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Abstract: Data clustering is one area of data mining that falls into the data mining class of unsu-
pervised learning. Cluster analysis divides data into different classes by discovering the internal
structure of data set objects and their relationship. This paper presented a new density clustering
method based on the modified inversion formula density estimation. This new method should allow
one to improve the performance and robustness of the k-means, Gaussian mixture model, and other
methods. The primary process of the proposed clustering algorithm consists of three main steps.
Firstly, we initialized parameters and generated a T matrix. Secondly, we estimated the densities
of each point and cluster. Third, we updated mean, sigma, and phi matrices. The new method
based on the inversion formula works quite well with different datasets compared with K-means,
Gaussian Mixture Model, and Bayesian Gaussian Mixture model. On the other hand, new methods
have limitations because this one method in the current state cannot work with higher-dimensional
data (d > 15). This will be solved in the future versions of the model, detailed further in future work.
Additionally, based on the results, we can see that the MIDEv2 method works the best with generated
data with outliers in all datasets (0.5%, 1%, 2%, 4% outliers). The interesting point is that a new
method based on the inversion formula can cluster the data even if data do not have outliers; one of
the most popular, for example, is the Iris dataset.

Keywords: artificial intelligence; unsupervised machine learning; clustering; nonparametric density
estimation; inversion formula

MSC: 62G05; 62G07; 62G30

1. Introduction

Artificial intelligence was first mentioned in 1956, but it was not so widely applied
for a long time. Artificial intelligence has been widely used in recent decades. The ever-
increasing power of possible computations has driven the high availability, development,
and applications of artificial intelligence. Data mining is one of the most critical areas, as it
is not limited to business, manufacturing, or other services. For this reason, data research
has attracted a large number of researchers. Data clustering is one area of data mining
that falls into the class of data mining of unsupervised learning. Cluster analysis divides
data into different classes by discovering the internal structure of data set objects and their
relationship. Clustering aims to create groups of similar observations/elements. The most
similar elements, in this case, will be in one cluster and different elements in separate
clusters [1].

With the increasing application of data mining, cluster analysis of data is also being
applied in many areas: pattern recognition [2,3], bioinformatics [4,5], environment sci-
ences [6], feature selection [7,8], or to solve different healthcare tasks. Clustering algorithms
can be used to detect various diseases [9]. For example, different clustering techniques are
used to identify breast cancer [10], Parkinson’s disease [11,12], various psychological and
psychiatric disorders [13], heart diseases and diabetes [14], and Alzheimer’s disease [15,16],
among many others.
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Although there are many clustering methods, this problem is being addressed and
remains a complex issue. Different clustering methods often do not work well with all
data sets, and different methods are very much needed. Although one of the most widely
used algorithms currently used is the k-means, as these methods are fast-acting and work
well with certain data sets, there are still a lot of possible improvements to increase this
method’s accuracy.

Research focuses a lot on developing new density estimation procedures [17,18].
Moreover, in the last years, different scientists started to propose different robust density
estimation methods even based on neural networks. There are different researches on this
topic: Parzen neural networks [19], soft constrained neural networks [20], and others [21].
Some time ago, we presented a modified inversion formula for density estimation [22]. In
this research, we found that this density estimation works better with different data than
multiple density estimators. Therefore, we raised the hypothesis that modified inversion
formula density estimation would be suitable for data clustering. Due to these facts, this
paper aimed to present a new density clustering method based on the modified inversion
formula density estimation. This new method should allow one to improve the performance
and robustness of the k-means, Gaussian mixture model, and other methods. The main
process of the proposed clustering algorithm consists of three main steps. Firstly, we
initialized parameters and generated a T matrix. Secondly, we estimated the densities of
each point and cluster. Third, we updated mean, sigma, and phi matrices. To compare
results in this paper we used k-means, Gaussian mixture model (GMM), and Bayesian
Gaussian mixture model (BGMM) clustering methods.

This paper is organized as follows. In the Section 2, we present introduction of the
inversion formula and modified inversion formula density estimations and explain the
idea behind these estimations. Then, the process of the proposed algorithm is presented
in Section 2. In Section 3, we show empirical results with datasets used in the research,
evaluation metrics, and experimental results. Finally, conclusions and future work with the
new clustering method are given in Section 4

2. Estimation of the Density of the Modified Inversion Formula

Estimating probability density functions (pdf) is considered one of the most important
parts of statistical modeling. This feature allows us to express random variables as a
function of other variables while simultaneously allowing the detection of potentially
hidden relationships in the data. If distribution density f (x) satisfies the equation

f (x) =
q

∑
k=1

pk fk(x) = f (x, θ) (1)

the random vector X Rd satisfies the distribution mixture model. The formula above (1),
θ is a multi-dimensional parameter of the model. The function fk(x) is a function of the
distribution density. X is a d-dimensional random vector with a distribution density f (x).
Additionally, we have independent copies of X (X (1), . . . , X (n)) (sample of X).

