, Michal Kvapil, Michal Horak, Petr Liska, Jan Krpensky, Tomas Sikola Brno University of Technology (Czech Republic) On-chip integration of light sources would benefit from near-field handling of the emission with a subwavelength spatial resolution. Here we present a fully near-field photoluminescence study of semiconductor quantum dots, with a surface plasmon interference device (SPID) used for the excitation and an aperture-type scanning near-field optical microscope (SNOM) combined with a spectrometer for the collection. # P7: Plasmonic Surface Lattice Resonance and Optomechanics for Self-Assembled Nanolasers Mindaugas Juodenas¹, Domantas Peckus², Nadzeya Khinevich², Joel Henzie³, Tomas Tamulevicius², Asta Tamuleviciene², Sigitas Tamulevicius² ¹Chalmers University of Technology (Sweden), ²Kaunas University of Technology (Lithuania), ³National Institute for Materials Science (Japan) Plasmonic surface lattice resonance-based (SLR) nanolasers are attractive because of small mode volumes, ultrafast dynamics and good beam directionality. Underlying nanocavities are usually produced by standard lithography processes. We developed a method to arrange monodisperse colloidal nanoparticles onto large, patterned substrates with a high assembly yield. Furthermore, we showed that the SLR is not static at ultrafast time scale due to the optomechanical modes of constituent nanoparticles. Our findings open new opportunities for large scale nanolasers with ultrafast functions. #### P8: Strongly Deflecting Cylindrical Metalenses for Ultra-Compact Spectroscopy Mindaugas Juedenas, Vasilii Mylnikov, Sebastian Gobel, Mikael Kall Chalmers University Of Technology (Sweden) We demonstrate all-dielectric, strongly deflecting cylindrical metalenses for near-infrared spectroscopy applications. We followed two design workflows: phase mapping using finite element method-simulated metaatoms and the diffracted energy redistribution approach. Optimized metasurfaces were fabricated directly in GaAs substrates. These high-NA planar optical components will be useful for monolithic integration with compact semiconductor light sources for beam shaping and spectroscopy. # P9: Phase-gradient metalens for optical confinement and transport of microparticles Mohammad Mahdi Shanei, Einstom Engay, Mikael Kall Chalmers University of Technology (Sweden) In this work, we have designed and fabricated a dielectric metasurface able to trap and push particles along its focal line. The required phase profile was experimentally realized by using arrays of silicon nanofins with locally varying rotation angles. We envisage that this kind of flat structure for optical manipulation could be integrated with microfluidic chips to form miniaturized devices for sensing, driving and sorting of various kinds of microscopic objects. # P10: Accurate Inverse Design of Fabry-Perot-Cavity-Based Transmissive Color Filter via Deep Learning Peng Dai¹, Kai Sun¹, Xingzhao Yan¹, C.H. (Kees) de Groot¹, Otto Muskens¹, Huigao Duan², Ruomeng Huang¹ ¹ University of Southampton (United Kingdom), ² Hunan University (China) Deep learning approaches have been applied to achieve the fast and accurate inverse design of F-P-cavity-based
structural color. The trained networks cover a large gamut (215 % of sRGB) while allowing multiple designs identification for each color. ### P11: Fabrication and characterization of electrically tuned photonic nanodevice Alexander Korneluk, Julia Szymczak, Tomasz Stefaniuk University of Warsaw (Poland) This work presents experimental results on fabrication and characterization of an electro-opticalmodulator in the form of metal-oxide-semiconductor multilayer structure that exhibits refractive index changeunder applied external voltage. This variation in optical properties is enabled by the changes in the carrierdensity present in the vicinity of the indium-tin-oxide layer - fused silica interface. In our investigations, we identify the critical electrical and morphological parameters of the e-beam deposited semiconductor film thatgovern the process of accumulation/depletion layer formation. #### P12: On the study of the enhanced nanowire metamaterial structure Patrik Micek¹, Thanos Ioannidis², Tatjana Gric² ¹University of Zilina (Slovakia), ²VILNIUS TECH (Lithuania) This paper presents the theoretical characterization of enhanced nanowire metamaterial structure consisting of anisotropic semiconductor nanowires. By changing the semiconductor's parameters such as doping results in effective tuning of the hyperbolic dispersion of the metamaterial, which is not possible with noble metals. At last, the effects of the nanowire's diameter, spacing and structure symmetry on hyperbolic dispersion were analytically investigated. #### P13: Advanced anisotropic hybrid plasmonic nano-emitters Minyu Chen¹, Dandan Ge¹, Sylvie Marguet², Ali Issa¹, Safi Jradi¹, Christophe Couteau¹, Renaud Bachelot¹ *UTT/L2N (France)*, ² *Universite Paris Saclay (France)* We report on the optimal overlap of antenna's near-field and active medium whose spatial distribution is controlled via a plasmon-triggered 2-photon polymerization of a photosensitive formulation containing QDs. Both liner and circularly polarized excitation are considered. ### P14: Light Matter Interaction in Chiral Metasurfaces Leeju Singh¹, Shmuel Sternklar², Yuri Gorodetski² ¹ Weizmann Institute Of Science (Israel), ² Ariel University (Israel) We demonstrate the connection between the reduced rotational symmetry of a chiral structure unit-cell to the existence of the Kramers-Kronig relations between the chiral spectral parameters in the k-space and found that the reduction in rotational symmetry affects the locality condition, which unavoidably leads to the deviation from the KK relation. Further, we experimentally investigated plasmonic metasurfaces comprising topological edge states. We discussed line and point dislocations with trivial and non-trivial topological phases. # P15: Multi Objective Optimization of sensing performances of a Cu-Ni-Graphene Surface Plasmon Resonance based sensor #### Pericle Varasteanu University of Bucharest (Romania) In this study, a multi objective optimization algorithm, NSGA II was employed to increase the sensing performances of a Cu-Ni SPR sensor. The impact of objectives on the sensor's structure and performance is emphasized by considering three test cases where different pairs of sensing parameters were considered as objectives: sensitivity (S), fullwidth at half maximum (FWHM), and reflectivity at resonance (r0), S and FWHM, and S and r0. Sensitivities up to 222 deg/RIU were obtained # P16: Anomalous Reflection Designed Considering Spaitally Varying Surface Impedance Kyle Arnold¹, Nathan Clow², Simon Horsley¹, Alastair Hibbins¹, Roy Sambles¹ ¹ University of Exeter (United Kingdom), ² DSTL (United Kingdom) We have designed an anomalous reflection surface by considering the surface impedance at the boundary of the metasurface. We have built an approximation of this surface using strips, a simplification of a patch array, of varying sizes to match the desired impedance distribution. Using this anomalous reflection surface we have then studied the angular response of the surface compared to models of the surface impedance distribution. Using this design methodology we aim to design more complex spatially varying surface impedances. # P17: Introducing tunability into structural color filters using vanadium dioxid Katarina Rovenska, Beata Idesova, Filip Ligmajer, Peter Kepic, Tomas Sikola Brno University of Technology (Czech Republic) Once a conventional structural color filter is fabricated, its optical response cannot be changed. By incorporating tunable materials into these filters, we can alter the performance of color-filtering metasurfaces even after fabrication. In this work, we use vanadium dioxide for its thermally inducible and repeatable transition from dielectric to metallic state at ca. 67 °C. We prepare holey structural color filters with various Al/VO2 geometries and analyze the thermally inducible tunability of these color-filtering systems ### P18: Microscopic origin of chirality in elemental Tellurium Rikuto Oiwa, Hiroaki Kusunose Meiji University (Japan) We investigate a microscopic origin of chirality based on the realistic tight-binding model for elemental Tellurium. Expressing the model in terms of the symmetry-adapted basis, we found the dominant components in both the local and itinerant terms corresponding to the time-even pseudoscalar property, i.e., chirality. Here we show their microscopic expressions and discuss the essential coupling to them that is the origin of both the electric-field induced rotation and rotation-field induced electric polarization. # P19: Heavily doped semiconductor nanostructures on LWIR T2SL for reduced detector thickness Clement Gureghian, G. Vincent, J-B. Rodriguez, G. Sombrio, I. Ribet-Mohamed, T. Taliercio *ONERA (France)* Achieving higher operating temperatures is a key-point in the current infrared photodetection research. One promising way to achieve this goal is through the reduction of the thickness of the active region and the use of optical resonators to compensate the consequent loss of absorption. Herein we present simulation results of the absorption in a thin LWIR T2SL photodetectors, capped with heavily doped semiconductors nanostructures. # P20: Electrically Tunable Strongly Coupled Epsilon-Near-Zero and Plasmonic Hybrid Mode Dipa Ghindani, Alireza R. Rashed, Mohsin Habib, Humeyra Caglayan Tampere University (Finland) Achieving active tunability of light and matter interaction opens a new avenue for exploring various high-performance photonic devices. In this prospect, developing a novel way to achieve active tuning of a strongly coupled system is vital. Here, we demonstrated an active tuning of the coupling strength in a strongly coupled system comprised of ENZ material and plasmonic resonators. The incorporation of these two components exhibits strong coupling that manifests as spectral splitting in the transmission spectra in near-infrared spectral range. # P21: Polarization Control over Light via Integrated Grating Outcoupling Structure for Trapped Ion Quantum Computers Anastasiia Sorokina, Steffen Sauer, Guochun Du, Carl Grimpe, Johannes Dickmann, Tanja Mehlstaubler, Stefanie Kroker Technische Universitat Braunschweig (Germany) Ion traps are a promising platform for the realization of high-performance quantum computers. To enable the future scalability of these systems, integrated photonic components for guiding and manipulating laser light on chip-scale are important. Such passive optical components offer μ m-beam radii due to their proximity to the ions. To achieve full optical control over the ions, the manipulation of light polarization is essential. We present the first simulation results for different grating outcouplers and their applications on ion trap chips. #### P22: Fractal-like aluminum optical antennas T. Simon¹, X. Li², J. Martin¹, D. Khlopin¹, O. Stephan², M. Kociak², Davy Gerard¹ ¹ Universite de Technologie de Troyes (France), ² Universite Paris Saclay (France) We propose aluminum self-similar, fractal-like structures (Cayley trees) as broadband optical antennas. Using electron energy loss spectroscopy, we experimentally evidence that a single aluminum Cayley tree sustains multiple and scalable plasmonic resonances. # P23: Spin-wave nonreciprocity in cylindrical synthetic antiferromagnets Rodolfo Gallardo, Pablo Alvarado, Pedro Landeros Universidad Tecnica Federico Santa Maria (Chile) A cylindrical synthetic antiferromagnet is proposed as a potential candidate to generate nonreciprocal spin waves. It is demonstrated that such a system presents a notable spin-wave asymmetry induced by the combined action of the antiferromagnetic state and the curvature. Analytical expressions are proposed for the case of thin cylindrical shells. These results are relevant from a fundamental and practical point of view since the chirality of the spin waves is a crucial ingredient to visualize future magnon-based logic applications. # P24: DNA-PAINT based super-resolution microscopy to assess plasmon-mediated single-molecule FRET ### Swayandipta Dey, Sjoerd W. Nooteboom, Peter Zijlstra Eindhoven University of Technology (The Netherlands) Forster Resonance Energy Transfer (FRET) has been widely used as a "nanoscale spectroscopic ruler"to gauge the proximity between two biomolecules or follow their conformational dynamics. The brightness of the FRET signal is however limited by the fluorophores. Herein, we propose to use plasmon-enhanced FRET (PFRET) to boost the brightness and to develop a multi-color single-molecule sensor. We present numerical simulations of the plasmon-mediated FRET process and use DNA mediated super-resolution microscopy (DNA-PAINT1) to measure single-molecule enhancement factors and spectra. # P25: Design of Metamaterial Absorber for Biomedical Applications Brinta Chowdhury, Abdullah Eroglu North Carolina A and T State University (USA) Design of a metamaterial absorber operating at THz frequency to be used as a sensor for biomedical
applications is given. The absorber has multilayers including Glass substrate, InSb semiconductor layer, MgF2 buffer layer, InSb Resonator ring, buffer layer, and a mask. The performance of the absorber is investigated for various conditions including absorption, transmission and reflection versus frequency, and wavelength. It has been confirmed that the absorber provides expected results for absorption for THz frequency range. P26: Metamaterial Cell Proposal for Hybrid Shielding of Vehicle Components at Low Frequencies ^{online} Geyse Mirelle Brito da Silva, Diego N. Lemos, Valdeth S. Sousa, Leandro T. Manera, Marcelo G. Villalva State University of Campinas (Brazil) This article proposes an optimized metamaterial cell with a honeycomb-based substrate with the aim of electromagnetic and acoustic shielding. The proposed cell presented an absorption of $95\,\%$ and a maximum of 103 dB of sound transmission loss. The proposed electromagnetic shielding goal is to fulfill vehicle EMC standards while mitigating unpleasant noise from vehicle components. # P27: Scattering characteristics of a cylindrical conductor coated by Dispersive and Lossy Metamaterials with an intervening air gap ^{online} #### Adnan Jamil, Tenneti Rao University of Massachusetts (USA) Plane wave backscattering of a conducting cylinder coated by a layer of metamaterial having dispersive constitutive parameters with an intervening air gap is investigated by using the boundary-value technique. The results indicate that it is possible to achieve an extremely low radar echo width over a broad range of frequencies. Further investigations on the total scattering cross section for the TM incidence for DNG type metamaterial appear to strengthen the belief that a broadband cloaking is possible with this geometry. # P28: Coupling interfaces between SiN photonic and CGSiN plasmonic waveguides ^{online} Lamprini Damakoudi, Dimitra Ketzaki, Dimitrios Chatzitheocharis, Georgios Patsamanis, Konstantinos Vyrsokinos Aristotle University of Thessaloniki (Greece) This work focuses on the design of high-efficiency coupling interfaces between silicon nitride (SiN) photonic and Conductor-Gap-SiN (CGSiN) plasmonic waveguides, revealing numerically simulated coupling efficiency (CE) values up to 88% at 1310nm. # P29: Light amplification in silver nanoparticles containing organic luminophore thin films ^{online} Jelena Mikelsone, Aivars Vembris University of Latvia (Latvia) Metal nanoparticles are active research object. They can be used in various applications. Silver nanoparticles typically are synthesized in aqueous solution and their transfer to organic solvents is required for application purposes with organic luminophores. We studied silver nanoparticles transfer from aqueous to organic media by ultrasonic and shell changing processes. Photoluminescence properties - emission maps, photoluminescence quantum yield and lifetime of nanoparticles containing luminophore DWK-1-TB thin films were studied. Improvements of photoluminescence properties in nanoparticles containing films was observed. ## P30: Plasmonic Properties of Differently Oriented Lattices of Nanoparticles Revealed by Microellipsometry online Eugene Bortchagovsky¹, Yu. V. Demydenko¹, A. B. Bogoslovska¹, T. O. Mishakova², J. Tang³, M. Fleischer³, I. A. Milekhin⁴, Dietrich Zahn⁴ ¹ V. Lashkarev Institute of semiconductor physics (Ukraine), ² Shevchenko Kyiv National University (Ukraine), ³ Eberhard Karls Universitat Tubingen (Germany), ⁴ Chemnitz University of Technology (Germany) Microellipsometry was used to reveal plasmonic properties of ordered lattices of nanoparticles depending on the mutual orientation of the plane of incidence of the exciting light and own vectors of the lattice. The registered spectral positions of plasmonic resonances are dependent on the mutual orientation and the behavior observed indicates non-standard birefringence. ## P31: Nonadiabatic plasmonic tunneling of photoelectrons online Bela Lovasz¹, Peter Sandor¹, Gellert-Zsolt Kiss¹, Balazs Banhegyi¹, Zsuzsanna Papa¹, Judit Budai², Christine Prietl³, Joachim R. Krenn³, Peter Dombi¹ ¹Wigner Research Centre for Physics (Hungary), ²ELI-ALPS Research Institute (Hungary), ³Universitat of Graz (Austria) Nonadiabatic nano-optical electron tunneling in the transition region between multiphoton-induced emission and adiabatic tunnel emission is explored in the near-field of plasmonic nanostructures. For Keldysh γ values between \sim 1.3 and \sim 2.2, measured photoemission spectra show recollision driven by the near-field. Simultaneously, the photoemission yield shows an intensity scaling with a constant nonlinearity, which is characteristic for multiphoton-induced emission. Our observations in this transition region were reproduced with the numerical solution of Schrodinger's equation, mimicking the nanoscale field geometry. ## P32: Directional couplers based on parity-time symmetric Bragg gratings ^{online} Tianyi Hao, Pierre Berini University of Ottawa (Canada) Parity-time symmetric Bragg gratings produce unidirectional reflection around the exceptional point. We investigate directional coupling between a pair of parity-time symmetric waveguide Bragg gratings operating near their exceptional point around 880 nm with long-range surface plasmon polaritons (LRSPPs), arranged in various configurations - duplicate, duplicate-shifted and duplicate-flipped. We also investigate coupling to a bus waveguide. Unidirectional multi-wavelength reflection and coupled supermode conversion are predicted. ## P33: Lithography free plasmonic near infrared transmission filter online Joaquim Junior Isidio de Lima¹, Maria Paula Souza Barros¹, Iago Carlos Moreira da Silva¹, Marcos Antônio Miranda Araujo da Silva¹, Vitaly Felix vitaly.esquerre@ufba.br² ¹ Federal University of San Francisco Valley (Brazil), ² Federal University of Bahia (Brazil) A plasmonic transmitter composed of Pentoxide of Tantalum (Ta2O5) and Gold (Au) has been proposed and numerically analyzed. The transmitter has been designed to operate over the wavelength interval from 600 to 850 nm, known as Near Infrared (NI). We studied the dependence of the optical response on the geometrical parameters and they can affect optical response of the plasmonic transmitter, which can be used as optical filters. The Finite Element Method has been used to carry the simulations. #### 16:40 - 18:55 — Torremolinos #### Session 2A19 ## Symposium I: Hybrid Nanomaterials and Metastructures for Photonics, Sensing and Energy Organized by: Jerome Plain, Alexander Govorov, Davy Gerard and Pedro Hernandez Martinez Chaired by: Davy Gerard 16:40 : Keynote talk ### Advanced plasmonic photocatalysts for solar-to-chemical energy conversion Alberto Naldoni University of Turin (Italy) Plasmonic nanostructures provide enhanced light-matter interaction offering exciting opportunities in the conversion and storage of solar energy in the form of chemical bonds. In this talk, I will overview our recentprogress on the understanding of plasmonic effects such as near fields, non-thermal carriers, and local heating generated both in nanocrystals and metasurfaces and on their use in chemical reactions relevant for energy applications. ### 17:10: Invited talk The anisotropy of hot carriers' spatial distribution contrasts the isotropy of photothermal effects in complex and small plasmonic nanocrystals with complex shapes Artur Movsesyan¹, Eva Yazmin Santiago², Sven Burger³, Miguel A. Correa-Duarte⁴, Lucas V. Besteiro⁴, Zhiming Wang¹, Alexander O. Govorov² ¹University of Electronic Science and Technology of China (China), ²Ohio University (USA), ³Zuse Institute Berlin (Germany), ⁴Universidade de Vigo (Spain) A microscopic description of the hot-electron states represents a challenging problem, limiting the capability to design efficient nanoantennas for photochemistry. Here, we addressed these limitations and studied the spatial distributions of the photophysical dynamic parameters controlling the local surface photochemistry on a plasmonic nanocrystal: hot carriers and phototemperature. We showcased that the generation of high-energy electrons and holes in small plasmonic nanocrystals with complex shapes is strongly position-dependent and anisotropic, whereas the phototemperature across the nanocrystal surface is nearly uniform. #### 17:30 : Invited talk #### Strong Inhibition of Spontaneous Emission near the Si nanocylinder Alina Muravitskaya¹, Artur Movsesyan², Dmitry Guzatov³, Ann-Laure Baudrion², Pierre-Michel Adam², Sergey Gaponenko³, Vincent Remi² ¹University of Hull (United Kingdom), ²Universite de Technologie de Troyes (France), ³National Academy of Sciences (Belarus) Dielectric nanoparticle may induce either a decrease or an increase in decay rates of the excited states of the emitter in its vicinity. By tuning the size of Si nanocylinder and, consequently, spectral positions of the magnetic and electric modes, we obtained strong inhibition for randomly oriented emitters. The inhibition value is robust to the distance between the emitter and the nanoparticle in the range of nearly 50 nm, which is crucially important for the applications. #### 17:50: Invited talk # Hyper resolute two-photon direct laser writing for realization of 2D and 3D nanostructures G. E. Lio, A. Ferraro, T. Ritacco, D. M. Aceti, A. De Luca, M. Giocondo, R. Caputo University of Calabria (Italy) In this contribution, a metal/insulator/metal/insulator (MIMI) metamaterial upgrades a standard two-photon direct laser writing process to hyper resolution thanks to its uncommon feature as extraordinary transmittance, zero reflectance and epsilon-near-zero permittivity. The voxel size reduction of about $89\,\%$ height and $50\,\%$ width allows fabrication of apochromatic broadband metalenses with extended focal length and depth of focus, and numerical aperture of 0.087. Hyper resolution is also exploited in the fabrication of a nano bas-relief of Da
Vinci's "Lady with an Ermine" #### 18:10: In Situ optical thermometry of hybrid plasmonic nanosystems Julian Gargiulo¹, Mariano Barella², Matias Herran¹, Ianina L. Violi², Ana Sousa Castillo¹, Simone Ezendam¹, Luciana P. Martinez², Roland Grzeschik³, Sebastian Schlucker³, Stefan A. Maier¹, Fernando D. Stefani², Emiliano Cortes¹ ¹Ludwig Maximilians Universitat (Germany), ²Centro de Investigaciones en Bionanociencias (CIBION) (Spain), ³CENIDE (Germany) We present a new implementation of anti-Stokes thermometry that enables the in situ photothermal characterization of individual plasmonic nanoparticles from a single hyperspectral photoluminescence confocal image. We study the photothermal response at the single-particle level of spherical gold NPs with sizes ranging from 50 to 100 nm supported on glass, sapphire, and graphene substrates. In addition, we study bimetallic Au@Pd NPs in a core@shell configuration. The developed method allows quantitative assessment of the role of temperature in plasmon-assisted applications. ## 18:25 : Engineering the circular dichroism of plasmonic chiral nanostructures on a stretchable substrate Florian Lamaze¹, Julien Proust¹, Jeremie Beal¹, Louis Giraudet² ¹Light, nanomaterials, nanotechnologies EMR (France), ²Laboratoire De Recherche en Nanosciences (LRN) (France) Understanding and controlling the circular dichroism (CD) of gold chiral 2D nanostructures is a major challenge for researchers who aspire to use its properties and thus achieve application based on this effect. The most common way to proceed is to tune it is at the fabrication step, however this method makes it impossible to modulate later. In this presentation, we propose a solution to this issue based on the deformation of a stretchable substrate. ## 18:40 : Surface Lattice Resonance assisted UV light generation in Zinc Oxide - Aluminum hybrid nanostructures Thomas Simon, S. Kostcheev, A. Rumyantseva, J. Beal, Davy Gerard, Jerôme Martin *L2n - UTT (France)* Combining aluminum nanostructures sustaining blue-UV resonances with lattice geometries supporting grating Rayleigh anomalies allows to obtain hybrid modes called Surface Lattice resonances, shaper and more intense than standard Localized Surface Plasmon Resonances. Placed on top of a wide band-gap semiconductor thin film such as Zinc Oxide, these aluminum nanoparticle arrays act both as nanoantennas and light amplifiers, allowing to enhance the band-edge emission of the semiconductor, experimentally measured up to about 3.5 compared to bare ZnO. ### 16:40 - 18:40 — Alamos #### Session 2A20 Symposium IV: Chirality, magnetism, and magnetoelectricity: Separate phenomena and joint effects in metamaterial structures Organized by: Eugene Kamenetskii Chaired by: Eugene Kamenetskii 16:40 : Invited talk Interplay of Phonons and Spins in Chiral Materials Jun-Ichiro Kishine The Open University of Japan (Japan) Recent progress on theoretical studies on the interplay of phonons and quantum spins in chiral materials will be presented. I will put emphasis on how to understand "truly chiral phonons.and its essential roles in the so called chirality-induced spin selectivity (CISS)"phenomena. 17:00 : Gate Voltage induced Magnetization dynamics based on magnetoelectric effect Matheus S. de Sousa 1 , Manfred Sigrist 2 , Wei Chen 1 #### ¹PUC-Rio (Brazil), ²ETH Zurich (Switzerland) Two mechanisms are proposed to generate magnetization dynamics based on magnetoelectric effect. Firstly, in multiferroic materials of a single magnetic domain, applying an oscillating electric field can cause a coherent rotation of the magnetic order. Secondly, in geometrically confined magnetic heterostructures with an interface spin-orbit coupling, if the ferromagnet only partially covers the sample, then a spin torque can be induced solely by a gate voltage without any bias current. ## 17:15 : Probing local chirality utilizing the Chiral Induced Spin Selective (CISS) effect Shira Yochelis The Hebrew Universit (Israel) A new, effective spintronics was developed using the Chiral-Induced Spin Selectivity (CISS) effect [1]. Utilizing this effect we demonstrated a magnetless memory [2,3,4]. Also, local spin-based magnetization generated optically at ambient temperatures [5]. ### 17:30 : Keynote talk Cavity Magnonics Silvia Viola Kusminskiy RWTH Aachen University (Germany) Cavity Magnonics strives to control the elementary excitations of magnetic materials (magnons) and to interface them coherently to other elementary excitations such as photons or phonons. This can allow us to explore magnetism in new ways and regimes, has the potential of unraveling quantum phenomena at unprecedented scales, and could lead to breakthroughs for quantum technologies. I will introduce the field and present theoretical results from our group aimed to push the boundaries of the current state of the art. #### 18:00 : Invited talk ### Ab initio calculation of plasma frequency in spin-polarized metals online Maria Pogodaeva¹, Sergey Levchenko¹, Ildar Gabitov², Vladimir Drachev¹ ¹ Skolkovo Institute of Science and Technology (Russia), ² University of Arizona (USA) We present an accurate first-principles study of the spin-dependent plasma frequency of iron and cobalt using density-functional theory in an all-electron full-potential framework. The results are compared to the results obtained with standard pseudopotential approaches and experimental data obtained from photo-emission, absorption, and electron energy loss spectra. Using our new implementation, we calculate plasma frequency for two spin channels separately. Our results explain the significant difference between observed contributions from majority and minority electrons to plasmon resonance in cobalt nanoparticles. #### 18:20: Invited talk #### Nanoscale interplay of chirality and magnetism online #### **Shoufeng Lan** Texas A and M University (USA) The interplay between chirality and magnetism is of great interest in physics, chemistry, and mathematics since they share a common ground of circulating possession. Here, we present a series of engineered materials that exhibit a wide range of chiral phenomena in spectroscopy, imaging, optoelectronics, and nonlinear optics. We also investigate chiral interactions with nearby objects, such as quantum dots and two-dimensional materials. Finally, we share the recent observation of an excitonic magneto-chiral effect in twisted van der Waals bilayer crystals. ### 16:40 - 19:00 — Playamar ## **Session 2A21** Symposium II: New trends in nanophotonics and advanced materials Organized by: Junsuk Rho, Hakjoo Lee and Namkyoo Park Chaired by: Jan Wiersig #### 16:40: Invited talk #### **Analytical Routes to Multistability in Nonlinear Metasurfaces** ### **Constantinos Valagiannopoulos** Nazarbayev University (Kazakhstan) Nonlinear designs are notorious for their difficulty in getting rigorously treated. In this talk, the full electromagnetic interactions with nonlinear metasurfaces will be analytically described in several setups incorporating planar or cylindrical geometries, coupled or not, being excited normally or obliquely. The reported results are expected to assist the modeling of nonlinear metasurfaces and open unexplored opportunities towards the efficient design of photonic memory elements. #### 17:00: Invited talk ## Tailoring the emission and the photodynamics of quantum emitters with high index dielectric nanostructures Melodie Humbert¹, Peter R Wiecha¹, Clement Majorel¹, Romain Hernandez¹, Nicolas Mallet¹, Bruno Masenelli², Gerard Colas des Francs³, Frank Fournel⁴, Vincent Larrey⁴, Aurelie Lecestre¹, Guilhem Larrieu¹, Arnaud Arbouet¹, Christian Girard¹, Laurence Ressier¹, Vincent Paillard¹, Aurelien Cuche¹ Universite de Toulouse (France), ² Universite de Lyon (France), ³ Universite Bourgogne-Franche Comte (France), ⁴ Universite Grenoble Alpes (France) We show both experimentally and theoretically that the photodynamics of several electric and/or magnetic quantum emitters (rare earth Eu3+ ions or NV colored centers in nanodiamonds)can be controlled by high index dielectric nanostructures made of Silicon. #### 17:20 : Invited talk ## Solid-state pyroelectric system for near-field thermal energy conversion #### Ivan Latella¹, Philippe Ben-Abdallah² ¹ Université Paris-Saclay (France), ² Universitat de Barcelona (Spain) We introduce a system for near-field thermal energy conversion using pyroelectric materials in which temperature variations are achieved by controlling the heat fluxes with graphene transistors. We demonstrate that our graphene-based pyroelectric system is a self-powered or autonomous conversion device in which the power required to modulate the temperature is much smaller than the delivered power, opening so a new avenue for high-frequency pyroelectric energy harvesting from stationary thermal sources. #### 17:40: Invited talk ## Annihilation of exceptional points from different Dirac valleys in a 2D photonic system M. Krol¹, I. Septembre², P. Oliwa¹, M. Kedziora¹, K. Lempicka-Mirek¹, M. Muszynski¹, R. Mazur³, P. Morawiak³, W. Piecek³, P. Kula³, W. Bardyszewski¹, P. G. Lagoudakis⁴, G. Malpuech², B. Pietka¹, J. Szczytk¹, Dmitry Solnyshkov² ¹ University of Warsaw (Poland), ² Universite Clermont Auvergne (France), ³ Military University of Technology (Poland), ⁴ Skolkovo Institute of Science and Technology (Russia) Topological physics relies on singularities carrying topological charges, such as Dirac points and exceptional points (EPs). Here, we demonstrate experimentally that an increase of non-Hermiticity can lead to the annihilation of EPs from different Dirac points (valleys). We study a liquid crystal microcavity with birefringence and TE-TM spin-orbit-coupling. Non-Hermiticity is provided by polarization-dependent losses. Increasing the non-Hermiticity degree, we move the EPs from different valleys towards each other. After their annihilation, the system is free of any singularity. #### 18:00 : Invited talk
Extended hybridization and energy transfer in multimaterial polaritonic metasurfaces Joel Bellessa, Antoine Bard, Sylvain Minot, Clementine Symonds, Jean-Michel Benoit, Alban Gassenq, Francois Bessueille Universite de Lyon (France) In this talk we propose a new way to hybridize two organic materials and transfer energy through a surface plasmon over micrometric distances. For this purpose, two patterned interlocked dyes arrays, one donor and one acceptor, are deposited on a silver surface by successive micro contact printing, leading to a pattern of 5 microns period. The mixing in these polaritonic metasurfaces enables an energy transfer mechanism in strong coupling, which is observed with luminescence experiments. 18:20 : Invited talk ## Scalable and efficient photonic designs using disordered metamaterial nanounits **Ekmel Ozbay** Bilkent University (Turkey) Subwavelength metamaterial nanounits can efficiently harvest electromagnetic (EM) waves, resulting in near unity light absorption in the narrow or broad frequency range. For this purpose, we explored the material and architecture requirements for the realization of light perfect absorption using these metamaterial designs from ultraviolet (UV) to far-infrared (FIR) wavelength regimes. We adopted these lithography-free techniques in many applications including photoelectrochemical water splitting, photodetection, light emission, sensing, filtering and thermal camouflage. 18:40: Invited talk Nano-optomechanics on a fiber-tip Arthur Hendriks, Luca Picelli, Rene van Veldhoven, Ewold Verhagen, Andrea Fiore Eindhoven University of Technology (Netherlands) Nano-optomechanical sensors enable precision sensing of displacement, force and mass. However, the complexity and limited efficiency of light coupling to the sensor hinders their practical application. Here, we present a solution by placing a nano-optomechanical structure on a cleaved fiber facet. The structure is designed to enable efficient coupling to the fiber mode without any optics. Our process is based on wafer-scale fabrication in combination with a simple wafer-to-fiber transfer method. The sensor displays displacement imprecisions around 20 fm/Hz1/2. ### 16:40 - 18:40 — Bajondillo #### Session 2A22 ## Symposium III: Advanced passive and active metasurfaces Organized by: Howard Lee and Pin-Chieh Wu Chaired by: Howard Lee 16:40 : Invited talk Controlling Dielectric Permittivity in Space and Time for Dynamic Nanophotonics, Time Crystals, and Beyond Alexandra Boltasseva¹, Soham Saha¹, Mustafa Goksu Ozlu¹, Moti Segev², Vladimir Shalaev¹ ¹Purdue University (USA), ²Technion (Israel) We demonstrate various methods to actively tune and passively tailor the optical properties of conducting oxides and nitrides, for dynamic nanophotonic applications. 17:00 : Invited talk Nonlinear Metalens for 197-nm Vacuum UV Light Generation and Control online Ming Lun Tseng¹, Michael Semmlinger², Ming Zhang², Catherine Arndt², Tzu-Ting Huang³, Jian Yang², Hsin Yu Kuo⁴, Vin-Cent Su⁵, Mu Ku Chen⁶, Cheng Hung Chu³, Benjamin Cerjan², Din Ping Tsai³, Peter Nordlander², Naomi J. Halas² ¹National Yang Ming Chiao Tung University (Taiwan), ²Rice University (USA), ³Academia Sinica (Taiwan), ⁴National Taiwan University (Taiwan), ⁵National United University (Taiwan), ⁶City University of Hong Kong (Hong Kong) Vacuum ultraviolet (VUV) light plays a key role in many technologies. However, it is challenging to advance current VUV photonic devices due to the significant absorption of object. Here, we demonstrate a metalens which can effectively generate and focus VUV light via second harmonic generation. It generates a tight focusing spot with a power density enhancement over 20X. This work paves a novel route toward the realization of novel VUV devices. 17:20: Invited talk ## Conformal volumetric grayscale metamaterials with broad angle and broadband electromagnetic functionality online ## Qinglan Huang, Lucia Gan, Jonathan Fan Stanford University (USA) We introduce conformal grayscale metamaterials as a new class of volumetric electromagnetic media capable of supporting highly multiplexed responses and arbitrary, curvilinear form factors. #### 17:40 : Invited talk ### Plasmonic nanoantennas and their applications online #### Pierre Berini University of Ottawa (Canada) We review recent work on plasmonic nanoantennas and their applications in nonlinear optics and in optoelectronics. #### 18:00: Invited talk #### Mie lattice resonance with coupled multipoles online #### Viktoriia Babicheva University of New Mexico (USA) In this work, we aim at designing efficient directional scatterers and their arrays for metasurfaces and transdimensional metastructures. Nanoparticles of high-refractive-index materials like semiconductors enable strong confinement of light at the subwavelength scale because of the strong reflection from material boundaries and excitation of Mie resonances within the nanoscale-size particle. The combination of different materials in the nanoparticle allows to tune electric and magnetic resonances of the nanoparticles and achieve broadband overlap. #### 18:20: Invited talk ## Passive and active metasurface for multifunctional imaging and processing online Junxiao Zhou, Zhaowei Liu University of California (USA) Metasurfaces consisting of engineered nanostructures enable us to manipulate wavefront as desired, which leads to various applications. Here, we review our recent studies about multifunctional imaging and processing including edge imaging, quantitative phase imaging and tunable weighted summation of edge image and full image based on the designed metasurfaces. Such passive and active metasurface becomes promising candidate in real time image processing and parallel analog computing. ### 16:40 - 18:40 — Carihuela ### **Session 2A23** ## Symposium II: New trends in nanophotonics and advanced materials Organized by: Junsuk Rho, Hakjoo Lee and Namkyoo Park Chaired by: Piotr Piotrowski ### 16:40: Invited talk ## Time-Domain Properties of Strongly Coupled Epsilon-Near-Zero Modes Mehdi H. Ebrahim¹, Andrea Marini², Vincenzo Bruno¹, Nathaniel Kinsey³, Jacob B. Khurgin⁴, Daniele Faccio¹, Matteo Clerici¹ ¹University of Glasgow (United Kingdom), ²University of L'Aquila (Italy), ³Virginia Commonwealth University (USA), ⁴Johns Hopkins University (USA) We numerically demonstrate a significant light-trapping mechanism in a deeply subwavelength epsilon-near-zero (ENZ) system strongly coupled with the plasmonic modes of gold nanoantennae. The longitudinal and transverse field components of the impinging pulse are shown to dominate the temporal response at the higher and lower resonant frequencies, respectively. Moreover, the slow-light effect is particularly accentuated within the strongly coupled regime and thus such ENZ plasmonic systems can provide an alternative platform for control and manipulation of light. 17:00 : Invited talk ### **Latent Symmetries for the Design of Flat Bands** Malte Rontgen, Christian Morfonios, Maxim Pyzh, Peter Schmelcher University of Hamburg (Germany) Flat energy bands of lattice Hamiltonians provide a key ingredient in designing dispersionless wave excitations. We show that flat bands can be generated from a hidden symmetry of the lattice unit cell. This allows us to construct them by using a latently symmetric unit cell and multiplet interconnections. We demonstrate that the resulting flat bands are tunable and preserve the latent symmetry. The developed framework may offer fruitful perspectives to analyze and design flat band structures. #### 17:20 : Invited talk #### Low-loss Tamm modes applied to room temperature lasing Clementine Symonds¹, Vincent Toanen¹, Jean-Michel Benoit¹, Alban Gassenq², Aristide Lemaitre³, Joel Bellessa² ¹Universite de Lyon (France), ²Universite Lyon 1 (France), ³Universite Paris-Saclay (France) Tamm structures are very promising for the development of confined lasers, polarized lasers or plasmon sources. The quality factor is a key issue to realize such devices. We propose here an optimized design of these structures, enabling an increased quality factor. In particular, we will show that these optimized structures enable room temperature lasing operation. This first demonstration is an important step toward future applicative developments of Tamm lasers. #### 17:40: Invited talk ## Optimized laser-induced colors and image multiplexing on plasmonic quasi-random metasurfaces using deep learning Hongfeng Ma, Nicolas Dalloz, Amaury Habrard, Marc Sebban, Mathieu Hebert, Nathalie Destouches Universite de Lyon (France) We demonstrate that deep learning can be used to predict the colors and spectra that can emerge in different observation conditions from the laser processing of metasurfaces including random metallic nanostructures. Our approach offers an accuracy on the color prediction that is better than the minimum color difference that a human eye can perceive. We then use the predicted color charts to greatly improve the performance of the printed image multiplexing method in terms of image contrast. #### 18:00: Invited talk ### Femtosecond magnetism in all-dielectric structures for logic operations online ## A. A. Kolosvetov, M. A. Kozhaev, I. V. Savochkin, V. I. Belotelov, Alexander Chernov Russian Quantum Center (Russia) Light manipulation in magnetic nanostructured materials attracts much attention in the context of data processing, spintronic and light modulation applications. In this work we demonstrate that light localization within the magnetic dielectric (bismuth-substituted iron garnet) leads not only to light intensity modulation and an efficient magnon excitation, but also can be utilized for the optical spin-wave logic operation. We perform the experimental coherent optical excitation of interfering magnetostatic spin waves and demonstrate the possibility for the magnon logical gates construction. #### 18:20 : Invited talk ## Light management strategies for
