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Abstract: Digital image correlation is an experimental optical non-contact full field displacement
and strain evaluation method based on the surface subsets tracking with photo cameras, digital
images processing, and numerical computation. However, the full field of strain computation is a
challenging problem, mainly because the displacement field to be differentiated is not continuous,
individual subsets are tracked by the optical digital image correlation system. Moreover, the numeri-
cal differentiation can also amplify the noise of the displacement field inducing thus strain errors
when the displacement data are poor. The peridynamics theory (which equations are cast in terms of
spatial integrals of displacements, instead of spatial derivatives in the classical continuum mechanics)
based algorithm is considered in this study and applied for the experimental digital image correlation
displacement field to analyze possible peridynamic differentiation method advantages. A strains
convergence analysis between the digital image correlation and peridynamic differentiation methods
is done in this study. The integro-differential strain calculation as an alternative method is validated
against digital image correlation and finite element simulation strain fields. It is also shown that the
digital image correlation, a noisy displacement field, still provides an accurate and low level noise
strain evaluation based on the proposed method.

Keywords: strain field; digital image correlation; peridynamics; differentiation; peridynamic
differential operator

1. Introduction

Developed in early 1980s, digital image correlation (DIC) system is an optical ex-
perimental method based on digital image processing and numerical computing [1–3] to
measure full field displacement and strain on almost any solid material surface. The results
of DIC are readily comparable with finite element (FE) results [4] or strain gauges [5]. Since
the beginning of the DIC system development, its working principles and errors estimation
has always been an interesting area of research. Pan et al. [1] and Sutton et al. [3] described
the DIC system working principles and McCluskey [6], Bornert et al. [7], Siebert et al. [8]
identified possible error sources which can cause displacement and strain measurement errors.

While the full field displacement can be directly calculated based on comparing
subsets in images taken from deformed and undeformed object surface, the full field
strain evaluation requires additional post-processing of the discrete displacement data
points, namely numerical differentiation, which is based on interpolation functions of the
discrete displacement field applied over subset areas of the entirely full field area, which
subsets are defined according to an user-specified size and step periodicity. Numerical
differentiation in mathematical theory is considered as an “unstable and risky operation” [9].
First of all, differentiation-based methods face with deficiencies for problems involving
discrete/discontinuous fields. Further, finite difference approaches are sensitive to noise.
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Pan et al. [10] demonstrated that if the measurement error of displacements is ±0.02 px
and the DIC grid step is 5 pixels, then the error of strain calculation by forward difference
is 8000 µε. An error of this magnitude will hide the underlying strain information and
the strain result will be worthless in most cases. The problem of strain measurement for
a plate with circular hole under tension from the 2D DIC challenge 1.0 Sample 12 [11]
was analyzed by several authors [12–14] (Figure 1). The exact strain solution for this
problem is not given and can be only predicted by comparing with FE simulation or other
numerical/experimental methods.
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introduced, leading to poor accuracy. Conversely, resolving steep gradients leads to a 
highly oscillatory solution [15,16]. 

In order to overcome this issue, several improved differentiation techniques in DIC 
were offered. Zhao et al. [17] used modified Hermite finite element approach to ensure 
the smoothness and continuity of the strain field. A new nonlocal strain calculation 
method for DIC systems, based on a Kernel function built up from tensor products of 
functions that integrate to zero over domain, was proposed by Turner et al. [12]. The 
method is effective for problems with step gradients and when the displacement data is 
noisy. This specially applies to the fracture experiments [18,19] due to traditional DIC dif-
ferentiation algorithms difficulties obtaining crack paths. In addition to this, other ap-
proaches were proposed to solve the differentiation issue in discontinuous DIC field. 
Chen et al. [20] developed a two-step X-DIC to minimize the errors in computing discon-
tinuous full-field displacements. Fagerholt et al. [21], Yang and Bhattacharya [22] used 
mesh adaptations for measuring discontinuous fields in specimens with cracks. Similar 
technique based on both computed displacement and strain correlation was introduced 
by Yang et al. [23]. Methods relying on a subset split strategies measuring the 

Figure 1. Plot (replicated from [12–14]) of the DIC evaluated strain for a plate with hole loaded in
tension for various values of the DIC step.