We say that the sample satisfies the mixture model if X (t) satisfies (1). We call the size
n the sample size (volume). The parameter q is called the mixture number of components,
and pk is the a priori probability. They meet the following conditions:

pk > 0,
q

∑
k=1

pk = 1 (2)
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2.1. Gaussian Mixture and Inversion Density Estimation

It is important to notice that Projection (3) of the observations of the Gaussian mixture (1)
is also distributed by the (one-dimensional) Gaussian mixture model:

fτ(x) =
q

∑
k=1

pk,τ ϕ k,τ(x) = fτ(x, θτ) (3)

here ϕ k,τ(x) = ϕ (x; mk,τ , σ2
k,τ)—one-dimensional Gaussian density. Multivariate mix-

ture parameter and data projection distribution parameters θτ = (pk,τ , mk,τ , σ2
k,τ),

k = 1, . . . , q links equality
pj,τ = pj

mj,τ = τ′Mj
σ2

j,τ = τ′Rjτ
(4)

Using the inversion formula,

f (x) =
1

(2π)d

∫
Rd

e−it′xψ(t)dt (5)

where ψ(t) = Eeit′x denotes the characteristic function of the random variable X. First,
the set of projections directions T is selected. Additionally, the characteristic function is
changed using the following formula:

f̂ (x) =
A(d)
#T ∑

τ∈T

∞∫
0

e−iuτ′xψ̂τ(u)ud−1e−hu2
du (6)

where here and below, # denotes the number of elements in the set. With the formula for
the volume of a d-dimensional sphere

Vd(R) =
π

d
2 Rd

Γ
(

d
2 + 1

) =


π

d
2 Rd

( d
2 )!

, kai d mod 2 ≡ 0

2
d+1

2 π
d−1

2 Rd

d!! , kai d mod 2 ≡ 1
(7)

one can calculate the constant A(d) depending on the dimension of the data:

A(d) =
(Vd(1))

′
R

(2π)d =
d2−dπ−

d
2

Γ
(

d
2 + 1

) (8)

Simulation studies show that the density estimates of the inversion formula are discon-
tinuous/rough. The multiplier e−hu2

in the Formula (6) further smoothes the estimate f̂ (x)
with the Gaussian kernel function. It is worth noting that this form of the multiplier allows
analytical calculation of the value of the integral. Furthermore, results from extended
Monte Carlo studies have shown that using this multiplier reduces the estimation errors.
Formula (6) can be used for various estimates of the characteristic function of the projected
data. A parametric estimate of the characteristic function was used in the present case.

ψ̂τ(u) =
q̂τ

∑
k=1

p̂k,τeium̂k,τ−u2σ̂2
k,τ/2 (9)

The chosen form of the smoothing multiplier e−hu2
allows us to relate the smoothing

parameter h to the variances of the projection clusters.
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2.2. Modified Inversion Density Estimation

It is worth noting that the Gaussian mixture Model (1) described by the estimate
(where fk = ϕ k) only estimates the density of the distribution close to it well. This can
be seen as a drawback of the inversion formula method (9). The density estimation of the
inversion formula often becomes complicated due to a large number of components with
low a priori probability when the aim is to approximate the density under study with a
mixture of Gaussian distributions. This problem can be solved by using a noise cluster.

We discuss a modified density estimation algorithm based on a multivariate Gaussian
mixture model (Algorithm 1). However, first, let us define the parametric estimate of the
characteristic function of a uniform distribution density:

ψ̂(u) =
2

(b− a)u
sin

(b− a)u
2

·e
iu(a+b)

2 (10)

In the formula for calculating the density estimate, construct the estimate of the
characteristic Function 9 as a union of the characteristic functions of a mixture of Gaussian
distributions and a uniform distribution with corresponding a priori probabilities.

ψ̂τ(u) =
q̂τ

∑
k=1

p̂k,τeium̂k,τ−u2σ̂2
k,τ/2 + p̂0,τ

2
(b− a)u

sin
(b− a)u

2
·e

iu(a+b)
2 (11)

Here, the second term describes the noise cluster with an even distribution, and p̂0 is
the weight of the noise cluster,

a(τ) =
(
τ′x
)

min −
(τ′x)max − (τ′x)min

2(n− 1)
(12)

b(τ) =
(
τ′x
)

max +
(τ′x)max − (τ′x)min

2(n− 1)
. (13)

Algorithm 1: Clustering Algorithm Based on the Modified Inversion Formula Density
Estimation (MIDE)

Input: Data set X= [X1, X2, . . . , Xn], cluster number K
Output: C1, C2, _, Ct and M̂, p̂k, R̂
Possible initiation of mean vector:
(1) random uniform initialization
(2) k-means
(3) random point initialization
Generate a T matrix. The set T is calculated when the design directions are evenly spaced on
the sphere.

1 For i = 1: t do

2
Density estimation for each point and cluster based on (9)
Update M̂, p̂k, R̂ values based on (22, 23, 24)

4 End
5 Return C1, C2, _, Ct and M̂, p̂k, R̂

2.3. Modified Inversion Density Clustering Algorithm

This section aims to overview the critical aspects of the new modified inversion density
estimation (MIDE) clustering method (Algorithm 1). This clustering algorithm uses the EM
(expectation maximization) algorithm. The selection of the initial parameters of the EM
algorithm is of particular importance for the clustering results, as each new combination
of parameters can steer the cluster in a different direction. Random parameter selection
is one of the most commonly used solutions for parameter initialization [23,24]. Random
selection of initial parameters is a reasonably simple solution, as it is easy to implement.
However, one of the significant disadvantages of this method is that such initialization
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often results in significant deviations in the clustering results. In addition, the algorithm
uses a continuous partition to initialize the initial cluster centers.

p(x) =
1

b− a
(14)

In addition, another method of initialization presented in the software algorithm
solution is the selection of random points. In this case, the initial cluster centers are selected
not randomly from the entire space but by randomly selecting a point from the observations
in the data set. However, this selection also has several drawbacks, as randomly selected
points can be too close to each other, and selected points can also be exceptions in the data.