luminescent solar concentrators and cooling of photovoltaic modules online ### **Vivian Ferry** University of Minnesota (USA) This presentation will discuss different strategies for light management in photovoltaic systems. Luminescent solar concentrators are building-integrated sunlight-harvesting systems that utilize down-shifting to concentrate sunlight. Performance of these structures is improved with photonic designs that optimally redirect light. In the second, structures are integrated into photovoltaic modules to enhance the energy yield by simultaneously acting as anti-reflection coatings and reflectors of near-infrared light, lowering the operating temperature. We will discuss the design of these structures and the limits to performance. #### 16:40 - 18:55 — Montemar #### Session 2A24 ## Symposium V: Phononics and acoustic metamaterials Organized by: Jensen Li and Guoliang Huang Chaired by: Vassos Achilleos #### 16:40 : Invited talk Wave scattering and latent symmetries: some acoustic examples Malte Rontgen¹, Vassos Achilleos², Christian Morfonios¹, Olivier Richoux², Georgios Theocharis², Peter Schmelcher¹ ¹Universitat Hamburg (Germany), ²LAUM (France) In this work, we make a connection between latent symmetries and wave scattering. By choosing simple waveguide configurations with an underlying latent symmetry we construct scatterers that are not mirror symmetric but their scattering matrix inherits the properties of a mirror symmetric problem. Also by introducing the concept of generalized cospectrality we show that it provides a direct means to devices featuring coherent perfect absorption for at least one frequency. Numerical examples in airborne acoustics confirm the theoretical findings. #### 17:00 : Invited talk #### Stealthy hyperuniform phononic resonant materials: One dimension Vicente Romero-García¹, E. Cheron¹, S. Kuznetsova¹, J.-P. Groby¹, S. Felix¹, V. Pagneux¹, L. M. Garcia-Raffi² ¹Le Mans Universite (France), ²Universitat Politecnica de Valencia (Spain) In this presentation, we discuss the fundamental effect of resonant and non-resonant scatterers on the opening of band gaps in 1D stealthy hyperuniform materials. #### 17:20: Invited talk ## **Holey Silicon Thin-Films for Thermoelectric Applications** ## Mona Zebarjadi, T. Zhu University of Virginia (USA) Silicon thin films are compatible with the semiconductor industry and are appropriate for thermoelectricpower generation and cooling. It is shown that by patterning the silicon thin-films with nanosized holes spaced closerthan the phonon mean free path, their thermal conductivity can be greatly suppressed while their electronic properties are maintained. Further, by using surface doping, the thermoelectric power factor can enhance resulting in animproved thermoelectric figure of merit, ZT. Here, we study the limits of these two approaches. #### 17:40: Invited talk #### Refraction-type transmodal metasurface for broad-angle elastic mode conversion Sungwon Lee¹, H. M. Seung², W. J. Choi², M. Kim³, J. H. Oh¹ ¹UNIST (Korea), ²Korea Research Institute of Standards and Science (Korea), ³UST (Korea) We suggest refraction-type transmodal metasurface which can totally convert longitudinal to shear wave for broad incident angle. According to the classical elastics, such total mode conversion is only possible at a certain incident angle. However, we achieved the broad angle total mode conversion through sufficiently large phase gradient which is realized under full transmission. By numerical and experimental validations, we showed that the proposed metasurface can provide the desired functionality for broad incident angles from -20.4 degree to 22.3 degree. #### 17:55: Invited talk #### Modeling thermal conductance of a finite superlattice #### Keivan Esfarjani University of Virginia (USA) In this work, we report on a model which describes the thermal conductance of a finite superlattice deposited on a semi-infinite substrate. This problem has been challenging because in the thin limit, transport of phonons is essentially ballistic, while in the thick limit it is diffusive. This model incorporates coherence in the small superlattice thickness limit and recovers the incoherent case where resistances add, in the thick limit. #### 18:15: Invited talk ### Metamaterial pattern enabling control over sound produced by flapping artificial wings Anastasiia Krushynska¹, Igor Zhilyaev², Dimitry Krushinsky³, Nitesh Anerao¹, Mustafa Cihat Yilmaz⁴, Mostafa Ranjbar⁴ ¹ University of Groningen (The Netherlands), ² University of Applied Sciences Northwestern Switzerland FHNW (Switzerland), ³ Wageningen University and Research (The Netherlands), ⁴ Yildirim Beyazit University (Turkey) Artificial wings composed of rigid and flexible materials enable flapping flight accompanied by sound. Understanding the acoustics of natural insect wings allowed explaining basic mechanisms of sound generation by artificial wings. This work proposes to use metamaterial surface patterns for controlling the acoustic and aerodynamic characteristics of a wing. For this, we developed multi-parameter and machine-learning optimization procedures aimed at increasing the lift and manipulating the produced sound by tuning the pattern design. #### 18:35: Invited talk ## Brillouin Engineering in Optophononic Micropillars online Anne Rodriguez, E. Cardozo de Oliveira, Priya Priya, Abdelmounaim Harouri, Isabelle Sagnes, Luc Le Gratiet, Martina Morassi, Aristide Lemaitre, Loic Lanco, Martin Esmann, Daniel Lanzillotti-Kimura Université Paris-Saclay (France) We measured the Brillouin spectrum on an elliptical optophononic micropillar resonator based on AlAs/GaAs superlattices designed to confine light and sound simultaneously. The ellipticity has associated two polarized optical modes used to discriminate the reflected laser and the Brillouin signal. #### 16:40 - 18:35 — Litoral #### **Session 2A25** #### Bottom-up approaches, new fabrication routes and ENSEMBLE3 Organized by: Dorota Pawlak and Virginie Ponsinet Chaired by: Virginie Ponsinet #### 16:40 : Invited talk ## 3D optical metamaterials made from self-assembled block copolymer templates #### Ilia Gunkel Adolphe Merkle Institute (Switzerland) Block copolymer (BCP) self-assembly allows the efficient fabrication of otherwise inaccessible 3D nanoscale structures. Replicating the often-complex periodic nanostructure of a polymer template into gold or silver leads to emerging properties such as linear or circular dichroism. #### 17:00 : Invited talk #### Photonic nanomaterials by self-assembly of block copolymers #### Tapio Niemi Tampere University (Finland) Scientific community and industry are actively investigating innovative means to overcome the fundamental limitations of conventional nanolithography. One emerging technique is based on directed self-assembly of block copolymers. Besides the possibility to realize extremely small feature sizes, they enable fabrication of exotic nanostructures, which are challenging or impossible to fabricate by other methods. I shall demonstrate few applications for etch masks, refractive index tuning and preparation of multi-material nanostructures. #### 17:20 : Invited talk Self-Assembled Huygens' Metasurfaces and Their Integration into Photovoltaic Devices Peter M. Piechulla¹, Evgeniia Slivina², Derk Batzner³, Ivan Fernandez-Corbaton², Prerak Dhawan², Ralf B. Wehrspohn¹, Alexander N. Sprafke¹, Carsten Rockstuhl² ¹Martin Luther University Halle-Wittenberg (Germany), ²Karlsruhe Institute of Technology (Germany), ³Meyer Burger Research AG (Switzerland) Huygens' Metasurfaces made from high permittivity dielectric discs are fabricated by a self-assembly process on large areas. This permits their integration into industrial grade solar cells to optimize the light management. Two aspects are important. The helicity preserving character of the Huygens' metasurfaces suppresses reflection, and the hyperuniform disorder improves the response in an extended spectral region. By theoretical, computational, and experimental means, we explore the optical and electrical characteristics of the solar cell in this contribution. ### 17:40: Invited talk ## **Biosensing with Plasmon Enhanced Upconversion Luminescence** **Wounjhang Park** University of Colorado Boulder (USA) This paper will present upconversion nanoparticle-based Forster resonant energy transfer (FRET) sensor which can clearly separate the effect of FRET and photon reabsorption. It will then describe how plasmonic nanostructures can be used to enhance the sensitivity and robustness of the sensor. ### 18:00 : Invited talk ### Asembling and tunning metamaterials with laser-based techniques Rosalia Serna¹, Johann Toudert², Jose Gonzalo¹, Carlota Ruiz de Galarreta¹, Jan Siegel¹ *CSIC (Spain), ²ENSEMBLE3 (Poland)* The enormous success of nanophotonics to manipulate the light response in the nanoscale is due to the unprecedent development of techniques achieved to fabricate the material nano- and metasurfaces. Herein we will discuss the successful preparation and modification of nano-and meta-structures by laser-based processes designed to achieve functional nanophotonic and plasmonic responses in large areas. Examples will include metamaterials both based in conventional noble metals, and in topological materials for both pasive and active applications. ### 18:20 : 3D Topological Insulator heterostructures enabled by crystal growth K. Bandopadhyay¹, A. Materna¹, K. Markus¹, M. Buza², C. Chen³, P. Piotrowski⁴, A. Barinov⁵, F. Murakamia⁶, M. Tonouchi⁶, Y. Chen³, D. A. Pawlak¹ ¹ ENSEMBLE3 Centre of Excellence (Poland), ² Institute of Microelectronics and Photonics (Poland), ³ University of Oxford (UK), ⁴ University of Warsaw (Poland), ⁵ Elettra-Sincrotrone Trieste (Italy), ⁶ Osaka University (Japan) Here, we report successful fabrication of the topological insulator heterostructures by an easy, fast and single-step process, which could meet all those challenges and pave
the way for exploring other exotic phenomena in the near future. Utilizing directional solidification different topological insulator based eutectic composites were produced, where two crystalline phases are combined in a structured form with joined interfaces. The material exhibits lamellar micro/nanostructures with atomically smooth interfaces. Existence of the metallic surface states and the formation of p-n junction have been confirmed throughout specific characterization methods. #### 16:40 - 18:35 — Manantiales #### Session 2A26 ### Local enhancement and control of light-matter interaction Organized by: Antonio Ambrosio Chaired by: Stefano Chiodini 16:40 : Invited talk Light-induced modulation of visco-elastic properties in azobenzene polymers #### Stefano Chiodini¹, Fabio Borbone², Stefano Oscurato², Antonio Ambrosio¹ ¹ IIT Milano (Italy), ² University of Naples "Federico II"(Italy) Photo-isomerization of azobenzene molecules can induce mass-migrations in azopolymers. Despite many applications, the mechanisms behind the mass-transfer is still under debate.[1] In this regard, azopolymer mechanical properties have been intensively studied, but the lack of a nanoscale technique capable of quantitative visco-elastic measurements have possibly hindered the field evolution. Here, we propose bimodal AFM[2] for full nanomechanical characterizations of azopolymers. Our findings address a position-dependent photo-softening/hardening of the azopolymer, which we ascribe to a correspondent local photo-expansion/compression of the material. #### 17:00 : Invited talk Vortex laser arrays with topological charge control and self-healing of defects online Marco Piccardo¹, Michael de Oliveira¹, Andrea Toma¹, Vincenzo Aglieri¹, Andrew Forbes², Antonio Ambrosio¹ ¹ Fondazione Istituto Italiano di Tecnologia (Italy). ² University of the Witwatersrand (South Africa) We present a non-Hermitian metasurface laser generating 100 strongly coupled vortices. The internal coupling mechanism allows to tune their charges as well as to heal defects in the system, opening new perspectives in topological optics. #### 17:20 : Invited talk #### Out-of-plane symmetry-protected bound states in the continuum Andreas Aigner¹, Juan Wang¹, Andreas Tittl¹, Stefan A. Maier¹, Haoran Ren² ¹Ludwig-Maximilians-University Munich (Germany), ²Macquarie University (Australia) Symmetry-protected bound states in the continuum (BICs) combines high-quality factors (q-factors) with a large spectral tunability, offering an ideal platform for optical sensing. We present a plasmonic nanofin metasurface harnessing the out-of-plane symmetry breaking in parameter space by tuning the opening angle of 3D laser nanoprinted polymer triangles coated with gold. The plasmonic nature of the out-of-plane symmetry-protected BICs enables high surface field enhancement together with high q-factors, which have been utilised for refractive index and pixelated molecular sensing. ### 17:40: Invited talk #### Symmetric high-Q metasurface enabled by bound states in the continuum online Guoce Yang¹, Sukrith U. Dev², Monica S. Allen², Jeffery W. Allen², Hayk Harutyunyan¹ ¹ Emory University (USA), ² Air Force Research Laboratory (USA) Metasurfaces based on bound states in the continuum have recently shown tremendous potential for demonstrating narrow spectral resonances enhancing light-matter interaction. However, these modes typically require complex asymmetric geometry and feature strong polarization dependence which complicates the fabrication process and limits practical applications. Here, we introduce a novel concept of magnetic resonances on a mirror which exhibit high quality bound states in the continuum with simple geometric parameters requiring no broken symmetry enabling easy control and large-area fabrication of metasurfaces. #### 18:00 : Invited talk #### Long-Wavelength Resonant Antennas for Enhanced Radiation-Matter Interaction Luca Razzari INRS-EMT (Canada) In this talk, I will provide a brief summary of our work on the use of resonant structures for boosting long-wavelength radiation - matter interactions. #### 18:20: High performance, customizable infrared hyperbolic nanomaterials online Shangjie Yu, John Andris Roberts, Jonathan Fan Stanford University (USA) We introduce new classes of high performance infrared hyperbolic nanomaterials based on self-assembled carbon nanotube metamaterials and crystalline flame-grown MoO3 nanostructures. ## Thursday 21st July, 2022 08:30 - 09:40 — Torremolinos #### **Session 3A1** ### Plenary Session III Chaired by: Howard Lee 08:30 : Plenary talk #### Device technology and vision for a better life empowered by meta-photonics ### **Duheon Song** Samsung Advanced Institute of Technology (Korea) In this talk, I will present noticeable advances in the device technology for information and vision applications based on meta-photonics. The development in the field of integrated electronics devices has been incredibly fast, and this rapid development has been driven and accelerated by pioneering semiconductor manufacturing technologies that allow extreme scale-downs and creation of 3 dimensional structures. Meta-photonics can provide innovative platforms to produce unprecedented synergetic effect with electronics due to its distinguished capability of manipulating the control of light at the deep subwavelength scale. I will address how device technologies based on meta-photonics can contribute to making a better life, and share remarkable achievements and future goals we are working on. 09:05 : Plenary talk #### **Metasurface Laser Lightsails** #### **Harry Atwater** California Institute of Technology (USA) Nanophotonic design principles can enable self-stabilizing optical manipulation, levitation and propulsion of ultralight macroscopic-sized (i.e., mm, cm, or even meter-scale) metasurface "lightsails" via radiation pressure from a high power density pump laser source. Here we examine stringent criteria for the lightsail metasurface design, and dynamical and opto-mechanical stability, and thermal management. We discuss the dynamical stability analysis, as well as first experimental steps in characterization of small (<1 mm) microscale lightsails. #### **Coffee Break** Session 3P1 Poster session V 9:40 - 10:20 #### P1: Excitation of lattice resonances with structured light Juan Ramon Deop Ruano¹, Lauren Zundel², Rosario Martinez-Herrero², Alejandro Manjavacas¹ IO-CSIC (Spain), ² University of New Mexico (USA) Periodic arrays of metallic nanoparticles support collective lattice resonances . These modes produce stronger and more spectrally narrow responses than the plasmonic resonances supported by the individual nanoparticles. Most of the past theoretical research has studied the excitation of lattice resonances under plane wave illumination. However, it is well known that plane waves are an ideal limit of a propagating electromagnetic field. Here, we provide a complete characterization of the response of arrays under different types of structured light beams. ### P2: Optical response of arrays of graphene nanodisks Juan Ramon Deop Ruano¹, Stephen Sanders², Alessandro Alabastri², Wilton Kort-Kamp³, Diego Dalvit³, Alejandro Manjavacas¹ ¹IO-CSIC (Spain), ²Rice University (USA), ³Los Alamos National Laboratory (USA) Graphene nanodisks are a promising platform for nanophotonics due to their exceptionally strong and tunable plasmonic responses. When placed in a periodic array configuration, the response of the whole system can be very different from that of the individual constituents. Here, we provide a comprehensive analysis of the response of arrays of graphene including a fully analytical model that predicts the strength and the spectral width of their optical response. #### P3: Implementation of an optical setup for investigating chiral nanophotonic structures Fedja Wendisch, J. Bürger, D. Gryb, L. Kühner, C. Fan, S. Lee, A. Tittl, E. Cortés, L. de S. Menezes, S. A. Maier Ludwig-Maximilians-University (Germany) Chirality is inherent to Nature and happens on all scales from fundamental biological building blocks up to the structure of galaxies and is usually characterized via chiroptical effects using illumination with circularly polarized light beams. Recent advancements in nanophotonics offer solutions to enhance chiral light-matter interactions by using chiral nanostructures. We report on the development of a setup dedicated to perform linear and nonlinear spectroscopy of chiral photonic nanostructures and on the investigation of the chiral behavior of such systems. ## P4: Non-Abelian Charged Nodal Lines in a Spring-Mass Phonon Wave System Haedong Park¹, Stephan Wong¹, Adrien Bouhon², Robert-Jan Slager², Sang Soon Oh¹ ¹ Cardiff University (United Kingdom), ² University of Cambridge (United Kingdom) We demonstrate phase transitions of non-Abelian charged nodal lines in a classical spring-mass system. The nodal lines with non-Abelian charges are braided by tunning the spring constants allowing for topological phase transitions from nodal lines to a link. Here, we analyze the stability and instability of nodal lines using Euler class that provides a clear insight on possible phase transitions in a system with multi-gap topologies. ## P5: Effective properties of two-dimensional dispersed composites Natalia Rylko, Vladimir Mityushev Cracow University of Technolog (Poland) The generalized alternating method of Schwarz can be presented as an infinite sequence of all the mutual interactions between inclusions in the boundary value problem stated for a composite. New approximate analytical formulas for the effective properties of dispersed composites are derived by Schwarz's method for two-dimensional composites. #### P6: Compendium of Natural Epsilon-Near Zero Materials #### Hamid Reza Darabian, Dorota Anna Pawlak Ensemble3 (Poland) In this work, a complete set of natural materials, including metals, semiconductors, oxides, halides and so on, which
have dielectric permittivity around zero, together with different quality factors will be presented. The calculations are based on optical properties like refractive index and absorption coefficient. We will discuss different quality factors for various applications and eventually introduce best candidates for those applications. #### P7: Effective models for space-coiled metasurfaces Joar Zhou Hagstrom¹, Agnes Maurel², Kim Pham¹ ¹ENSTA ParisTech (France), ²ESPCI ParisTech (France) We study two types of transmission problems for so-called spaced-coiled or labyrinthine structured metasurfaces. The two different types of metasurfaces differ by their winding arrangements and we show that this leads to very different resonant mechanisms and effective asymptotic models are provided for both. ## P8: Modeling of High Harmonic Generation in CdSe Quantum dot: a simple Model Farshid Yahyaei, Ulf Peschel Friedrich Schiller University Jena (Germany) We simulate higher harmonic generation in a CdSe Quantum dot using a simple box model. The effect of near-field enhancement and of a space-dependent effective mass of electrons are investigated. P9: Low Cost Additive Manufacturing of Bandgap Photonic Crystals for mmWave Applications #### Simon Hehenberger¹, Stefano Caizzone¹, Alexander Yarovoy² ¹German Aerospace Center (DLR) (Germany), ²TU Delft (The Netherlands) 3D electromagnetic bandgap photonic crystal structures for applications in the millimeter-wave domain, fabricated via low-cost fused deposition modeling (FDM) additive manufacturing methods are studied. A simulation study of the woodpile and diamond bandgap lattices in terms of their bandgap frequencies and fractional bandwidth as a function of the index contrast is presented. Furthermore, suitable materials compatible with commonly available FDM 3D printers and with high permittivity are identified. ## P10: Enhanced second-harmonic generation in MoS2 integrated into an asymmetric one-dimensional photonic crystals #### Sara Khazaee, Ulf Peschel IFTO (Germany) Two-dimensional transition metal dichalcogenides (TMDCs) have shown large second-order nonlinear responses due to their broken crystal inversion symmetry. However, their nonlinear interaction with light is restricted to an atomically thin layer. Combining TMDCs with resonant structures can compensate for this short-coming. Here, we numerically demonstrate 9-fold second-harmonic (SH) enhancement from MoS2 integration onto engineered asymmetric silicon nitride photonic crystals (PCs) relative to the previous PCs design for SH enhancement. ## P11: Mapping localized stress relaxation in epitaxial strained Ge films with tip-enhanced Raman spectroscopy Zoheb Khan, Thomas Nuytten, Han Han, Claudia Fleischmann, Ingrid De Wolf, Wilfried Vandervorst *IMEC (Belgium)* Epitaxially grown strained semiconductor films are the building block of state-of-the-art strained fin field-effect transistor devices. The reliable characterization of the local stress state in these films is important to ensure quality of the manufacturing processes. Tip-enhanced Raman spectroscopy can map the material stress with nanoscale spatial resolution. We apply TERS to study local stress relaxations in strained films and combine the technique with atomic force microscopy and electron channeling contrast imaging, to understand the underlying relaxation mechanisms. ## P12: Autler-Townes splitting in a hybridized Helmholtz resonator ### Sarah Tachet¹, Agnes Maurel², Kim Pham¹ ¹ Institut Polytechnique de Paris (France), ² Universite PSL (France) We study acoustic wave propagation in a narrow 2D waveguide containing a subwavelength scatterer. We derive effective one-dimensional models which encode the effect of the scatterer in effective jump conditions [1], we envision the successive cases where the scatterer is a plain rigid obstacle, a resonator of the Helmholtz type and eventually a split resonator. ## P13: 3D Printed Multilayer Achromatic Metalens with Large Numerical Aperture Chengfeng Pan, Hao Wang, Joel Yang Singapore University of Technology and Design (Singapore) The design of achromatic metalens with large numerical aperture (NA) and wide band is a big challenge in metalens research. Here, two-photon polymerization lithography is used to fabricate multilayers high-resolution, high NA, and broadband visible achromatic metalens. The optimization of multilayer parameters is achieved by combining topology optimization with adjoint method. The effects of interlayer spacing, number of layers and polarization are discussed, and finally a metalens with NA=0.5, 300-700 nm wide and average efficiency of $30\,\%$ is achieved. ## P14: Nanoscale SERS Thermometry on Photothermally Heated Nanoparticles Zee Hwan Kim Seoul National University (Korea) The local temperatures of a metal nanostructure and its adsorbate carry essential information about the energy dissipation dynamics, calling for nanoscale thermometry techniques. Here we present a surface-enhanced Raman scattering (SERS) thermometry method providing an accurate local temperature of the adsorbates on metallic nanostructures. P15: Sb2S3 thin film for tunable nanophotonic devices: phase switching mechanisms and thin film #### characterization Capucine Laprais¹, Lotfi Berguiga¹, Nicolas Baboux¹, Benjamin Fornacciari¹, Claude Botella¹, Antonin Moreau², Julien Lumeau², Guillaume Saint-Girons¹, Sebastien Cueff¹ ¹ Institut des nanotechnologies de Lyon (France), ² Aix Marseille University (France) Tunability is a key point to reinforce the competitiveness of nanophotonics. It can be achieved with the use of active materials such as phase change materials based on chalcogenide alloys. Here, we present an emerging PCM: Sb2S3, which exhibits promising properties for the next generation of tunable nanophotonics. ### P16: Simple Metasurfaces for Efficient Optical Dating of Minerals online Athanasios Papadimopoulos¹, B. Bianchi Pardo², A. Baccini², A. Di Iorio² ¹Cyprus Space Exploration Organization (Greece), ²Alma Sistemi Srl (Italy) Optical dating is a well-established methodology, frequently employed in geology and archaeology in order to determine the duration that certain minerals have been exposed to sunlight. Metamaterials and metasurfaces, artificially engineered materials with extraordinary electromagnetic properties, have the potential to substantially improve the performance of optical components. In this paper we propose simple metasurface designs to improve the efficiency of optical dating devices. ## P17: Design of a near infrared polarization filter using the epsilon near zero properties of donor-doped ZnO online ## Ranjeet Dwivedi, Johann Toudert ENSEMBLE3 (Poland) We propose the design of a near infrared polarization filter based on periodic donor-doped ZnO nano-layers embedded in a transparent dielectric matrix. We show that, for TM polarized incident light, around the epsilon near zero wavelength, the electric field is extremely confined in the donor-doped ZnO nano-layers, which gives an ultra-high propagation loss compared to the TE polarization. By harnessing this feature, we found a polarization extinction ratio >1000 and a TE transmittance >80 %, in the wavelength range 1230-1460 nm. ## P18: Flexible broken-symmetry metasurfaces with sharp resonant response online Odysseas Tsilipakos¹, Luca Maiolo², Francesco Maita², Romeo Beccherelli², Maria Kafesaki¹, Emmanouil Kriezis³, Traianos Yioultsis³, Dimitrios Zografopoulos² ¹ Foundation for Research and Technology Hellas (Greece), ² CNR-IMM (Italy), ³ Aristotle University of Thessaloniki (Greece) We demonstrate flexible, sharply-resonant metasurfaces for the technologically-important low millimeter wave (25GHz) frequencies. Initially non-radiative meta-atoms are made to couple with free space via a small degree of geometric asymmetry, leading to controllably-sharp spectral response. The proposed metasurface is fabricated on an ultrathin polyimide substrate, resulting in a low-loss and flexible structure that can conformally coat objects or textiles. Theoretical results are verified by measurements and quality factors of several hundreds are experimentally obtained. ## P19: Nonlinear Optical Response of Thin Film Amorphous Gold Nanoparticle Layers ^{online} Navid Daryakar, Christin David Friedrich Schiller University of Jena (Germany) The effective medium theory has been used to investigate third order nonlinear response of gold nanoparticles embedded in alumina host. In the nonlinear regime, the optical response is modified and the dependence on fill fraction at different frequency were studied. The results show that the enhancement factor shows different behavior depending on the volume fraction, this indicates that it is possible to optimize enhancement by appropriate selection of the volume fraction of the nanoparticles. ## P20: Design and Development of Tunable Metamaterial based planar Band stop filter for wireless application online #### Khyati Chavda Shantilal Shah Engineering College (India) This paper design and developing a very compact microstrip based reconfigurable filter using for as per IEEE 802.11 WLAN application. To tunable frequency range from 2.1 to 3.5 GHz. The measured return losses of more than- 23 dB and insertion losses of less than -0.8 dB, the bandwidth is very narrow kept between 22 and 47 MHz. The size of filter is 11x 20x1.57mm3 is very compact to previous work. The great agreement between simulation and measured results. ## P21: Ionic plasmon-polariton model of the saltatory conduction in myelinated axons ^{online} Monika Laska, Zofia Krzeminska, Janusz Jacak, Witold Jacak Wroclaw University of Science and Technology (Poland) The microscopic theory of ionic plasmon-polariton kinetics in periodically myelinated axons is developed in order to explain the high speed signal transduction in such axons not available to diffusive ion currents in nerve cells. The model takes advantage from the plasmon-polariton dynamics
observed in metallic nano-chains. ## P22: Near-Field Surface-Enhanced Raman Scattering of a Well-Defined Gold Nanoaggregate online Mohammad Kamal Hossain King Fahd University of Petroleum and Minerals (Saudi Arabia) We provide near-field spectroscopy of gold nanoaggregates with a substantial enhancement in surface-enhanced Raman scattering. Using an aperture near-field scanning optical microscope and a well-defined aggregate, a good correlation between topography and optical confinement was revealed. The genesis of the localized electromagnetic (EM) field at the "hotsite.and the EM enhancement factor in the SERS process require such a direct observation with high spatial resolution. The results were validated using a finite deffirence time domain analysis. ## P23: Position-Robust Microwave Lip Language Recognition Based on Programmable Metasurface ## Siyuan Jiang, Hanting Zhao, Hongrui Zhang, Zhuo Wang, Menglin Wei, Lianlin Li *Peking University (China)* In this work, we realize a Microwave Lip Language Recognition system that can accurately translate microwave data of the speaker's lip language into English text even when there exists interference caused by pose variation and head movement. Combined with Programmable metasurface's ability of scattering EM wave, the system can recognize lip language when the speaker stands in different positions or faces different directions and be qualified for the robust lip language recognition task. ## P24: A spin-wave driven skyrmion diode under transverse magnetic fields ^{online} Lingling Song, Huanhuan Yang, Yunshan Cao, Peng Yan University of Electronic Science and Technology (China) We study the motion of the skyrmion driven by the spin wave (SW) in the presence of a transverse magnetic field. We show that the external magnetic field induces an asymmetric skyrmion propagation when SWs are injected from opposite sides. Based on this findings, we propose the concept of a SW-driven skyrmion diode. The asymmetry skyrmion velocity is explained by computing the spin-wave transport coefficients. Our results offer a new insight to design skyrmion devices embracing chiral SWs. ## P25: Inversely designed ultrahigh refractive index metamaterial for compact sensing ^{online} Maxim Elizarov, Andrea Fratalocchi KAUST (Saudi Arabia) We propose optical RI sensor with sensitivity of 350 nm/RIU for the micrometer footprint. The advantage of this sensor is the ability to sustain air-confined high-Q modes which probe the analyte material with entire energy distribution of the mode. The device is based on artificial material which can emulate non-dispersive ultra-high refractive index ($n\sim100$) capable of strong localization of incoming radiation. This is achieved by suitable deformation of a reflective substrate by applying inverse design to transformation optics approach. ## 10:20 - 11:55 — Torremolinos #### **Session 3A2** #### Symposium III: Advanced passive and active metasurfaces Organized by: Howard Lee and Pin-Chieh Wu Chaired by: Philip Hon 10:20 : Keynote talk #### **Flat Optics for Dynamic Wavefront Manipulation** #### Mark Brongersma Geballe Laboratory for Advanced Materials (USA) In this presentation, I will highlight recent efforts in our group to realize electrically-tunable metasurfaces employing nanomechanics, tunable transparent oxides, microfluidics, phase change materials, and atomically-thin semiconductors. Such elements are capable of dynamic wavefront manipulation for optical beam steering and holography. The proposed optical elements can be fabricated by scalable fabrication technologies, opening the door to a wide range of commercial applications. 10:50 : Keynote talk #### **Topological Metasurfaces** #### **Patrice Genevet** Universite Côte d'Azur (France) New degrees of freedom in the design of optical components are attained by considering the response of topological nanostructures. Relying on symmetry-breaking arguments and topological properties of non-Hermitian metasurfaces, we provide new guidelines for achieving 2π phase coverage in transmission and reflection. Crossing of the branch cut is shown to provide a very intuitive design approach for achieving full resonant phase scattering. Our results highlight the role of topological defects for achieving realistic and insightful metasurface designs. ## 11:20 : Engineering Extrinsic Nonlinearities in Epsilon-Near-Zero Materials via Surface Lattice Resonances Dhruv Fomra¹, Adam Ball¹, Jingwei Wu¹, Ray Secondo¹, Samprity Saha¹, Mohammad Sojib¹, J. B. Khurgin², Henri Lezec³, Nathaniel Kinsey¹ ¹ Virginia Commonwealth University (USA), ² Johns Hopkins University (USA), ³ National Institutes of Standards and Technology (USA) Epsilon-near-zero (ENZ) materials have recently demonstrated enhanced several nonlinear optical interactions. However, the irradiance required is still on the order of 100 GW/cm2. Starting from the origins of the nonlinear effects in ENZ, we highlight avenues for intrinsic and extrinsic enhancement to the nonlinearity. We illustrate the combination of surface-lattice-resonances and ENZ as a method to achieve low threshold (<10 GW/cm2) intensity switching at THz speeds. 11:35 : Invited talk ## Dynamic metaphotonics for structural colors and holographic displays online #### Junsuk Rho POSTECH (Korea) Flat optics, which is realized by the artificially created two-dimensional material platform called optical metasurfaces, is currently undergoing a science-to-technology transition. A representative example includes a flat and ultra-compact metalens, which has huge potential for replacing conventional bulky and heavy optical lens. However, real-time. active operations of those flat optical devices have remained unresolved yet. To resolve such a grand challenge, we propose two approaches to realize dynamic metaphotonic devices using multiple light properties and tunable materials. ## 10:20 - 12:20 — Alamos #### **Session 3A3** ### Symposium II: New trends in nanophotonics and advanced materials Organized by: Junsuk Rho, Hakjoo Lee and Namkyoo Park Chaired by: Carsten Rockstuhl 10:20: Invited talk ## Enabling plasmonically generated hot-electrons transfer using DNA: The hydrodehalogenation reaction of Bromoadenosine #### Sergio Kogikoski Junior, Anushree Dutta, Ilko Bald Universitat Potsdam (Germany) Using hot charge carriers far from a plasmonic nanoparticle surface is very attractive for many applications in catalysis and nanomedicine and will lead to a better understanding of plasmon-induced processes, such as hot-charge-carrier- or heat-driven chemical reactions. Herein we show that DNA can transfer hot electrons generated by a silver nanoparticle over several nanometers to drive a chemical reaction in a nonadsorbed molecule on the surface. #### 10:40: Invited talk Highly Efficient Metaphotonic Color-Routing Structure in the Sub-micron CMOS Image Sensor ^{online} Sookyoung Roh, Seokho Yun, Sangyun Lee, Hongkyu Park, Minwoo Lim, Sungmo Ahn, Hyuck Choo Samsung Advanced Institute of Technology (Korea) We report a novel metaphotonic color-routing (MPCR) structure that can significantly increase the quantum efficiency of sub-micron CMOS image sensors. Fabricated on the Samsung's commercial 0.8μ m-pixel sensor, MPCR structures separate the incident light energy into appropriate color pixels at high efficiency, resulting in higher quantum efficiency up to $+20\,\%$ than the conventional sensor. Our experimental demonstration confirms a luminance SNR improvement of +1.22dB under low light condition below 20 lux, accompanied with a comparably low color reproduction error. #### 11:00 : Invited talk ## Molecular assembled metasurfaces for midinfrared light sources online ## Yoshiaki Nishijima Yokohama National University (Japan) We demonstrate spectrally narrowband mid-infrared radiation absorbance and thermal emittance with the strong surface enhancement of molecular infrared absorption (SEIRA) using mid-midinfrared metasurfaces. This was achieved by harnessing mode coupling between a plasmonic metal-insulator-metal (MIM) metasurface and molecular vibrational mode resonances. We found that the weak/strong coupling has a high potential for the future application of thermal emitters for mid-infrared light sources and thermal radiation analytical method. We will present recent advances in the coupling of molecular vibration and metasurfaces. #### 11:20 : Invited talk ## Advanced Signal processing utilising integrate stimulated Brillouin scattering online Moritz Merklein The University of Sydney (Australia) Integrated photonic circuits offer great potential for high-performance optical and microwave signal processing in a compact footprint. Inducing stimulated Brillouin scattering on chip provides a highly frequency selective, agile, and reconfigurable way to control and manipulate the phase and amplitude of optical signals. I will give an overview of on-chip platforms that support Brillouin scattering and highlight different signal processing functionalities. #### 11:40: Invited talk Full-Colour Wavefront Engineering Using Vertically Stacked, Dispersion-Contrasting Nano-Hole / Nano-Post Metasurfaces online ## Hyun Sung Park, Hyeonsoo Park, Hae-Sung Kim, Jeong Yub Lee, Eun-Hyoung Cho, Ki-Deok Bae, Woong Ko, Hyuk Choo, Seunghoon Han Samsung Advanced Institute of Technology (Korea) We have experimentally demonstrated a polarization-independent, high-quality metalens over theentire visible range by vertically stacking two metasurface layers. The two layers are engineered to exhibit dispersive responses that are distinct from each other, and this leads to the metalens with a broadband, nondispersive phase-modulation capability. The average wavefront error and the focusing efficiency of themetalens over the wavelength range from 400 nm to 700 nm were measured to be 0.04λ and 83 %, respectively. #### 12:00 : Invited talk Chiral Growth of Achiral Plasmonic Nanocrystals under Circularly Polarized
