Title Ag-Se/nylon nanocomposites grown by template-engaged reaction: microstructures, composition, and optical properties /
Authors Krylova, Valentina ; Dukštienė, Nijolė ; Markevičiūtė, Henrieta
DOI 10.3390/nano12152584
Full Text Download
Is Part of Nanomaterials.. Basel : MDPI. 2022, vol. 12, iss. 15, art. no. 2584, p. 1-16.. ISSN 2079-4991
Keywords [eng] Ag2Se ; nylon 6 ; flexible inorganic-organic composite ; ProX-SEM-EDS ; optical properties
Abstract [eng] Ag–Se nanostructure films were deposited on a–Se/nylon templates by a template-engaged reaction. Firstly, amorphous selenium (a–Se) was deposited on nylon by employing the chemical bath deposition method while using H2SeO3 and Na2SO3 solutions with an increasing selenium deposition time. Then, these a–Se/nylon templates were exposed into AgNO3 solution at ambient temperature and pressure. The Ag–Se/nylon nanocomposites surface morphology, elemental and phase composition, and optical properties were monitored depending on the selenium deposition time on nylon. Scanning electron microscopy (SEM) analysis confirmed the development of a very complex surface composed of pyramidal-like sub-micron structures, agglomerates, and grid-like structures. Energy dispersive spectroscopy (EDS) proved the presence of carbon, oxygen, nitrogen, selenium, and silver. SEM/EDS cross-sectional analysis confirmed the multilayer character with different individual elemental composition in each film layer. X-ray diffraction analysis revealed a polycrystalline Ag2Se phase with or without metallic Ag. The RMS value obtained from atomic force microscopy varies from 25.82 nm to 57.04 nm. From the UV-Vis spectrophotometry, the direct optical band gaps were found to be 1.68–1.86 eV. Ag–Se/nylon composites exhibit high refractive indices in the near infrared region.
Published Basel : MDPI
Type Journal article
Language English
Publication date 2022
CC license CC license description