Hierarchical clustering can also be used to address the potential shortcomings of the
random cluster center selection method. For the first time, such a classification algorithm
that maintains a Gaussian mixture model to form a cluster tree was described by Fraley
in 1998 [25]. Maitra [26] proposed a hierarchical clustering based on mean connectivity
to obtain an initial model mean. Moreover, Meila and Heckerman [27] experimentally
demonstrated that an algorithm using a pattern-based distance measure is better than a
random method. This method is applied to the initial mean of the model. Perhaps the only
major drawback it has observed so far is that computer computations take a long time and
require a large amount of computer memory if there are many data.

One of the most commonly used methods for selecting cluster centers is the k-means
and other heuristic clustering methods. This is one of the most widely used initial param-
eters selection methods. In the case of the initialization of K-means, firstly, the random
cluster centers µ1, µ2, . . . , µk ∈ Rn are first selected, and then the procedure is performed
until convergence is achieved.

c(i) = argminj‖x(i) − µj‖2 (15)

µj =
∑m

i=1 1
{

c(i) = j
}

x(i)

∑m
i=1
{

c(i) = j
} (16)

Clustering using the modified inversion formula density estimation and the EM
algorithm is explained below. If the distribution density X of a random vector has
q maxima, then it can be approximated by a mixture of q single-mode distribution densities:

f (x) =
q

∑
k=1

pk fk(x) (17)

Suppose that the distribution of X depends on a random variable v, which acquires
the values 1, . . . , q with the corresponding probabilities p1, . . . , pq. In classification theory,
v is interpreted as the number of the class to which the observed object belongs. Thus, the
X(t) observations would correspond to v(t), t = 1, . . . , n. The functions fk are treated as the
density of the conditional distribution X under the condition v = k. Based on this approach,
loose clustering of the sample is understood as a posteriori probabilities.

πk(x) = P{υ = k|X = x} (18)

when all xε{X(1), . . . , X(n)}. Strict clustering of the sample would be an estimate of the
random variables v(1), . . . , v(n) Take a breakdown into subsets based on equality

v̂(t) = arg max
k=1,...,q

π̂k(X(t)) (19)

The estimates π̂k are obtained by approximating the unknown distribution den-
sity components with the density estimates of the inversion formula and using the EM
(expectation maximization) algorithm. We briefly describe it as follows. Suppose that
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Equation (15) holds and fk is the density function of the inversion formula for the Gaussian
mixture model, k = 1, . . . , q, where q is the number of the clusters. In this case (17), let
us denote the right side of the equation by f (x,θ), where θ = (pk, Mk, Rk, a, b, k = 1, . . . , q).
Equality applies:

πk(x) =
pk fk(x)
f (x, θ)

and k = 1, q (20)

Having an estimate of θ, the estimates of the probabilities πk (k-th cluster probability)
are obtained from (20) using the “embedding” method, i. y. replacing the unknown
parameters on the right with their statistical estimates. The EM algorithm is a reciprocal
procedure for estimating the maximum likelihood

θ∗ = argmax
θ

L(θ), L(θ) =
n

∏
t=1

f (X(t), θ) (21)

and to calculate the corresponding estimates π̂k. Several authors have independently proposed
this algorithm for Gaussian mixture analysis, including Hasselblad [28] and Behboodian [29].
Its properties were later well examined in refs. [30–32] and other works. The EM algorithm
has received much attention in various review articles and monographs [33–35]. Suppose
that after r cycles, we obtain the estimates π̂k = π̂

(r)
k . The new estimate θ̂ = θ̂(r+1) is then

defined by the equations:

p̂k =
1
n

n

∑
t=1

π̂k(X(t)) (22)

M̂(k) =
1

np̂k

n

∑
t=1

π̂k(X(t)) · X(t) (23)

R̂(k) =
1

np̂k

n

∑
t=1

π̂k(X(t))[X(t)− M̂(k)] · [X(t)− M̂(k)]′ (24)

where k = 1, . . . , q. Entering θ̂(r+1) to the right of (20), we find π̂(r+1)(X(t)), k = 1, q,
t = 1, n. As a result of this recursive procedure, we obtain a non-decreasing sequence
L(θ̂(r)), but whether it converges to the point of the global maximum depends very much
on the initial estimate θ̂(0) (or π̂(0)).

In the case of the high mixture model (GMM), the best number of clusters is selected
based on the information criterion. This algorithm’s most commonly used information
criteria are AIC, BIC, and others. When these information criteria reach their global
minimum or maximum, an optimal number of clusters can be said to have been reached.
However, there are also some problems in applying these criteria. First, it is necessary to
calculate the global maximum of the function as the maximum value of the local maxima,
but sometimes this is performed with exceptions. Therefore, applying any procedure
cannot guarantee that such a global maximum will be found in such a case.

On the other hand, applying these criteria assumes that one of the parametric methods
being compared is correct. This assumption makes the criterion unstable. The arguments
presented to raise the question of whether it may be worthwhile to use nonparametric
criteria to test the adequacy of the distribution mix model. Several problems can be
encountered if the correct number of clusters is not selected. If the number of components
selected is too small, then no clear clusters are formed, and one cluster includes more.
Meanwhile, if the selected number of clusters is too large, it is much more challenging
to calculate clusters in the first place, and less generalizing clusters are also obtained.
An attempt to accurately select the number of clusters was provided by Xie, et al. [36],
in which an adaptive selection of components/clusters of the Gaussian mixture model
was proposed.
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3. Experimental Analyses

This section provides information about the modified inversion function based on the
proposed clustering method. This section consists of three parts. The first part provides
information on the clustering assessment methods used in the empirical study. The second
part of this chapter provides information on the data sets used in the study. Finally, the
third part of the chapter presents the study’s main results.