Light Lucas Vazquez Besteiro¹, Miguel A. Correa-Duarte¹, Zhiming M. Wang², Alexander O. Govorov³ ¹Universidade de Vigo (Spain), ²University of Electronic Science and Technology (China), ³Ohio University (USA) Plasmonic nanoparticles are powerful nanoantennas, and the energy deposited in their resonant modes can drive phenomena such as photocatalysis. The injection of plasmonic hot carriers can trigger redox reactions non-homogeneously, with spatially-differentiated reaction rates depending on the symmetries of nanocrystal and incoming light, allowing the chiral growth of achiral nanocrystals under circularly polarized light. This talk presents a computational model studying the geometrical evolution of plasmonic nanocrystals under different conditions, directly from the optical response of the system. ## 10:20 - 12:00 — Playamar #### **Session 3A4** Symposium IV: Chirality, magnetism, and magnetoelectricity: Separate phenomena and joint effects in metamaterial structures Organized by: Eugene Kamenetskii Chaired by: Eugene Kamenetskii 10:20: Invited talk Dynamical Magnetic Phase Transitions in Spin-Charge Coupled Systems Masahito Mochizuki, Rintaro Eto, Takashi Inoue Waseda University (Japan) Magnetization dynamics in magnets driven by light/microwave electromagnetic fields are attracting a great deal of research interest nowadays from the viewpoints of both fundamental science and technical application. We discuss our recent theoretical studies on dynamical manipulation of magnetism in spin-charge coupled metallic magnets via application of electromagnetic waves, i.e., the microwave-induced switching of magnetic topology and the photoinduced magnetic phase transition to a nonequilibrium 120-degree spin ordered phase in the triangular Kondo-lattice model. 10:40: Invited talk Metamaterial enhanced IR spectroscopy for solid, liquid, gas, and chiral materials Takuo Tanaka RIKEN (Japan) Metamaterial enhanced infrared spectroscopy techniques are discussed. 2D metal-insulator-metal (MIM) metamaterial absorber was applied for sensing of solid monolayer of organic molecule. Metamaterials and nanofluidic hybrid device was proposed to introduce analytes solved in liquid solvent into the hot spots of MIM and 10-4molecules/Å2 sensitivity was demonstrated. For gas samples, 3D MIM metamaterial absorber was proposed and 20 ppm concentration of carbon dioxide and butane were detected. Chiral metamaterial absorber for enhancing the vibrational circular dichroism spectrum was also demonstrated. 11:00 : Invited talk Hot Electrons and Photochemical effects in Chiral Plasmonic Nanostructures Alexander Govorov¹, Lucas V. Besteiro², Oscar Avalos Ovando¹ ¹Ohio University (USA), ²Universidade de Vigo (Spain) The generation of energetic (hot) electrons and the photo-heating effect are intrinsic properties of any optically excited plasmonic nanocrystal. High-energy hot electrons and phototemperature contribute to kinetic processes observed in plasmonic photodetectors, colloidal nanocrystals, and metastructures. This talk will focus on the theory of hot electron generation and also present related applications for plasmonic photochemistry and chiral plasmonic photocatalysis. 11:20: Invited talk Magnon frequency comb online Zhenyu Wang¹, H. Y. Yuan², Yunshan Cao¹, Z.-X. Li¹, Rembert A. Duine², Peng Yan¹ ¹University of Electronic Science and Technology of China (China), ²Utrecht University (The Netherlands) We theoretically study the magnon-skyrmion interaction and find that a magnonic frequency comb (MFC) can be generated above a threshold driving amplitude, where the nonlinear scattering process involving three magnons prevails. The mode spacing of the MFC is equal to the breathing-mode frequency of the skyrmion and is thus tunable by either electric or magnetic means. The theoretical prediction is verified by micromagnetic simulations, and the essential physics can be generalized to a large class of magnetic solitons. #### 11:40 : Invited talk ### Creating and Manipulating Magnetic Skyrmions online #### Anjan Soumyanarayanan A*STAR Institute of Materials Research and Engineering (Singapore) Magnetic skyrmions present a fascinating research field witnessing rapid progress in fundamental and applied sciences. Practical technologies require nanoscale skyrmions with ambient stability, and electrical manipulation and detection capabilities Here, we establish a material platform where skyrmion properties can be smoothly tuned by modulating parent interactions which induce transitions in key microscopic characteristics. Next, we present a thermodynamic marker associated with skyrmion formation and stability, which evolves with temperature. We conclude with efforts to electrically manipulate skyrmions in nanowire devices. ## 10:20 - 12:20 — Bajondillo #### Session 3A5 ## Topological photonics and plasmonics Organized by: Yuri Gorodetski and Denis Garoli Chaired by: Yuri Gorodetski ### 10:20: Invited talk #### Directional plasmonic excitation by helical nanotips Leeju Singh¹, Denis Garoli², Yuri Gorodetski¹ ¹ Ariel University (Israel), ² Istituto Italiano di Tecnologia (Italy) The phenomenon of coupling between light and surface plasmon polaritons requires specific momentum-matching conditions. In the case of a single scattering object on a metallic surface, like a nanoparticle or a nanohole, the coupling between a broadband effect, i.e. scattering, and a discrete one such as surface plasmon excitation, leads to Fano-like resonance line shapes. We study directional plasmonic excitation - via Fano-like resonance by using achiral nanotip to excite surface plasmon with a strong spin-dependent azimuthal variation. #### 10:40: Invited talk Optical singularities in higher dimensions: theory and topological protection online Michele Tamagnone¹, Christina M. Spaegele², Soon Wei Daniel Lim², Federico Capasso² ¹ Fondazione Istituto Italiano di Tecnologia (Italy), ² Harvard University (USA) We generalize the idea of optical singularity to four dimensions using the three spatial dimensions and the wavelength obtaining a complete polarization singularity, i.e. a topologically protected point in the 4D space where the polarization and phase of the field are not defined. #### 11:00 : Invited talk ## Nonlinear Metasurface Route to Two-Way Asymmetric Flat Optics #### **Nir Shitrit** Ben-Gurion University of the Negev (Israel) We report asymmetric transport of free-space light at nonlinear metasurfaces upon transmission and reflection. Moreover, we theoretically derive the nonlinear generalized Snell's laws that were experimentally confirmed by the anomalous nonlinear refraction and reflection. The asymmetric transport at optically thin nonlinear interfaces is revealed by the concept of a reversed propagation path. Such an asymmetric trans- port at metasurfaces opens a new paradigm for free-space ultrathin lightweight optical devices with one-way operation including unrivaled optical valves and diodes. #### 11:20: Invited talk ## Optoinduced magnetization in a metal from the spin and orbital angular momenta of light Vage Karakhanyan, Clement Eustache, Yannick Lefier, Thierry Grosjean FEMTO-ST Institute (France) We provide a spin and orbital angular momentum representation of the inverse Faraday effect in a metal. We show the role of the spin and orbital angular momenta of light (SAM and OAM), as well as the spin-orbit interaction (SOI), in the generation of an optoinduced magnetization. We also show that resonances in plasmonic nanoantennas enhance and confine the IFE, thereby leading to static magnetic fields directly applicable in a vast application domain including all-optical magnetization switching and spin-wave excitation. #### 11:40 : Invited talk #### Topological surface bound states in the continuum in double network metamaterials Wenhui Wang, Antonio Guenzler, Bodo Wilts, Matthias Saba Fribourg University (Switzerland) Photonic bound states in the continuum are spatially localized modes that exist within a radiation continuum. Here, we propose a new generic mechanism to realize bound states in the continuum free of other resonances and are robust upon parameter tuning. We predict two new types of bound states in the continuum: i) generic modes confined to the metamaterial bulk, mimicking electronic acoustic waves in a hydrodynamic double plasma, and ii) topological surface bound states in the continuum. #### 12:00: Invited talk ## Spin-Orbit Interaction of Light Enabled by Negative Coupling in High-Quality-Factor Optical Metasurfaces online #### Wenlong Gao, Basudeb Sain, Thomas Zentgraf Paderborn University (Germany) We study negative couplings amid local resonances of photonic metasurfaces and their radiation polarizations. In our analysis, we discover circularly polarized, wave-vector variant, radiational eigenstates that are attributed to inter-orbit negative couplings. Our theoretical model is exemplified via a guided resonance dielectric metasurface that possesses Type-II Non-Hermitian Dirac points, from where the circular polarization lines emanate. The high quality factor nature and field enhancement of the designed metasurface could lead to applications for spin-selective sensing, beam control and nonlinear optics. #### 10:20 - 12:30 — Carihuela ### **Session 3A6** ### Symposium V: Phononics and acoustic metamaterials Organized by: Jensen Li and Guoliang Huang Chaired by: Jensen Li 10:20 : Invited talk Omnidirectional isolation and efficient elastic-wave routing in ultrathin metagrating-based waveguides online #### Yabin Hu¹, Yongquan Liu², Bing Li¹ ¹Northwestern Polytechnical University (China), ²Xi'an Jiaotong University (China) Guiding classical waves has been always playing an essential role in a wide range of fields. However, a compact and robust way to route energy flux travelling along an arbitrary path in a uniform medium is difficult to achieve. Here, an ultrathin, broadband elastic metagrating is proposed for suppression of parasitic
diffraction and guiding waves along an arbitrary path. #### 10:40: Invited talk ### Delocalization of topological modes by non-Hermitian skin effect online Wei Wang¹, Guancong Ma² ¹Hong Kong Baptist University (Hong Kong), ²Hong Kong Baptist University (China) We demonstrate that topological modes can be fully extended by the non-Hermitian skin effect. These extended modes occupy the entire bulk lattice while maintaining their topological characteristics. The effect is observed in both 1D and 2D topological mechanical lattices with active components. #### 11:00 : Invited talk ### Thermal phonon mean free path analysis of semiconductor membranes online ### Masahiro Nomura¹, Jose Ordonez-Miranda², Roman Anufriev¹ ¹ The University of Tokyo (Japan), ² Universite de Poitiers (France) The dimension of the playground of coherent thermal conduction is limited to the thermal phonon mean free path. In this talk, we demonstrate that the dependence of the cumulative thermal conductivity on the thermal phonon mean free path for semiconductor membranes can be reconstructed by combining systematic thermal conductivity measurements with theoretical analyses for a series of semiconductor membranes with slit structures. We introduce this method with examples measured for Si and SiC membranes. #### 11:20 : Invited talk ## Self-collimated waves in a waveguide comprised of phononic crystals online Jia-Hong Sun¹, Cheng-Fu Chou², Yung-Yu Chen² ¹Chang Gung University (Taiwan), ²Tatung University (Taiwan) Elastic waves in a phononic crystal (PnC) can show various velocities in different directions. In this paper, a waveguide that allows self-collimation of longitudinal waves was designed based on the anisotropic propagation property. Then beam steering appears in the inlet and outlet of the PnC-based waveguide, which allows controlling the direction of a wave beam through the waveguide. The work included design, fabrication of specimens, and experiments. This study is valuable for nondestructive tests in industry and medical applications. #### 11:40 : Invited talk ## How coherence is driving phonon heat conduction online #### Sebastian Volz The University of Tokyo (Japan) We derive an original thermal conductivity formula where coherence times and life-times appear. We validate the theory with a complex crystal and an amorphous solid. The simulation reveals an intrinsic and a -previously investigated- mutual coherence appearing in two different temperature ranges. ### 12:00 : Spin-orbit interactions of transverse sound online ### Shubo Wang¹, Guanqing Zhang², Xulong Wang², Qing Tong¹, Jensen Li³, Guancong Ma² ¹City University of Hong Kong (Hong Kong), ²Hong Kong Baptist University (Hong Kong), ³The Hong Kong University of Science and Technology (Hong Kong) In this talk, I will report the discovery of airborne transverse sound that can carry both spin and orbital angular momentum. I will show that the spin-orbit interactions of the transverse sound can give rise to novel phenomena inaccessible to conventional acoustic systems, including acoustic-activity-induced negative refraction and spin-dependent vortex generation in sound scattering. ## 12:15 : Inverse Design of Direction Dependent Mechanical Metamaterial online Pravinkumar Ghodake Indian Institute of Technology Bombay (India) A direction-dependent mechanical metamaterial is designed which can control longitudinal waves in one direction and transverse waves in exactly opposite direction simultaneously as well as independently both in time and frequency domains. Time-dependent inverse problems to reduce second harmonics (2f = 4 MHz) and also maximize fundamental harmonics (f = 2 MHz) by maintaining maximum power of a short Gaussian pulse as the second objective are proposed and solved using gradient-free algorithms. Designed metamaterials show promising applications in nonlinear ultrasonics. #### 10:20 - 12:00 — Montemar #### **Session 3A7** ## Symposium I: Hybrid Nanomaterials and Metastructures for Photonics, Sensing and Energy Organized by: Jerome Plain, Alexander Govorov, Davy Gerard and Pedro Hernandez Martinez Chaired by: Jerome Plain #### 10:20 : Invited talk Enhancing Foerster-Type Nonradiative Energy Transfer by Tuning the Complex Dielectric Medium Permittivity online #### Pedro Hernandez Martinez, Abdulkadir C. Yucel, Hilmi Volkan Demir Nanyang Technological University (Singapore) We systematically studied the FRET mechanism by tuning the background medium's complex permittivity. The FRET rates of donor-acceptor pairs for point-like, quantum dot, and nanoplatelet nanostructures were derived. The change in FRET rates with respect to the relative permittivity of the background medium was characterized. The analysis reveals that the FRET rate becomes singular when the permittivity approaches zero and a fixed shifted non-zero value for the point-like and all other nanostructures, respectively. #### 10:40: Invited talk Numerical methods for the investigation of resonances in nanophotonics online Felix Binkowski¹, Fridtjof Betz¹, Martin Hammerschmidt², Philipp-Immanuel Schneider², Lin Zschiedrich², Sven Burger¹ ¹Zuse Institute Berlin (Germany), ²JCMwave GmbH (Germany) We review numerical methods for the computation of resonances and for resonance expansion in nanophotonics. We report on Riesz-projection-based approaches and numerical investigations of light sources coupled to nanoresonators. #### 11:00 : Invited talk Nonexponential Photoluminescence Decay Kinetics of Colloidal Quantum Dots: Long-Time Behaviour #### Ana Luisa Simões Gamboa¹, Evgeny Bodunov² ¹ITMO University (Russia), ²Emperor Alexander I St. Petersburg State Transport University (Russia) We present new results on the analysis of the nonexponential photoluminescence decay kinetics of colloidal quantum dots using a model that considers a Poisson distribution of the number of charge carrier trapsper nanocrystal, detrapping of charge carriers, and a single trap depth. Further we introduce a new model thatassumes instead an energetic distribution of traps that is a decreasing exponential function of energy and predicts a power-law photoluminescence decay kinetics at long times. We compare the two models. #### 11:20 : Invited talk ## Ultrafast Spectroscopy Approaches to Enable Sensing and Imaging of Nanoscale Processes online Gary Wiederrecht Argonne National Laboratory (USA) Ultrafast spectroscopy is a well-established means to monitor energy flow and dissipation in a wide range of structures. It can, however, be a time-consuming spectroscopy which limits its utility for sensing and imaging applications. In this talk, I describe recent efforts to accelerate ultrafast spectroscopies, particularly applied to nanoscale structures. The efforts are found to apply to a wide range of light-matter interactions, including photoinduced processes in plasmonic nanostructures and solar energy conversion materials. #### 11:40 : Invited talk Plasmonic Chiral Photoheating using DNA-Nanocrystal Assemblies online Oscar Avalos-Ovando¹, L. V. Besteiro², A. Movsesyan¹, G. Markovich³, T. Liedl⁴, K. Martens⁴, Z. Wang⁵, M. A. Correa-Duarte², A. O. Govorov¹ ¹Ohio University (USA), ²Universidade de Vigo (Spain), ³Tel Aviv University (Israel), ⁴Ludwig-Maximilians- University (Germany), ⁵ University of Electronic Science and Technology (China) Plasmonic nanocrystals generate heat efficiently in the presence of electromagnetic radiation. Here, we use a chiral DNA-assembled nanorod pair as a model system for chiral plasmonic photo-heating, and we study the subsequent chiral photo-melting of its components. We show that both the enantiomeric excess and circular dichroism can be controlled with chiral light. The chiral asymmetry factors of the calculated photothermal and photo-melting effects exceed the values typical for the chiral molecular photochemistry at least 10-fold. #### 12:05 - 12:45 — Montemar #### Session 3A8 ### Parity-Time and quasi-normal modes in Photonics, Plasmonics, Acoustics Organized by: Anatole Lupu and Henri Benisty Chaired by: Henri Benisty 12:05: Invited talk Fundamental causality constraints on the non-Hermitian skin effect in passive nonreciprocal systems #### **Henning Schomerus** Lancaster University (United Kingdom) I describe physical constraints on the observability of the non-Hermitian skin effect in passive systems. #### 12:25: Invited talk Generation of quantum photon pairs tailored by quasi-normal mode dispersion in nonlinear metasurfaces online #### **Andrey Sukhorukov** Australian National University (Australia) Metasurfaces consisting of nano-scale structures are underpinning new physical principles for the creation and shaping of quantum states of light. We predict and demonstrate experimentally the generation of spatially entangled photon pairs through spontaneous parametric down-conversion from a metasurface incorporating a nonlinear thin film of lithium niobate. This is achieved through nonlocal resonances with tailored angular dispersion of quasi-normal modes. #### 10:20 - 12:40 — Litoral #### Session 3A9 ### Thermal plasmonics and metamaterials for low-carbon society Organized by: Junichi Takahara and Kotaro Kajikawa Chaired by: Junichi Takahara and Kotaro Kajikawa 10:20 : Invited talk **Plasmonic Energy Harvesting** #### Wakana Kubo Tokyo University of Agriculture and Technology (Japan) We demonstrate a thermoelectric device that can generate electricity even in a uniform-temperature environment. 10:40 : Invited talk ## Non-equilibrium Light Emission from Quantum Materials for Thermophotonic Applications online Atsushi Sakurai Niigata University (Japan) Thermophotonics (TPX) power generation systems, which generate electricity using thermal emission and electroluminescence from light emitting diodes. Compared to thermophotovoltaics, it can operate at lower temperatures and is expected to be efficient. On the other hand, studies of light-emitting devices in the near-to mid-infrared region are still in
their developing stage, and fundamental studies of new materials and light-emitting mechanisms are important. Thus, we focus on quantum materials as infrared light emitting sources for application to TPX power generation. #### 11:00: Invited talk ## Affordable and Environmentally Sustainable Biomass-based Photothermal Material for Efficient Desalination Solutions online ## Tien Thanh Pham, Hoang Giang Nguyen Vietnam National University (Vietnam) In this study, a common agricultural waste was utilized to fabricate the photothermal material that can be applied in the solar steam generation (SSG) system. The resulting composite material demonstrated significant advantages such as high light absorption, low thermal conductivity, ultra-fast water transportation, low moisture enthalpy, and self-cleaning properties. The biomass based SSG system possessed high seawater evaporation rate and evaporation efficiency, which are comparable to those in the previous studies on biomass composite material based SSG systems. #### 11:20 : Invited talk #### Directive multiband thermal emitters online ## Makoto Shimizu, R. Benlyas, S. Tsuda, Z. Liu, H. Yugami Tohoku University (Japan) While many isotropic multiband emitters and directive narrow-band emitters have been reported, there are few reports of emitters capable of directional and multiband thermal emission. We present an emitter with a polymer thin film on a metal substrate which enables molecular vibration-induced thermal emission limited to grazing-angles. We also show metal-dielectric-metal metamaterials can realize tunable multiband emission limited in grazing angles based on similar physics. These emitters could enable directional heat transfer which could be a novel thermal management technology. #### 11:40 : Invited talk ## Development of one-chip near-field thermophotovoltaic device overcoming far-field blackbody limit #### Takuya Inoue, Takashi Asano, Susumu Noda Kyoto University (Japan) Near-field thermal radiation transfer has attracted significant attention owing to its potential for increasing the output power and conversion efficiency of thermophotovoltaic (TPV) systems. Here, we demonstrate a one-chip near-field TPV device integrating a Si emitter and an InGaAs PV cell with a sub-wavelength gap (<140 nm). The device shows a photocurrent density of 1.49 A/cm2 at the emitter temperature of 1192 K, which is 1.5 times larger than the far-field blackbody limit at the same temperature. #### 12:00 : Invited talk ## Thermoelectric generation in day and night by daytime radiative cooling online #### Satoshi Ishii, Ken-Ichi Uchida, Tadaaki Nagao National Institute for Materials Science (Japan) Daytime radiative cooling surface can be cooled both in day and night, thus generating temperature difference against the surrounding temperature throughout the day. We demonstrate experimentally that this temperature difference can be used for 24-h thermoelectric generation. Our first design combines a daytime radiative cooler on a Peltier module which only takes advantage of radiative cooling. Our second design allows to harvest radiative cooling and solar heat simultaneously, thus has a potential to generate larger temperature difference for thermoelectric generation. #### 12:20 : Invited talk Complex metamaterials for carbon-negative and carbon-free applications in energy, desalination and ### printing online #### **Andrea Fratalocchi** KAUST (Saudi Arabia) In this talk I will summarize our recent results in the field on complex metamaterials for solar desalination, structural paper and solar hydrogen production, presenting the design, implementation and characterization of various record performing systems and devices. #### 10:20 - 12:20 — Manantiales #### Session 3A10 ### Molecular Optomechanics Organized by: Alejandro Martinez Chaired by: Alejandro Martinez 10:20 : Invited talk Molecular optomechanics in plasmonic nanocavities Ruben Esteban¹, Yuan Zhang², Tomas Neuman³, William M. Deacon⁴, Lukas A. Jakob¹, Jeremy J. Baumberg⁴, Javier Aizpurua¹ ¹CSIC - UPV/EHU (Spain), ²Zhengzhou University (China), ³Universite Paris-Sud (France), ⁴University of Cambridge (United Kingdom) We show that the optomechanical interaction that governs the coupling of molecular vibrations with plasmonic structures can be strongly affected by higher-order plasmonic modes of metallic nanocavities, leading to strong modifications of the vibrational states and Raman spectra of organic molecules located in the proximity of the nanostructures, illuminated by a very intense laser. We discuss changes on the energy and effective losses of the molecular vibrations, as well as on the scaling of the emitted signal with laser intensity. #### 10:40 : Invited talk #### Few-mode field quantization in plasmonic and hybrid cavities ### **Johannes Feist** Universidad Autónoma de Madrid (Spain) We present a framework that provides a few-mode master equation description of the interaction between quantum emitters and an arbitrary electromagnetic environment. It requires only the fitting of the spectral density, obtained through classical electromagnetic simulations, to a model system involving a "minimal"number of discrete lossy and interacting modes. It allows the description of complex environments characterized by several overlapping and interacting resonances, as typically encountered in plasmonic (metallic) and hybrid metallodielectric nanocavity setups. #### 11:00 : Invited talk #### Engineering long-lived vibrational states for an organic molecule Burak Gurlek¹, Vahid Sandoghdar¹, Diego Martin Cano² ¹ Max Planck Institute for the Science of Light (Germany), ² Friedrich-Alexander University (Germany) In this work we improve the optomechanical quality of a molecule by several orders of magnitude through phononic engineering of its nanoscopic surrounding. By dressing a molecule with long-lived high-frequency phonon modes of its host matrix, we achieve storage and retrieval of photons at millisecond timescales and allow for the emergence of single-photon strong coupling in optomechanics. Our strategy can be extended to the realization of molecular quantum optomechanical networks. #### 11:20 : Invited talk Selective Enhancement of Raman Scattering with a Nanocube-on-Mirror in a Cavity Ilan Shlesinger, Jente Vandersmissen, Ewold Verhagen, Femius Koenderink AMOLF (The Netherlands) We report on the fabrication of a new generation of hybrid resonators using a bottom-up process and featuring in-situ tunability. It consists of the gap mode of a Nanocube-on-mirror coupled to the mode of a tunable Fabry-Perot cavity. The system allows the demonstration of selective enhancement of single vibrational lines of molecules and paves the way towards parametric instabilities with a reduced number of molecules. #### 11:40 : Invited talk Continuous-Wave mid-Infrared to Visible Frequency Upconversion with a Molecular Optomechanical Nanocavity online Wen Chen¹, Philippe Roelli¹, Huatian Hu², Sachin Verlekar¹, Sakthi Amirtharaj¹, Angela Barreda³, Tobias Kippenberg¹, Mikov Kovylina⁴, Ewold Verhagen⁵, Alejandro Martinez⁴, Christophe Galland¹ ¹EPFL (Switzerland), ²Wuhan Institute of Technology (China), ³Friedrich Schiller University Jena (Germany), ⁴ Universitat Politecnica de Valencia (Spain), ⁵ AMOLF (Germany) We develop a plasmonic nanoparticle-in-groove nanocavity coupled with a few hundred molecules, demonstrating optomechanical transduction of sub-microwatt continuous wave signals from the mid-infrared (32 THz) onto the visible domain at ambient conditions. The dual resonant nanocavity offers an estimated 13 orders of magnitude enhancement in upconversion efficiency per molecule. Our results establish molecular cavity optomechanics as a new paradigm for coherent frequency conversion free of phase-matching constraints. #### 12:00 : Invited talk Plasmonic Nanogap-enhanced Single-molecule Raman Spectroscopy: Towards Single-protein Raman Sequencing online Y. Zhao¹, M. Iarossi², A. F. De Fazio², J. A. Huang¹, F. De Angelis² ¹ University of Oulu (Finland), ² Instituto Italiano di Tecnologia (Italy) Current protein analysis and sequencing rely on insensitive mass spectroscopy that generally requires 1 billion copies of proteins. The fact that proteins cannot be amplified results in a serious lag of proteomics behind genomics and transcriptomics, hampering not only mechanistic studies but also clinical applications. Here, we report our recent work on a plasmonic nanogap biosensor that has demonstrated single-molecule Raman detection of all 20 proteinogenic amino acids and detecting single amino acid residues within single peptide molecule. #### Lunch 12:30 - 14:00 ## 14:00 - 15:00 — Torremolinos #### **Session 3A11** #### **Conference Tutorials II** Chaired by: Vladimir Shalaev 14:00 : Tutorial The Road from Resonant Metamaterials to Metadevices Mark L. Brongersma Stanford University (USA) In this tutorial, I will illustrate how 2-dimensional (2D) metamaterials can be created from optically-resonant nanostructures made from semiconductor, metallic, and 2D quantum materials. The resulting metafilms and metasurfaces are ideal building blocks for optoelectronic devices that are commonly constructed from continuous layers of metal and semiconductor. The use of nanostructured metamaterials opens opportunities to dramatically modify the optical emission, transmission, absorption, reflection, and refraction properties of continuous films. For this reason, we can now create a new class of optoelectronic devices that offer an improved performance and allow for new functionalities. #### 15:05 - 16:05 — Torremolinos #### **Session 3A12** ## Machine learning for metamaterials and metasurfaces Organized by: Willie Padilla Chaired by: Willie Padilla ## 15:05 : Multi-layered radiative cooling metamaterial design applying genetic algorithms Carlos Lezaun¹, Tania Jorajuria², Alicia E. Torres-Garcia¹, Pilar Herrera², Miguel Beruete¹ ¹Public University of
Navarra (Spain), ²Navarra Industry Association (Spain) A genetic algorithm (GA) has been developed to design three different multi-layered radiative cooling metamaterials. Under direct sunlight, the best structure theoretically achieves a net cooling power above 61 W/m2 with 24 layers and a total height of no more than 5 μ m. This design method is cost free due to the use of analytical computations for the metamaterials. Moreover, automated design of multi-layered metamaterials in the infrared range can be developed based on this approach. ## 15:20 : Deep Learning Accelerated Multi-Objective Optimization for Highly Performant and Mechanically Robust Nanophotonic Devices online #### Ronald Jenkins, Sawyer Campbell, Pingjuan Werner, Douglas Werner The Pennsylvania State University (USA) Deep Learning has proven successful in accelerating electromagnetic simulations of complex structures thus greatly reducing the computational burden of inverse-design problems. Exploiting this acceleration allows for exhaustive sensitivity analysis of candidate designs that would otherwise be intractable to perform. When combined with multiobjective optimization, this enables a framework where meta-device performance and robustness to fabrication uncertainties can be simultaneously optimized. ## 15:35 : Inverse matching method based on deep neural networks for design of hybrid metal-dielectric filters online ## Ruoyu Shen¹, Rong He¹, Liangyao Chen¹, Junpeng Guo² ¹Fudan University (China), ²University of Alabama (USA) In this work, hybrid metal-dielectric guided mode resonance optical transmission filters are designed by using a trained neural network and inverse matching method. A forward neural network is trained to generate a large data set of three million filter design samples for inverse matching. Then, a preliminary selection is implemented to reduce candidate designs. Finally, an inverse matching method with Fano functions is used to design hybrid filters with narrow linewidth as small as 6.8 nm in the visible spectrum. ## 15:50 : Bezier Curve enabled Metasurfaces for Deep Learning controlled Inverse-Design Liam Shelling Neto, J. Dickmann, S. Kroker Technische Universitat Braunschweig (Germany) Metasurfaces, two-dimensional subwavelength structures enable unique control of light with unprecedented applications in nano-optics. With this power comes the ever so famous curse of dimensionality that severely hinders intuitive control of the electromagnetic response of the individual meta-atoms based on their topology. In this study, we introduce a new design approach for meta-atoms using Bezier curves. The resulting canvas for metasurface design combined with a sophisticated deep learning framework paves the way for multifunctional metasurfaces. 14:00 - 16:00 — Alamos #### **Session 3A13** ### Parity-Time and quasi-normal modes in Photonics, Plasmonics, Acoustics Organized by: Anatole Lupu and Henri Benisty Chaired by: Henri Benisty 14:00 : Keynote talk ### Non-Hermitian Control of Chiral Singular Points in Periodic Nanophotonic Systems Masaya Notomi¹, Shutaro Otsuka², Yuto Moritake², Taiki Yoda¹ ¹NTT Basic Research Laboratories (Japan), ²Tokyo Institute of Technology (Japan) We have investigated various interplays of polarization singular points and exceptional points in the momentum space of non-Hermitian periodic nanophotonic systems, both theoretically and experimentally. We manipulate chiral singular points in the momentum space by varying the symmetry of non-Hermitian periodic systems, resulting interesting polarization properties that cannot be achieved in Hermitian systems. #### 14:30 : Invited talk #### Quantifying the response of open systems at exceptional points Jan Wiersig Otto von Guericke University Magdeburg (Germany) One reason for the considerable attention of exceptional points in photonics, plasmonics, and acoustics is the strong response of open systems to external perturbations and excitations at such degeneracies. We introduce two characteristics of exceptional points that quantity the response in terms of energy splittings and energy eigenstates, intensity, and dynamics. The concept is illustrated for physically relevant examples. #### 14:50: Light control by Non-Hermitian modulation in multimode fiber Mohammad N. Akhter, Salim Benadouda Ivars, Ramon Herrero Simon, Muriel Botey, Kestutis Staliunas Universitat Politecnica de Catalunya (Spain) We show that a non-Hermitian modulation of the potential along the nonlinear multimode fibers controls dynamics of propagating radiation. Specifically we consider simultaneous modulation of the refraction index and gain/loss profile. We observe that the non-Hermitian modulation introduces a unidirectional and controllable coupling towards the lower/higher order transverse modes, depending on the potential parameters. Such effect may enhance the beam self-cleaning phenomena. On the contrary, coupling towards higher order modes may enhance pulsing, turbulence and, eventually help in super-continuum generation. # 15:05: Non-Hermitian potentials for the stabilization of semiconductor laser arrays Ramon Herrero Simon, Judith Medina Pardell, Muriel Botey, Kestutis Staliunas Universitat Politecnica de Catalunya (UPC) (Spain) We propose a stabilization mechanism of a semiconductor laser array based on asymmetric coupling. The stabilization scheme takes advantage of the symmetry breaking of non-Hermitian potentials. We numerically explore the main parameters, like the distance between lasers and spatial shift between the individual laser stripe and corresponding electrode. In turn, an axisymmetric architecture is intended to lead to a light redistribution within the array which is expected to facilitate direct coupling efficiency to optical fibers. 15:20: Invited talk Forging the topological states online Hamidreza Ramezani University of Texas Rio Grande Vally (USA) I will demonstrate the observation and origin of robust bulk states in a disordered non-Hermitian system. In contrast to topological edge states, the robust bulk states are distributed all over the system and thus allow us to access the whole system. This subject opens a new direction for a new form of robust states that are not necessarily localized on one side of the system. 15:40: Invited talk Transforming space with non-Hermitian dielectrics **Ivor Kresic** Vienna University of Technology (TU Wien) (Austria) We show how non-conformal distortions of optical space are connected to the refractive index distributions of isotropic non-Hermitian media. Using this insight, we design and numerically demonstrate the operation of a broadband unidirectional invisibility cloak. Remarkably, the presence of gain and loss lifts the usual requirement of near zero refractive index values for such cloaks. Our framework provides an unexpected bridge between the fields of transformation optics in isotropic media and non-Hermitian photonics. The results presented in this talk were published in I. Kresic et al., PRL 128, 183901 (2022). ## 14:00 - 15:40 — Playamar #### Session 3A14 ### Symposium III: Advanced passive and active metasurfaces Organized by: Howard Lee and Pin-Chieh Wu Chaired by: Howard Lee 14:00 : Invited talk #### Metasurfaces for IR-to-THz Detection with Phase-Changing Beams Ozdal Boyraz, Mohammad Wahiduzzaman University of California Irvine (USA) We present plasmonic metasurfaces that are integrated with phase-changing VO 2 beams for bolometric radiation detection from THz to the infrared regime. A comprehensive study is conducted on metal-insulator-metal type metasurface absorbers for efficient electromagnetic absorption and their integration with transition-edge VO 2 beams for high-sensitivity detection. Here, metasurface absorbers offer selectivity and tunability to electromagnetic design. VO 2 beams offer a considerable length to cross-sectional ratio and hence, a large sensitivity in temperature-induced readout signal. 14:20 : Invited talk ## Ultrasensitive Thin Film Circular Dichroism Detection using Metasurface-assisted Cavity Ring-Down Spectroscop #### A. K. Singh, Z.-H. Lin, M. Jiang, Jershing Huang Leibniz IPHT (Germany) We propose a new chiroptical detection scheme that combines dielectric metasurface and evanescent wave cavity-ring down spectroscopy (EW-CRDS) to enable CD detection of chiral thin films and chiral samples at ultralow concentration. #### 14:40: Invited talk ## **Quantum Metasurfaces with Deterministically Integrated Single Photon Emitters** Samuel Peana, Omer Yesilyurt, Mira Marinova, Alexander Senichev, Zachariah Martin, Vahagn Mkhitaryan, Alexandra Boltasseva, Alexander Kildishev, Vladimir Shalaev Purdue University (USA) We have recently discovered a novel deterministic high yield (>50%) scalable process for creating single photon emitters (SPEs) in silicon nitride (SiN) nanopillars. Such scalable high yield and deterministic precision placement of SPEs promises to unlock large scale integration of SiN SPEs into carefully engineered nanostructured SiN dielectric quantum metasurfaces. Such SPE integrated quantum metasurfaces promise to enable a variety of previously impossible exciting quantum devices and physics. 15:00 : Invited talk Dispersion-engineered metasurfaces for ultrafast pulse compression and large-scale RGB-achromatic focusing online Yao-Wei Huang¹, Zhaoyi Li², Marcus Ossiander², Peng Lin³, Raphaël Pestourie⁴, Joon-Suh Park², Wei Ting Chen², Zhenhao Wang⁵, Xinghui Yin², Zhujun Shi², Yousef Ibrahim², Cheng-Wei Qiu⁶, Martin Schultze⁵, Ji-Xin Cheng³, Steven Johnson⁴, Federico Capasso² ¹National Yang Ming Chiao Tung University (Taiwan), ²Harvard University (USA), ³Boston University (USA), ⁴Massachusetts Institute of Technology (USA), ⁵Graz University of Technology (Austria), ⁶National University of Singapore (USA) It has become possible to manipulate light spectrally and spatially on demand at wavelength scale in recent years. Manipulations of ultrashort laser pulses in