It is visible from Figure 1 that increasing the DIC step size leads to a smoother strain
profile but decreases accuracy due to the averaging effect of a larger DIC virtual strain
gauge [12–14]. The strain results lead to the necessity to find the trade-off between accuracy
and smoothness. Large strain gradients cannot be captured if too much smoothing is
introduced, leading to poor accuracy. Conversely, resolving steep gradients leads to a
highly oscillatory solution [15,16].

In order to overcome this issue, several improved differentiation techniques in DIC
were offered. Zhao et al. [17] used modified Hermite finite element approach to ensure the
smoothness and continuity of the strain field. A new nonlocal strain calculation method for
DIC systems, based on a Kernel function built up from tensor products of functions that
integrate to zero over domain, was proposed by Turner et al. [12]. The method is effective
for problems with step gradients and when the displacement data is noisy. This specially
applies to the fracture experiments [18,19] due to traditional DIC differentiation algorithms
difficulties obtaining crack paths. In addition to this, other approaches were proposed
to solve the differentiation issue in discontinuous DIC field. Chen et al. [20] developed a
two-step X-DIC to minimize the errors in computing discontinuous full-field displacements.
Fagerholt et al. [21], Yang and Bhattacharya [22] used mesh adaptations for measuring
discontinuous fields in specimens with cracks. Similar technique based on both computed
displacement and strain correlation was introduced by Yang et al. [23]. Methods relying
on a subset split strategies measuring the “displacement jumps” due to discontinuity and
displacements and strains around the discontinuity were also developed [24,25].



Appl. Sci. 2022, 12, 6550 3 of 20

The non-local peridynamics (PD) theory of continuum mechanics based on integral
formulation of the equations of motion was developed by Silling in 2000 [26]. Due to not
including local spatial derivatives into the formulation, the PD theory is very promising
for applications to discontinuous fields [27,28]. Although the PD theory is defined in
terms of the stretch between material points and the conventional continuum mechanics
quantities of strain and stress are not PD theory conventional parameters, strains can still
be retrieved in PD by the use of the PD integro-differentiation. The peridynamic differential
operator (PDDO) was created for this purpose [29]. PDDO is always valid, even in the case
of discontinuity. Madenci et al. [29–31] demonstrated other possible applications of the
PDDO, for example, signal and images processing, data smoothing and noise reduction,
data compression and recovery, interpolation and other mathematical operations.

Coupling between the two aforementioned methods, namely the experimental DIC
and the computational PD, has also been of recent interest. Madenci et al. [32] used PD
for tracking crack propagation paths. In their study displacements are imported from DIC
measurements and used to calculate crack path using the PD simulation and PD damage
parameters. Turner [33] and Li et al. [34] coupled DIC with PD simulation by reading the
displacement field from DIC measurements and using it in PD simulations to circumvent
the DIC difficulties when measuring full field deformations in discontinuous displacement
field. The method was also applied to potential damage regions determined according to
the low DIC correlation coefficients. According to their results, the authors claim that their
coupled DIC and PD strategy can be used to predict both macro damage evolution and
invisible micro-crack initiation and propagation before macro-crack forms.

Despite the work mentioned before related to DIC-PD coupling, the topic is still a
very new one and of high potential to contribute to and enhance the capabilities of both
experimental DIC and computational PD methods. Moreover, applying PDDO directly to
DIC displacement field rather than coupling DIC displacement with PD simulations (this
was done in studies [32–34]) brings new approach to be investigated. The aim of this study
is to investigate into the possible applications of the PDDO to full field DIC in order to
find possible improvements of the DIC differentiation algorithm and thus the DIC strain
calculation accuracy. The problem of the plate with circular hole under tension is analyzed
here, as means of introduction (Figure 1) the displacement and strain field gradients which
pose a challenge for the conventional DIC calculation algorithm. The PDDO is used as
a mathematical tool in order to differentiate the DIC discrete displacement field, for the
cases of high gradients and oscillatory/noisy DIC data. Moreover, the proposed DIC-
PDDO method performance against conventional DIC algorithms is evaluated based on
the benchmark data from DIC Challenge 2.0 [11] and Metrological Efficiency Indicator
(MEI) [35,36] which combines both spatial and measurement resolutions. Finally, the PDDO
applications for faulty DIC data to recover the correct strain field are also analyzed.