3.1. Evaluation Metrics

This section presents the main evaluation metrics used in the empirical study. In order
to evaluate the results of clustering, it is essential to choose the appropriate evaluation
metrics, as they can also determine the evaluation of clustering. In this study, clustering
methods were used to compare J-Score [37], Normalized Mutual Information (NMI) [38],
Adjusted Rand Index (ARI) [39] and Accuracy (ACC) [40], and The Fowlkes–Mallows index
(FMI) [41]. These metrics were chosen based on the fact that the actual data clusters are
known in advance because if the clusters were not known in advance, then the evaluation
metrics could be: Calinski and Harabasz score, also known as Variance Ratio Criterion [42],
Davies–Bouldin score [43], or others.

J-score. Ahmadinejad and Liu [37] suggested a new clustering evaluation metric,
J-score. The J-score is a simple and robust measure of clustering accuracy. It addresses the
matching problem and reduces the risk of overfitting that challenge existing accuracy mea-
sures [37]. Bidirectional set matching: Suppose a dataset contains N datapoints belonging
to T true classes, and cluster analysis produces K hypothetical clusters. To establish the
correspondence between T and K, we first considered each class as reference and identify
its best-matched cluster (T→K). Specifically, for a class t∈T, we searched for a cluster
k∈K that has the highest Jaccard index,

It = max
k∈K

|Vt ∩Vk|
|Vt ∪Vk|

(25)

where Vt and Vk are the set of datapoints belonging to class t and cluster k, respectively,
and|·| denotes the size of a set. We then considered each cluster as a reference and
identified its best-matched class (K→T) using a similar procedure. For a cluster k∈K, we
searched for a class t∈T with the highest Jaccard index,

Ik = max
t∈T

|Vt ∩Vk|
|Vt ∪Vk|

(26)

Calculating overall accuracy: To quantify the accuracy, we aggregated Jaccard indices
of individual clusters and classes, accounting for their relative sizes (i.e., number of data
points). We first calculated a weighted sum of It across all classes as R = ∑

t∈T

(
Vt
N It

)
, and

a weighted sum of Ik across all clusters as P = ∑
k∈K

(
Vk
N Ik

)
. We then took their harmonic

mean as J score,

J =
2× R× P

R + P
(27)

To work with this metric, we implemented the calculation of the J-score metric in the
Python programming language. The program code is available in Appendix A.

Normalized Mutual Information (NMI). The mutual information (MI) of two random
variables is a measure of the mutual dependence of the two variables. MI normalization
was performed for greater comparability and better interpretation, and the NMI metric
was obtained. The values of this metric can range from 0 to 1.0; in this case, zero would in-
dicate no relationship between the variables, while one would indicate a perfect correlation.
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NMI =
MI(Y′, Y)√
H(Y′)H(Y)

(28)

Here, Y′ are the predicted labels and Y are the actual classes known in advance.
MI(Y′, Y) is the mutual information between predicted labels and actual labels. This
formula also uses the entropy H(∗) of predicted labels and actual labels.

Adjusted Rand Index (ARI). The Rand index evaluates the similarity between two
clusters. Pairs of all observations are used to calculate this similarity. When calculating this
index, there are observations in the assignment to clusters, and how this coincides with the
real labels of the clusters.

ARI =
2(ad− bc)

(a + b)(b + d) + (a + c)(c + d)
(29)

In the given formula, a is a number that describes how many data points are correctly
assigned to a cluster. B is the number of observations in a pair assigned to the same cluster
(predicted and actual cluster values match). Here, c is the number of observations in a pair
for which the predicted cluster matches, but the actual cluster values do not match. Finally,
D is the number of data points in a pair that neither the predicted case nor the actual case
belongs to the same cluster.

Accuracy (ACC). Accuracy is often used to measure the quality of classification. It is
also used for clustering. It is calculated as the sum of the diagonal elements of the confusion
matrix, divided by the number of samples to obtain a value between 0 and 1.

ACC =
1
N

k

∑
i=1

ni (30)

where N is the total number of data points in the dataset, ni is the number of data points
correctly divided into the corresponding cluster i, and k is the cluster number.

The Fowlkes–Mallows index (FMI). The Fowlkes–Mallows score FMI is defined as
the geometric mean of pairwise precision and recall.

FMI =
TP√

(TP + FP)(TP + FN)
(31)

True Positive (TP) is the number of pairs of points belonging to the same clusters (true
label = predicted label). False Positive (FP) is the number of the points that belong to the
same cluster in the true labels but do not belong to the same cluster in the predicted clusters.
False Negative (FN) is the number of the pairs of points that belong in the same clusters in
the predicted labels and not in the true labels. The higher the metric value, the better the
cluster separation is (the maximum possible value of the metric is 1, and the minimum is 0).

3.2. Experimental Datasets

To test the developed method and compare it with other methods, 25 data sets were
used in this study. Data sets can be divided into three categories: synthetic, real, and
generated data with outliers. Synthetic data sets are data sets that have been generated by
other authors and are often used in research on clustering methods. Actual datasets include
datasets such as Iris, Wine, Diabetes, and others, and these datasets are also selected based
on datasets used by other authors. The third category of generated data with outliers is
generated as Gaussian data, including a certain amount of outliers: 0.5%, 1%, 2%, and 4%.
These datasets aim to evaluate how different methods work with data with an appropriate
amount of outliers. The table below (see Table 1) shows the data sets used.
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Table 1. A description of the data set used.