the time domain and large-scale penetration of achromatic metasurface-based lens are current challenges. In this talk, I will report our recent developments and applications of dispersion-engineered metasurfaces in compression of ultrashort laser pulses, millimeter-scale diameter RGB-achromatic metalens, and its potential for future virtual-reality platforms. 15:20 : Invited talk Tunable photonic metasurfaces: fundamentals and applications online **Maxim Shcherbakov** University of California (USA) We summarize our recent results on the design and implementation of tunable metasurfaces for all-optical switches, polarizing optics, and dynamic imaging. ### 14:00 - 15:20 — Bajondillo #### **Session 3A15** Symposium IV: Chirality, magnetism, and magnetoelectricity: Separate phenomena and joint effects in metamaterial structures Organized by: Eugene Kamenetskii Chaired by: Oleksandr Serha #### 14:00: Invited talk #### Light and Magnetic Vortices: The Experimental Evidence of Magnetic Helicoidal Dichroism Mauro Fanciulli¹, Matteo Pancaldi², Emanuele Pedersoli², Mekha Vimal¹, David Bresteau¹, Martin Luttmann¹, Dario De Angelis², Primoz Rebernik Ribic², Benedikt Roesner³, Christian David³, Carlo Spezzani², Michele Manfredda², Ricardo Sousa⁴, Ioan-Lucian Prejbeanu⁴, Laurent Vila⁴, Bernard Dieny⁴, Giovanni De Ninno², Flavio Capotondi², Maurizio Sacchi⁵, Thierry Ruchon¹ ¹ Universite Paris-Saclay (France), ² Elettra-Sincrotrone (Italy), ³ Paul Scherrer Institut (Switzerland), ⁴ Universite Grenoble Alpes (France), ⁵ Sorbonne Universite (France) The magnetic helicoidal dichroism, obtained through the interaction of an extreme ultraviolet vortex beam carrying orbital angular momentum with a magnetic vortex, has been experimentally observed. Numerical simulations based on classical electromagnetic theory show that this dichroism is based on the interference of light modes with different orbital angular momenta, which are populated after the interaction between light and magnetic topology. This observation sets the framework for the development of new tools to investigate ultrafast magnetization dynamics. ### 14:20: Invited talk Non-Hermitian chiral phononics through laser-induced synthetic magnetic fields in nano-optomechanical networks J. del Pino¹, J. J. Slim¹, Ewold Verhagen² ¹ AMOLF (The Netherlands), ² ETH Zurich (Switzerland) We explore the interplay between non-Hermitian dynamics and the breaking of time-reversal symmetry in networks of nanomechanical resonators coupled by light. Optomechanical radiation pressure interactions induce both particle-conserving as well as squeezing interactions in the reconfigurable networks. We observe chiral transport of coherent and thermal excitations, and discover a non-Hermitian Aharonov-Bohm effect in which the non-Hermitian dynamics of the network, including spontaneous breaking of PT symmetry, are controlled by a new geometric phase. 14:40: Invited talk #### Ultrafast, all-optical and highly enantio-sensitive imaging of molecular chirality David Ayuso¹, Josh Vogwell¹, Laura Rego¹, Olga Smirnova² ¹ Imperial College London (United Kingdom), ² Max-Born-Institut (Germany) I will present several strategies for imaging the handedness of chiral molecules with high enantio-sensitivity and on ultrafast time scales. By tailoring the polarization of the driving field in time and in space, we can efficiently control the nonlinear optical response of chiral molecules and imprint their handedness into different macroscopic observables. These strategies rely on the strong longitudinal fields that arise naturally in tightly focused laser beams, in non-collinear configurations, and, interestingly, in optical nanofibers and other nanophotonic structures. #### 15:00 : Invited talk ### Enhancement of circular dichroism of a chiral material by dielectric nanospheres ## D. Vestler, Gil Markovich Tel Aviv University (Israel) Circular dichroism (CD) spectroscopy is very useful for studies of biomolecular conformation but suffers from very weak signals. Several theoretical and experimental papers reported schemes for CD enhancement using enhanced local fields produced by plasmonic nanostructures. We report enhancement of visible wavelength CD of chiral nanocrystals by Mie resonances of amorphous selenium nanospheres. The spatially averaged CD enhancement factor was estimated to be 4.7 \pm 1.5 fold, while the peak enhancement at particular locations on the nanospheres is probably >10. #### 14:00 - 16:10 — Carihuela #### Session 3A16 #### Symposium V: Phononics and acoustic metamaterials Organized by: Jensen Li and Guoliang Huang Chaired by: Bogdan Ungureanu #### 14:00 : Invited talk #### Porous soft polymer as raw material for acoustic metasurfaces Olivier Mondain-Monval, Olivier Lombard, Raj Kumar, Yabin Jin, Thomas Brunet, Olivier Poncelet Universite de Bordeaux (France) In this talk I will present the fabrication aspects involved in the synthesis and the molding of acoustic metasurfaces of two different types. Both structural and acoustic characterizations of the devices will be presented. #### 14:20 : Invited talk ## Practical Phonon Engineering for Boosting the Performance of Photodetectors and Refrigerators Mika Prunnila VTT Technical Research Centre of Finland Ltd. (Finland) In this communication, we focus on mastering these energy/particle channels at the nanoscale in order to realize and enhance the performance of detectors and solid-state refrigerators. We especially discuss on electro-thermal transport and phonon engineering methodologies and physics for radiation detectors and micro-coolers. Realizations of room temperature nano-thermoelectric IR-detectors and low temperature microrefrigerators will be shown and discussed. ## 14:40 : Low-frequency nonreciprocal flexural wave propagation via compact cascaded time-modulated resonators ## Sheng Wan, Liyun Cao, Yi Zeng, Tong Guo, Mourad Oudich, Badreddine Assouar Universite de Lorraine (France) Compact nonreciprocal mechanical devices are of great interest for unidirectional elastic wave manipulation. We introduce a subwavelength design of a compact low-frequency nonreciprocal metamaterial for flexural waves. This structure is made of two coil-cantilever-magnet resonators where the electromagnetic forces can be time-varied, which can be modeled by two mass-spring resonators with temporal modulation on their effective stiffness. Our structure could inspire the design of compact nonreciprocal devices for flexural waves. #### 14:55: Invited talk #### Active metamaterials with strongly coupled sensor-driver unit cells ### **Bogdan Popa** University of Michigan (USA) This work shows how to design active acoustic metamaterials composed of periodic and aperiodic arrangements of sensor-driver pairs in the general case in which the sensor-drivers pairs strongly interact with each other. The method will be illustrated in examples showing how to use active metamaterials to realize transformation acoustic devices including full omidirectional acoustic cloaks. Extensions of the sensor-driver architecture to scenarios in which the driver produces a different physical field than the sensed field will also be discussed. #### 15:15: Invited talk ### **Nonlinearity and Topological Phononics** Georgios Theocharis¹, R. Chaunsali² ¹LAUM-CNRS (France), ²Indian Institute of Science (India) In this presentation, we will talk about our recent efforts to understand the interplay of nonlinearity and topology in mechanical systems. In particular, we study one-dimensional nonlinear lattices of both Fermi-Pasta-Ulam-Tsingou and Klein-Gordon types and discuss the amplitude-dependent topological transition, soliton formation, and nonlinear Dirac physics. The findings highlight the effect of nonlinearity on the characteristics of topologically-robust edge states and the role of topology in interpreting purely nonlinear states. #### 15:35: Invited talk #### Elastic wave propagation along a 1D chain of pillars Rock Akiki¹, Laurent Carpentier¹, Adnane Noual², Bernard Bonello³, Bahram Djafari-Rouhani¹, Yan Pennec¹ ¹Universite de Lille (France), ²Universite Mohamed Premier (Morocco), ³UPMC Univ Paris 06 (France) We theoretically investigate with the help of the finite element method the interaction between aluminum pillars erected on top of a silicon substrate in the low frequency range. We investigated the resonant modes of a finite linear chain of N pillars and demonstrate the propagation along the chain of pillars deposited on the half-infinite substrate. Different configurations of the chain will be investigated from periodic, linear and bent, to random distributions. #### 15:55: Acoustic waves focusing with elliptic pillars type metasurface Laurent Carpentier, Yan Pennec, Bahram Djafari-Rouhani Universite de Lille (France) We numerically investigate the focusing properties of an acoustic metasurface consisting of a line of pillars of elliptic shape on a thin plate. We report on the influence of the ellipticity parameter on both monopolar compressional and dipolar bending modes of the pillars. We show that a line of pillars with a gradient in their ellipticity allows to focus the transmitted elastic wave at different targeted points. #### 14:00 - 15:50 — Montemar #### Session 3A17 #### Topological photonics and plasmonics Organized by: Yuri Gorodetski and Denis Garoli Chaired by: Yuri Gorodetski 14:00 : Invited talk Non-reciprocal light-matter interactions in artificial hyperbolic nanostructures #### Nicolò Maccaferri Umea University (Sweden) We study non-reciprocal light-matter interactions in hyperbolic nanostructures. Experiments, numerical simulations and analytical modelling reveal the possibility to excite, in nonmagnetic architectures possessing strong optical anisotropy, a magneto-optical activity, which we ascribe to the excitation of electric and magnetic dipole modes coupled to an external magnetic field. #### 14:20 : Invited talk ## Spin-orbit Photonic Diode and
Bragg-Berry Mirrors From 3D Chiral Liquid Crystal Architectures Gonzague Agez¹, Etienne Brasselet² ¹ Universite de Toulouse (France), ² Universite de Bordeaux (France) Spin-orbit photonic devices usually rely on 2D (transverse) material structuring and are designed for optimal coupling between the polarization state and the spatial degrees of freedom at a given wavelength1. Exploiting the third dimension (longitudinal) provides ways to bypass monochromatic limitations. We show here that chiral liquid crystals endowed with 3D helix axis orientational distribution exhibit broadband spin-orbit optical vortex generation as well as an optical diode effect. ## 14:40 : Bulk measurement of topological order based on exciton absorption rate Wei Chen, Gero von Gersdorff PUC-Ri (Brazil) Topological order in materials is generally calculated from the integration of certain curvature function in momentum space, such as the Berry curvature. We elaborate a relation between quantum geometry of the Bloch states and the curvature function called metric-curvature correspondence. It follows that bulk measurement of quantum geometry via exciton absorption or pump-probe experiment can directly reveal the topological order. #### 14:55: Invited talk ## Tailoring Light-Matter Interaction through Resonant and Evanescent Epsilon-Near-Zero Nanostructures online Vincenzo Caligiuri¹, A. Patra¹, A. Pianelli², M. Miscuglio³, N. Maccaferri⁴, R. Caputo¹, M. P. De Santo¹, A. Forestiero⁵, G. Papuzzo⁵, R. Barberi¹, R. Krahne⁶, A. De Luca¹ ¹University of Calabria (Italy), ²Military University of Technology (Poland), ³George Washington University (USA), ⁴University of Luxembourg (Luxembourg), ⁵CNR-ICAR (Italy), ⁶Istituto Italiano di Tecnologia (Italy) Metal/Dielectric multilayers are often present in light-matter interaction scenarios since they can be easily designed to tailor the electromagnetic environment surrounding quantum emitters, through the engineering of Local Density of States. In this presentation, we showcase two examples of metal/dielectric multilayers leveraging on either evanescent or resonant optical responses. The described applications unlocked by these multilayers are multiple, from $\lambda/1660$ resolution, to polariton generation through "pseudo cavity" modes to end with a particular example of plasmonic/photonic physical unclonable functions. ## 15:15 : Phase transitions of nodal lines by structural deformation of photonic crystals Haedong Park, Sang Soon Oh Cardiff University (United Kingdom) We demonstrate a nodal lines' phase transitions that arise from a structural deformation of dielectric photonic crystals. We employ an anisotropic double diamond structure exhibiting a multi-gap nodal link in the three-dimensional momentum space. The possible phase transitions are predicted by calculating non-Abelian charges and Euler class. #### 15:30: Invited talk #### **Non-Hermitian Topological Whispering Gallery: Numerics** Rene Pernas Salomón¹, Zhiwang Zhang², Penglin Gao³, Ying Cheng², Johan Christensen¹ ¹ Universidad Carlos III de Madrid (Spain), ² Nanjing University (China), ³ Shanghai Jiao Tong University (China) In 1878, Lord Rayleigh observed the highly celebrated phenomenon of sound waves that creep around the curved gallery of St Paul's Cathedral in London. These whispering-gallery waves have found applications in ultrasonic fatigue and crack testing, and in the optical sensing of nanoparticles. Here we construct a topological gallery insulator using sonic crystals made of thermoplastic rods that are decorated with carbon nanotube films, which act as a sonic gain medium by virtue of electro-thermoacoustic coupling. #### 14:00 - 16:00 — Litoral #### Session 3A18 ## Thermal plasmonics and metamaterials for low-carbon society Organized by: Junichi Takahara and Kotaro Kajikawa Chaired by: Junichi Takahara and Kotaro Kajikawa #### 14:00 : Invited talk #### Photonic enhancements to tailor the comfort of radiative textiles Muluneh G. Abebe¹, Alice De Corte¹, Gilles Rosolen¹, Jozefien Geltmeyer², Ella Schoolaert², Karen De Clerck², Bjorn Maes¹ ¹ University of Mons (Belgium), ² Ghent University (Belgium) Personal radiative heat regulation by photonic engineered textiles can contribute to a decreased energy consumption in buildings by expanding the range of comfortable ambient conditions. Here, we propose dual-mode photonic designs (a static and a dynamic one), which modulate the emissivity to provide thermal regulation in both cold and hot environments. The first design is a Janus-yarn fabric that tunes statically via fabric flipping, while the second design is dynamic by utilizing a shape-memory polymer. #### 14:20 : Invited talk ### All-day energy-harvesting device based on radiative cooling #### Yuki Ito, Mana Toma, Kotaro Kajikawa Tokyo Institute of Technology (Japan) An energy harvesting device based on passive radiative cooling is reported. It consists of a multilayered structure: a solar cell covered with a daytime-radiative-cooling film, a thermoelectric element, and a water heatsink to reduce temperature drop. # 14:40 : ZrN-ZrO2 multilayered metamaterials as thermophotovoltaic selective emitters Jose Luis Ocana Pujol, Katja Sha Bjornstad, Ralph Spolenak, Henning Galinski ETH Zurich (Switzerland) We propose ZrN-ZrO2 multilayered hyperbolic metamaterials as a selective emitter for thermophotovoltaic energy conversion. Our calculations show a twofold improvement in the spectral selectivity compared with a black body at 1200K. The system was fabricated using scalable reactive magnetron sputtering using solely a single zirconium target. The combination of FIB cross sections imaging with optical characterization shows that samples annealed in vacuum to up to 1200K show no sign of chemical degradation and therefore no decrease in the spectral efficiency. ## 14:55: Mid-Infrared Transparent Solar Reflector Using High-Index Material for Thermochromic and Thermo-Radiative Cooling Metasurfaces #### Ken Araki, Richard Zhang University of North Texas (USA) Thermochromic and thermo-radiative cooling metasurfaces require broadband high reflection in visible-to-near infrared region to block the direct sunlight. The sunlight absorption can be prevented by implementing the structure that creates high contrast in refractive index using Si and Ge. The near-wavelength High Contrast Grating and prism array provides less solar absorption but full transparency in mid-infrared region. Similar electromagnetic field responses are observed for both structures to enhance reflectance greater than 0.99. Simultaneous VIS-NIR reflection and MIR transparency is achieved. ## 15:10 : Switchable thermal radiation based on Si metasurface mediated by VO2 Junichi Takahara, H. Takase Osaka University (Japan) We propose a switchable perfect absorber based on silicon metasurface mediated by metal-insulator transition materials of VO2. We demonstrate that the absorptivity in the atmospheric window can be reversibly switched between 0.08 and 0.9 on reaching a transition temperature of VO2 (341K). The switching of thermal radiation spectra was also observed experimentally. This device can be applied to adaptive radiative cooling with transparency at visible wavelength. ### 15:25 : Near-Perfect Broadband Thermal Reflector and Transmitter using Dielectric High-Contrast Gratings #### Richard Zhang, Ken Araki University of North Texas (USA) A monolithic dielectric coating composed of at-wavelength periodic metasurface gratings on dielectric multilayers can achieve broadband total reflectance exceeding that of pure and untarnished metal surface. The minimization of thermal emittance can be tailored to any blackbody, for which the dielectric materials are carefully selected for broad near-zero absorption coefficient. Using computational optimization and theoretical understanding of high-contrast grating phase-shift mode conditions, we identified characteristic high-refractive index Germanium grating parameters on near-quarter-wave Ge/KBr refractive index Fabry-Perot cavity pairs. #### 15:40: Invited talk Passive Thermal Radiation Control based on thermochromic W-doped VO2 Metasurfaces online Kai Sun¹, Callum Wheeler¹, Ioannis Zeimpekis¹, Mirko Simeoni², Alessandro Urbani², Matteo Gaspari², Sandro Mengali², Lars Kildebro³, Dan Hewak¹, Cornelis de Groot¹, Otto Muskens¹ ¹University of Southampton (United Kingdom), ²Consorzio C.R.E.O (Italy), ³NIL Technology (Denmark) Radiative cooling becomes a popular research topic targeting an energy efficient solution for thermal management. Vanadium dioxide (VO2), as a thermochromic material, is able to switch optical property between dielectric and metallic states depending on its temperature. We present a passive thermal management solution through a VO2 based metasurface. Through a novel ALD process, the fabricated VO2 metasurface on polyimide substrate has a room-temperature transition and a high infrared emissivity of \sim 0.4. #### 14:00 - 16:00 — Manantiales #### **Session 3A19** #### Symposium II: New trends in nanophotonics and advanced materials Organized by: Junsuk Rho, Hakjoo Lee and Namkyoo Park Chaired by: Marco Rahm #### 14:00: Invited talk Phonon-Plasmon coupling in pillared phononic crystals mediated by surface acoustic waves Adnane Noual¹, Rock Akiki², Gaëtan Levêque², Yan Pennec², El Houssaine El Boudouti¹, Bahram Djafari Rouhani² ¹Universite Mohamed 1er (Morocco), ²University of Lille (France) We study theoretically the phonon-plasmon interaction in a multilayered structure supporting metallic nanopillars or ridges. The acoustic vibrations of the pillars, excited by means of an incident surface acoustic wave (Sezawa wave), interact with localized plasmons of metal-insulator-metal type. The strongest couplings are obtained for the compressional resonance of the pillars as well as for a symmetric flexural mode resulting from the interaction between two adjacent ridges. Some Sezawa modes well-confined near the
surface can also exhibit high optomechanic couplings. #### 14:20 : Invited talk Nanoscale nonlinear optics: from classical to quantum plasmonics Cristian Ciraci, Federico De Luca, Ahsan Noor, Muhammad Khalid Istituto Italiano di Tecnologia (Italy) Modern photonic devices rely on nonlinear optical effects to carry out their functionalities. Yet, the realization of efficient nanoscale nonlinear optical components remains a chimera. In this talk, we explore three strategies based on the exploitation of plasmonic systems that might allow to overcome the main challenges and pave the way for all-optical integrated circuits. #### 14:40: Invited talk Magnetoplasmonic nanocavities for the amplification of magneto-optical activity via hybridization with dark plasmons Paolo Vavassori¹, Andrey Chuvilin¹, Alberto López-Ortega², Nicoló Maccaferri³, Mario Zapata-Herrera⁴, Matteo Pancaldi⁵ ¹CIC nanoGUNE (Spain), ²Universidad Pública de Navarra (Spain), ³Umeå University (Sweden), ⁴Materials Physics Center (Spain), ⁵Elettra Synchrotron Trieste (Italy) Magneto-optical effects are widely used in studying magnetic materials and to realize optical devices exploiting non-reciprocal propagation of light. Enhancing MO effects is crucial for size reduction of key photonic devices based on non-reciprocal propagation of light and to enable active nanophotonics. Here, we disclose a promising approach that exploits multipolar Fano resonances excitable in symmetry broken magnetoplasmonic nanocavities and arising from the hybridization of dark plasmons with dipolar plasmonic resonances to induce a large amplification of magneto-optical activity. #### 15:00: Invited talk #### Towards hybrid quantum systems using nanophotonics Christophe Couteau¹, Aurélie Broussier¹, Régis Deturche¹, Sylvain Blaize¹, Javier Cerrillo² ¹L2n - University of Technology of Troyes (France), ²Universidad Politécnica de Cartagena (Spain) Defect/colour centres in diamond do have the great advantage of being coupled to photons as well as having the possibility to have electron spin and nuclear spin manipulation. We will show first how one can make use of nanodiamonds and integrated optics to go towards a potentially scalable platform and we will then see how this versatile platform could be linked to other platforms for quantum technologies and in particular with superconducting circuits with superconducting qubits based on some recent proposals. #### 15:20: Invited talk ### Study of Photoluminescence Mechanisms of Quantum Dots Embedded in Nanostructures Supporting Mie Resonances Viktoriia Rutckaia¹, Mihail Petrov², Vadim Talalaev¹, Frank Heyroth¹, Dominik Schulze¹, Alexey Novikov³, Mikhail Shaleev³, Joerg Schilling¹ ¹Martin-Luther University (Germany), ²ITMO University (Russia), ³Russian Academy of Science (Russia) Mechanisms of photoluminescence enhancement such as excitation efficiency, Purcell effect and outcoupling efficiency are studied both theoretically and experimentally in a system comprising quantum dots embedded in silicon Mie-resonators. #### 15:40: Invited talk Terahertz photonic band-gap confinement at micrometer scale in SrTiO3 photonic crystals online Juan Pablo Vasco¹, Tobia Nova², Vincenzo Savona¹, Atac Imamoglu² ¹EPFL (Switzerland), ²ETH Zurich (Switzerland) We show the possibility of photonic band-gap confinement in SrTiO3 photonic crystal slabs at cryogenic temperatures in the terahertz band, where the SrTiO3 refractive index reaches values above 150. We then use a Particles Swarm optimization approach to propose a photonic crystal cavity with an effective mode volume of $0.77~\mu m3$ and resonant frequency at 0.88~THz ### **Industrial Workshop by PlanOpSim** **Playamar** 16:00 - 16:40 #### 16:00: Industrial Workshop Pragmatic steps on designing meta-surface powered applications from the nanostructure design to system optimization #### **Lieven Penninck** PlanOpSim (Belgium) This talk isn't focused on the next big idea but on the tools to turn those ideas into optimized designs. This requires understanding of meta-surfaces design concepts, potential, drawbacks and system implications. In the seminar CEO Lieven Penninck will explain how to approach these within PlanOpSim software. #### **Coffee Break** Session 3P2 Poster session VI 16:00 - 16:40 #### P1: Synthesis of Au-Ag nano-hybrids to investigate heat transfer Clement Vecco-Garda¹, Clement Panais², Noelle Lascoux², Natalia Del Fatti², Fabien Vialla², Aurelien Crut², Stephane Mornet¹, Mona Treguer-Delapierre¹ ¹ Institut de Chimie de la Matiere Condensee de Bordeaux (France), ² Institut Lumiere Matiere (France) The modalities of energy transfer at the nanoscale strongly differ from those at the macroscopic scales because of the increased role played by interfaces. With the development of nanotechnology, understanding these mechanisms is crucial for fundamental and technological advances in many fields such as electronics or sensing. We'll show how with self-assembly approaches, we can construct hybrid nano-systems with well-defined geometry and stability to investigate the modalities of heat transfer in the time domain phonon transport at single particle level. ### P2: Graphene/Silicon Schottky Solar Cells with Silicon Surface Textured by Photochemical Etching Method Nardin Avishan, Alp Akbiyik, Khurram Shehzad, Emre Yuce, Alpan Bek Middle East Technical University (Turkey) Graphene/Silicon Schottky junction attracted great interest due to the extraordinary optical and mechanical properties of graphene. On the other hand, silicon surface texturing is a must for reflection reduction for Graphene/Silicon Schottky photovoltaics. In this study, photochemical etching is introduced for surface texturing. By utilizing a Digital Micromirror Device, it is possible to texture the surface in specific patterns. This study aims to combine the Si surface texturing by photochemical etching method and Gr/Si Schottky junction features for high-performance photovoltaics. #### P3: Tailoring near-infrared localized plasmon resonances in composite island films Jordi Sancho Parramon, Vesna Janicki, Matej Bubas, Ivana Fabijanic, Vesna Blazek Bregovic Rudjer Boskovic Institute (Croatia) Two different approaches for obtaining localized surface plasmon resonances in the near infrared range in metal islands films are presented. The first method consists of thermal annealing of Ag/Cu films that results in formation of nanoparticles with high aspect ratio. The second method is based on HAuCl4 titration of Ag islands and leads to the formation of AgAu alloy and Au hollow islands. Both approaches are technologically simple and therefore suitable for large-scale application of island films in nanophotonics. ### P4: Electrically Controlled and Thermally Tuned CMOS Compatible Graphene/Si Guided Mode Resonance Active Filter Prateeksha Sharma¹, Dor Oz¹, Spyros Doukas², Elefterios Lidorikis², Ilya Goykhman¹ ¹ Technion (Israel), ² University of Ioannina (Greece) We propose and investigate tunable CMOS compatible Graphene/Si guided-mode resonance active1D and 2D filters based on electro and thermo-optic effects at teilecom wavelengths. The electro-optic effect isachieved by variation in the graphene doping by electrostatic gating, and the thermo-optic effect utilizesgraphene as a thermal heater. The proposed filters offer narrow resonances of 1.4 nm, a high extinction ratio of20 dB and 30 dB for 1D and 2D gratings respectively and thermal efficiency of 0.056 nm/K. ### P5: Biosensor based on Phononic Crystals Supporting Bound States in the Continuum and Fano resonances Ilyasse Quotane¹, Madiha Amrani¹, Cecile Ghouila-Houri², El Houssaine El Boudouti¹, Leonid Krutyanski³, Bogdan Piwakowski², Philippe Pernod², Abdelkrim Talbi², Bahram Djafari Rouhani² ¹ Universite Mohammed I (Morocco), ² Universite de Lille (France), ³ Russian Academy of Sciences (Russia) We study a one-dimensional phononic crystal (1D-PC) that provides a new biosensor platform based on bound states in the continuum (BICs) and Fano resonances. The structure consists of a triple solid-liquid- solid layer immersed in water, where epoxy is used as the solid layers and a mixture of water and albumin as the liquid layer. We show that the structure exhibits high sensitivity and high-quality factor (Q) with better detection limit in the vicinity of the BIC. P6: Coupled Confined Acoustic Line Modes within a Glide-Symmetric Waveguide Daniel Moore¹, Gareth Ward¹, John Smith², Alastair Hibbins¹, Roy Sambles¹, Timothy Starkey¹ University of Exeter (United Kingdom), ²DSTL (United Kingdom) Two parallel but opposing lines of equally spaced finite depth holes are shown to support coupled acoustic line modes. Imposing glide symmetry, the confined coupled acoustic line modes have hybrid character, combining symmetric and anti-symmetric properties. These hybrid coupled acoustic line modes have a near constant group velocity over a broad frequency range, forming no band gap at the first Brillouin zone boundary. The hybrid character of these confined modes is explored by changing the spacing between the two surfaces. ### P7: Manipulation of sonic waves by a quadruple set of Helmholtz resonators Robine Sabat¹, Y. Pennec², G. Levêque¹, E. Cochin¹, D. Torrent³, B. Djafari-Rouhani⁴ ¹ University of Lille (France), ² University of Exeter (France), ³ Universitat Jaume I (Spain), ⁴ IEMN - University of Lille (France) This paper examines the coupling effect between Helmholtz resonators (HRs) on mitigating low-frequency sound, using the finite element model. Previously, we highlighted the physical mechanism behind double coupled HRs, generating two resonance modes, symmetric and antisymmetric. Such coupling features can be increased by including four HRs, each containing four openings. This paper aims to simulate quadruple HRs which result in a significant degeneracy-lifting of the resonances providing new opportunities for sound monitoring, and controlled by the alteration of units' separation. ####
P8: Slow light by dual periodic self-similar dielectric multilayered films Peter Ropac, Urban Mur, Miha Ravnik University of Ljubljana (Slovenia) Slow light is emerging as an exciting route to improve long-distance communication, optical sensors and signal processing. We show the effects of self-similar features at different length scales in the dielectric profile of the unit cells of one-dimensional photonic crystals on the photonic bandgaps and group refractive indices. We achieve group refractive indices as large as one thousand. This work is a contribution towards realization of designable slow light photonic crystals. ### P9: Understanding the Kinetics of Plasmon Induced Dehalogenation Reaction on the Surface of Silver and Gold Nanoparticles Anushree Dutta¹, Robin Schurmann¹, Sergio Kogikoski¹, Niclas Muller², Stephanie Reich², Ilko Bald¹ University of Potsdam (Germany), ² Freie Universitat Berlin (Germany) Understanding the nature and mechanism of plasmon interaction with molecules at metal-molecule interface and factors controlling their reaction rate in a heterogeneous system is of utmost importance as this form the basis of plasmon chemistry. Therefore, the dehalogenation kinetics (C-Br bond cleavage) of brominated purines to define the kinetic rate law and the underlying reaction mechanism prevalent in heterogeneous medium via surface enhanced Raman scattering (SERS) technique have been studied within this report. ### P10: Chiral Detection at the Molecular-Plasmonic Interface via Spin-Momentum Locking and Dynamic Symmetry Breaking Jeremy Lutz¹, Peter Morokshin¹, Jessie Rapoza¹, Richard Osgood², Jimmy Xu¹ ¹Brown University (USA), ²US Army Combat Capabilities Development Command (USA) Chiral structures are ubiquitous in nature. In life, pairs of anti-symmetric chiral molecules - enantiomers are intriguing microscopic examples. They are identical in atomic composition and therefore indistinguishable in scalar physical properties. Yet, one enantiomer may be therapeutic while the other toxic [1]. In this work, we demonstrate the feasibility of electrical detection of chiral molecules by optical rectification at the molecular-plasmonic interface via spin-momentum locking and dynamic symmetry-breaking. # P11: Focusing surface acoustic waves produced by plasmonic mechanical nanoresonators Hilario Boggiano¹, L. Nan², B. Tilmann², G. Grinblat¹, E. Cortes², A. V. Bragas¹ ¹ Universidad de Buenos Aires (Argentina), ² Ludwig-Maximilians-Universitat Munchen (Germany) Plasmonic nanoantennas have proven to be efficient optomechanical transducers for generating and de- tecting hypersound at the nanoscale. Excited with ultrafast laser pulses, these nanostructures sustain high-frequency coherent acoustic vibrations that emit a field of surface acoustic waves onto the underlying substrate. Here we introduce a novel design, consisting of a circular arc array of gold nanodisks, that allows to control the directionality of these waves and even focus them in a very small region of space. #### P12: Enhancing the Performance of Small Antennas Leanne Stanfield, Alastair Hibbins, Roy Sambles, Alex Powell University of Exeter (United Kingdom) The power radiating from an electric dipole antenna operating well below its free-space resonant frequency can be substantially enhanced by structuring the local environment. Here we use an iterative design procedure derived from the Purcell effect to dramatically improve the impedance matching, and thus radiation efficiency of a small antenna. This system shows strong coupling between the rod emitter and two radiation modes. ### P13: Comparing Single DNA Transient Hybridization Kinetics Using DNA-PAINT and Optoplasmonic Sensing approaches Narima Eerqing, Subramanian Sivaraman, Jesus Rubio, Tobias Lutz, Hsin-Yu Wu, Janet Anders, Christian Soeller, Frank Vollmer The University of Exeter (United Kingdom) We report a comparison of two single-molecule techniques: fluorescence nanoscopy and optoplasmonic sensing. DNA hybridization kinetics on the surface of gold nanorods are measured in both platforms, and a similar dissociation rate is demonstrated. # P14: Highly Tunable Circular Dichroism through Coupled Modes in Triskelia Nanostructures Javier Rodriguez Alvarez¹, Antonio Garcia-Martin², Arantxa Fraile Rodriguez¹, Xavier Batlle¹, Amilcar Labarta¹ ¹Universitat de Barcelona (Spain), ²CSIC (Spain) A twisted stack of plasmonic nanostructures with three-fold symmetry showing large dichroic response is studied. Simulations indicate that the interactions between the two elements play a key role on determining the circular dichroism in the total optical loss. In particular, coupled absorption modes are responsible for circular dichroism values up to 0.6 in the visible and near-infrared range. # P15: Controlling diffraction and dichroism of plasmonic metamaterials with nanosecond laser pulses Van Doan Le, Balint Eles, Nicolas Dalloz, Manuel Alejandro Flores Figueroa, Francis Vocanson, Nathalie Destouches Universite de Lyon (France) We demonstrate the huge potential of nanosecond lasers to control diffraction and dichroism of self-organized plasmonic metamaterials by suitably tuning the laser processing parameters. Different diffractive and dichroic behaviors orginate from a large variety of metallic nanoparticle sizes and arrangements and depths of surface gratings. Electromagnetic simulations that reproduce the polarized transmission spectra of disordered plasmonic nanocomposites demonstrate the existence of coupling between localized plasmonic modes and delocalized photonic modes when dichroism is present. ## P16: DFT Insights into the use of Self-Assembled Molecular Monolayers to investigate optoelectronic properties of a Au picocavity using Surface-Enhanced Raman Spectroscopy Michael Higham, T. Foldes, E. Rosta, C. R. A. Catlow University College London (United Kingdom) DFT techniques are used to investigate a self-assembled molecular monolayer (SAM) composed of cyanobiphenyl-4-thiol molecules (BPT-CN) as a probe molecule for SERS confined within a model Au picocavity, resembling the nanoparticle-on-a-mirror structure. The calculations suggest that the strength of interaction of BPT-CN molecules with surface Au atoms within the Au picocavity depends on the molecule tilting orientation, providing valuable insights to explain observed spectroscopic trends. #### P17: Advanced active polymer probe for polarization sensitive near-field imaging Hongshi Chen, Quanbo Jiang, Ali Issa, Dandan Ge, Safi Jradi, Regis Deturche, Christophe Couteau, Jerome Plain, Renaud Bachelot University of Technology of Troyes/L2N (France) We report new active probe of SNOM (Scanning Near-field Microscopy), improving the near-field sensitivity of plasmonic nanostructures. Single nano-emitter is assembled to extremity of polymer optical probe with surface functionalization, therefore, the size of nano-emitter defines the imaging resolution. ### P18: Directed transport in non-Hermitian photonic quantum walks with extended internal symmetries #### **Henning Schomerus** Lancaster University (United Kingdom) I describe how to equip photonic quantum walks with topologically meaningful non-Hermitian symmetries, such as a non-Hermitian charge-conjugation symmetry, and identify the resulting protected transport characteristics. #### P19: Different plasmonic strategies in metalized perovskite solar cells online #### Monika Laska, Zofia Krzeminska, Janusz Jacak, Witold Jacak Wroclaw University of Science and Technology (Poland) In perovskite solar cells the dominating channel of plasmonic photovoltaic effect is of internal electric type not observed in metallized p-n junction cells, where only absorption of photons is strengthened by metallic nanoparticles. We present the analysis how to activate this latter plasmonic channel also in perovskite cells and to take a benefit from the electric and optical (absorption) plasmonic effects simultaneously in these cells. ### P20: Observation of Goos-Hanchen shift in subwavelength gratings enhanced by surface plasmon resonance online Nikolai Petrov¹, Yuri Sokolov¹, Vladimir Stoiakin¹, Viktor Danilov¹, Vladimir Popov², Boris Usievich¹ Russian Academy of Sciences (Russia), ²Lomonosov Moscow State University (Russia) The lateral Goos-Hanchen displacement for a visible wavelength range beam when surface plasmon resonance is excited in a subwavelength metal grating is carried out theoretically and experimentally. A shift of the order of the beam width for the reflected beam near the surface plasmon resonance is demonstrated. The reflected beam is divided into two beams, the relative powers of which depends on the width of the incident Gaussian beam and the depth of the grating. ## P21: Bound states in the continuum with subwavelength localization due to multi-mode interference in waveguides online #### Nikolay Shubin, Vladimir Kapaev, Alexander Gorbatsevich P.N. Lebedev Physical Institute of RAS (Russia) We theoretically study multi-mode interference resulting in the formation of bound states in the continuum (BIC). The conventional description of BIC formation is based, typically, on the Friedrich-Wintgen mechanism, and thus is restricted to a two-resonance (two eigenmodes of the resonator cavity) approximation. We show that in 2D quantum mechanical and optical waveguides with resonators strongly coupled to them, BIC formation can be crucially influenced by multi-mode interference, which provides, in particular, the possibility for subwavelength localization in such BICs. #### P22: Concept of optical spin-wave XNOR gate online #### Anton Kolosvetov, Mikhail Kozhaev, Vladimir Belotelov, Alexander Chernov Russian Quantum Center (Russia) We demonstrate the concept of optical spin wave XNOR gate based on the interference of spin waves excited via inverse Faraday effect (IFE) in multiple points in a bismuth-substituted yttrium iron garnet (BIG). The logical output of the gate is determined by constructive
and destructive interference controlled by the laser source helicity. Numerical simulations provide an excellent agreement with the experimental results and are further used to design magnon logic gates based on optically excited spin waves interaction. ### P23: Fabrication of Copper-Doped Zinc Oxide Thin film in Nitrogen Environment for Solar Cell Applications online #### Mohammad Kamal Hossain, M. Al-Rasheidi King Fahd University of Petroleum and Minerals (Saudi Arabia) Due to high expectations to increase inherent characteristics, there is a major challenge to dope Zinc Oxide (ZnO) with metal as well as replace Oxygen sites with Nitrogen (N2). Therefore, acceptor and donor doping simultaneously are one of the recent interests in ZnO thin film research. A simple and one-step process to fabricate N2-rich Copper-doped ZnO ultrathin layer through a co-sputtering technique has been reported in this study. Optical, structural, and topographical investigations have been carried out thoroughly. ### P24: Bifocal Dielectric Metalens with Lateral Focusing of the Orthogonal Polarizations online Elaheh Bazouband¹, Fatemeh Bazouband², Mahdieh Hashemi², Andra Naresh Kumar Reddy³ ¹ Shiraz University (Iran), ² Fasa University (Iran), ³ Samara National Research University (Russia) Silicon cross-shaped metaatoms with the ability of controlling both x- and y-polarizations are used to make a bifocal metalens with focusing the x- and y-polarizations in laterally-spaced focal spots. In case of coincidence of the two focal spots an intensity has increased by $30-50\,\%$. ### P25: Electromagnetic Near-Field Distributions at the Interstitials of Plasmonic Nanoparticles through Finite-Difference Time-Domain Analysis online #### Abdullah Aljishi, Mohammad Hossain King Fahd University of Petroleum and Minerals (Saudi Arabia) Electromagnetic (EM) near-field distribution is a key ingredient that defines the intensity and stature of surface plasmon resonances (SPRs), coherent and collective oscillations of surface electrons. However, EM distributions rely on the nanometric geometry of the interstitials of plasmonic nanoassembly. In this work, we have carried out extensive finite-difference time-domain analysis on EM near-field distributions for a wide range of plasmonic nanoassemblies ranging from monomer, dimer, trimer, tetramer, heptamer to long-range two-dimensional nanoassembly of gold nanoparticles. ### P26: Strong Surface Enhanced Raman Scattering by Dye molecules Near the Single and Dimer Ag Nanospheroids online Petros Petrosyan¹, Manuel Goncalves², Armen Melikyan³, Hayk Minassian⁴ ¹ Yerevan State University (Armenia), ² Ulm University (Germany), ³ Russian-Armenian University (Armenia), ⁴ Alikhanyan National Laboratory (Armenia) The SERS from R6G molecule near the single and dimer Ag nanospheroids in water is studied theoretically. It is shown that small Ag nanospheroids provide strong enhancement of order of owing to small curvature radius of the particle. The contributions of surface plasmons, image effect, lightning rod and hot-spot effects in SERS enhancement factor are explicitly demonstrated. # P27: Inverse design of a near unity multiband infrared plasmonic grating absorber ^{online} Diego Souza Bezerra, Vitaly Felix Rodriguez Esquerre Federal Universtity of Bahia (Brazil) In this paper we present the inverse design of a multiband absorber based on a periodical plasmonic structures. The geometrical and optical parameters of the plasmonic grating composed of gold and germanium are obtained by using an efficient inverse design algorithm while the electromagnetic response is evaluated numerically by using the finite element method. We obtained multiband absorbers with almost near unity absorption in the mid- and long-wave infrared region from 4mm to 10mm #### P28: Snapshot hyperspectral imaging via learned metasurface encoders online Maksim Makarenko, Fedor Getman, Arturo Burguete-Lopez, Qizhou Wang, Silvio Giancola, Bernard Ghanem, Andrea Fratalocchi KAUST (Saudi Arabia) In this work, we present Hyplex system, a real-time high-resolution hyperspectral camera based on a combination of hardware metasurface encoders and software decoders. 16:40 - 18:25 — Torremolinos #### Session 3A20 ## Symposium IV: Chirality, magnetism, and magnetoelectricity: Separate phenomena and joint effects in metamaterial structures Organized by: Eugene Kamenetskii Chaired by: Xiangrong Wang 16:40 : Invited talk ### 3D FDTD-LLG modelling of magnetisation dynamics in thin film ferromagnetic structures **Feodor Ogrin** University of Exeter (United Kingdom) Here I present a model which uses 3D finite-difference-time-domain (FDTD) approach together with Landau-Lifshits-Gilbert (LLG) equation to find the exact solutions for magnetisation dynamics in ferromagnetic thin films integrated with metal-dielectric structures. Several case studies are demonstrated, in which the model is validated against analytical and experimental methods ### 17:00 : Rotation and electric-field responses in chiral crystal of elemental Tellurium Hiroaki Kusunose, Rikuto Oiwa Meiji University (Japan) Microscopic origin of chirality and possible electric-field induced rotation and its inverse responses are investigated on the basis of the tight-binding model for elemental Te. We found that the nearest-neighbor spin-dependent hopping is the characteristic element of chirality in Te, and is responsible for the electric-field induced lattice rotation and its inverse process. By these findings, we discuss a possible experimental approach to achieve absolute enantioselection for chiral crystals. #### 17:15 : Keynote talk #### Reactive quantities in nanooptics #### **Manuel Nieto-Vesperinas** CSIC (Spain) In this talk we discuss the reactive helicity of chiral electromagnetic fields and its alternating flow, as well as its conservation law: the reactive helicity optical theorem, which governs the build-up of this quantity through its zero time-average flow. #### 17:45 : Invited talk #### Polarization Properties of Twisted Photonic Crystal Fibers online #### **Peter Banzer** University of Graz (Austria) Polarization-maintaining fibers play a pivotal role in many applications, from endoscopy and fiber-based imaging to long-distance communication. Here, we discuss the polarization properties and capabilities of a special type of chiral fibers, i.e., twisted photonic crystal fibers, which were introduced only recently and show a strong circular birefringence. Experiments confirm that they are well suited for protecting polarization sub-spaces, a very useful property both from a practical and an applied perspective. #### 18:05: Invited talk #### Pico-electrodynamics inside matter online #### **Zubin Jacob** Purdue University (USA) The concept of photonic frequency (ω) - momentum (q) dispersion has been extensively studied in artificial dielectric structures such as photonic crystals and metamaterials. Here, we develop a Maxwell Hamiltonian theory of matter combined with the quantum theory of atomistic polarization to obtain the electrodynamic dispersion of natural materials interacting with the photon field. Our findings demonstrate that natural media can host a variety of yet-to-be discovered waves and topological phases with effective wavelengths in the pico-electrodynamics regime. #### 16:40 - 18:25 — Alamos #### Session 3A21 #### Symposium II: New trends in nanophotonics and advanced materials Organized by: Junsuk Rho, Hakjoo Lee and Namkyoo Park Chaired by: Ali Adibi 16:40 : Keynote talk **Hybrid Quantum Photonics** **Vladimir Shalaev** Purdue University (USA) We show that plasmonic enhancement and speedup opens up a means to outpace quantum decoherence1,2 and discuss new opportunities for SiN quantum photonic circuitry enabled by recently discovered single-photon sources3 in this technologically important platform. #### 17:10 : Invited talk ### Hyperuniform disordered gap plasmon metasurface perfect light absorber Junpeng Guo¹, Wonkyu Kim¹, Blake Simpkins², Hong Guo¹, Joshua Hendrickson³ ¹University of Alabama in Huntsville (USA), ²Naval Research Laboratory (USA), ³Air Force Research Laboratory (USA) Hyperuniform disordered gap plasmon metasurfaces are investigated for wideband light absorption in visible and near-infrared spectrum. Optical reflectance spectra from fabricated hyperuniform disordered, periodic, and randomly disordered gap plasmon metasurfaces reveal the physical origins of a localized gap plasmon resonance mode and a non-localized optical resonance mode. #### 17:30 : Invited talk ### Polarization-Multiplexed Metagrating In-Coupler for 3D waveguide AR display, and Seep Learning Enabled Inverse Optical Design #### L. Jay Guo, Haozhu Wang, Zeyang Liu University of Michigan (USA) We developed a stereo waveguide display based on metagrating to provide unidirectional polarization-multiplexed in-coupling depending on the right or left circular polarization. In this way, two stereoscopic images encoded in opposite circular polarizations can be projected into two eyes separately to form stereo vision. For optical design tasks, numerical optimization methods for optical coating are often time-consuming. Here we show that combining machine learning with optimization can improve efficiency and even lead to better designs. #### 17:50: Invited talk #### Deep-Neural-Network-Enabled Freeform Flat Optics online Sensong An, Bowen Zheng, Mikhail Shalaginov, Clayton Fowler, Hong Tang, Hang Li, Yunxi Dong, Mohammad Haerinia, Tian Gu, Juejun Hu, Hualiang Zhang Massachusetts Institute of Technology (USA) We have proposed a Deep Learning (DL) approach for the inverse design of freeform metasurfaces. We first trained a Deep Neural Network (DNN) that can generate freeform meta-atom designs based on target electromagnetic (EM) responses. The generated design can be used to assemble large-scale meta-optical devices. Moreover, another DNN was constructed and trained to quantify the unavoidable
mutual coupling effects between neighboring meta-atoms. Combining these two DNN approaches, freeform flat optical devices can be quickly designed and inversely optimized. #### 18:10 : Casimir torque and force on gratings online #### Mauro Antezza University of Montpellier (France) We will discuss recent results: (i) on the theory of the Casimir torque between two gratings rotated by an angle θ with respect to each other [1], and (ii) on the theory and experiment on the Casimir force between interpenetrating gratings [2]. These findings pave the way to the design of contactless quantum vacuum torsional spring and sensors with possible relevance to micro and nanomechanical devices. #### 16:40 - 17:25 — Playamar #### **Session 3A22** #### New materials for photonics Chaired by: Lucas Vazquez Besteiro #### 16:40 : All-dielectric nanophotonics with quantum emitters in Transition Metal Dichalcogenides semiconductors Luca Sortino¹, Stefan Maier² ¹LMU Munich (Germany), ²Monash University (Australia) Transition metal dichalcogenides (TMDs) semiconductors offer a platform for merging nanophotonics and two-dimensional (2D) materials. They are exceptional quantum materials in the monolayer form and possess appealing optical properties as bulk materials, such as a high index of refraction and giant anisotropy. Here we show that the combination of monolayer TMDs and all-dielectric nanostructures, also made from bulk TMDs, provides new approaches for enhanced light-matter interaction of 2D excitons and quantum emitters with Mie-resonant nanophotonic devices. #### 16:55: Structural and Optical Properties of Ge2Sb2Te5 ### Angel-Theodor Buruiana, Iosif Daniel Simandan, Florinel Sava, Aurelian Catalin Galca, Claudia Mihai, Alin Velea National Institute of Materials Physics (Romania) GST-225 thin films were prepared using: magnetron sputtering (MS), pulsed laser deposition (PLD) and a combination of the two, namely MSPLD. MS has the advantage of easily leading to fully amorphous films and to a single crystalline phase after annealing and produces the highest optical contrast between the asdeposited and annealed films. PLD leads to the best stoichiometric transfer, whereas the annealed MSPLD films have the highest mass density. The properties of GST-225 are significantly influenced by the deposition technique. ## 17:10 : Dynamic polarization control with nanostructured monolayer black phosphorus for broadband terahertz applications ^{online} #### Nikolaos Matthaiakakis¹, Sotiris Droulias², Georgios Kakarantzas¹ ¹The National Hellenic Research Foundation (Greece), ²FORTH (Greece) Dynamically tunable polarization conversion at the nanoscale based on resonant metallic or dielectric structures is in many cases limited to narrowband, non-tunable operation. In this work, by taking advantage of the strong anisotropic surface conductivity of black phosphorus, we propose a flexible, ultrathin, platform for broadband wave manipulation in the terahertz regime. We theoretically demonstrate controllable and dynamic polarization conversion via the coherent excitation of localized surface plasmons in symmetrically patterned monolayer black phosphorus nanosquare arrays. #### 16:40 - 18:20 — Bajondillo #### **Session 3A23** #### Machine learning for metamaterials and metasurfaces Organized by: Willie Padilla Chaired by: Willie Padilla 16:40: Invited talk **Deep Learning Metamaterials** Willie Padilla Duke University (USA) We discuss the use and impact of deep learning on metamaterials and metasurfaces, including both forward and inverse design. We show inverse results on three benchmark datasets and discuss the future of this exciting field. 17:00 : Invited talk Design and Optimization of subwavelength waveguide arrays and metasurfaces for spatial phase manipulation Dominic Palm, Jan Kappa, Lukas Mueller, Lars Franke, Marco Rahm TU Kaiserslautern (Germany) We used different methods for the design optimization of waveguide arrays with subwavelength width and periodicity as well as metasurfaces for the manipulation of the spatial phase of transmitted and/or reflected microwaves. The applied methods include particle swarm algorithms, simulated annealing, but also first steps toward machine-learning affine approaches for optimizing metasurface structures. 17:20 : Invited talk Machine Learning Approach to the Topological Optimization of Metasurfaces Timo Gahlmann, Philippe Tassin Chalmers University (Sweden) We present our work on using machine learning for the topological optimization of metasurfaces. First, we show that deep neural networks can be used to predict the scattering properties of metasurfaces. Subsequently, we demonstrate the inverse design of free-form metasurfaces using a modified CGAN machine learning method that balances the accuracy of desired optical properties with experimental feasibility. Our method allows constraints imposed by the nanofabrication to be integrated in the optimization. 17:40 : Invited talk Intelligent Meta-Imagers: From Compressed to Learned Sensing online Chloe Saigre-Tardif¹, Rashid Faqiri¹, Hanting Zhao², Lianlin Li², Philipp del Hougne¹ ¹ Universite de Rennes (France), ² Peking University (China) Intelligent meta-imagers use learned scene illuminations to pre-select task-relevant information. To that end, they integrate programmable meta-atoms as trainable physical weights into an end-to-end hybrid analog-digital sensing pipeline. Thereby, in contrast to compressive meta-imagers, they seek purposefully non-isometric embeddings, and data acquisition simultaneously constitutes a first .ºver-the-air"processing step. We report proof-of-principle implementations and quantify their remarkable benefits in terms of latency. 18:00 : Invited talk Inverse Design and Machine Learning for Passive and Active Metasurfaces online Mohammadrasoul Taghavi, Samad Jafar-Zanjani, Hossein Mosallaei Northeastern University (USA) Metasurfaces have been of great interest for various applications thanks to their full control over the light-matter interaction with nanoscale building blocks. Increasing demand for multifunctional compact photonic metasurfaces necessitates proper utilization of inverse design and optimization methods for achieving desired characteristics. We illustrate our recent works in this area on utilization of optimization and Machine learning to passive and active metasurfaces, namely for inverse design of all-dielectric large-scale metasails and active plasmonic metasurfaces. 16:40 - 17:50 — Carihuela #### Session 3A24 #### Symposium V: Phononics and acoustic metamaterials Organized by: Jensen Li and Guoliang Huang Chaired by: Jensen Li #### 16:40: Highly tunable metamaterial cavity for vibration localizing Hong Woo Park¹, Hong Min Seung², Won Jae Choi², Miso Kim³, Joo Hwan Oh¹ ¹Ulsan National Institute of Science and Technology (Korea), ²University of Science and Technology (UST) (Korea), ³Sungkyunkwan University (Korea) Metamaterial cavity has been highlighted due to its capability to localize the wave inside the cavity. However, technical problems, such as the lack of tunability in frequency and the lack of a method to optimize the performance prevent metamaterial from being used in practical applications. To solve these problems, we propose a highly tunable elastic metamaterial cavity which can easily tune the operating frequency and performance by adjusting simple geometry parameters. #### 16:55: Guiding audible sound by sonic crystals online #### Yuanyan Zhao, Sriram Subramanian, Gianluca Memoli University of Sussex (United Kingdom) In this study, we propose novel sonic crystals with nonsymmetric shape, which results in complete bandgap in audible frequencies. By utilizing these sonic crystals, we construct a system, which guides audible sound through one-way channel. Numerical simulations and preliminary measurements are obtained to demonstrate their acoustic performances. #### 17:10 : Invited talk #### Willis couplings in periodic thermoacoustic amplifiers online Côme Olivier¹, Gaëlle Poignand¹, Matthieu Mallejac¹, Vicente Romero-Garcia¹, Guillaume Penelet², Aurelien Merkel³, Daniel Torrent⁴, Jensen T. H. Li⁵, Johan Christensen⁶, Jean-Philippe Groby¹ ¹Universite du Mans (France), ²Le Mans Universite (France), ³Universite de Lorraine (France), ⁴Universitat Jaume I (Spain), ⁵The Hong Kong University of Science and Technology (Hong Kong), ⁶Universidad Carlos III de Madrid (Spain) Thermoacoustic amplifiers are analyzed in the framework of nonreciprocal Willis coupling. The closed form expressions of the effective properties are derived, showing that an applied temperature gradient causes the appearance of a nonreciprocal Willis coupling. These Willis couplings cause a coalescence point in the k space, which deviates from Re(k) = 0 (with k the wave number) and is thus a zero-group-velocity point, as well as the opening of an amplification gap at low frequency. #### 17:30: Invited talk #### Controlling Sound Wave via Spinning Media online #### Mohamed Farhat, Ying Wu King Abdullah University of Science and Technology (Saudi Arabia) In this talk, we will discuss our recent advances on controlling sound wave via spinning media. First, we study the torque and force a spinning cylindrical column of fluid experiences in evanescent acoustic fields, and show that the resulting discontinuity can scatter sound in unusual ways, e.g., a negative radiation force. In another example, we develop a generalized scattering cancellation theory (SCT) to cloak spinning objects from static observers. Our work extends the applicable realms of SCT to moving objects. #### 16:40 - 18:10 — Montemar #### **Session 3A25** #### Parity-Time and quasi-normal modes in Photonics, Plasmonics, Acoustics Organized by: Anatole Lupu and Henri Benisty Chaired by: Henri Benisty 16:40: Invited talk ### Discovering phase transitions in PT-symmetric systems through Machine Learning methods Giorgos Tsironis University of Crete (Greece) In this
work we investigate phase transitions in parity-time- (PT)-symmetric non-linear systems described by the discrete non-linear Schrodinger. We generalise the physics-informed machine learning (PIML) method proposed in Refs [1,2] that successfully finds the parameters for the targeted energy transfer (TET) of an electron (or photon) to a target state and the parameters for the self-trapping (ST) transition in a nonlinear dimer. #### 17:00 : Invited talk #### Direct- and Inverse-design for non-Hermitian smart light management Muriel Botey¹, Waqas W. Ahmed², Ramon Herrero¹, Kestutis Staliunas¹ ¹Universitat Politècnica de Catalunya (UPC) (Spain), ²King Abdullah University of Science and Technology (KAUST) (Saudi Arabia) We present direct and inverse-design strategies to achieve 'on demand' dynamical manipulation of light by non-Hermitian potentials. The direct approach, based on a generalized Hilbert Transform, widens the, concept of the Kramers Kronig relations in space. Yet, the inverse-design concept enables analyzing the, underlying fundamental insights of the resulting permittivity distributions, bridging the gap between direct and, inverse-design approaches to engineer non-Hermitian optical systems. Our findings may have to applications encompassing laser science. ## 17:20 : Non-Hermitian state-switching mechanism and its application to optical modulator technology Jae Woong Yoon¹, Youngsun Choi¹, Yu Sung Choi¹, Kyungsik Yu², Moiseyev Nimrod³ ¹ Hanyang University (Korea), ² Korea Advanced Institute of Science and Technology (Korea), ³ Technion-Israel Institute of Technology (Israel) We propose a novel wave-modulation principle enabled by characteristic non-Hermitian dynamics associated with a branch-point singularity known as exceptional point (EP). We show an adiabatic process narrowly bypassing an EP produces a robust switching effect between two orthogonal final states possibly with indefinitely small physical stimuli. Application of this state-switching effect to a plausible optical waveguide structure demonstrates intriguing possibility of realizing Tbit/s-level high-extinction optical modulators, which are unavailable from the conventional interferometric approaches thus far. #### 17:35 : Parity-Time Symmetry breaking in First-order Distributed Feedback Lasers Yaoyao Liang¹, Quentin Gaimard¹, Jean-Rene Coudevylle¹, Alexandre Garreau², Arnaud Wilk², Henri Benisty¹, Abderrahim Ramdane¹, Anatole Lupu¹ ¹Universite Paris-Saclay (France), ²III-V Lab (France) It is of fundamental significance to effectively manipulate the cavity resonant modes in laser physics. Recent explorations of parity-time symmetry provide an opportunity to realize stable single-mode lasing by strategically structuring gain and loss in the laser cavity. Here we experimentally report, for the first time, high-output single-mode lasing with relatively low threshold current in first-order distributed feedback cavities with broken parity-time symmetry structure. 17:50 : Invited talk Near-Field Radiative Heat Transfer Eigenmodes online Alejandro Manjavacas IO-CSIC (Spain) At the nanoscale, the radiative heat transfer (RHT) between objects can surpass the limits established by farfield blackbody radiation. Here, we introduce a theoretical framework to efficiently describe the thermalization dynamics of ensembles of nanostructures mediated by the RHT. Using this formalism, which is based on an eigenmode expansion of the equations that govern the process, we discuss the fundamental principles that determine the thermalization of collections of nanostructures with thousands of elements and reveal general but often unintuitive dynamics. #### 16:40 - 17:55 — Litoral #### **Session 3A26** #### Plasmonics and nano-optics Chaired by: Christophe Couteau #### 16:40 : Plasmon resonances in biocompatible nanoparticles Michal Horak¹, Filip Ligmajer¹, Vojtech Calkovsky¹, Ales Danhel², Peter Kepic¹, Jindrich Mach¹, Tomas Sikola¹ ¹Brno University of Technology (Czech Republic), ²Czech Academy of Sciences (Czech Republic) We present a study of biocompatible nanoparticles made of silver amalgam and gallium using STEM-EELS on a single particle level. Silver amalgam nanoparticles exhibit strong plasmon resonances in ultraviolet to infrared spectral region depending on the particle size which establishes them as promising candidates for applications within photochemistry and spectroelectrochemistry. Gallium nanoparticles then support plasmon resonances in ultraviolet to visible spectral region. Finally, we introduce biocompatible and phase-changing nanoparticles of vanadium dioxide supporting plasmon resonances in near-infrared spectral region. # 16:55: Evolutionary Optimization of Nanophotonic Design for Optoelectronic Applications Ping Bai, Stan ter Huurne, Mohamed M. S. Abdelkhalik, Jaime Gomez Rivas Eindhoven University of Technology (The Netherlands) Periodic nanophotonic structures provide a wide range of opportunities for applications in optoelectronic devices due to the lattice resonances that display strong electromagnetic field confinement, exciton-polaritons originating from strong light-matter coupling or bound-states in the continuum with infinite lifetimes and vanished radiation losses. In this contribution, we introduce an evolutionary optimization method to inverse design periodic arrays of nanoparticles for the optimization of the coupling strength in strongly coupled organic materials and the short-circuit current of organic solar cells. ### 17:10 : Inverse-designed whispering-gallery nanolasers with axial emission and customized beam shape and polarization #### lago Diez, I. Luxmoore University of Exeter (United Kingdom) Here we present whispering-gallery nanodisc lasers that were inverse-designed to emit along their axial direction and whose laser beam shape and polarization is determined by the cavity geometry. We experimentally demonstrate the validity of the inverse design method by making three cavities, each one emitting into a different laser radiation mode: a linearly polarized gaussian-like beam, an azimuthally polarized doughnut beam and a radially polarized doughnut beam. # 17:25 : Ultrathin Metals on a Transparent Seed and their Optoelectronic Applications Daniel Martinez-Cercos¹, B. Paulillo¹, R. A. Maniyara¹, A. Rezikyan¹, I. Bhattacharyya², P. Mazumder², V. Pruneri¹ ¹ICFO (Spain), ²Corning Research and Development Corporation (USA) Ultrathin metal films (UTMFs) are emerging as game-changing optoelectronic materials for many applications in transparent electronics and plasmonic metasurfaces. In this talk we will discuss our recent work on the development of ultrathin Au and Ag films with percolation thickness close to 1nm using a fully transparent subnm cupric oxide seed to promote 2D-like growth on the receiving substrate. We will analyse the developed UTMFs optoelectronic properties and some applications such as electrically tunable infra-red reflector and plasmonic resonant structures. #### 17:40: Light-driven microdrones online ### Xiaofei Wu, Raphael Ehehalt, Gary Razinskas, Thorsten Feichtner, Jin Qin, Bert Hecht University of Wurzburg (Germany) We present microscopic robotic devices with four plasmonic nanomotors that are remotely controlled in 2D in all three independent degrees of freedom by unfocused light of two wavelengths. The nanomotors are individually addressed by respective circular polarization components and wavelengths. The microdrones can be maneuvered by only adjusting the optical power for each of the four motors, analogous to macroscopic quadcopters. #### 16:40 - 17:20 — Manantiales #### Session 3A27 #### Symposium II: New trends in nanophotonics and advanced materials Organized by: Junsuk Rho, Hakjoo Lee and Namkyoo Park Chaired by: Enrique Márquez Segura 16:40: Invited talk ### Noise-free supercontinuum from picosecond pulses in silicon waveguides online **David Castello-Lurbe** Vrije Universiteit Brussel (Belgium) Exploiting the Kerr nonlinear-index dispersion in silicon waveguides, noise amplification inherent tothe spectral broadening of picosecond pulses in the anomalous group-velocity dispersion regime is removed. Onthis basis, supercontinuum generation from picosecond pulses is numerically demonstrated in a foundry-compatible silicon waveguide. 17:00 : Invited talk #### Ultrafast Probing of Plasmonic Hot Electron Occupancies online **Peter Dombi** Wigner Research Centre for Physics (Hungary) We discuss in-depth distribution and time evolution of hot electrons generated upon the excitation of surface plasmon polaritons. Dielectric function of plasmonic systems was measured with ellipsometric methods to reveal the electron distribution. #### **Conference Dinner** Departure by bus from the Convention Center at 19:30 19:30 - 23:30 ### Friday 22nd July, 2022 8:30 - 09:30 — Torremolinos #### **Session 4A1** #### Metasurfaces and flat optics, FSS and HIS Chaired by: Ekmel Ozbay 08:30 : Electrical access to an exceptional point of non-Hermitian graphene metasurfaces Soojeong Baek¹, Sang Hyun Park², Donghak Oh¹, Kanghee Lee¹, Hosub Lim², Taewoo Ha², Bumki Min¹, Teun-Teun Kim³ ¹KAIST (Korea), ²Sungkyunkwan University (Korea), ³University of Ulsan (Korea) We propose a simple electrical and spectral way of resolving an EP of THz non-Hermitian graphene metasurfaces. Experimentally, the non-Hermitian Jones matrix is reconstructed in parameter space spanned by the input frequency and gate voltage. At the EP, the coalescence of polarization eigenstates makes one of the cross-polarised transmission amplitudes vanish, resulting in maximal asymmetric polarisation conversion. # 08:45 : Complete Tunable Phase Modulation Using Avoided Crossing of Resonances Ju Young Kim¹, Juho Park¹, G. R. Holdman², J. T. Heiden¹, S. Kim¹, V. W. Brar², M. Jang¹ ¹ Korea Advanced Institute of Science and Technology (Korea), ² University of Wisconsin-Madison (USA) Active metasurfaces are an attractive means of achieving high-resolution
spatiotemporal control of optical wavefronts, having applications such as LIDAR and dynamic holography. However, achieving full, dynamic phase control has been elusive in metasurfaces. Here, we unveil a metasurface design strategy that operates near the avoided crossing of two resonances. A proof-of-concept metasurface using quasi-bound states in the continuum and graphene plasmon resonances is verified numerically, with results showing a 3π phase modulation capacity with a uniform reflection amplitude of ~ 0.65 . 09:00 : Deep subwavelength resonant meta-optics enabled by high-index topological insulators Danveer Singh, Sukanta Nandi, Shany Cohen, Pilkhaz Nanikashvili, Doron Naveh, Tomer Lewi Bar-llan University (Israel) We study the optical properties of Bi2Te3 and Bi2Se3 topological insulators (TI) nanostructures of various morphologies and geometries, by examining both Far-field and Near-field responses. We find that both the bulk and surface states contribute to the extremely large optical constants of this family. We demonstrate deep subwavelength resonant structures for Bi2Se3 nanobeams and Bi2Te3 metasurfaces. ### 09:15 : Ultra-wideband wide-angle deflection enabling multifunctionality for a simple unitary metagrating at near-infrared online Andriy Serebryannikov¹, Majid Aalizadeh², Ekmel Ozbay³ ¹Adam Mickiewicz University (Poland), ²University of Michigan (USA), ³Bilkent University (Turkey) The objective of this work is theoretical justification, design, and experimental validation of reflective unitary meta-gratings with unusually ultra-wideband and simultaneously wide-angle deflection that serves as the main enabler of the high multifunctional capability at the near-infrared. The design is based on the silicon nanorods that are periodically placed at a large distance from each other and may show the functionality enabling Mie resonances, and a dielectric spacer between the nanorods and a metallic reflector. 9:35 - 10:35 — Torremolinos #### Session 4A2 #### Quantum and topological photonics Chaired by: Jae Woong Yoon ### 09:35 : Synthetic Topological Nodal Phase in Bilayer Resonant Gratings Ki Young Lee, Jae Woong Yoon, Seok Ho Song Hanyang University (Korea) The notion of synthetic dimensions in artificial photonic systems has received considerable attention as it provides novel methods for exploring hypothetical topological phenomena as well as potential device applications. Here, we demonstrate nanophotonic manifestation of a two-dimensional topological nodal phase in bilayer resonant grating structures. Using the mathematical analogy between a topological semimetal and vertically asymmetric resonant grating structures, we show that the interlayer shift simulates an extra momentum dimension for creating a two-dimensional topological nodal phase. ### 09:50 : Triangular resonators in topological valley photonic crystals Gaëtan Levêque¹, Alejandro Martinez², Yan Pennec¹ ¹IEMN - University of Lille (France), ²Universidad Politecnica de Valencia (Spain) In that work, we investigate numerically photonic topological insulators based on the valley Hall effect. Linear waveguides are coupled to triangular cavities, and a semi-analytical model is used to evidence the relation between a weak back-scattering along light propagation and the shape of the transmission spectrum through the resonator. ### 10:05 : Strong coupling of metamaterials in a photonic crystal cavity: Dark-mode coupling and the non-adiabatic switching dynamics of the vacuum ground-state Fanqi Meng, Hantian Gu, Jahnabi Hazarika, Mark D. Thomson, Hartmut Roskos Goethe-Universitat (Germany) We investigate the strong interaction of metamaterials placed in a dielectric cavity at THz frequencies. First, we study a metamaterial with a unit cell of interacting pairs of split-ring resonators, and explain why the metamaterial in bright/dark configuration produces four polaritons in the cavity, while the bright/bright configuration only allows for three. Second, we investigate the sub-cycle destruction of a coupled system's vacuum ground-state by a laser pulse. The response strongly depends on the arrival time of the laser pulse. ### 10:20 : Topologically-protected four-port optical coupler with broadband equal proportion splitting #### Guo-Jing Tang, Xin-Tao He, Jian-Wen Dong Sun Yat-Sen University (China) In this talk, we propose a topological four-port coupler based on valley photonic crystals. Equal proportion splitting in continuous wavelength range is realized to be robust against structural perturbation. We reveal that the equal proportion splitting is guaranteed by valley topology and structural symmetry. With the topological four-port coupler, an on-chip interferometer is constructed to measure reflective phase. Our study clarifies the mechanism of equal proportion splitting in valley photonic crystals and promote the practical application of topological photonic systems. #### 8:30 - 10:15 — Alamos #### **Session 4A3** #### Metamaterial-based devices Chaired by: Tomasz Stefaniuk 08:30 : Tailoring of Fano Resonances for Strongly Enhanced Third Harmonic Generation in Silicon Metasurfaces with Symmetric Structures ### David Hahnel, Christian Golla, Maximilian Albert, Thomas Zentgraf, Viktor Myroshnychenko, Cedrik Meier, Jens Forstner Paderborn University (Germany) We present strongly enhanced third harmonic generation in amorphous silicon metasurfaces consisting of elliptical nanoresonators. Our numerical analysis shows that the interplay of Mie resonances leads to narrow Fano features producing ultra-high THG. The theoretical findings are in good agreement with experimental linear and nonlinear results obtained with transmission spectroscopy showing amplification factors up to \sim 900, much higher than current literature reports. Experimentally, an absolute conversion efficiency of η max=2,8 imes 10^-7 at a peak power intensity of $1,2GWcm^-2$ is achieved. # 08:45: Improvement of calcium silicate hydrate using metamaterials for radiative cooling Carlos Lezaun¹, Jorge S. Dolado², Alicia E. Torres-Garcia¹, Jose M. Perez-Escudero¹, Iñigo Liberal¹, Miquel Beruete¹ ¹ Public University of Navarra (Spain), ² Centro de Fisica de Materiales (CFM) (Spain) Calcium silicate hydrate (CSH) gel is the main compound in the concrete paste. In this work we enhance the solar reflection of this composite using metal bars that are compatible with current manufacturing techniques to achieve good radiative cooling properties. Two periodic structures have been studied and interestingly, it is found that lattice effects may be transcendent to attain radiative cooling properties. A further study will be performed with a fully developed concrete permittivity model. #### 09:00 : Designing Multi-Functional Metamaterials James Capers¹, Stephen Boyes², Alastair Hibbins¹, Simon Horsley¹ ¹ University of Exeter (United Kingdom), ² DSTL Porton Down (United Kingdom) Passive manipulation of light is key to several new technologies, from optical computing to beam-steering. However, designing metamaterials that manipulate different waves in different ways remains challenging. In this work, we present a simple and efficient semi-analytic method for designing multi-functional metamaterials within the discrete dipole approximation. This is relevant to a wide class of experimental systems, across electromagnetics. We demonstrate our method by engineering the radiation pattern of an emitter, while also increasing its power emission. # 09:15 : Electrically tuned optical phenomena in metal-oxide-semiconductor multilayer Alexander Korneluk, Julia Szymczak, Tomasz Stefaniuk University of Warsaw (Poland) We present the numerical and experimental study on the process of electrically controlled formation of carrier accumulation layers on the oxide-semiconductor interface. We show that the effect can be utilized in multilayer metamaterial, leading to changes in the device's effective linear and nonlinear optical properties. In particular, the temporal frequency filtering, dispersion, and refractive index can be modified across the VIS and NIR spectral ranges simply by tuning the applied voltage. #### 09:30 : Ge metasurfaces for wavelength-selective photodetection Jon Schlipf¹, Fritz Berkmann², Yuji Yamamoto³, Florian Morz², Inga Fischer¹ ¹BTU Cottbus-Senftenberg (Germany), ²University of Stuttgart (Germany), ³IHP-Leibniz-Institut fur Innovative Mikroelektronik (Germany) We present a design of all-dielectric germanium metasurfaces for facile integration into silicon-compatible, wavelength-selective photodetectors. The structures were fabricated in a top-down process in a complex heterostructure layer stack that offers the possibility of electrical contacting. Optical properties were measured spectroscopically and separated from the effects of the substrate. Assisted by simulations, we describe the correlation between spectra and resonant modes in the metasurfaces. This allows for further optimization towards fully integrated wavelength-selective detectors for on-chip spectrometers or hyperspectral imaging. #### 09:45: Metafoils with extreme mechano-optical properties for solar radiation isolation Angelos Xomalis¹, Barbara Putz², Xuezhi Zheng³, Aexander Groetsch¹, Johann Michler¹, Jakob Schwiedrzik¹ Empa (Switzerland), ² Montanuniversitat Leoben (Austria), ³ KU Leuven (Belgium) Metal-polymer interfaces are used widely in satellite missions as they show extreme thermal isolation and elevated interface strength. Here we show metafoils with ultrastable plasmon resonances allowing transmission of visible radiation while reflect the unwanted infrared responsible for device heating. Electromagnetic and nanomechanical simulations showing extreme resilient resonances with strains up to 20 %, equivalent to thermal expansion in temperatures of >10000 K. Such small footprint and lightweight devices are highly desirable for solar isolation and spectroscopic applications in harsh
environments. #### 10:00: Metasurface of Capacitively Loaded Rings for Local Enhancement of the Signal-to-Noise Ratio of Surface Coils in Magnetic Resonance Imaging online #### Manuel Freire, Ricardo Marques Universidad de Sevilla (Spain) An analysis is shown for the optimization of metasurfaces of capacitively loaded rings to provide a local enhancement of the SNR of surface coils. As the mutual coupling between rings increases, the losses introduced by the rings in the coil reduce, and then the SNR increases. #### 8:30 - 10:30 — Playamar #### Session 4A4 #### Emerging application, Fabrication and characterization techniques Chaired by: Piotr Piotrowski #### 08:30 : All-on-fiber generation of higher-order Poincare sphere beams via 3D laser-nanoprinted metasurfaces Chenhao Li¹, Markus Schdmit², Stefan Maier¹, Haoran Ren³ ¹Ludwig-Maximilians University Munich (Germany), ²Leibniz Institute of Photonic Technology (Germany), ³ Macquarie University (Australia) We present a new metafiber platform for all-on-fiber polarization manipulation through implementing 3D lasernanoprinted metasurfaces on the end face of polarization-maintaining fibers. The unlocked height degree of freedom in 3D polymer meta-atoms eases the simultaneous polarization and phase control, leading to the generation of arbitrary higher-order Poincare sphere beams carrying different orbital angular momentum modes. #### 08:45: High throughput testing of nanophotonic devices #### Adarsh Ananthachar, Ganga Chinna Rao Devarapu, Liam O'Faolain Munster Technological University (Ireland) Te proposed Resonance Scattering Spectroscopy (RSS) technique is a fully automated, non-invasive, and high throughput wafer-scale characterisation system. In the RSS technique, the laser source of fixed polarisation is tightly focused on the device. Light with a wavelength matching that of the device's resonance wavelength is scattered into the orthogonal polarisation giving a signal that is characteristic of the resonator which can be rapidly acquired. The prototype is tested on chip scale which further is to be implemented on wafer-scale. ### 09:00 : Metasurface wave front metrology using a quadriwave lateral shearing interferometery Benoit Wattellier¹, Matthieu Ansquer¹, Yanel Tahmi¹, Patrice Genevet², Samir Khadir² ¹PHASICS (France), ²Universite Cote d'Azur (France) We present the characterization of metasurface optical function in phase and intensity by use of a wave front sensor, based on quadriwave lateral shearing interferometry. It is applied to metalenses where aberrations and manufacturing defects are measured in a single shot. Studying vortex metasurface also reveals phase substructures due to the design strategy. #### 09:15 : Some numerical results for monochromatic aberrated metalenses in terms of intensity-based moments #### Sorina Iftimie, Ana-Maria Raduta, Daniela Dragoman University of Bucharest (Romania) In this study, through comprehensive numerical simulations, we demonstrate that intensity-based moments and the associated parameters adequately capture changes in beam shapes induced by aberration of metalenses with a hyperbolic phase profile. Starting from the fact that the aberration of metalenses should be derived in wave optics and not ray tracing [1,2], we discuss the average position, spatial extent, Skewness, and Kurtosis. ### 09:30 : Photonic Crystal Sensors via Holographic Photolithography Yubing Hu, Ali Yetisen Imperial College London (United Kingdom) Optical techniques have achieved significant contributions to modern healthcare, where lasers and optical devices have been daily used in clinical practice to diagnosis and treat disease. Recent development of plasmonic and photonic structures has enabled numerous high-tech applications - in particular, the integration with biochemical sensors. A facile and efficient holographic photolithography technique has been developed to fabricate photonic crystal sensors with quantitative and continuous response to chemical analytes and physical changes in aqueous solutions. ### 09:45 : Bioinspired Microstructures for Optical Detection of Vapors Javier Pazos¹, Shaimum Shahriar², Stephen Kuebler², Jimmy Touma³ ¹Electro Magnetic Applications, Inc. (USA), ²University of Central Florida (USA), ³Air Force Research Laboratory (USA) We report on an ongoing effort to develop optical sensors based on biologically inspired microstructures for the detection of chemical vapors. We focus on a design inspired by the periodic nanostructure found on the morpho rhetenor butterfly wing. Microstructures were fabricated by multiphoton lithography and designed to have a strong optical response in the near infrared and visible wavelengths. The optical performance of these structures was predicted via simulations using Meep. The results are being referenced against experimental data. #### 10:00 : All-Optical Nanosensor for Mechanical Vibrations Lorena Escandell¹, Carlos Alvarez-Rodriguez¹, Angela I. Barreda², Braulio Garcia-Camara¹ ¹Carlos III University (Spain), ²Friedrich-Schiller-Universitat Jena (Germany) A nanosensor based on two parallel high-refractive index nanowires has been designed. The high sensitivity of the scattered field on the inter-distance between the nanowires provides a remarkable sensing parameter of any mechanical vibration of the nanowires. The proposed sensor has been designed such that it works at a wavelength of commercial lasers (e.g. 1310 nm). and the sensing point avoids the incident field, strongly reducing the complexity of the illumination and detection systems. # 10:15 : Lateral permittivity patterning by ion irradiation in CdO thin films for mid-IR plasmonics Angela Cleri¹, Mingze He², Joshua Caldwell², Jon-Paul Maria¹ ¹Pennsylvania State University (USA), ²Vanderbilt University (USA) Donor doped CdO films demonstrate excellent mid-infrared optoelectronic behavior due to tunable transport properties which enable low-loss plasmon resonances between 2-9 μ m wavelengths. While doping during deposition determines optical properties throughout the entire film or within film layers, in-plane permittivity control is possible by locally inducing native donor defects through ion irradiation patterning. This novel method creates lateral patterns which are free of physical interfaces but exhibit sharp contrast in permittivity. #### 8:30 - 09:50 — Bajondillo #### **Session 4A5** Symposium IV: Chirality, magnetism, and magnetoelectricity: Separate phenomena and joint effects in metamaterial structures Organized by: Eugene Kamenetskii Chaired by: Yuri Gorodetski 08:30: Invited talk Magnetoelectric-field electrodynamics: Search for magnetoelectric point scatterers #### Eugene Kamenetskii Ben Gurion University of the Negev (Israel) The "first-principle", "microscopic-scale"ME effect of a structure composed by "glued"pairs of electric and magnetic dipoles raise questions on the ways of local probing the dynamic ME parameters, since the near field structure of such a probe should violate both the spatial and temporal inversion symmetries. Since the observed effects of ME coupling are not associated with the near-field manipulation properties caused by intrinsic magnetoelectricity, the question arises whether ME point scatterers of electromagnetic radiation really exist. 08:50 : Invited talk #### Gate-tuneable and chirality-dependent charge-to-spin conversion in tellurium nanowires Marco Gobbi CIC nanoGUNE BRTA (Spain) Chiral compounds are an ideal material platform for exploring the relation between structural symmetry and electronic spin transport. Here, we show that a charge current flowing in chiral single-crystalline Tellurium nanowires acquires a net spin polarization, which generates a large and gate-tunable unidirectional magnetoresistance (up to $7\,\%$). The electrically generated spins are parallel to the chiral axis of Te and point in opposite directions in left- and right-handed nanowires. Our results pave the way for chirality-based spintronic devices. 09:10: Invited talk ### Measures of optical vortex chirality and their application in chiral metamaterials ^{online} Kayn Forbes University of East Anglia (United Kingdom) Optical vortex beams are inherently chiral due to their helical wavefront. The engagement of this optical chirality in chiroptical effects with chiral media in an analogous fashion to that of circularly polarized light requires certain conditions to be met. This talk outlines such requirements with a view in mind of currently untapped future applications in chiral metamaterials. 09:30 : Invited talk ### Exotic chiral structures of azo-polymers with light possessing optical angular momentum ^{online} Takashige Omatsu Chiba University (Japan) We report on light induced chiral structures in azo-polymers through a single or two photon absorption process. Such chiral structured materials reflect the spatial intensity profile, wavefront and polarization of the irradiated light field, and they will provide us new fundamental physical insights for future studies of interaction between light fields with orbital angular momentum and materials. ### **Symposium IV Roundtable Discussion** 10:10 - 11:30 8:30 - 09:45 — Carihuela #### **Session 4A6** #### Photothermal and photoelectric nanophotonics Chaired by: Raul Rica #### 08:30 : Real-time Interfacial Nanothermometry Using DNA-PAINT Microscopy Sjoerd Nooteboom, Yuyang Wang, Swayandipta Dey, Peter Zijlstra Eindhoven University of Technology (The Netherlands) Biofunctionalized nanoparticles are increasingly used in biomolecular studies, but laser-induced heating may alter the structure and interactions of conjugated biomolecules. Here, we present a nanothermometer based on reversible DNA interactions. The surface temperature of many single nanoparticles can be probed in parallel by the temperature-dependent dissociation rate of double-stranded DNA. The reversible nature of the method enables us to probe surface temperatures in real-time.