ID Data Sets Sample Size
(N) Dimensions (D) Classes

Synthetic

1 Aggregation 788 2 7
2 Atom 800 3 2
3 D31 3100 2 31
4 R15 600 2 15
5 Gaussians1 100 2 2
6 Threenorm 1000 2 2
7 Twenty 1000 2 20
8 Wingnut 1016 2 2

Real

9 Breast 570 30 2
10 CPU 209 6 4
11 Dermatology 366 17 6
12 Diabetes 442 10 4
13 Ecoli 336 7 8
14 Glass 214 9 6
15 Heart-statlog 270 13 2
16 Iono 351 34 2
17 Iris 150 4 3
18 Wine 178 13 3
19 Thyroid 215 5 3

Generated clusters with outliers

20 2 clusters (0.5% outliers) 1005 2 2
21 2 clusters (1% outliers) 1010 2 2
22 2 clusters (2% outliers) 1020 2 2
23 2 clusters (4% outliers) 1040 2 2
25 3 clusters (0.5% outliers) 1005 2 3
26 3 clusters (1% outliers) 1010 2 3
27 3 clusters (2% outliers) 1020 2 3
28 3 clusters (4% outliers) 1040 2 3

3.3. Performances of Clustering Methods

To avoid the possible influence of successful parameter initialization on test results, all
experiments were performed 10,000 times. For the k-means method, initial cluster centers
were randomly selected based on the 100 runs best solutions. For GMM (Gaussian Mixture
Model), BGMM (Bayesian Gaussian Mixture Model) and clustering based on modified
inversion density estimation (MIDE) initial center were selected based on the k-means
centers initialization. The following table provides information on the Accuracy metric
values for the different clustering algorithms. Other evaluation metrics like NMI, ARI, FMI,
and J-Score can be found in the Appendix B tables.

The accuracy results for different datasets are presented in Table 2. It can be seen that
the new method based on the inversion formula works quite well with different datasets
compared with K-means, Gaussian Mixture Model (GMM), and Bayesian Gaussian Mixture
model (BGMM).
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Table 2. Different models were comparative (means and standard deviation) based on the accuracy
(ACC) for 10,000 runs.

Dataset K-Means GMM BGMM MIDEv1 MIDEv2
Mean Std Mean Std Mean Std Mean Std Mean Std

Synthetic

Aggregation 0.857 0.005 0.835 0.075 0.907 0.042 0.889 0.008 0.895 0.009
Atom 0.710 0.002 0.618 0.028 0.637 0.022 0.723 0.002 0.746 0.004
D31 0.972 0.015 0.928 0.028 0.601 0.022 0.721 0.017 0.723 0.013
R15 0.997 0.000 0.979 0.036 0.669 0.011 0.768 0.008 0.855 0.007

Gaussians1 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000
Threenorm 0.591 0.001 0.612 0.047 0.549 0.006 0.649 0.003 0.679 0.003

Twenty 1.000 0.000 0.985 0.029 0.838 0.075 - - - -
Wingnut 0.909 0.000 0.964 0.000 0.965 0.000 0.876 0.000 0.880 0.000

Real

Breast 0.908 0.003 0.940 0.001 0.933 0.001 - - - -
CPU 0.738 0.008 0.574 0.073 0.590 0.093 0.808 0.007 0.828 0.006

Dermatology 0.739 0.044 0.737 0.080 0.756 0.109 - - - -
Diabetes 0.356 0.010 0.419 0.043 0.439 0.033 0.420 0.008 0.448 0.007

Ecoli 0.649 0.013 0.753 0.018 0.739 0.006 0.714 0.011 0.754 0.009
Glass 0.447 0.016 0.468 0.025 0.483 0.025 0.465 0.013 0.487 0.017

Heart-statlog 0.837 0.002 0.794 0.045 0.791 0.045 - - - -
Iono 0.707 0.000 0.810 0.029 0.803 0.023 - - - -
Iris 0.831 0.007 0.953 0.065 0.838 0.049 0.933 0.006 0.955 0.005

Wine 0.966 0.000 0.953 0.048 0.977 0.038 0.943 0.003 0.953 0.004
Thyroid 0.874 0.000 0.953 0.029 0.917 0.035 0.754 0.007 0.778 0.009

Generated blobs with outliers

2 clusters (0.5% outliers) 0.995 0.000 0.995 0.000 0.995 0.000 0.995 0.000 1.000 0.000
2 clusters (1% outliers) 0.989 0.000 0.990 0.000 0.990 0.000 0.990 0.000 0.996 0.000
2 clusters (2% outliers) 0.979 0.000 0.980 0.000 0.980 0.000 0.981 0.000 0.997 0.000
2 clusters (4% outliers) 0.961 0.000 0.962 0.000 0.962 0.000 0.964 0.000 0.996 0.000

3 clusters (0.5% outliers) 0.994 0.000 0.994 0.000 0.994 0.000 0.994 0.000 0.999 0.000
3 clusters (1% outliers) 0.989 0.000 0.989 0.000 0.989 0.000 0.989 0.000 0.997 0.000
3 clusters (2% outliers) 0.979 0.000 0.979 0.000 0.979 0.000 0.981 0.000 0.997 0.000
3 clusters (4% outliers) 0.961 0.000 0.951 0.000 0.945 0.000 0.965 0.000 0.996 0.000

Bold underlined values indicate best results for each dataset.