No prior knowledge of the optical and thermal properties of the sample is required. #### 08:45 : Flow Control with Electro-Thermo-Plasmonic effect Raul Rica¹, Carlos David Gonzalez Gomez¹, Emilio Ruiz Reina² ¹Universidad de Granada (Spain), ²Escuela de Ingenierias (Spain) Pumping liquids is still an open challenge in microfluidics. Here, we provide a detailed study of the electrothermo-plasmonic (ETP) effect in a microfluidic platform where gold nanoparticles dispersed in suspension are illuminated with a laser close to plasmonic resonance, and therefore act as sources of heat. In combination with an AC electric field, we show that strong convection can be achieved. Our experimental results are supported by 3D numerical simulations including the heat generation and the obtained flow patterns. # 09:00: Nanopatterned substrates for application in organic photovoltaic cell structures Oana Rasoga 1 , Anca Stanculescu 1 , Marcela Socol 1 , Geanina Popescu-Pelin 2 , Gabriela Petre 1 , Carmen Breazu 1 ¹National Institute of Materials Physics (Romania), ²National Institute for Lasers, Plasma and Radiation Physics (Romania) The present study is focused on the fabrication of different nanopatterned surfaces by UV-Nanoimprint lithography technique and on the of the nanostructuring effect on the properties of some organic heterostructures prepared on them. We report that the surface modification by nanopatterning affects both the optical properties by multiple reflections on the walls of nanostructures and the electrical properties by enlarging the organic/electrode contact area and facilitating the charge carrier transport towards electrodes. ### 09:15 : Polarization singularities induced by small particles ^{online} Jie Peng, Shiqi Jia, Shubo Wang City University of Hong Kong (China) In this talk, I will discuss the properties and applications of polarization singularities (PSs) emerging in the scattering fields of small particles. We show that these PSs possess interesting topological properties in both the near fields and the far fields. The spatial evolutions of the PSs give rise to complex morphologies of light polarization with potential applications in chiral sensing and optical manipulations. ### 09:30 : Investigation of the mechanisms of plasmon-mediated photocatalysis: synergistic contribution of near-field and charge transfer effects online Zelio Fusco, Kylie Catchpole, Fiona J. Beck Australian National University (Australia) Plasmonic catalysis is an attractive way to drive and enhance chemical reactions. However, the relativecontribution of thermal and nonthermal effects is still an object of debate. Here, we investigate the transformation ofmethylene blue (MB) to thionine on disordered Au NPs arrays. Supported by extensive experimental results andtheoretical models, we demonstrate that near-fields and hot-electrons synergistically cooperate in enhancing thereaction yield and show that photothermal effects do not play a dominant role. #### 8:30 - 10:25 - Montemar #### **Session 4A7** #### Symposium II: New trends in nanophotonics and advanced materials Organized by: Junsuk Rho, Hakjoo Lee and Namkyoo Park Chaired by: Jordi Sancho Parramon 08:30: Invited talk ### Visualization of photonic topological edge states in 1D and 2D plasmonic structures in the optical region online #### **Yuto Moritake** Tokyo Institute of Technology (Japan) Recently, topological photonics, which exploits the topological properties of systems and band structures, has become active. In this presentation, I introduce experimental observations of photonic topological edge states in plasmonic systems. The edge states in 1D plasmonic zigzag chains and 2D valley plasmonic crystals were visualized by far-field imaging and cathode luminescence, respectively. The topological plasmonic systems are expected to be developed into a new platform to increase the light-matter interaction with two-dimensional materials, which also have topological properties. #### 08:50: Invited talk Non-phase-matching brings new nonlinear functionalities online Mengxin Ren, Zhanghang Zhu, Di Zhang, Bofeng Gao, Wei Wu, Jingjun Xu Nankai University (China) The phase-matching condition is considered as a golden rule for achieving efficient nonlinear processes. However, in this presentation, we will introduce several new functionalities brought by non-phase-matching. #### 09:10: Invited talk #### The spin-orbit coupling-free three-dimensional topological insulator in photonics online Minkyung Kim¹, Zihao Wang², Yihao Yang², Junsuk Rho¹, Baile Zhang² ¹POSTECH (Korea), ²Nanyang Technological University (Singapore) A three-dimensional (3D) photonic topological insulator endowed with self-guided topological surface states at its external boundary is presented. By fully abolishing spin-orbit coupling, which has been considered indispensable for topological insulators, the unique quadratic surface dispersion of the topological crystalline insulating phase first proposed by Fu [1] is experimentally demonstrated. This work paves the way towards the 3D cladding-free photonic manipulation. #### 09:30: Invited talk #### Magneto-optical binding in the near field online #### Shulamit Edelstein¹, Antonio Garcia-Martin², Pedro Serena¹, Manuel Marques³ ¹ICMM-CSIC (Spain), ²IMN-CNM (Spain), ³Universidad Autonoma de Madrid (Spain) We study the formation of a near-field optical binding between two identical particles. The equilibrium binding distance is controlled by the angle between the polarization plane of the incoming field and the dimer axis. The stiffness of this stable attaching interaction is four orders of magnitude larger than the usual far-field optical binding and is formed orthogonally to the propagation direction of the incident beam (transverse binding). The binding distance can be further manipulated considering the magneto-optical effect. #### 09:50: Invited talk #### Magnetophotonics with spin and orbital angular momenta online #### Vladimir Belotelov Lomonosov Moscow State University (Russia) It is experimentally found that when a light beam carrying orbital angular momentum passes through a magnetic film a topological Faraday effect appears: polarization rotation acquires an additional term dependent on the topological charge, radial number and beam radius. ## 10:10 : Direct linear polarization measurement using a grayscale imaging metasurface ^{online} Yue Cao, Z. G. Dong Southeast University (China) We present an ultrathin metasurface composed of silver nanorods, which can arbitrarily manipulate the optical intensity of linearly polarized illumination by modulating the nanorod orientations. It can be used to display high-resolution grayscale images in sub-wavelength scales with a specific polarization state of linear light. We especially generate elaborate grayscale images to directly measure the polarization angle of the linearly incident light by extracting the angle of the brightest area of the grayscale images. #### 8:30 - 10:45 — Litoral #### **Session 4A8** #### Photonic bandgap structures, laser and cavities Chaired by: Tomasz Wolinski #### 08:30 : Silicon Photonic Crystal Cavities for Integrated Quantum Photonics Andrea Barone¹, Thanavorn Poempool², Marco Clementi¹, Alessandro Marcia¹, Marco Liscidini¹, Daniele Bajoni¹, Dario Gerace¹, Thomas Fromherz², Matteo Galli¹ ¹Universita degli Studi di Pavia (Italy), ²Johannes Kepler University Linz (Austria) We report the generation of nonclassical states of light through parametric fluorescence in a silicon photonic crystal cavity with equally spaced resonances. A bichromatic cavity design was adopted to obtain a comb-like resonance spectrum, while mode-selective tuning by laser-assisted local oxidation was used to fine adjustment of the resonance frequencies after fabrication, thus achieving almost perfect equally-spaced modes. Both stimulated and spontaneous four-wave mixing were observed. The generation of correlated single photon pairs was confirmed through coincidence measurements. #### 08:45 : Carbon Nanotube Emitter Coupled in Hybrid Photonic Crystal Cavity Anna Ovvyan¹, Felix Pyatkov², Min-Ken Li², Helge Gehring¹, Fabian Beutel¹, Sandeep Kumar², Ralph Krupke², Wolfram Pernice¹ ¹University of Munster (Germany), ²Karlsruhe Institute of Technology (Germany) We developed hybrid silicon nitride photonic crystal cavity devices, which strengthen the emission of the integrated carbon nanotube resulting in generation of an enhanced signal in telecom wavelength band. ### 09:00 : Microstructured photonic crystal fibers infiltrated with metallic nanoparticles-doped liquid crystals for promising sensing and tunable photonic devices applications Tomasz Wolinski¹, Kamil Orzechowski¹, W. Lewandowski², O. Strzezysz³, M. Tupikowska², Ch. -T. Wang⁴, T- M. Feng⁴, W. -Y. Chen⁴, L. -Y. Wu⁴ ¹ Warsaw University of Technology (Poland), ² Warsaw University (Poland), ³ Military University of Technology (Poland), ⁴ National Sun Yat-Sen University (Taiwan) Spectral properties of microstructured photonic crystal fibers filled with metallic nanoparticles-doped liquid crystals in nematic or blue phases are demonstrated. It is presented that the investigated complex photonic systems can provide promising tunable properties for particular wavelengths in the visible light spectrum. Importantly, the presence of gold nanoparticles with an appropriate organic coating and mesogenic ligands in a blue phase liquid crystal matrix can enhance the external electric field sensitivity and temperature stability of the examined photonic liquid crystal fibers. # 09:15: DNA-origami based diamond type lattice with visible wavelength periodicity Gregor Posnjak, Xin Yin, Arthur Ermatov, Mihir Dass, Tim Liedl LMU Munich (Germany) Inverse diamond lattice is one of the photonic crystal structures with potentially widest photonic band gaps. We use a DNA origami approach to self-assemble monomers which polymerize into an inverse diamond lattice with a periodicity
of 160 nm. With co-crystalization of extension struts the unit cell can be expanded to at least 400 nm. The DNA origami lattice can be chemically modified to adjust the refractive index and the volume fill ratio to tune the photonic properties of the structure. ### 09:30 : Refractive index sensor based on Silicon Nitride photonic crystal operating on Hybrid External Cavity Laser configuration Jesus Hernan Mendoza Castro¹, S. ladanza², T. Oliveira², S. M. Butler², A. Tedesco¹, G. Giannino¹, B. Lendl³, M. Grande¹, L. O'Faolain² ¹ Politecnico di Bari (Italy), ² Tyndall National Institute (Ireland), ³ Technische Universitat Wien (Austria) A high-Q factor 1D photonic crystal cavity (PhC) based on Silicon Nitride is presented, achieving calculated Q-factors above 106 over a wide range of upper-cladding refractive index values (1 to 1.45), angle sidewalls (0°, 5° and 7°) and stick widths. The 1D PhC devices experimental results demonstrate their suitability in external cavity laser configuration for integrated sensing platforms for gases and liquids at telecom wavelengths (1.4- 1.6 um). #### 09:45:10 dB Emission Suppression in Low Contrast 3D Quasiperiodic Structure Meraj E. Mustafa¹, Soumyadeep Saha², Manfred Eich¹, Alexander Yu. Petrov¹ ¹ Hamburg University of Technology (Germany), ² Jadavpur University Kolkata (India) We demonstrated that 3D quasiperiodic structures with optimal number of overlapping gratings result in more than 10 dB emission suppression. We show this significant emission suppression for refractive-indices of 1.38, 1.43 and 1.58 by numerical simulations. #### 10:00 : Engineering high Q/V photonic modes in correlated disordered systems online Nicoletta Granchi¹, Richard Spalding², Kris Stokkereit², Matteo Lodde³, Andrea Fiore³, Riccardo Sapienza⁴, Francesca Intonti¹, Marian Florescu², Massimo Gurioli¹ ¹ University of Florence (Italy), ² University of Surrey (United Kingdom), ³ Eindhoven University of Technology (The Netherlands), ⁴ Imperial College London (United Kingdom) Hyperuniform disordered (HuD) photonic materials have recently been shown to display several localized states with relatively high Q factors. However, their spatial position is not predictable a priori. Here we experimentally benchmark through near-field spectroscopy the engineering of high Q/V resonant modes in a defect inside a HuD pattern. These deterministic modes, coexisting with Anderson-localized modes, are a valid candidate for implementations in optoelectronic devices due to the spatial isotropy of the HuD environment upon which they are built. ### 10:15 : Photonic Crystal with Two Photon Absorption: an all optical limiter online Geraldine Guida¹, Frederique Gadot², Ramez Hamie² ¹Universite Paris Nanterre (France), ²Guida (Geraldine) In this conference, we will present 2D PCs consisting of materials with TPA property (ZnO defects) to obtain an efficient all optical limiter in the visible range. Both triangular and hexagonal 2D PC are studied to facilitate its robustness to a variation of the incidence angle due to the symmetry of the structures. The TPA nonlinear properties of ZnO material are issued from a 1D PC experimental study. ### 10:30 : Transmission characteristics and anisotropy of epsilon near zero behaviour in Photonic Hypercrystal online #### Munazza Zulfiqar Ali Punjab University (Pakistan) Photonic Hypercrystal is a recently studied novel phenomenon that incorporates the characteristics of hyperbolic metamaterial and photonic crystals. Three types of transmission gaps each emerging from different mechanism is investigated here. We also report two frequency regions where parallel or perpendicular components of permittivity tensor become nearly zero and anisotropic epsilon near zero (AENZ) phenomenon takes place. Dependence of these gaps and the AENZ behaviour of the crystal on the layer widths, incident angle, incident radiation polarisation is studied theoretically. #### 8:30 - 09:25 — Manantiales #### Session 4A9 ### Acoustic and elastic phononic crystals, metamaterials and other structured media Organized by: Marco Miniaci, Vicente Romero-Garcia, Vincent Pagneux, Maxime Lanoy, Jean-Philippe Groby and Noe Jimenez Chaired by: Vicente Romero-Garcia 08:30: Invited talk Manipulation of Low-Frequency Sound with a Tunable Active Metamaterial Panel online Ping Sheng University of Science and Technology (China) We propose the design of a flat active wall panel and demonstrate its effectiveness in modulating the wall impedance, which can lead to the total absorption of incident sound waves in the low-frequency range of 50–120 Hz, or alter its reflection phase. Such an acoustic frequency range is usually the most difficult to handle for passive acoustic components, owing to the long wavelength, and consequently, the bulky size of the materials required. 08:50: Invited talk Non-Abelian braiding of sound and light online **Guancong Ma** Hong Kong Baptist University (China) We report the experimental realization of non-Abelian braiding of sound and light. Here, the braiding operations are implemented using coupled waveguide arrays, which are adiabatically modulated to enforce a multistate Berry-phase matrix that swaps modal dwell sites. Braiding of up to three acoustic modes and five photonic modes is successfully observed. The non-Abelian characteristic is observed as sequence-dependent dwell-site distribution at the output of the waveguide arrays. 09:05: Invited talk Spider-inspired phononic sensor for damage detection and localization online Pawel Kudela¹, Maciej Radzienski¹, Katarzyna Majewska¹, Magdalena Mieloszyk¹, Nicola Pugno², Wieslaw Ostachowicz¹, Marco Miniaci³ ¹ Polish Academy of Sciences (Poland), ² University of Trento (Italy), ³ University of Lille (France) A spider-inspired phononic sensor was conceptualized and examined both experimentally and numerically. It is inspired by spiders' sensitivity to vibrations and ability to localize prey on a web. However, instead of low-frequency vibrations, we are utilizing guided waves. In particular, nonlinearities in sensed signals are attractive as early indicators of damage in a structure. Guided waves are filtered by phononic crystals embedded into the legs of the spider-inspired sensor registering nonlinearities. The damage is localized by using the time-reversal method. META 2022 Program Index ### Index Aalizadeh Majid : 4A1 Abbasirad Najmeh : 1A13 Abdelkhalik Mohamed M. S.: 3A26 Abdelraouf Omar A. M.: 2A5 Abdollahramezani Sajjad: 1A25 Abebe Muluneh G.: 3A18 Abi Ghanem Maroun: 1A10 Abujetas Diego R.: 1A5, 1A18 Aceti D. M.: 2A19 Acevedo-Barrera A.: 2A11 Achilleos Vassos: 2A24 Achouri Karim: 1P1, 1A15 Adam Pierre-Michel: 2A19 Adibi Ali: 1A25 Agez Gonzague: 2A14, 3A17 Aglieri Vincenzo: 2A26 Agreda Adrian: 1A11, 1A18 Ahmad Zeeshan: 2P2 Ahmed Hammad: 1A23 Ahmed Waqas W.: 3A25 Ahn Sungmo: 3A3 Aichi K.: 2A6 Aigner Andreas : 2A26 Aita Vittorio : 1P1 Aizpurua Javier: 1A5, 3A10 Akagi Yutaka : 2A7 Akbiyik Alp : 3P2 Akhter Mohammad N.: 3A13 Akiki Rock: 3A16, 3A19 Akinoglu G. E.: 2A17 Al-Rasheidi M.: 3P2 Ala-Nissila Tapio: 1A3 Alabastri Alessandro: 2A16, 3P1 Alanzi Mohammad : 1P2 Albella Pablo : 2A2, 2A2 Albert Maximilian : 4A3 Albisetti Edoardo : 1A26 Alcorta Galván Ricardo : 1A20 Alekhin Alexandr : 1A13 Algorri Jose Francisco : 1A17 Ali M.S.S.A.: 2P1 Ali Munazza Zulfiqar : 2P1, 4A8 Aljishi Abdullah : 2P1, 3P2 Allein F.: 1A20 Allein Florian: 1A18, 1A20 Allen Jeffery W.: 2A26 Allen Monica S.: 2A26 Alu Andrea: 1A15 Alvarado Pablo: 2P2 Alvarez Fernandez Alberto : 2A16 Alvarez Sanchis Jose Antonio : 1A7 Alvarez-Rodriguez Carlos : 4A4 Alù Andrea: 1A7 Ambrosio Antonio: 2A26, 2A26 Amendola Ada : 1A9 Amirtharaj Sakthi : 3A10 Amrani Madiha : 3P2 An Sensong : 3A21 Ananthachar Adarsh : 4A4 Anastasiadis Adamantios : 1P1 Anastasoaie Veronica : 1P1 Anders Janet : 3P2 Andres Diana : 2A4 Anerao Nitesh : 2A24 Anopchenko Aleksei : 2A16 Ansari Muhammad Afnan : 1A23 Ansquer Matthieu : 4A4 Antezza Mauro : 3A21 Antosiewicz Tomasz : 1A17 Anufriev Roman : 3A6 Aoudjit T.: 1A12 Arakawa Yasuhiko : 1A6 Araki Ken : 3A18, 3A18 Arbouet Arnaud: 1A19, 2A14, 2A21 Arias Casals Helena : 2P1 Arndt Catherine : 2A22 Arnold Kyle : 2P2 Arslan Dennis : 1A13 Asano Takashi : 3A9 Assouar Badreddine: 3A16 Assumpcao Daniel: 2A18 Atwater Harry: 3A1 Aupiais Ian: 1P1, 1A13 Auregan Yves: 1A10 Auricchio Ferdinando: 1A9 Avalos Ovando Oscar: 3A4 Avalos-Ovando Oscar: 3A7 Avishan Nardin: 3P2 Avram Andrei: 2P1 Avram Andrei Marius: 2P1 Aymonier Cyril: 2A17 Ayuso David: 3A15 Aznabet Mariem: 1P1 Ba Tis Taleb: 2A16 Babicheva Viktoriia: 2A22 Babonneau David: 1A11 Baboux Nicolas: 3P1 Baccini A.: 3P1 Bachelot R.: 1A12 Bachelot Renaud: 1A3, 2P2, 3P2 Bae Ki-Deok: 3A3 Baek Soojeong: 4A1 Baez Gabriela: 1A20 Bahl Mayank: 2P1 Bai Ping: 3A26 Bai Xue: 1A21 Bajoni Daniele: 4A8 Balasubramaniam Krishnan: 2P1 Bald Ilko: 3A3, 3P2 Ball Adam: 3A2 Bancerek Maria: 1A17 Bandopadhyay K.: 2A25 Besteiro L. V.: 3A7 Bandyopadhyay Dipankar : 1P1 Berini Pierre : 2P2, 2A22 Banhegyi Balazs : 2P2 Berkmann Fritz : 4A3 Banzer Peter : 3A20 Berte Rodrigo : 2A15 Banzer Peter : 3A20 Berte Rodrigo : 2A15 Baracu Angela : 2P1 Bertolotti Jacopo : 1P1, 1P2, 1P2, 1P2 Baracu Angela Mihaela : 2P1 Bertrand Matthieu : 1A20 Baranikov Anton: 1A4 Beruete Miguel: 1A23, 2P1, 2P2, 3A12, 4A3 Barberi R.: 3A17 Bessueille Francois: 2A21 Bard Antoine : 2A21 Besteiro Lucas V. : 1A4, 2A19, 3A4 Bardyszewski W. : 2A21 Betz Fridtjof : 3A7 Barella Mariano : 2P1, 2A19 Beutel Fabian : 4A8 Baride A. : 1A22 Bhaskaran Harish : Barbosa Raul: 2A17 Baride A.: 1A22 Bhaskaran Harish: 1A14 Barinov A.: 2A25 Barnard Hannah: 1P2 Barnes Bill: 1A17 Barois Philippe: 2A16, 2A17 Bhaskaran Harish: 1A14 Bhattacharyya I.: 3A26 Bianchi Marica: 1A9 Bianchi Pardo B.: 3P1 Bianco G. V.: 1P2 baron Alexandre : 2A16 Barone Andrea : 4A8 Billitos Christos : 2P1 Barreda Angela : 1A13, 2P1, 3A10 Barreda Angela I. : 4A4 Billitos Christos : 3A7 Barreda Angela I. : 4A4 Billitos Christos : 3A7 Barreda Angela I. : 4A4 Billitos