4. Discussion

Research focuses a lot on developing new density estimation procedures [17,18].
Moreover, in the last years, different scientists started to propose different robust density
estimation methods even based on neural networks such as Parzen neural networks [19],
soft constrained neural networks [20], and others [21]. This paper presented a new cluster-
ing method based on the modified inversion formula density estimation (MIDE). This new
method improves the performance and robustness of the k-means, Gaussian mixture model,
and other methods. Method working: Firstly, we initialized parameters and generated
a T matrix. Secondly, we estimated the densities of each point and cluster based on the
modified inversion formula. Third, we updated mean, sigma, and phi matrices. Based on
the results presented earlier, it is possible to conclude that the newly presented method
works well with different clustering datasets even if the datasets do not have any outliers.
Results based on the generated clusters data with outliers showed that the newly presented
method (MIDEv2) works the best in all situations (0.5%, 1%, 2%, and 4%). Based on the
accuracy metric with all of these datasets, accuracy was higher than 0.995. The interesting
point is that a new method based on the inversion formula can cluster the data even if
data do not have outliers; one of the most popular, for example, is the Iris data set. When
we compared the accuracy results in other datasets, it can be mentioned that the MIDE
method achieved 0.955 accuracy on the Iris dataset compared with the second-best GMM
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method with 0.953 accuracy; using the ARI metric for this dataset, MIDE methods as well
showed better results compared with other methods. Based on the NMI, J-Score, and FMI
metrics (see Table A1), a better method for the Iris dataset would be GMM. It is hard to
compare and use multiple metrics because, in this research, we used accuracy as our main
metric. After all, all datasets have labels, and it is possible to calculate accuracy of our
clustering methods. Compared with other researchers’ results in the past, Sun et al. were
able to achieve 0.925 accuracy with the SVC-KM approach [44], and Hyde and Angelov
achieved 0.950 accuracy with DDC (Data Density-Based Clustering) [45]. Additonally, it is
notable that the MIDE method has a lower standard deviation than other methods used
in this research. It is worth mentioning that this method also has limitations. Based on
the experimental study, this one method in the current state can not work with higher
dimensional data (d > 15). This occurs due to T matrix generation; as dimensions grow,
finding a suitable T matrix becomes harder. This one will be solved in the future versions
of the model; we will present more about it in future work. Another method problem is
speed; the current stage method is slower than other methods, but this problem can be
solved with parallelization of the process on the programming side. The future direction of
the newly created method is this method application for deep clustering. It can be seen that
MIDEv1 and MIDEv2 methods do not work very well with higher-dimension data. Due to
that, the deep clustering method with an encoder structure could solve this problem.
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Appendix A

J-score metric calculation program code with Python language
import numpy as np
def JScore(truth, pred):

if (len(truth) == len(pred)):
print(“Equal lengths”)

A = np.empty([0, len(truth)], bool)
test = list(set(pred))
for i in test:

A = np.vstack([A, (np.array(pred) == i)])
suma = A.sum(axis=1)
B = np.empty([0, len(truth)], bool)
test = list(set(truth))
for i in test:

B = np.vstack([B, (np.array(truth) == i)])
suma2 = B.sum(axis=1)
C = np.empty([len(suma), len(suma2)], float)
for i in range(0, len(suma)):

for j in range(0, len(suma2)):
C[i, j] = sum(A[i,] & B[j,])/sum(A[i,] | B[j,])
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M1 = sum(np.amax(C, axis=1) * suma)/A.shape[1]
M11 = sum(np.amax(C, axis=0) * suma2)/A.shape[1]
M2 = 2 * M1 * M11/(M1 + M11)
return M2

else:
print(‘Truth and Pred have different lengths.’)

Appendix B

Table A1. Comparative table of different models (means and standard deviation) based on Normal-
ized Mutual Information (NMI) for 10,000 runs.

Dataset K-Means GMM BGMM MIDEv1 MIDEv2

Mean Std Mean Std Mean Std Mean Std Mean Std

Synthetic

Aggregation 0.836 0.004 0.886 0.035 0.909 0.041 0.779 0.006 0.845 0.005
Atom 0.289 0.003 0.170 0.036 0.194 0.028 0.310 0.004 0.319 0.003
D31 0.969 0.005 0.951 0.008 0.871 0.004 0.791 0.007 0.822 0.006
R15 0.994 0.000 0.989 0.012 0.868 0.014 0.881 0.001 0.909 0.001

Gaussians1 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000
Threenorm 0.024 0.001 0.047 0.039 0.007 0.002 0.069 0.001 0.076 0.001

Twenty 1.000 0.000 0.996 0.008 0.956 0.026 1.000 0.000 0.988 0.005
Wingnut 0.562 0.000 0.778 0.002 0.779 0.000 0.459 0.000 0.420 0.001

Real

Breast 0.547 0.011 0.659 0.003 0.630 0.003 - - - -
CPU 0.487 0.013 0.398 0.025 0.389 0.033 0.467 0.013 0.529 0.011

Dermatology 0.862 0.009 0.809 0.044 0.862 0.049 - - - -
Diabetes 0.090 0.004 0.084 0.041 0.105 0.017 0.089 0.004 0.106 0.003

Ecoli 0.636 0.004 0.636 0.016 0.639 0.010 0.592 0.004 0.534 0.004
Glass 0.303 0.019 0.327 0.052 0.364 0.042 0.304 0.020 0.369 0.024

Heart-statlog 0.363 0.005 0.270 0.055 0.263 0.058 0.339 0.008 0.308 0.007
Iono 0.125 0.000 0.305 0.052 0.299 0.024 - - - -
Iris 0.657 0.006 0.890 0.04 0.751 0.011 0.841 0.007 0.763 0.008

Wine 0.876 0.000 0.856 0.055 0.926 0.054 0.822 0.001 0.799 0.003
Thyroid 0.559 0.000 0.783 0.059 0.661 0.051 0.382 0.009 0.390 0.008

Generated clusters with outliers

2 clusters (0.5% outliers) 0.976 0.000 0.976 0.000 0.976 0.000 0.977 0.000 1.000 0.000
2 clusters (1% outliers) 0.947 0.000 0.957 0.000 0.957 0.000 0.958 0.000 0.974 0.000
2 clusters (2% outliers) 0.916 0.000 0.925 0.000 0.925 0.000 0.928 0.000 0.976 0.000
2 clusters (4% outliers) 0.867 0.000 0.876 0.000 0.876 0.000 0.886 0.000 0.972 0.000