Christos : 3A18 Barreda Angela I.: 4A4 Bijornstad Katja Sha: 3A18 Barrera R. G.: 2A11 Basak Mitali: 1P1 Basset Philippe: 1P2 Bijornstad Katja Sha: 3A18 Blaize Sylvain: 3A19 Blary Karine: 1P2 Blazek Bregovic Vesna: 3P2 Batlle Xavier: 3P2 Bodunov Evgeny: 3A7 Battie Yann: 2A17 Battini Davide: 1A9 Batzner Derk: 2A25 Bogdanov Andrey: 2A15 Boundard And Laure 2A16 Baudrion Ann-Laure : 2A19 Baudrion Anne-Laure : 1P1 Boggiano Hilario : 3P2 Bogoslovska A. B. : 2P2 Baumberg Jeremy: 1A1, 1A17, 2A17 Bok E.: 2A4 Baumberg Jeremy J.: 3A10 Bok E.: 2A4 Boltasseva Alexandra: 2A1, 2A22, 3A14 Bayle Maxime: 1A11 Bayles A.: 1A14 Bayles A.: 1A14 Bayles A.: 3A16 Bazouband Elaheh: 3P2 Bondos Variokariata: 271, 21 Bonafos Caroline: 1A19 Bonello Bernard: 3A16 Borbone Fabio: 2A26 Bazouband Fatemeh : 3P2 Bortchagovsky Eugene : 2P2 Beal J.: 2A19 Beal Jeremie: 2A19 Besio Alberto: 2A14 Beccherelli Romeo: 3P1 Bosio Alberto: 2A14 Botella Claude: 3P1 Beck Fiona J.: 4A6 Botey Muriel: 2P1, 2P1, 3A13, 3A13, 3A25 Bek Alpan: 3P2 Belardini Alessandro: 2A17 Beli Danilo: 1A20 Belkin Mikhail: 1A2 Bellessa Joel: 2A21, 2A23 Belotelov V. I.: 2A23 Bouton Quentin: 1P2 Belotelov V. I.: 2A23 Bourouina R.: 2P1 Belotelov V. I.: 2A23 Bourouina R.: 2P1 Belotelov Vladimir: 3P2, 4A7 Ben-Abdallah Philippe: 2A21 Benadouda Ivars Salim: 2P1, 3A13 Benisty Henri: 3A25 Beniamin Schwager: 1A26 Braid George: 1P2 Benjamin Schwager: 1A26 Benlloch Jose M.: 2A4 Brambilla Massimo: 2A16 Benlyas R.: 3A9 Brar V. W.: 4A1 Benoit Jean-Michel: 2A21, 2A23 Brasselet Etienne: 3A17 Bentata Fouad: 2A14 Breazu Carmen: 2P1, 4A6 Benzaouia Mohammed: 1A23 Bresme Fernando: 2A2, 2A2 Berakdar Jamal : 1A26 Bresteau David : 3A15 Bergamini Luca : 1A5 Brevis Felipe : 1A26 Berguiga Lotfi: 1A5, 2A14, 3P1 Brito da Silva Geyse Mirelle: 2P2 Brongersma Mark: 3A2 Brongersma Mark L.: 3A11 Broussier Aurélie: 3A19 Brule Yoann: 2A14 Brulon Cyprien: 2A3 Brun M.: 1A10 Brunet Thomas: 1A10, 3A16 Bruno G.: 1P2 Bruno Vincenzo : 2A23 Bruno Vincenzo : 2A23 Bubas Matej : 3P2 Budai Judit : 2P2 Buffeteau Thierry : 2A17 Cerullo Giulio : 2A16 Cerullo Giulio : 2A16 Burger Sven: 2A19, 3A7 Burguete Lopez Arturo: 1P2 Burguete-Lopez Arturo: 3P2 Buruiana Angel-Theodor: 3A22 Bustamante Edgar: 2A15 Butikova J.: 1P2 Butler S. M.: 4A8 Buza M.: 2A25 Bychkov Igor: 1P1 Béal Jérémie: 1P1 Bürger J.: 3P1 Cabrini Stefano: 1A7 Caglayan Humeyra: 2A16, 2P2 Cai Wenfeng: 1A11 Caizzone Stefano: 3P1 Caldwell Joshua: 4A4 Caligiuri Vincenzo: 3A17 Calio Laura: 1A14 Calkovsky Vojtech: 3A26 Calleja Montserrat: 1P1 Calleja Montserrat : 1P1 Calvo M. E. : 1A14 Camarena Francisco : 2A4 Camelio Sophie : 1A11 Campbell Sawyer : 3A12 Cao Liyun : 3A16 Cao Yue : 4A7 Cao Yunshan: 3P1, 3A4 Capasso Federico: 1P1, 1A18, 3A5, 3A14 Capers James: 4A3 Capotondi Flavio: 3A15 Caputo R.: 2A19, 3A17 Caramizoiu Stefan: 1P1 Carcenac Franck: 2P1 Cardoso Raphael: 2A14 Carlotti Giovanni: 1A26 Carnemolla Enrico: 1A23 Carpentier Laurent: 3A16, 3A16 Carretero-Palacios S.: 1A14 Carta G.: 1A10 Carvalho Alain: 2A17 Casquero Noemi: 1P1 Castaldi Giuseppe: 2A9 Castello-Lurbe David: 3A27 Castilla Marion: 1A16 Castillo Ana Sousa: 2A19 Castillo Miguel: 1A11 Catchpole Kylie: 4A6 Catlow C. R. A.: 3P2 Cattoni Andrea: 1A26 Cen Mengjia: 1A11 Cencillo Pablo: 2A5 Centini Marco: 2A17 Cerjan Ben: 1A23 Cerjan Benjamin: 2A22 Cernescu A.: 1A17 Cerrillo Javier: 3A19 Castro Irene: 1A19 Chacon Sanchez Fernando: 1P1 Chakraborty Biswanath: 2P1 Chan Che Ting: 2A7 Chanda Debashis: 2A5 Chang Chin Kai: 2P1 Chatzitheocharis Dimitrios: 2P2 Chaunsali Rajesh: 1P1 Chavda Khyati: 3P1 Chen Bigeng: 1A5 Chen C.: 2A25 Chen Hongshi: 3P2 Chen Liangyao: 3A12 Chen Minyu: 1A3, 2P2 Chen Mu Ku: 2A22 Chen W. -Y.: 4A8 Chen Wei: 2A20, 3A17 Chen Wei Ting: 3A14 Chaunsali R.: 3A16 Chen Xianzhong: 1A13, 1P2, 1A23 Chen Y.: 2A25 Chen Yung-Yu: 3A6 Chen Yuntian: 1P1 Cheng Ji-Xin: 3A14 Cheng Wen-Hui: 2A8 Cheng Ying: 2A9, 3A17 Cheng Yugiong: 1P1 Chernov Alexander: 2A23, 3P2 Cheron E.: 2A24 Chen Wen: 3A10 Chervinskii Semyon: 2A16 Chery Nicolas: 1A19 Chigrin Dmitry: 1A24 Chiodini Stefano: 2A26 Chiok K. Y.: 1A22 Chng Tat Loon: 1A13 Cho Eun-Hyoung: 3A3 Cho Jin Woo: 1P1 Choi D. -S.: 2P1 Choi Ji-Hun: 1P1 Choi Jun Hee: 2A3 Choi Kyung-Hee: 1P1 Choi W. J.: 2A24 Choi Won Jae: 3A24 Choi Youngeun: 1P1 Choi Youngsun: 3A25 Choi Yu Sung: 1P1, 3A25 Choo H.: 2A18, 2A18 Choo Hyuck: 2A9, 2A9, 2A18, 3A3 Choo Hyuk: 3A3 Chou Cheng-Fu: 3A6 Choukri Said: 1P1 Chowdhury Brinta: 2P2 Christensen Johan: 2A9, 3A17, 3A24 Chu Cheng Hung: 2A22 Chuvilin Andrey: 3A19 Ciattoni Alessandro: 2A15 Cibaka-Ndaya Cynthia: 2A17 Cihat Yilmaz Mustafa: 2A24 Ciraci Cristian: 1A19, 3A19 Cirio Laurent : 1P1 Claeys Claus : 1A20 Clarke Rebecca : 1A11 Clementi Marco : 1P2, 4A8 Cleri Angela: 4A4 Clerici Matteo: 2A23 Clow Nathan: 1P2, 2P2 Cobet C.: 1A14, 2A13 Cobianu Cornel: 1P2, 2A2 Cochin E.: 3P2 Cohen Shany: 4A1 Colas des Francs Gerard: 2A14, 2A21 Colombi Andrea: 2A4 Comesana-Hermo Miguel: 1A21 Comley Andrew: 1P2 Conley Kevin: 1A3 Conti Ylli: 1A18 Contreras Taylor: 1P1 Cool Vanessa: 1A20 Corbella Bagot Conrad: 2A16 Corni Stefano : 1P2 Correa-Duarte M. A. : 3A7 Correa-Duarte Miguel A.: 1A4, 2A19, 3A3 Cortes E.: 3P2 Cortes Emiliano : 1A21, 2A19 Cortes-Reyna Diego : 1A20 Cortés E.: 3P1 Coudevylle Jean-Rene: 3A25 Couteau Christophe: 1A3, 2P2, 3A19, 3P2 Craster R. V.: 1A10 Cristea Dana: 1P1 Cristiano Fuccio: 1A19 Croënne C.: 1A20 Croënne Charles: 1A20 Crut Aurelien: 3P2 Cuche Aurelien : 2A14, 2A21 Cueff Sebastien : 1A5, 2A14, 3P1 Cummins Cian: 2A16 Curto Alberto G.: 1A13 Czyszanowski Tomasz: 1A19, 2P1 D'Orazio A.: 1P2 Dai Mingjin: 2A8 Dai Peng: 2P2 Daido Akito: 1A6 Dall'Osto Giulia: 1P2 Dalloz Nicolas: 2A23, 3P2 Dalvit Diego: 3P1 Damakoudi Lamprini : 2P2 Dang David : 2A16 Danhel Ales : 3A26 Danilov Viktor : 3P2 Darabian Hamid Reza : 3P1 Daran Emmanuelle : 2P1 Daryakar Navid : 3P1 Dass Mihir : 1A21, 4A8 David Christian : 3A15 David Christin: 1P1, 1A19, 3P1 de Abajo F. Javier Garcia: 1A2 De Angelis Dario: 3A15 De Angelis F.: 3A10 De Clerck Karen: 3A18 De Corte Alice: 1P2, 3A18 de Cos Gomez Maria Elena: 1P2, 2P1 De Fazio A. F.: 3A10 de Galarreta Carlota Ruiz : 1P2 de Groot C.H. (Kees) : 2P2 de Groot Cornelis : 3A18 de Groot Cornelis H. : 1A5 De Los Santos Vazquez Emmanuel : 1A11 De Luca A.: 2A19, 3A17 De Luca Federico: 1A19, 3A19 De Marco Maria Letizia: 2A17 de Marqui Jr Carlos: 1A20 De Ninno Giovanni: 3A15 de Oliveira E. Cardozo: 2A24 de Oliveira Michael: 2A26 De Santo M. P.: 3A17 de Souza Menezes Leonardo: 1A14 De Wolf Ingrid : 3P1 Deacon William M. : 3A10 Decher G. : 2A17 Deckers Elke : 1A20 de Sousa Matheus S.: 2A20 Deckers Elke: 1A20 Dehghani Matin: 1P1 Dehoux Thomas: 1A10 Del Fatti Natalia: 3P2 del Hougne Philipp: 1P2, 3A23 del Pino J.: 3A15 Della Valle Giuseppe: 2A16 Delplace Thomas: 1P2 Demir Hilmi Volkan: 2A6, 3A7 Demokritov S. O.: 1P2 Demoulin Remi: 1A19 Demydenko Yu. V.: 2P2 Deng Chih-Zong: 2P1 Deng Jie: 2A13 Deop Ruano Juan Ramon: 3P1, 3P1 Desmet Wim: 1A20 Destouches Nathalie: 2A23, 3P2 Desyatnikov Anton: 2A3 Deturche Regis: 3P2 Deturche Régis: 3A19 Dev Sukrith U.: 2A26 Devarapu Ganga Chinna Rao: 4A4 Devaux Thibaut : 2A4 Dey Swayandipta : 2P2, 4A6 Dhawan Prerak : 2A25 Di Iorio A.: 3P1 Diakonos Fotios: 1P1 Diaz Escobar Evelyn: 2P1 Diaz Rubio Ana: 1A7 Dickmann J.: 3A12 Dickmann Johannes: 2P2 Dicorato Stefano: 2A2 Dieny Bernard: 3A15 Diez lago: 3A26 Dilhan Lucie: 1A23 Dinescu Adrian: 1P1, 2P1, 2P1 Ding Fei: 2A16 Dirdal Christopher: 1A23, 2P1 Dirdal Christopher Andrew: 2P1 Diafari Rouhani Bahram: 3A19, 3P2 Djafari-Rouhani B.: 3P2 Djafari-Rouhani Bahram: 3A16, 3A16 Dmitriev Alexander: 2P1 Dolado Jorge S.: 4A3 Dombi Peter: 2P2, 3A27 Dong Jian-Wen: 4A2 Dong Yunxi: 3A21 Dong Z. G.: 4A7 Dong Zhaogang: 1A13 Dong Zheng-Gao: 2P1 Doucet Jean-Baptiste: 2P1 Doukas Spyros: 3P2 Downing James: 1A23 Drachev Vladimir: 2A20 Dragoman Daniela: 4A4 Drinkwater Bruce W.: 1P2 Drisko Glenna L.: 1A11, 1A18, 2A17 Droulias Sotiris: 1A16, 3A22 Du Guochun: 2P2 Duan Huigao: 2P2 Dubcek Tena: 2A4 Dubus B.: 1A20 Dubus Bertrand: 1A20 Ducloy Martial: 1P2 Duddy Ryan: 2P1 Duguet Etienne: 1A11 Duine Rembert A.: 3A4 Dullo Firehun Tsige: 1A23, 2P1 Duncan M. A.: 1A21 Duoeng Ngoc My Hanh: 1A11 Duroux Gautier: 2P1 Dutier G.: 1P2 Dutta Anushree: 3A3, 3P2 Dutta-Gupta Shourya: 2P1 Dvorak Petr: 2P2 Dwivedi Ranjeet: 3P1 Ebrahim Mehdi H.: 2A23 Ecobar Carlos: 1P1 Edelstein Shulamit: 4A7 Ederra Iñigo: 2P2 edes Zoltan: 2P2 Eerqing Narima: 3P2 Ehehalt Raphael: 3A26 Eich Manfred: 1A13, 4A8 Eigner Christof: 1A19 El Boudouti El Houssaine: 3A19, 3P2 El Mrabet Otman : 1P1 El-Kady Ihab : 2A15 Elancheliyan Rajam : 2A16 Eles Balint : 3P2 Elezzabi Abdulhakem Y.: 1A24 Elizarov Maxim: 3P1 Engay Einstom: 2P2 Engheta Nader: 1A7 Erickson John: 1A14 Ermatov Arthur: 4A8 Eroglu Abdullah: 2P2 Escandell Lorena: 4A4 Eschimese Damien: 1A4 Esfarjani Keivan: 2A24 Esmann Martin: 2A24 Esposito M.: 2A14 Estevez-Varela Carla: 1A11 Eto Rintaro: 3A4 Eustache Clement: 3A5 Eustache Etienne: 1A20 Euve Leo-Paul: 1A9 Ezendam Simone: 2A19 Fabijanic Ivana: 1P2, 3P2 Fabre Nathalie: 1P2 Esteban Ruben: 3A10 Fan C.: 3P1 Fan Jonathan: 2A22, 2A26 Faccio Daniele: 2A23 Fan Yubin: 1P1 Fanciulli Mauro: 3A15 Faniayeu Ihar: 2P1 Faqiri Rashid: 3A23 Farhat Mohamed: 3A24 Farheen Henna: 1A19 Farle Michael: 1P1 Farmakidis Nikolaos: 1A14 Fasold Stefan : 1A13 Favero Ivan : 1P1 Feichtner Thorsten: 3A26 Feist Johannes: 3A10 Felix S.: 2A24 Fendi Ilias: 1A13 Fendi Iliass: 1P1 Feng T- M.: 4A8 Fernandez alvarez Humberto : 2P1 Fernandez-Corbaton Ivan : 2A12, 2A25 Ferraro A.: 2A19 Ferry Vivian: 1P2, 2A23 Fiore Andrea: 2A21, 4A8 Fischer Inga: 4A3 Fischer Paolo: 1A11 Fissore Matteo: 1A23 Fitzgerald Jamie M.: 1A16 Fix Baptiste: 2A3 Flach Sergej: 2A3 Fleischer M.: 2P2 Fleischmann Claudia: 3P1 Fleury Guillaume: 2A16 Flores Figueroa Manuel Alejandro: 3P2 Flores-Farias Jorge: 1A26 Flores-Olmedo Enrique: 1A20 Florescu Marian: 4A8 Florez Berdasco Alicia: 1P2 Foldes T.: 3P2 Fomra Dhruv: 3A2 Forbes Andrew: 2A26 Forbes Kayn: 4A5 Forestiero A.: 3A17 Fornacciari Benjamin: 3P1 Forstner Jens: 1A19, 4A3 Fountaine Katherine:
2A15 Fournel Frank: 2A21 Fowler Clayton: 3A21 Franke Lars: 3A23 Fratalocchi Andrea: 1P2, 3P1, 3A9, 3P2 Fraternali Fernando: 1A9 Freire Manuel: 4A3 Fromherz Thomas: 4A8 Fung Kin Hung: 2A9 Fusco Zelio: 4A6 G. Menon Samvit: 1A17 Gabitov Ildar: 2A20 Gadegaard Nikolaj: 1A11 Gadot Frederique: 4A8 Gahlmann Timo: 3A23 Gailevicius Darius: 1A3 Galca Aurelian Catalin: 2A13, 3A22 Galdi Vincenzo: 2A9 Gaimard Quentin: 3A25 Galiffi Emanuele: 1A15, 1A15 Galinski Henning: 3A18 Galkin Alexander: 2A16 Galland Christophe: 3A10 Gallardo Rodolfo: 1A26, 2P2 Galli Matteo: 1P2, 4A8 Gallina Pavel: 2P2 Gantasala Subrahmanyam: 2P1 Gao Bofeng: 4A7 Gao Jie: 2A17 Gao Penglin: 3A17 Gao Wenlong: 3A5 Gaponenko Sergey: 2A19 Gan Lucia: 2A22 Garcia Fernandez Pablo: 2A2 Garcia-Camara Braulio: 4A4 Garcia-Carrion Alicia: 2A4 Garcia-Martin Antonio: 1A19, 3P2, 4A7 Garcia-Raffi L. M.: 2A24 Garcia-Valenzuela Augusto: 2A11 Garcion Charles: 1P2 Gargiulo Julian: 2P1, 2A19 Garoli Denis: 3A5 Garreau Alexandre: 3A25 Gaskell Jeffrey M.: 1A5 Gaspari Matteo: 3A18 Gasseng Alban: 2A21, 2A23 Gatensby R.: 2A17 Ge Dandan: 1A3, 2P2, 3P2 Geers Marc: 2A4 Gehring Helge: 4A8 Geltmeyer Jozefien: 3A18 Genet C.: 1A5 Genevet Patrice: 2A14, 3A2, 4A4 Georghe Marin: 2A2 Gerace Dario: 1P2, 4A8 Gerard Davy: 1A11, 1A12, 1A16, 2P2, 2A19 Gerislioglu Burak: 1A23 Getman Fedor: 1P2, 3P2 Ghanem Bernard: 3P2 Gheorghe Marin: 1P2 Ghindani Dipa: 2A16, 2P2 Ghodake Pravinkumar: 3A6 Ghosh Ambarish: 2P1 Ghosh Sumit: 1A12 Ghouila-Houri Cecile: 3P2 Giangregorio Maria Michelaria: 2A2 Giannini Vincenzo: 1A25 Giannino G.: 4A8 Gil Santos Eduardo: 1P1 Giocondo M.: 2A19 Giancola Silvio: 3P2 Girard Christian: 1A19, 2A21 Giraudet Louis: 2A19 Gjessing Jo: 1A23 Glasbey Joshua: 1P2 Glowadzka Weronika: 1A19, 2P1 Gobbi Marco: 4A5 Gobel Sebastian: 2P2 Golla Christian: 4A3 Gomez Rivas Jaime: 3A26 Goncalves Manuel: 3P2 Gong T.: 1A21 Gonzalez Christopher M.: 2A16 Gonzalez Francisco: 2A2 Gonzalez Gomez Carlos David: 4A6 Gonzalez-Colsa Javier: 2A2, 2A2 Gonzalez-Ovejero David: 2P1 Gonzalo Jose: 2A25 Gorbatsevich Alexander: 3P2 Gorodetski Yuri: 1A12, 2P2, 3A5 Gourbilleau Fabrice: 1A19 Govorov A. O.: 3A7 Govorov Alexander: 1A21, 3A4 Govorov Alexander O.: 1A4, 2A19, 3A3 Goykhman Ilya: 3P2 Graff John: 1A23 Graml Mario: 1A14 Granchi Nicoletta: 4A8 Grande M.: 1P2, 4A8 Grange Rachel: 1A11 Gray Stephen: 2A6 Gric Tatjana: 2P2 Griep Mark: 1A23 Grimpe Carl: 2P2 Grinblat G.: 3P2 Griol Amadeu: 2P1 Groby J.-P.: 2A24 Grineviciute Lina: 1A3 Groby Jean-Philippe: 3A24 Groetsch Aexander: 4A3 Grosjean Thierry: 3A5 Grube Jurgis: 1P2 Grundmann Marius: 2P1 Gruning M.: 2P1 Gruning Myrta: 2P1 Gryb D.: 3P1 Grzeschik Roland: 2A19 Gu Hantian: 4A2 Gu Tian: 3A21 Gudge-Brooke Jenner: 1P2 Guenette Roxanne: 1P1 Guenneau S.: 1A10 Guenneau Sebastien: 1A9, 1A20 Guenzler Antonio: 3A5 Guida Geraldine: 4A8 Gun'ko Yurii: 1A21 Gunkel Ilja: 2A25 Guo Hong: 3A21 Guo Junpeng: 3A12, 3A21 Guo L. Jay: 3A21 Guo Tong: 3A16 Gupta Harsh: 2P2 Gureghian Clement: 2P2 Gurioli Massimo: 4A8 Gurlek Burak: 3A10 Gurung Sudip: 2A16 Gutierrez Rodrigo Sergio: 1A25 Gutierrez Vela Yael: 2A2, 2A13 Gutierrez Yael: 1A5, 1P2, 2A2, 2A13 Guzatov Dmitry: 2A19 Gwak E. -J.: 2P1 Gwak Juyong: 2A14 Ha Taewoo: 4A1 Habib Mohsin: 2P2 Habrard Amaury: 2A23 Haerinia Mohammad: 3A21 Haghizadeh A.: 1A22 Hahnel David: 4A3 Haider Hasnain: 2P1 Hajji Maryam: 1A11 Halas Naomi: 1A23 Halas Naomi J.: 2A22 Hamant Olivier: 1A10 Hamaoui Georges: 1P2 Hamie Ramez: 4A8 Hammerschmidt Martin: 3A7 Han Han: 3P1 Han J. S.: 2P1 Han Jiecai: 1P1 Han Jin: 1P2 Han Joo Hun: 2A3 Han Seunghoon: 2A9, 3A3 Han Song: 2A8 Hananel Uri: 1A16 Hanauer Sebastien: 2P1 Hao Tianyi: 2P2 Hao Yiran: 1A9 Haraguchi Masanobu: 1A8 Harouri Abdelmounaim: 2A24 Harutyunyan Hayk: 2A26 Hashemi Mahdieh: 3P2 Hashikawa Fumiya: 2A9 Hazarika Jahnabi: 4A2 He Huilin: 1A11 He Mingze: 4A4 He Rong: 3A12 He Xin-Tao: 4A2 Hebert Mathieu: 2A23 Hecht Bert: 3A26 Hehenberger Simon: 3P1 Heiden J. T.: 4A1 Heller Evan: 2P1 Hendren W. R.: 2P1 Hendrickson Joshua: 3A21 Hendriks Arthur: 2A21 Hendry Euan: 1A2 Henn Sebastian: 2P1 Henrik Schneidewind: 2A15 Henzie Joel: 2P2 Hereu Adrian: 1A11, 1A18 Hernandez Martinez Pedro: 3A7 Hernandez Romain: 2A21 Herran Matias: 2A19 Herrera Pilar: 3A12 Herrero Ramon: 2P1, 3A25 Herrero Simon Ramon: 2P1, 3A13, 3A13 Hess O.: 1A17 Hessler Andreas: 1A25 Hewak Dan: 3A18 Hewak Daniel: 1A5 Heyroth Frank: 3A19 Hibbins A. P.: 1P2, 1P2 Hibbins Alastair: 2P2, 3P2, 3P2, 4A3 Hibbins Alistair: 1P2 Higham Michael: 3P2 Hillard Elizabeth: 2P1 Hillebrands Burkard: 2A12 Hingerl K.: 1A14 Hladky-Hennion Anne Christine: 1A20 Hmima Abdelhamid: 1P1 Holdman G. R.: 4A1 Hon Philip: 2A15 Hopmann Eric: 1A24 Horak Michal: 1A19, 2P2, 2P2, 3A26 Horrer A.: 1A12 Horsley Simon: 1P2, 2P2, 4A3 Hossain Mohammad: 2P1, 3P2 Hossain Mohammad Kamal: 3P1, 3P2 Hrton Martin: 1A14 Hu Changyu: 1P2 Hu Huatian: 3A10 Hu Juejun: 1A14, 3A21 Hu Xiaojun: 1A17 Hu Yabin: 3A6 Hu Yubing: 4A4 Hu Z.: 1A24 Huang Aihong: 2A13 Huang Chen-Bin: 1A6 Huang J. A.: 3A10 Huang Jershing: 3A14 Huang Qinglan: 2A22 Huang Ruomeng: 2P2 Huang Tzu-Ting: 2A22 Huang Yao-Wei: 3A14 Huber A.: 1A17 Huebner Uwe: 2A15 Huidobro Paloma A.: 1A15 Huidobro Paloma Arroyo: 1A15 Humbert Bernard : 1A11 Humbert Melodie : 2A21 Humphreys Euan : 1P1, 1P2 Huttunen Mikko: 1A4 Hwang Chi-Sun: 1P1 Hwang Dajeong: 1P2 Hwang Inyong: 1A2 Iadanza S.: 4A8 Iadanza Simone: 1P2 Iarossi M.: 3A10 Ibrahim Yousef: 3A14 Idesova Beata: 2P2 Idrobo Juan C.: 2P2 Iftimie Sorina: 4A4 Igarashi Eri: 2P1 Ikeda Yuhei: 1A6 Imamoglu Atac: 3A19 Inoue Takashi: 3A4 Inoue Takuya: 3A9 Intaravanne Yuttana: 1A13, 1P2, 1A23 Intonti Francesca: 4A8 Inverardi Nicoletta: 1A9 Ioannidis Thanos: 2P2 Ishihara Hajime: 2A7 Ishii Satoshi: 3A9 Ishizuka Hiroaki: 2A7 Isidio de Lima Joaquim Junior : 2P2 Issa Ali : 1P1, 1A3, 2P2, 3P2 Issah Ibrahim : 2A16 Ito Yuki : 3A18 Iwamoto Satoshi : 1A6 Iyaro Jephthah : 1A26 J. Ochalski Tomasz : 1A17 Jacak Janusz : 3P1, 3P2 Jacak Witold : 3P1, 3P2 Jacob Zubin : 3A20 Jafar-Zanjani Samad : 3A23 Jakob Lukas A. : 3A10 Jamil Adnan : 2P2 Jang M. : 4A1 Jang Min Seok : 2A8 Janicki Vesna : 1P2, 3P2 Je T. -J.: 2P1 Jenkins Ronald: 3A12 Jennings B. D.: 2A17 Jeon E.-C.: 2P1 Jeon Geunju: 2P1 Jeong Byung Gil: 2A9 Jeong J.-Y.: 2P1 Jeong Ki-Jae : 2P1, 2A14 Jia Shiqi : 1P1, 1A8, 4A6 Jiang M.: 3A14 Jiang Quanbo: 3P2 Jiang Siyuan: 1A8, 3P1 Jimenez Noe: 2A4, 2A4 Jimenez-Gambin Sergio: 2A4 Jimenez-Solano A.: 1A14 Jin Yabin: 1A10, 3A16 Jing Ligiao: 1A6 Joannopoulos John D.: 1A23 John Jimmy: 1A5 Johnson Steven: 3A14 Johnson Steven G.: 1A23 Jorajuria Tania: 3A12 Jradi Safi : 1P1, 1A3, 2P2, 3P2 Juan Dilson : 2A2, 2A2 Juedenas Mindaugas : 2P2 Jung J.: 2P1 Junquera Javier : 2A2 Juodenas Mindaugas : 2P2 Juodenas Mindaugas : 1P1 Kabonire Ruhinda : 1A18 Kadodwala Malcolm : 1A11 Kafesaki Maria : 3P1 Kajii Hirotake : 2A9 Kajikawa Kotaro : 3A18 Kakarantzas Georgios : 3A22 Kalousek Radek: 2P2 Kamenetskii Eugene: 4A5 Kaminskiy A. S.: 2A7 Kapaev Vladimir: 3P2 Kappa Jan: 3A23 Karabchevsky A.: 1A4 Karakhanyan Vage: 3A5 Karalis Aristeidis: 1A23 Karl Helmut: 1A5 Karttunen Mikko: 1A3 Karvounis Artemios: 1A11 Kawakami Norio: 1P1 Kawano Yukio: 1A2 Kall Mikael: 2P2, 2P2 Ke Yujie : 2A5 Kedziora M. : 2A21 Kejik Lukas : 2P2 Kelavuori Jussi : 1A4 Kepic Peter: 1A14, 2P2, 2P2, 3A26 Ketzaki Dimitra : 2P2 Khadir Samir : 4A4 Khalid Muhammad : 3A19 Khan Zoheb : 3P1 Khazaee Sara : 3P1 Khinevich Nadzeya: 1P1, 2P2 Khitous Amine: 1A21 Khlopin D.: 2P2 Khurgin J. B.: 3A2 Khurgin Jacob B.: 2A23 Kildebro Lars: 3A18 Kildishev Alexander: 3A14 Kim Gunpyo: 1P1 Kim Hae-Sung: 3A3 Kim Hojung: 1A2 Kim Hyochul: 1A2, 2A18 Kim Jeonghyo: 1P1, 2P1 Kim Jisoo: 2A15 Kim Joo-Yeon: 1P1 Kim Joosung: 2A3 Kim Ju Young: 4A1 Kim M.: 2A24 Kim Minkyung: 4A7 Kim Miso: 3A24 Kim Nakhyun: 2A3 Kim S.: 4A1 Kim Se-Um: 2A9 Kim Sun II: 2A9 Kim Sun-Kyung: 1P1, 1P1 Kim Sunil: 2A3 Kim Teun-Teun: 4A1 Kim Un Jeong: 2A18 Kim Unjeong: 1A2 Kim Wonkyu: 3A21 Kim Yong-Hae: 1P1 Kim Yongsung: 2A3 Kim Young-Bin: 1P1 Kim Young-Mi: 2A14 Kim Zee Hwan : 2A3, 3P1 Kini Manjeshwar Sushanth : 1A16 Kinsey Nathaniel : 2A23, 3A2 Kippenberg Tobias: 3A10 Kishine Jun-Ichiro: 2A20 Kishor Kamal: 2P1 Kiss Gellert-Zsolt: 2P2 Kivshar Yuri: 1P1, 1A5, 2A15, 2A15 Kluczyk-Korch Katarzyna: 1A17 Ko Woong : 3A3 Kociak M. : 2P2 Kodama Takumasa : 2A3 Koenderink Femius : 3A10 Kogikoski Junior Sergio : 3A3 Kogikoski Sergio : 3P2 Kolle Mathias: 2A5 Kolosvetov A. A.: 2A23 Kolosvetov Anton: 3P2 Konecna Andrea: 1A19, 2P2 Kong Kiho: 2A3 Kong Xiang-Tian: 1A4 Kongsuwan N.: 1A17 Konofagou Elisa E.: 2A4 Kontenis Gabrielius: 2A4 Korgel Brian A.: 2A17 Korneluk Alexander: 2P2, 4A3 Kort-Kamp Wilton: 3P1 Kostcheev S.: 2A19 Kotov Leonid: 1P1 Kouznetsova Varvara: 2A4 Kovylina Mikov: 3A10 Kozhaev M. A.: 2A23 Kozhaev Mikhail: 3P2 Krahne R.: 3A17 Krapek Vlastimil: 1A19, 2P2, 2P2 Krasavin Alexey: 1A14 Krasavin Alexey V.: 1P1 Krawczyk Maciej: 2A12 Krenn Joachim R.: 2P2 Kresic Ivor: 3A13 Kretly L. K.: 1P2 Kriezis Emmanouil: 3P1 Kriezis Emmanouil: 3P⁻ Kroker S.: 3A12 Kroker Stefanie: 2P2 Krol M.: 2A21 Krpensky Jan: 2P2 Kruk Sergey: 1P1, 1A5 Krupke Ralph: 4A8 Krushinsky Dimitry: 2A24 Krushynska Anastasiia: 2A24 Krutyanski Leonid: 3P2 Krzeminska Zofia: 3P1, 3P2 Kubo Wakana: 3A9 Kudo Wakana : 3A9 Kudela Pawel : 4A9 Kuebler Stephen : 4A4 Kuhner Lucca : 2A15 Kula P. : 2A21 Kulikova D. P. : 2A7 Kulikova D. P. : 2A7 Kumar Rahul : 1A11 Kumar Raj : 1A10, 3A16 Kumar Reddy Andra Naresh: 3P2 Kumar S. R. Sandeep: 2P1 Kumar Sandeep: 4A8 Kumar Shailabh: 2A18 Kumekov Serik E.: 2A3 Kuntze Kim: 2A16 Kuo Hsin Yu: 2A22 Kusko Cristian: 1P1 Kusminskiy Silvia Viola : 2A20 Kusunose Hiroaki : 2P2, 3A20 Kuzmin Dimitry: 1P1 Kuznetsov Arseniy: 1A4 Kuznetsov Sergei: 1A23 Kuznetsova S.: 2A24 Kuznetsova Svetlana: 1A10 Kvapil Michal: 2P2, 2P2 Kwon Junyoung: 1P1 Kühner L.: 3P1 Labarta Amilcar: 3P2 Lafitte Maeva: 2A16 Lagoudakis P. G.: 2A21 Lahikainen Markus: 2A16 Lalanne Philippe: 1A11, 1A18 Lamaze Florian : 2A19 Lambert C. : 2P1 Lan Shoufeng : 2A20 Lanco Loic : 2A24 Landeros Pedro : 1A26, 2P2 Lanzillotti-Kimura Daniel : 2A24 Lalgauna Paula Laborda:
1A11 Lanzio Vittorino : 1A7 Laplace Yannis : 1P1, 1A13 Laprais Capucine : 3P1 Larciprete Maria Cristina: 2A17 Larouche Stephane: 2A15 Larrey Vincent: 2A14, 2A21 Larrieu Guilhem: 2A14, 2A21 Las-Heras Andres Fernando: 1P2, 2P1 Lascoux Noelle : 3P2 Laska Monika : 3P1, 3P2 Latawiec Pawel : 1A23 Latella Ivan : 2A21 Lavrinenko Andrei: 1A7, 1A15 Lawson Daniel: 1A5 Lawson Zachary: 1A4 Le Beux Sebastien: 2A14 Le Gratiet Luc: 2A24 Le Thu H. H.: 1A3 Le Van Doan: 3P2 Leahu Grigore: 2A17 Leamy Michael: 2A4 Lecestre Aurelie: 2A21 Lecoffre Julien: 1P2 Lee Eun-Joo: 1P1 Lee Eunsung: 2A3 Lee Hoo-Cheol: 1P1 Lee Howard: 2A16 Lee Jaebeom: 1P1, 1P2, 2P1, 2A14 Lee Jeong Yub: 3A3 Lee Jongwon: 1A2 Lee Kanghee: 4A1 Lee Ki Young: 1P1, 4A2 Lee Kyusup: 1A18 Lee Minkyung: 2A9 Lee S.: 3P1 Lee S. H.: 2A4 Lee Sangyun: 3A3 Lee Sungwon: 2A24 Lee Suyeon: 1A2 Lee Sze Wah: 2A15 Lee Yun-Jo: 1P1 Lefier Yannick: 3A5 Leite Marina: 1A21 Lemaire V.: 2A17 Lemaire Vincent: 2A17 Lemaitre Aristide: 1P1, 2A23, 2A24 Lemos Diego N.: 2P2 Lempereur Stephan: 1P1, 1A13 Lempicka-Mirek K.: 2A21 Lendl B.: 4A8 Lendl B. : 4A8 Letartre X. : 2A14 Leung Casey Ka Wun : 2P1 Leuteritz Till : 1A19 Levchenko Sergey : 2A20 Levêque G.: 3P2 Levêque Gaëtan : 3A19, 4A2 Lewandowski W. : 4A8 Lewi Tomer : 4A1 Lewis Katie : 1P2 Lezaun Carlos: 3A12, 4A3 Lezec Henri: 3A2 Li Bing: 3A6 Li BoRui: 1P1 Li Chenhao: 4A4 Li Hang: 3A21 Li Jensen: 1A9, 2P1, 2A8, 3A6 Li Jensen T. H.: 3A24 Li Jinxiang: 2A2 Li Ke: 1A11 Li Lianlin: 1A8, 3P1, 3A23 Li Min-Ken : 4A8 Li Tan : 2P1 Li Voti Roberto: 2A17 Li X.: 2P2 Li Xiaoguang : 2A12 Li Y.: 1A24 Li Yongzhong: 2P1 Li Z.-X.: 3A4 Li Zhaoyi: 3A14 Liang Liangliang: 1A7 Liang Xinan: 1A4 Liang Yaoyao: 3A25 Liberal Inigo: 1A7 Liberal Iñigo: 1A7, 4A3 Lidorikis Elefterios: 3P2 Liedl T.: 3A7 Liedl Tim: 1A21, 4A8 Ligmajer Filip: 1A14, 2P2, 2P2, 3A26 Lim Hosub: 4A1 Lim Minwoo: 3A3 Lim Soon Wei Daniel: 3A5 Lin Ching-Fu: 1A21 Lin Peng: 3A14 Lin Qianqi: 1A17 Lin Z.