3 clusters (0.5% outliers) 0.978 0.000 0.978 0.000 0.978 0.000 0.978 0.000 0.993 0.000
3 clusters (1% outliers) 0.964 0.000 0.964 0.000 0.964 0.000 0.964 0.000 0.986 0.000
3 clusters (2% outliers) 0.943 0.000 0.943 0.000 0.943 0.000 0.945 0.000 0.985 0.000
3 clusters (4% outliers) 0.907 0.000 0.901 0.000 0.898 0.000 0.911 0.000 0.982 0.000

Bold underlined values indicate best results for each dataset.
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Table A2. Comparative analysis of different models (means and standard deviation) based on the
adjusted Rand Index (ARI) for 10,000 runs.

Dataset K-Means GMM BGMM MIDEv1 MIDEv2

Mean Std Mean Std Mean Std Mean Std Mean Std

Synthetic

Aggregation 0.725 0.008 0.795 0.069 0.860 0.089 0.687 0.035 0.862 0.023
Atom 0.176 0.003 0.058 0.028 0.076 0.024 0.204 0.006 0.221 0.004
D31 0.949 0.016 0.903 0.027 0.634 0.017 0.494 0.037 0.529 0.026
R15 0.993 0.000 0.975 0.036 0.608 0.020 0.747 0.021 0.786 0.018

Gaussians1 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000 1.000 1.000
Threenorm 0.032 0.001 0.058 0.045 0.009 0.002 0.088 0.003 0.089 0.002

Twenty 1.000 0.000 0.986 0.028 0.836 0.096 1.000 0.000 1.000 0.000
Wingnut 0.670 0.000 0.862 0.001 0.863 0.000 0.565 0.007 0.533 0.005

Real

Breast 0.664 0.008 0.772 0.003 0.747 0.003 - - - -
CPU 0.529 0.014 0.315 0.070 0.336 0.081 0.461 0.043 0.708 0.026

Dermatology 0.712 0.038 0.697 0.096 0.728 0.112 - - - -
Diabetes 0.058 0.003 0.059 0.046 0.079 0.028 0.059 0.005 0.086 0.002

Ecoli 0.505 0.008 0.649 0.011 0.665 0.014 0.551 0.013 0.423 0.015
Glass 0.162 0.014 0.178 0.055 0.211 0.040 0.151 0.024 0.229 0.011

Heart-statlog 0.451 0.005 0.352 0.072 0.344 0.075 0.422 0.013 0.452 0.011
Iono 0.168 0.000 0.383 0.066 0.368 0.049 - - - -
Iris 0.617 0.009 0.888 0.077 0.654 0.030 0.819 0.029 0.888 0.008

Wine 0.897 0.000 0.869 0.072 0.932 0.063 0.835 0.031 0.865 0.012
Thyroid 0.583 0.000 0.850 0.075 0.735 0.074 0.297 0.045 0.356 0.015

Generated blobs with outliers

2 clusters (0.5% outliers) 0.991 0.000 0.990 0.000 0.990 0.000 0.993 0.000 1.000 0.000
2 clusters (1% outliers) 0.976 0.000 0.980 0.000 0.980 0.000 0.980 0.000 0.992 0.000
2 clusters (2% outliers) 0.957 0.000 0.961 0.000 0.961 0.000 0.961 0.000 0.989 0.000
2 clusters (4% outliers) 0.920 0.000 0.924 0.000 0.924 0.000 0.928 0.000 0.990 0.000

3 clusters (0.5% outliers) 0.990 0.000 0.990 0.000 0.990 0.000 0.991 0.000 0.997 0.000
3 clusters (1% outliers) 0.982 0.000 0.982 0.000 0.982 0.000 0.984 0.000 0.993 0.000
3 clusters (2% outliers) 0.967 0.000 0.967 0.000 0.967 0.000 0.967 0.000 0.993 0.000
3 clusters (4% outliers) 0.938 0.000 0.925 0.000 0.918 0.000 0.941 0.000 0.992 0.000

Bold underlined values indicate best results for each dataset.

Table A3. Comparative table of different models (means and standard deviation) based on the J-Score
for 10,000 runs.

Dataset K-Means GMM BGMM MIDEv1 MIDEv2

Mean Std Mean Std Mean Std Mean Std Mean Std

Synthetic

Aggregation 0.780 0.007 0.800 0.071 0.870 0.062 0.831 0.009 0.871 0.012
Atom 0.556 0.002 0.501 0.004 0.503 0.005 0.575 0.004 0.582 0.004
D31 0.951 0.017 0.901 0.029 0.581 0.019 0.556 0.031 0.609 0.042
R15 0.993 0.000 0.975 0.038 0.664 0.011 0.756 0.041 0.834 0.027

Gaussians1 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000
Threenorm 0.420 0.001 0.443 0.050 0.381 0.005 0.481 0.003 0.496 0.004

Twenty 1.000 0.000 0.984 0.030 0.838 0.075 1.000 0.002 0.986 0.005
Wingnut 0.834 0.000 0.931 0.001 0.932 0.000 0.779 0.000 0.808 0.000
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Table A3. Cont.