-H.: 3A14 Linden Stefan: 1A19 Link Stephan: 1A23 Lio G. E.: 2A19 Lipinski Arthur: 2P1 Lischner Johannes: 1A16 Liscidini Marco: 4A8 Liska Jiri: 2P2 Liska Petr: 2P2 Liu Hong: 2A5 Liu Jianxun: 1A11 Liu Tingwei: 2A16 Liu Tongjun: 2A2 Liu Wei: 1A8 Liu Xiaogang: 1A7 Liu Xiaojun: 2A9 Liu Yan, Jun: 1A11 Liu Yan Jun : 1A11 Liu Yongquan : 3A6 Liu Z. : 3A9 Liu Zeyang: 3A21 Liu Zhaowei: 2A22 Lobet Michael: 1A7 Lodde Matteo: 4A8 Loiseaux Brigitte: 1A20 Lombard Olivier: 1A10, 3A16 Lomonosov Alexey: 1P1, 1A13 Lopez Garcia Martin: 1A11 Lopez-Higuera Jose Miguel : 1A17 Loren Fernando : 1A5 Losurdo Maria: 1P2, 2A2, 2A2, 2A13, 2A13 Lovasz Bela : 2P2 Lozano G. : 1A14 Lu Yu-Jung : 2A8 Lumeau Julien : 3P1 Luo Dan : 1A11 Luo Yu : 2A8 Lupu Anatole : 3A25 Luttmann Martin : 3A15 Lutz Jeremy : 3P2 Lutz Tobias : 3P2 Luxmoore I. : 3A26 Lyu P.: 1A21 López-Ortega Alberto : 3A19 Ma Guancong : 3A6, 3A6, 4A9 Ma Hongfeng: 2A23 Maccaferri N.: 3A17 Maccaferri Nicolò: 3A17 Maccaferri Nicoló: 3A19 MacDonald Kevin: 2A2 Mach Jindrich: 3A26 Maes Bjorn: 1P2, 1P2, 3A18 Maier S. A.: 3P1 Maier Stefan: 2A15, 3A22, 4A4 Maier Stefan A.: 2A15, 2A19, 2A26 Maier Stefan Alexander: 1A14 Maiolo Luca : 3P1 Maita Francesco : 3P1 Maity Achyut : 2P1 Maiuri Margherita : 2A16 Majewska Katarzyna : 4A9 Majorel Clement : 1A19, 2A21 Majumdar Arka : 2A15 Makarenko Maksim : 1P2, 3P2 Makarov Denys: 1A13 Makarov Sergey: 1P1 Makwana M. P.: 1A10 Malladi S. R. K: 2P1 Mallejac Matthieu: 3A24 Mallet Nicolas: 2A21 Malpuech G.: 2A21 Manera Leandro T.: 2P2 Manfredda Michele: 3A15 Maniyara R. A.: 3A26 Manjavacas Alejandro: 3P1, 3P1, 3A25 Manoccio M.: 2A14 Mansha Shampy: 1A4 Marcia Alessandro: 4A8 Marciniak Magdalena: 2P1 Marconi Stefania: 1A9 Marguet Sylvie: 1A3, 2P2 Maria Jon-Paul: 4A4 Marini Andrea: 2A15, 2A23 Marinova Mira: 3A14 Markovich G.: 3A7 Markovich Gil: 1A16, 3A15 Markus K.: 2A25 Marques Manuel: 4A7 Marques Ricardo: 4A3 Martens K.: 3A7 Marti-Sabate Marc : 1A20 Martin Cano Diego : 3A10 Martin J.: 2P2 Martin Jerôme: 1A16, 2A19 Martin Olivier: 1A15 Martin Olivier J. F.: 1P1 Martin Zachariah: 3A14 Martin-Moreno L.: 1A5 Martinez Abietar Alejandro Jose: 2P1 Martinez Alejandro: 2P1, 3A10, 4A2 Martinez Luciana P.: 2P1, 2A19 Martinez-Arguello Angel: 1A20 Martinez-Cercos Daniel: 3A26 Martinez-Herrero Rosario: 3P1 Martins Augusto: 1P1 Marty Frederic: 1P2 Maruthiyodan Veetil Rasna: 1A4 Masell Jan: 2A12 Masenelli Bruno: 2A14, 2A21 Mass Tobias: 1A4 Massiot Ines: 2P1 Mastel S.: 1A17 Materna A.: 2A25 Matsui Tatsunosuke: 2A9 Matsuo Mamoru: 2A7 Matthaiakakis Nikolaos : 3A22 Matuszewski Michal : 1P2 Maurel Agnes : 1A9, 3P1, 3P1 May S.: 1A22 Mazumder P.: 3A26 Mazur Eric: 1A7 Mazur R.: 2A21 McCaughery Tiernan : 2P1 Medina Pardell Judith : 3A13 Mehlstaubler Tanja : 2P2 Meier Cedrik : 4A3 Mekawy Ahmed : 1A7 Melikyan Armen : 3P2 Memoli Gianluca : 3A24 Mendez-Sanchez Rafael : 1A20 Mendoza Castro Jesus Hernan : 4A8 Mendoza-Carreño Jose : 1A18 Menezes L. de S.: 3P1 Meng Fanqi: 4A2 Meng Yan: 1A9 Mengali Sandro: 3A18 Menghrajani Kishan: 1A17 Menon Vinod: 2P1 Merkel Aurelien: 3A24 Merklein Moritz: 3A3 Micek Patrik: 2P2 Michler Johann: 4A3 Mieloszyk Magdalena: 4A9 Miguez Hernan: 1A14 Mihai Claudia: 3A22 Mihi Agustin: 1A18 Mikelsone Jelena: 2P2 Milekhin I. A.: 2P2 Miller Benjamin: 2A5 Min Bumki: 4A1 Minamimoto Hiro: 2A3 Minassian Hayk: 3P2 Ming Yang: 1A23 Ming Ye : 2A8 Miniaci Marco : 1A18, 4A9 Minot Sylvain : 2A21 Mir S. H. : 2A17 Miranda Araujo da Silva Marcos Antônio : 2P2 Miscuglio M.: 3A17 Mishakova T. O.: 2P2 Mityushev Vladimir: 1A16, 3P1 Mizuno Ayana : 1P1 Mkhitaryan Vahagn : 3A14 Mlayah Adnen : 2P1 Moalic Mathieu : 2A12 Mocella Vito : 1A7 Mochizuki Masahito : 3A4 Modin Evgenii : 1A13 Modreanu Mircea: 1P2, 2A2, 2A13 Mohamad Habib: 1A23 Moitra Parikshit: 1A4 Mokarian-Tabari Parvaneh: 2A17 Molet Pau: 1A18 Molinaro Celine: 1A21 Mondain-Monval Olivier: 1A10, 2A16, 3A16 Monfray Stephane : 2A14 Montagnac Martin : 2A14 Moon Jaeheon : 1P1 Moore Daniel: 3P2 Morandi Andrea: 1A11 Morassi Martina : 2A24 Morawiak P. : 2A21 Moreau Antonin : 3P1 Moreira da Silva Iago Carlos: 2P2 Moreno Fernando: 1P2, 2A2, 2A2, 2A2, 2A13 Moreno Gracia Fernando: 1A5, 2A13 Moreno-Garcia Daniel: 2A4 Moreno-Peñarrubia Alexia: 1A23 Morfonios Christian: 2A23, 2A24 Morfonios Christian V.: 2A4 Moritake Yuto: 3A13, 4A7 Mornet Stephane: 3P2 Morokshin Peter: 3P2 Morz Florian: 4A3 Mosallaei Hossein: 3A23 Movsesyan A.: 3A7 Movsesyan Artur: 2A19, 2A19 Mruczkiewicz Michal: 2A12 Mu Quanquan: 1A11 Mueller Lukas: 3A23 Muljarov Egor: 2A6, 2P2 Muller Jolanda Simone: 1A11 Muller Niclas: 3P2 Mur Urban: 3P2 Murai Shunsuke: 2A6 Murakami Shuichi: 2A12 Murakamia F.: 2A25 Murakoshi Kei: 2A3 Muravitskaya Alina: 2A19 Murphy Daniel: 2P1 Muskens Otto: 1A5, 2A13, 2P2, 3A18 Muskens Otto L.: 1A5 Mustafa Meraj E.: 4A8 Muszynski M.: 2A21 Mylnikov Vasilii: 2P2 Myroshnychenko Viktor: 1A19, 4A3 Nagamatsu Kentaro : 1A8 Nagao Tadaaki : 3A9 Nahmad-Rohen A. : 2A11 Naldoni Alberto : 2A19 Nan L. : 3P2 Nanadath Shibu Sini : 1A17 Nandi Sukanta : 4A1 Nanikashvili Pilkhaz : 4A1 Naoi Yoshiki : 1A8 Naul Tustiiki . TAO Narasimhan V.: 2A18, 2A18 Nash Geoff: 1P2 Nasir Mazhar: 1A14 Naveh Doron: 4A1 Nefzaoui Elyes: 1P2 Neira Andres: 1A14 Nemati Arash: 2A13 Neretina Svetlana: 1A4 Neuman Tomas: 3A10 Ng Jeff Siu Kit: 2A5 Nguyen Anh Dung : 1P1, 1A13 Nguyen Hai Son : 1A5 Nguyen Hoang Giang : 3A9 Nguyen Huu-Quang: 1P2 Nguyen Kent: 2A16 Nguyen My-Chi: 1P2 Niaura Gediminas: 1P1 Nicholls Luke: 1A14 Nicholls Luke H.: 1P1 Niemi Tapio: 2A25 Nieto-Vesperinas Manuel : 3A20 Nieves Michael: 1A10 Nikitina Julianija: 1A3 Nikolic Branislav: 1A12 Nimrod Moiseyev: 3A25 Nishijima Yoshiaki: 3A3 Nlate Sylvain: 2A17 Nobile Nicholas: 1A14 Noda Susumu: 3A9 Noel Laurent: 1A21 Noel Olivier: 1P1, 1A13 Nomura Masahiro: 3A6 Noor Ahsan: 3A19 Nooteboom Sjoerd: 4A6 Nooteboom Sjoerd W.: 2P2 Notomi Masaya : 3A13 Noual Adnane : 3A16, 3A19 Nordlander Peter: 1A23, 2A22 Nova Tobia: 3A19 Novikov Alexey: 3A19 Nowaczynski R.: 1A17 Nuguri Sravya: 1A23 Nunez-Sanchez Sara: 1A11 Nuytten Thomas: 3P1 O'Connor Ian: 2A14 O'Faolain L.: 1P2, 4A8 O'Faolain Liam: 1P2, 4A4 Obendorfer A.: 2P1 Obreja Cosmin : 1P1 Ocana Pujol Jose Luis : 3A18 Ocana Pujoi Jose Luis Oda Reiko : 2P1, 2A17 Ogrin F. Y. : 1P2 Ogrin Feodor : 3A20 Oh Donghak : 4A1 Oh J. H. : 2A24 Oh Joo Hwan: 2P1, 3A24 Oh Sang Soon: 2P2, 3P1, 3A17 Oh Sangjin: 2P1 Oiwa Rikuto: 2P2, 3A20 Okamoto Hiromi: 2A6 Okorn Boris: 1P2 Olarte-Plata Juan D. : 2A2 Oliveira T. : 4A8 Olivier Côme : 3A24 Oliwa P. : 2A21 Omatsu Takashige: 4A5 Ono Atsushi: 1P1 Opala Andrzej: 1P2 Orazbayev Bakhtiyar: 1A23 Ordonez-Miranda Jose: 3A6 Orobtchouk Regis: 1A5 Ortiz Dolores: 2A2 Orzechowski Kamil: 4A8 Oscurato Stefano: 2A26 Osgood Richard: 3P2 Ossiander Marcus: 3A14 Ostachowicz Wieslaw: 4A9 Osumi Ken: 2A12 Ota Yasutomo: 1A6 Otsuka Shutaro: 3A13 Ou Jun-Yu: 2A2 Oudich Mourad: 3A16 Ovvyan Anna: 4A8 Oz Dor: 3P2 Ozbay Ekmel : 2A21, 4A1 Ozlu Mustafa Goksu : 2A22 Padilla Willie : 3A23 Pagneux V. : 1A10, 2A24 Pagneux Vincent: 1A9, 1A10, 2A4 Paillard Vincent: 1A19, 2A14, 2A21 Pailloux Frederic: 1A11 Pal Raj Kumar: 1A18 Palm Dominic: 3A23 Pan Chengfeng: 3P1 Panais Clement: 3P2 Pancaldi Matteo: 3A15, 3A19 Pandini Stefano : 1A9 Paniagua Dominguez Ramon: 1A4 Papa Zsuzsanna: 2P2 Papadimopoulos Athanasios: 3P1 Papas Dimitrios : 2A2 Papuzzo G. : 3A17 Para Adam : 1P1 Paravicini-Bagliani G. L.: 1A5 Park Chul-Hong: 1P1 Park H. J.: 2P1 Park Haedong: 3P1, 3A17 Park Hong Woo: 3A24 Park Hong-Gyu: 1P1 Park Hongkyu: 3A3 Park Hyeonsoo: 2A9, 3A3 Park Hyun Sung: 2A9, 3A3 Park J. J. : 2A4 Park Jeong Yoon : 1P1 Park Jinjoo : 2A3 Park Joon-Suh: 1P1, 3A14 Park Juho: 4A1 Park Jung Hun: 2A3 Park Junghyun: 2A9 Park Sang Hyun: 4A1 Park Sejeong: 1P2 Park Seongjin: 1A2 Park Wounjhang: 2A16, 2A25 Park Yeonsang: 1A2, 2A18 Park Younghwan: 2A3 Parker Megan: 2A17 Parvulescu Catalin: 1P1 Pasini Chiara: 1A9 Passaseo A.: 2A14 Pastoriza Isabel : 1A11 Paszke P. : 1A17 Patient Dean : 1P2 Patra A. : 3A17 Patsamanis Georgios: 2P2 Paulillo B.: 3A26 Pauly Matthias: 2A17, 2A17 Pavanello Fabio: 2A14 Pawlak D.: 1A17 Pawlak D. A.: 2A25 Pawlak Dorota: 2A17 Pawlak Dorota
Anna: 2A11, 3P1 Pazos Javier: 4A4 Peana Samuel: 3A14 Peckus Domantas: 2P2 Pedersoli Emanuele: 3A15 Pendry John: 1A15, 1A15 Penelet Guillaume: 3A24 Peng Jie: 1P1, 1A8, 4A6 Peng Ruwen: 1A3 Penketh Harry: 1P2 Pennec Y.: 3P2 Pennec Yan: 3A16, 3A16, 3A19, 4A2 Perales Francisco: 1P2 Perea-Puente Sinuhe: 1A21 Perez-Escudero Jose M.: 4A3 Perez-Quintana Dayan: 2P1, 2P2 Pernice W.: 1P2 Pernice Wolfram: 4A8 Pernod Philippe: 3P2 Pertsch Thomas: 1A13 Pervenecka J.: 1P2 Peschel Ulf: 3P1, 3P1 Pestourie Raphaël: 3A14 Petitjeans Philippe: 1A9 Petre Gabriela: 4A6 Petrosyan Petros: 3P2 Petrov Alexander Yu: 1A13 Petrov Alexander Yu: 4A8 Petrov Mihail: 3A19 Petrov Nikolai : 2P1, 3P2 Petrova Galina : 2P1 Petti Daniela : 1A26 Pfeiffer Maurice : 1A13 Pham Kim : 1A9, 3P1, 3P1 Pham Tien Thanh: 3A9 Pianelli A.: 3A17 Picardi Michela: 1A21 Piccardo Marco: 2A26 Picelli Luca: 2A21 Pico Vila Ruben: 1P2 Piecek W.: 2A21 Piechulla Peter M.: 2A25 Pietka B.: 2A21 Pinchuk Anatoliy : 1A22 Pinilla Cienfuegos Elena : 2P1 Piotrowski P.: 2A25 Piotrowski Piotr: 1A17 Piskorski lukasz : 2P1 Pitanti Alessandro : 1A12 Piwakowski Bogdan : 3P2 Plain J.: 1A12 Plain Jerome : 1A16, 3P2 Plain Jérôme : 1P1 Plidschun Malte : 2A15 Plum Eric : 2A2 Poempool Thanavorn : 4A8 Pogna Eva Arianna Aurelia : 2A16 Pogodaeva Maria: 2A20 Poignand Gaëlle: 3A24 Politano Antonio: 2A16 Poncelet Olivier: 1A10, 3A16 Ponsinet Virginie: 2A16, 2A17 Popa Bogdan: 3A16 Popescu-Pelin Geanina: 4A6 Popov Vladimir: 3P2 Posnjak Gregor: 1A21, 4A8 Pouget Emilie: 2P1, 2A17 Pouliopoulos Antonios: 2A4 Poumirol Jean-Marie: 1A19 Poutrina Ekaterina: 2A15 Powell Alex: 1P2, 3P2 Pravallika Bandaru: 2P1 Prejbeanu loan-Lucian: 3A15 Prietl Christine: 2P2 Priimagi Arri: 2A16 Priya Priya: 2A24 Proietti Zaccaria Remo: 2A16 Proskurin Igor: 1A26 Proust Julien: 1P1, 1A16, 2A19 Pruneri V.: 3A26 Prunnila Mika: 3A16 Pugno Nicola: 4A9 Pura Jose Luis: 1A18 Purcell-Milton Finn: 1A21 Putz Barbara: 4A3 Pyatakov Alexander: 2A7 Pyatkov Felix: 4A8 Pylypovskyi Oleksandr V.: 1A26 Pyzh Maxim: 2A4, 2A23 Qiang Bo: 2A8 Qiao Siqi: 1A19 Qin Feng: 1P2 Qin Jin: 3A26 Qiu Cheng-Wei: 3A14 Quiring Viktor: 1A19 Quotane Ilyasse: 3P2 Raczkiewicz M.: 1A17 Radi Younes: 1A7 Raduta Ana-Maria: 4A4 Radzienski Maciej: 4A9 Raetz Samuel: 1A10 Rahm Marco: 3A23 Rajagopal P.: 2P1 Rajagopal Prabhu: 2P1 Rakovich Yury: 1A24 Ramanathan Shriram: 1A5 Ramdane Abderrahim: 3A25 Ramesh Narayan Preethi: 1A19 Ramezani Hamidreza: 3A13 Ramos Daniel: 1A19 Ranibar Mostafa: 2A24 Rao Tenneti : 2P2 Rapoza Jessie : 3P2 Rappeport Eric : 2A16 Rashed Alireza R. : 2P2 Raskhodchikov Dmitrii : 1P2 Rasoga Oana : 2P1, 2P1, 4A6 Ravaine Serge: 1P1 Ravnik Miha: 3P2 Raynaud-Brun Michele: 1P1, 1A13 Razinskas Gary : 3A26 Razzari Luca : 2A26 Rebernik Ribic Primoz : 3A15 Redolat Querol Javier Abilio : 2P1 Redondo Javier : 1P2 Rego Laura : 3A15 Reich Stephanie : 3P2 Reinhard Bjoern : 1A26 Remi Vincent: 2A19 Ren Haoran: 1A14, 2A15, 2A15, 2A26, 4A4 Ren Mengxin: 4A7 Rendina Ivo: 1A7 Resl Josef: 2A13 Ressier Laurence: 2A21 Rezaei Soroosh Dagigeh: 2A5 Rezikyan A.: 3A26 Rho Junsuk: 1A8, 3A2, 4A7 Ribet-Mohamed I.: 2P2 Rica Raul : 4A6 Richoux Olivier : 2A24 Riminucci Fabrizio : 1A7 Rinnert Herve : 1A19 Rios Ocampo Carlos : 1A14 Ritacco T.: 2A19 Rizza Carlo: 2A9 Roach Lucien: 2A17 Roberts John Andris: 2A26 Robertsson Johan: 2A4 Robertsson Johan : 2 Robin Lucas : 2P1 Rockstuhl Carsten: 1A13, 2A25 Rodriguez Alvarez Javier : 3P2 Rodriguez Anne : 2A24 Rodriguez Araptyo Fraila : 3P2 Rodriguez Arantxa Fraile : 3P2 Rodriguez Esquerre Vitaly Felix : 3P2 Rodriguez J-B.: 2P2 Rodriguez-Fortuno Francisco Jose : 1A21 Rodriguez-Fortuño Francisco J. : 1P1 Rodríguez-Fortuño Francisco : 1A14 Roelli Philippe : 3A10 Roesner Benedikt : 3A15 Roh Sookyoung : 3A3 Roh Yeon-Geun : 1A2 Roh Young-Geun : 2A18 Rojo Romeo Pedro : 1A5 Romanelli Marco : 1P2 Romano Silvia : 1A7 Romero-García Vicente : 3A24 Romero-García Vicente : 2A24 Rontgen Malte : 2A4, 2A23, 2A24 Ropac Peter : 3P2 Rosa Matheus I. N.: 1A20 Rosales Saul A.: 2A2 Roskos Hartmut: 4A2 Rosolen Gilles: 3A18 Rosta E. : 3P2 Rotenberg Nir : 1A26 Roth Diane : 1P1 Rousselet Sophie : 1A11 Rovenska Katarina : 2P2, 2P2 Ruan Qifeng : 2A5, 2A5 Rubio Jesus : 3P2 Ruchon Thierry : 3A15 Ruiz de Galarreta Carlota: 1P1, 1P2, 2A25 Ruiz Reina Emilio: 4A6 Ruiz-Fernández-de-Arcaya Maria: 1A23 Ruiz-Garcia Jorge: 2P1 Rumyantseva A.: 2A19 Rutckaia Viktoriia: 3A19 Ruzzene Massimo: 1A20 Rylko Natalia: 1A16, 3P1 Saba Matthias: 3A5 Sabat Robine: 3P2 Sacchi Maurizio: 3A15 Sachdev Monika: 1P1 Sadecka K.: 1A17 Sachdev Monika: 1P1 Sadecka K.: 1A17 Sagnes Isabelle: 2A24 Saha Samprity: 3A2 Saha Soham: 2A22 Saha Soumyadeep: 4A8 Saigre-Tardif Chloe: 3A23 Sain Basudeb: 3A5 Saint-Girons Guillaume: 3P1 Saiz Jose M. : 2A2 Sakurai Atsushi : 3A9 Salib Meena : 2A16 Salomón Rene Pernas : 3A17 Sambles J. R. : 1P2, 1P2 Sambles Roy: 1P2, 2P2, 3P2, 3P2 Samusev Anton: 1A24 Sanchez Morcillo Victor Jose: 1P2 Sanchez-Gil Jose A.: 1A5, 1A18 Sanchez-Pena Jose Manuel: 1A17 Sancho Parramon Jordi: 3P2 Sancho-Parramon Jordi : 1P2 Sanders Stephen : 3P1 Sanderson Benjamin L. : 1P1 Sandoghdar Vahid: 3A10 Sandor Peter: 2P2 Santiago Eva Yazmin : 2A19 Santiago Santos Eva Yazmin : 1A4 Santos Gonzalo : 1P2, 2A2, 2A13 Santos Perodia Gonzalo: 2A13 Sapienza Riccardo: 4A8 Shahriar Shaimum: 4A4 Sardana Neha: 1P1, 1A19 Sarkar Sreyash: 1P2 Sato Daiki: 2A3 Sato Hisako: 1A3 Sato Masahiro: 2A7 Sauer Steffen: 2P2 Sava Florinel: 2A13, 3A22 Savo Romolo: 1A11 Savochkin I. V.: 2A23 Savona Vincenzo: 3A19 Scalet Giulia: 1A9 Scamarcio Gaetano: 2A16 Scarabelli Leonardo: 1A18 Scarmozzino Rob: 2P1 Schaefer Philip: 1A17 Schdmit Markus: 4A4 Scheidegger Andrea: 1A11 Schiattarella Chiara: 1A7 Schilling Joerg: 3A19 Schirato Andrea: 2A16 Schlickriede Christian: 1A19 Schlipf Jon: 4A3 Schlücker Sebastian: 2A19 Schmelcher Peter: 2A4, 2A23, 2A24 Schmidt Markus: 2A15 Schneider Philipp-Immanuel: 3A7 Schomerus Henning: 3A8, 3P2 Schoolaert Ella: 3A18 Schuermans Silvere: 1A16 Schultze Martin: 3A14 Schulz Dominik: 1A26 Schulz Sebastian A.: 1P2 Schulze Dominik: 3A19 Schurmann Robin: 3P2 Schwiedrzik Jakob: 4A3 Sebban Marc: 2A23 Secondo Ray: 3A2 Segev Moti: 2A22 Sekar S.: 2A17 Selkirk A.: 2A17 Selvam Tamilselvi: 1P2 Semisalova Anna: 1P1 Semmlinger Michael: 2A22 Senichev Alexander: 3A14 Sentre Arribas Elena: 1P1 Septembre I.: 2A21 Serebryannikov Andriy: 4A1 Serena Pedro: 4A7 Serha (Serga) Oleksandr (Alexander): 2A12 Serha Rostyslav: 2A12 Serna Rosalia: 1P1, 1A11, 1A25, 2A25 Serra Garcia Marc: 2A4 Setzpfandt Frank: 1A13 Seung H. M.: 2A24 Seung Hong Min: 3A24 Seyedheydari Fahime: 1A3 Shahbazyan Tigran V.: 1A24 Shalaev Vladimir: 2A10, 2A22, 3A14, 3A21 Shalaginov Mikhail: 3A21 Shaleev Mikhail: 3A19 Shanei Mohammad Mahdi: 2P2 Sharma Prateeksha: 3P2 Shcherbakov Maxim: 3A14 Sheel David W.: 1A5 Shehzad Khurram: 3P2 Shelling Neto Liam: 3A12 Shen Ruoyu: 3A12 Sheng Ping: 4A9 Shevchenko Nikita A.: 1P1 Shi Hongkang: 1P1 Shi Zhujun: 3A14 Shields Joe: 1P2 Shimizu Makoto: 3A9 Shin Dong Chul: 2A3 Shin J. H.: 2P1 Shiraki Hirofumi: 2A7 Shitrit Nir: 3A5 Shlesinger Ilan: 3A10 Shreiber Daniel: 1A23 Shubin Nikolay: 3P2 Sibilia Concita: 2A17 Siddique R.: 2A18, 2A18 Siddique Radwanul Hasan: 2A18 Siegel Jan: 1P1, 1A25, 2A25 Sigrist Manfred: 2A20 Sikola Tomas: 1A14, 1A19, 2P2, 2P2, 2P2, 2P2, Silva G. M. B.: 1P2 Silva Priscilla: 2A4 Silveirinha Mario G.: 1A15 Simandan Iosif Daniel: 3A22 Simeoni Mirko: 3A18 Simon Justo Martin-Albo: 1P1 Simon T.: 2P2 Simon Thomas: 2A19 Simpkins Blake: 3A21 Simões Gamboa Ana Luisa: 3A7 Singh A. K.: 3A14 Singh Danveer: 4A1 Singh Gaurav Pal: 1P1, 1A19 Singh Leeju: 2P2, 3A5 Sirleto Luigi: 1A7 Sivaraman Subramanian: 3P2 Slager Robert-Jan: 3P1 Slim J. J.: 3A15 Slivina Evgeniia: 2A25 Smirnova Olga: 3A15 Smith David R.: 1P2 Smith John: 3P2 Smith Steve: 1A22 So Sunae: 1A8 Socol Marcela: 2P1, 4A6 Soeller Christian: 3P2 Sojib Mohammad : 3A2 Suri Priyanka : 2P1 Sokolov Yuri : 3P2 Surma B. : 1A17 Sol Jerôme : 1P2 Sutherland Andrew : 1A11 Solis Javier: 1P1 Symonds Clementine: 2A21, 2A23 Solnyshkov Dmitry: 2A21 Szczytk J.: 2A21 Sombrio G.: 2P2 Szymczak Julia: 2P2, 4A3 Song Duheon: 3A1 Tabouillot Victor: 1A11 Song Lingling: 3P1 Tacchi Silvia: 1A26 Song Maowen: 2A5 Tachet Sarah: 3P1 Song Qinghai : 1P1 Taghavi Mohammadrasoul : 3A23 Song Seok Ho : 1P1, 4A2 Tahmi Yanel : 4A4 Song Seok Ho : 1P1, 4A2 Song Young Min : 2A5 Soppera Olivier : 1A21 Takase H. : 3A18 Sorokina Anastasiia : 2P2 Takashima Yuusuke : 1A8 Sortino Luca : 2A15, 3A22 Takhedmit Hakim : 1P1 Soumyanarayanan Anjan : 3A4 Talaikis Martynas : 1P1 Sousa Ricardo : 3A15 Talalaev Vadim : 3A19 Sousa Valdeth S.: 1P2, 2P2 Souza Barros Maria Paula: 2P2 Souza Bezerra Diego: 3P2 Talbia Abdelkrim: 3P2 Talbot Etienne: 1A19 Taliercio T.: 2P2 Spaegele Christina M. : 3A5 Tam Wing Yim : 2P1, 2A8 Spalding Richard : 4A8 Tamagnone Michele : 2P2, 3A5 Spezzani Carlo : 3A15 Spolenak Ralph : 3A18 Sprafke Alexander N. : 2A25 Spreyer Florian : 1A19 Tamulevicius Sigitas : 1P1, 2P2 Staliunas Kestutis: 1A3, 2P1, 2P1, 2A4, 3A13, 3A13, Tamulevicius Tomas: 1P1, 2P2 3A25 Tanabe Takasumi: 2A3 Stamps Robert : 1A26 Stancari Michelle D. : 1P1 Tanaka K. : 2A6 Stanculescu Anca : 2P1, 4A6 Stanfield Leanne : 3P2 Stanford Chris : 1P1 Tang Hong : 3A21 Starikovskaja Svetlana : 1A13 Tang J. : 2P2 Starkey Timothy: 3P2 Tang Lili: 2P1 Staude Isabelle: 1A13 Tasco Vittorianna: 2A14 Stefani Fernando D.: 2P1, 2A19 Tassin Philippe: 1A16, 3A23 Stefaniuk Tomasz : 2P2, 4A3 Taubner Thomass : 1A25 Steinert Michael: 1A13 Stella L.: 2P1 Stella Lorenzo: 2P1 Stella Lorenzo: 2P1 Teng Jinghua: 2A13 Teng Jinghua: 1A22 Stephan O.: 2P2 Sternklar Shmuel: 2P2 Stoiakin Vladimir: 3P2 Stokkereit Kris: 4A8 Stolat Timo: 1A4 Teniente Jorge: 1A23 ter Huurne Stan: 3A26 Tessier Sarah: 1A20 Teterovskis J.: 1P2 Thakore Vaibhav: 1A3 Strzezysz O.: 4A8 Theocharis Georgios: 1P1, 1A20, 2A24, 3A16 Sturm Chris: 2P1 Thomas Philip: 1A17 Styliaris Georgios: 1P1 Thomsen Henrik: 2A4 Su Vin-Cent: 2A22 Thomson Drew: 1A11 Subramanian Sriram: 3A24 Thomson Mark D.: 4A2 Subramanian Sriram : 3A24 Thomson Mark D. : 4A2 Sugano
Ryo : 2A3 Thrane Paul : 2P1 Sukhorukov Andrey: 3A8 Thrane Paul Conrad Vaagen: 1A23, 2P1 Summanwar Anand : 1A23 Tikhodeev Sergei : 1A24 Sun Jia-Hong : 3A6 Tilmann B. : 3P2 Sun Kai : 2P2, 3A18 Tittl A. : 3P1 Sun Xiaowei : 1P1 Tittl Andreas : 2A15, 2A26 Sun Zhipei : 1A16 Tiukuvaara Ville : 1P1, 1A15 Tizei Luiz: 2A14 Toanen Vincent: 2A23 Toh Yeow Teck: 2A13 Toma Andrea: 2A26 Toma Mana: 3A18 Vecco-Garda Clement: 3P2 Velea Alin: 2A13, 3A22 Vembris A.: 1P2 Vembris Aivars: 2P2 Verhagen Ewold: 2A21, 3A10, 3A10, 3A15 Tomescu Roxana : 1P1 Verlekar Sachin : 3A10 Tonelli Francesco : 2A15 Vernik Urban : 1P1 Tong Qing : 1P1, 3A6 Vernon Alexander : 1A21 Tonkaev Pavel : 1P1 Vertchenko Larissa : 1A7, 1A15 Tonguchi M : 2A25 Tonouchi M.: 2A25 Vesala Anna: 1A4 Torma Paivi: 1A1 Vestler D.: 3A15 Torrent D.: 3P2 Vialla Fabien: 3P2 Torrent Daniel: 1A20, 3A24 Vidal Rodriguez Borj Torrent Daniel: 1A20, 3A24 Vidal Rodriguez Borja: 1A7 Torres-Garcia Alicia E.: 3A12, 4A3 Viksna V. T.: 1P2 Toshio Riki: 1P1 Vila Laurent: 3A15 Toudert J.: 1A17 Villalva M. G.: 1P2 Toudert Johann: 1A25, 2A25, 3P1 Villalva Marcelo G.: 2P2 Villanuava Luia Guillarma: 2A4 Touma Jimmy : 4A4 Tran Van Tan : 2P1, 2A14 Traviss Daniel : 1A5 Villanueva Luis Guillermo : 2A4 Vimal Mekha : 3A15 Vincent G. : 2P2 Tredicucci Alessandro : 2A11 Violi Ianina L. : 2P1, 2A19 Treguer-Delapierre Mona: 1A11, 1A18, 3P2 vitaly.esquerre@ufba.br Vitaly Felix: 2P2 Tripathi Aditya: 1P1, 1A5 Viti Leonardo: 2A16 Tropins E.: 1P2 Vitiello Miriam Serena: 2A16 Tsai Din Ping: 2A22 Tschudi Jon: 1A23 Tseng Ming Lun: 2A22 Tsilipakos Odysseas: 3P1 Vitols K.: 1P2 Vlasov Vladimir: 1P1 Vocanson Francis: 3P2 Vogwell Josh: 3A15 Tsironis Giorgos: 3A25 Tsuda S.: 3A9 Tuff Walker: 1A4 Tupikowska M.: 4A8 Uakhitov Tileubek: 2A3 Uchida Ken-Ichi: 3A9 Vogwell Josn: 3A15 Vollmer Frank: 3P2 Volz Sebastian: 3A6 von Gersdorff Gero: 3A17 Vorobev Artem: 1P2 Vynck Kevin: 1A11, 1A18 Vyrsokinos Konstantinos: 2P2 Ummethala Govind: 2P1 Ungureanu Bogdan: 1A10 Urbani Alessandro: 3A18 Urbas Augustine: 2A15 Urbinati Giulia: 1P2 Ummethala Govind: 2P1 Wang Caifeng: 2A14 Wang Ch. -T.: 4A8 Wang Chongwu: 2A8 Urmanov Abdybek : 2A3 Wang Fakun : 2A8 Usievich Boris : 3P2 Wang Hao : 2A5, 2A5, 3P1 Vakhitov R. M. : 2A7 Wang Haozhu : 3A21 Valagiannopoulos Constantinos : 2A21 Wang Jian : 1A8 Van Belle Lucas : 1A20 Wang Jiawei : 1A11 van Manen Dirk-Jan : 2A4 Wang Juan : 2A15, 2A26 van Veldhoven Rene : 2A21 Wang Michelle Y. : 2A18 Vandersmissen Jente: 3A10 Vandervorst Wilfried: 3P1 Vappou Jonathan: 2A4 Varasteanu Pericle: 2P2 Varlamov Pavel: 1P1, 1A13 Vang Qi Jie: 2A5 Wang Qian: 2A13 Wang Qijie: 2A8 Wang Qijie: 2A8 Wang Qizhou: 1P2, 3P2 Vasco Juan Pablo: 3A19 Wang Shu-I: 2A15 Vashist Eklavy : 2P1 Wang Shubo : 1P1, 1P1, 1A8, 1A9, 3A6, 4A6 Vasseur J.: 1A20 Wang Wei: 3A6 Vasyuchka Vitaliy: 2A12 Wang Weide: 2A5, 2A13 Vavassori Paolo: 1P1, 1P1, 1A13, 3A19 Vazquez Besteiro Lucas: 3A3 Vazquez-Estrada O.: 2A11 Wang Wende: 2R6, 2716 Xin Cai: 2A5 Wang Xulong: 3A6 Wang Y. M.: 2A18 Wang Yi: 1A18 Wang Yudong: 1A5 Wang Yuhan: 1P1 Wang Yuyang: 4A6 Wang Z.: 1A24, 3A7 Wang Zhenhao: 3A14 Wang Zhenyu: 3A4 Wang Zhiming: 1A4, 2A19 Wang Zhiming M.: 3A3 Wang Zhuo: 1A8, 3P1 Wang Zihao: 4A7 Wang Zuojia: 1A6 Ward Gareth: 3P2 Wang Zuojia: 1A6 Ward Gareth: 3P2 Wardley William P.: 1A11 Watanabe Hikaru: 1A6 Watkins James: 1A23 Wattellier Benoit: 4A4 Weber Sebastien: 2A14 Wehrspohn Ralf B.: 2A25 Wei Chun Hui: 2P1 Wei Menglin: 1A8, 3P1 Wei Menglin: 1A8, 3P1 Weiss Thomas: 2A6 Wendisch Fedja: 3P1 Werner Douglas: 3A12 Werner Pingjuan: 3A12 Wheeler Callum: 3A18 Wiecha Peter R: 2A21 Wiecha Peter R: 1A19 Wieczorek Witlef: 1A16 Wiederrecht Gary: 3A7 Wiersig Jan: 3A13 Wilk Arnaud: 3A25 Wilts Bodo: 3A5 Wolinski Tomasz: 4A8 Wright C. David: 1P1, 2A2 Wright David: 1P2, 1P2, 1P2 Wright O. B.: 2A4 Wu Hsin-Yu: 3P2 Wu Jingwei: 3A2 Wu L.-Y.: 4A8 Wu Pin-Chieh: 2A8 Wu Tong: 1A18 Wu W.: 2A17 Wu Wei: 4A7 Wong Stephan: 3P1 Wong Thomas: 1A24 Wu Wenbing : 2A17 Wu Xiaofei : 3A26 Wu Xinyan: 1A13 Wu Ying: 3A24 Wurtz Gregory: 1A14 Wuttig Matthias: 2A2 Xi Jiawei: 2P1 Xiao Shumin: 1P1 Xin Juan: 1P1 Xiong Feng: 1A14 Xiong Kunli: 1A17 Xiong Yuling: 1A17 Xomalis Angelos: 4A3 Xu Chenglin: 2P1 Xu Jimmy: 3P2 Xu Jingjun: 4A7 Xu Ting: 2A5 Xu Xuewu: 1A4 Yadvichuk A. I.: 2A7 Yahyaei Farshid: 3P1 Yamamoto Yuji: 4A3 Yan Hao: 1A6 Yan Lok-Yee: 1A19 Yan Peng: 3P1, 3A4 Yan Xingzhao: 2P2 Yanase Youichi: 1A6 Yan Peng: 3P1, 3A4 Yan Xingzhao: 2P2 Yanase Youichi: 1A6 Yang Guoce: 2A26 Yang Huanhuan: 3P1 Yang Hyunsoo: 1A18 Yang Jian: 2A22 Yang Joel: 2A5, 2A18 Yang Joel: 2A5, 2A18, 3P1 Yang Joel K. W.: 2A5 Yang Jong-Heon: 1P1 Yang Yihao: 4A7 Yang Yuanmu: 2A8 Yang Zheng: 1P1 Yarovoy Alexander: 3P1 Yepes Cristina: 1A23 Yermakov Oleh: 2A15 Yeshchenko Oleg: 1A22 Yesilyurt Omer: 3A14 Yetisen Ali: 4A4 Yin Shixiong: 1A15 Yin Xin: 1A21, 4A8 Yin Xinghui: 3A14 Yioultsis Traianos: 3P1 Yochelis Shira: 2A20 Yokoshi Nobuhiko : 2A7 Yoda Taiki: 3A13 Yoon Jae Woong: 1P1, 1P1, 3A25, 4A2 Youngblood Nathan: 1A14 Youngs I.: 1P2 Yu Jaeyeon: 1A2 Yu Kyungsik: 3A25 Yu Ping: 1P2 Yu Shangjie: 2A26 Yuan Guanghui: 2A13 Yuan H. Y.: 3A4 Yuce Emre: 3P2 Yucel Abdulkadir C.: 3A7 Yugami H.: 3A9 Yun Seokho: 3A3 Yung Tsz Kit: 2A8 Zabala Nerea: 1A5 Zahn Dietrich: 2P2 Zaier Rania: 1A17 Zaleska Anastasiia: 1P1 Zalogina Anastasia: 1P1 Zan Hsiao-Wen: 1A21 Zapata-Herrera Mario: 3A19 Zayats Anatoly: 1A14 Zayats Anatoly V.: 1P1 Zebarjadi Mona: 2A24 Zega Valentina: 2A4 Zeimpekis Ioannis : 1A5, 3A18 Zeisberger Matthias : 2A15 Zelent Mateusz : 2A12 Zeng Yi: 3A16 Zentgraf Thomas: 1A19, 3A5, 4A3 Zgura Irina : 2P1 Zhang Baile : 1A8, 4A7 Zhang Chunmei : 1A13 Zhang Di : 4A7 Zhang F. : 2A6 Zhang Guanqing: 3A6 Zhang Hongrui: 1A8, 3P1 Zhang Hualiang: 3A21 Zhang Jie: 1P2 Zhang Leon: 2A16 Zhang Meiling: 1A19 Zhang Ming: 2A22 Zhang Richard : 3A18, 3A18 Zhang Ruo-Yang : 1A8 Zhang Tiantian: 2A12 Zhang Yifei: 1A14 Zhang Yuan: 3A10 Zhang Zhen: 1A5 Zhang Zhiwang: 2A9, 3A17 Zhao Bao: 2A4 Zhao Hanting: 1A8, 3P1, 3A23 Zhao Y.: 3A10 Zhao Yuanyan : 3A24 Zheludev Nikolay : 2A1, 2A2 Zheng Bowen: 3A21 Zheng Xuezhi: 4A3 Zhilyaev Igor: 2A24 Zhou Hagstrom Joar: 3P1 Zhou Junxiao: 2A22 Zhou Yan: 2A12 Zhu T.: 2A24 Zhu Zhanghang : 4A7 Zijlstra Peter : 2P2, 4A6 Zito Gianluigi : 1A7 Zografopoulos Dimitrios: 3P1 Zografopoulos Dimtiris: 1A17 Zrounba Clement: 2A14 Zschiedrich Lin: 3A7 Zundel Lauren: 3P1