Dataset K-Means GMM BGMM MIDEv1 MIDEv2

Mean Std Mean Std Mean Std Mean Std Mean Std

Real

Breast 0.833 0.004 0.887 0.001 0.874 0.002 - - - -
CPU 0.656 0.013 0.489 0.058 0.500 0.077 0.733 0.011 0.751 0.010

Dermatology 0.719 0.038 0.699 0.079 0.730 0.106 - - - -
Diabetes 0.252 0.004 0.283 0.033 0.299 0.028 0.275 0.008 0.307 0.004

Ecoli 0.557 0.009 0.655 0.018 0.663 0.006 0.606 0.008 0.663 0.007
Glass 0.340 0.010 0.362 0.036 0.365 0.032 0.397 0.012 0.412 0.009

Heart-statlog 0.720 0.003 0.663 0.043 0.659 0.045 0.714 0.005 0.727 0.004
Iono 0.549 0.000 0.686 0.018 0.673 0.031 - - - -
Iris 0.730 0.008 0.923 0.064 0.752 0.029 0.889 0.012 0.905 0.009

Wine 0.935 0.000 0.917 0.052 0.958 0.046 0.904 0.012 0.917 0.011
Thyroid 0.787 0.000 0.914 0.035 0.856 0.038 0.639 0.007 0.675 0.008

Generated blobs with outliers

2 clusters (0.5% outliers) 0.993 0.000 0.993 0.000 0.993 0.000 0.993 0.000 1.000 0.000
2 clusters (1% outliers) 0.983 0.000 0.985 0.000 0.985 0.000 0.985 0.000 0.991 0.000
2 clusters (2% outliers) 0.969 0.000 0.971 0.000 0.971 0.000 0.972 0.000 0.994 0.000
2 clusters (4% outliers) 0.942 0.000 0.944 0.000 0.944 0.000 0.946 0.000 0.996 0.000

3 clusters (0.5% outliers) 0.991 0.000 0.991 0.000 0.991 0.000 0.993 0.000 0.998 0.000
3 clusters (1% outliers) 0.983 0.000 0.983 0.000 0.983 0.000 0.985 0.000 0.995 0.000
3 clusters (2% outliers) 0.969 0.000 0.969 0.000 0.969 0.000 0.972 0.000 0.994 0.000
3 clusters (4% outliers) 0.941 0.000 0.932 0.000 0.927 0.000 0.945 0.000 0.993 0.000

Bold underlined values indicate best results for each dataset.

Table A4. Different models were compared (means and standard deviation) based on the Fowlkes–
Mallows index (FMI) for 10,000 runs.

Dataset K-Means GMM BGMM MIDEv1 MIDEv2

Mean Std Mean Std Mean Std Mean Std Mean Std

Synthetic

Aggregation 0.785 0.006 0.840 0.055 0.891 0.070 0.875 0.011 0.867 0.015
Atom 0.654 0.001 0.653 0.006 0.649 0.003 0.659 0.002 0.669 0.003
D31 0.951 0.015 0.906 0.025 0.681 0.012 0.645 0.011 0.689 0.016
R15 0.993 0.000 0.977 0.033 0.682 0.016 0.779 0.011 0.817 0.009

Gaussians1 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000
Threenorm 0.518 0.000 0.535 0.030 0.514 0.002 0.552 0.002 0.559 0.003

Twenty 1.000 0.000 0.987 0.026 0.857 0.075 1.000 0.000 0.984 0.004
Wingnut 0.835 0.000 0.931 0.001 0.932 0.000 0.792 0.001 0.764 0.001

Real

Breast 0.847 0.004 0.893 0.001 0.881 0.001 - - - -
CPU 0.771 0.006 0.619 0.052 0.633 0.065 0.802 0.012 0.871 0.009

Dermatology 0.769 0.030 0.760 0.074 0.784 0.087 - - - -
Diabetes 0.326 0.002 0.382 0.017 0.378 0.028 0.375 0.008 0.389 0.007

Ecoli 0.625 0.006 0.740 0.008 0.762 0.009 0.678 0.006 0.698 0.006
Glass 0.393 0.012 0.435 0.058 0.437 0.048 0.540 0.021 0.519 0.015

Heart-statlog 0.734 0.002 0.683 0.026 0.679 0.028 0.724 0.011 0.737 0.009
Iono 0.601 0.000 0.711 0.004 0.698 0.023 - - - -
Iris 0.743 0.006 0.927 0.041 0.781 0.011 0.899 0.005 0.877 0.005

Wine 0.932 0.000 0.914 0.042 0.955 0.038 0.895 0.011 0.886 0.008
Thyroid 0.841 0.000 0.931 0.023 0.888 0.022 0.705 0.013 0.736 0.009
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Table A4. Cont.

Dataset K-Means GMM BGMM MIDEv1 MIDEv2

Mean Std Mean Std Mean Std Mean Std Mean Std

Generated blobs with outliers

2 clusters (0.5% outliers) 0.995 0.000 0.995 0.000 0.995 0.000 0.996 0.000 1.000 0.000
2 clusters (1% outliers) 0.988 0.000 0.990 0.000 0.990 0.000 0.990 0.000 0.994 0.000
2 clusters (2% outliers) 0.978 0.000 0.980 0.000 0.980 0.000 0.981 0.000 0.996 0.000
2 clusters (4% outliers) 0.960 0.000 0.961 0.000 0.951 0.000 0.963 0.000 0.995 0.000

3 clusters (0.5% outliers) 0.993 0.000 0.993 0.000 0.993 0.000 0.993 0.000 0.998 0.000
3 clusters (1% outliers) 0.988 0.000 0.988 0.000 0.988 0.000 0.991 0.000 0.996 0.000
3 clusters (2% outliers) 0.978 0.000 0.978 0.000 0.978 0.000 0.981 0.000 0.996 0.000
3 clusters (4% outliers) 0.959 0.000 0.951 0.000 0.948 0.000 0.964 0.000 0.995 0.000

Bold underlined values indicate best results for each dataset.
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