The manuscript is organized as follows: brief review of the theoretical background
related to the conventional DIC strain calculation and PD-PDDO theory is presented
in Section 2; methods related to the experimental setup and computational models are
presented in Section 3; results including a benchmark analysis of strains as calculated
by conventional DIC, PDDO applied to DIC displacement data, and FE simulation are
presented in Section 4. The results presented here can help to better understand the
DIC method capabilities and the PDDO differentiation method potential to improve the
DIC results.

2. Theoretical Background
2.1. DIC

The DIC working principle is based on optical tracking of displacements of subsets
on the specimen surface during the specimen deformation. The general 3D DIC setup is
shown in Figure 2a, (only basic DIC principles are presented in this chapter without going
into the details of 3D DIC and differences compared to 2D DIC, which can be found in
elsewhere [3]).
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The DIC method consists of three steps: specimens preparation, recording images,
and post processing computation. First, the pattern of points to be tracked is applied on the
specimen surface during the preliminary stage of the specimen preparation, generating the
so-called speckle pattern (Figure 2a). Painting the speckle dots on the specimen surface by
using, for example, an air brush or a speckle pattern painting roller, is a popular method due
to its simplicity and high enough quality for the DIC procedure, although other methods
can be applied for specific materials (e.g., computer generated patterns printed on stickers,
powder particles, laser engraving, etc.) [37].

Then, displacements of the speckle pattern points subsets are tracked with the optical
cameras and recorded during the specimen deformation. Camera selection is based on
the proper magnification which depends on the measuring scale of the test specimen. The
specimens measuring area (FOV), camera sensor size, and the focal length of the lenses
used with the camera are necessary to determine the magnification and working distance
of the camera and thus its applicability for particular objects measurements [38]. Some of
these parameters are shown in Figure 2b. Perfect camera focus and specimen lighting are
required and can be achieved by adjusting the camera and light source to have enough
exposure of the specimen (while avoiding over exposure). Some noise caused by the camera
sensor, electronics, and lighting fluctuations is unavoidable, but its effect on measurement
results can be minimized by a properly selected DIC setup [39].

Finally, the sequence of images recorded during the specimen testing and the corre-
sponding speckle pattern deformation is analyzed by the DIC software during the post
processing calculation stage [1,3]. The calculation procedure starts with dividing the whole
FOV speckle pattern into a grid of sub-areas called subsets (see Figure 2c). The center of
each subset (point P(x0, y0) in Figure 2c) is the point where the displacement assigned to
each subset is calculated. After the deformation of the test specimen and speckle pattern,
the subset from the deformed image is compared based on correlation criterion calculations
against the subset from the reference image to find the displacement of each subset center
point P(x0, y0) (Figure 2c). In order to define the position of the internal subset points Q(xi,
yi) after the subset deformation, displacement mapping by using the so called “subset
shape functions”, based on deformation continuity principle is done. The subset shape
function cannot be selected by the user in the VIC-3D software used in this study [40].
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The possibility exists that a point Q(xi, yi) in the deformed image is located between the
pixels of DIC sensor, and because of this a sub-pixel interpolation is necessary to define the
displacement vector of that point. Several sub-pixel displacement interpolants (4th, 6th,
and 8th orders polynomials) are available as user choice in the VIC-3D software [40].

Although the displacements of the DIC grid points (the centers of the grid subsets
P(x0, y0) in the Figure 2c) are measured directly, strains require additional mathematical
operations, namely numerical differentiation, which can be performed in several different
ways in a DIC algorithm: “subset shape function” differentiation, displacement field
division into triangle finite elements and then their numerical differentiation, derivatives of
local analytical equations defined over the selected size of local regions and approximating
the displacement field, displacement field spline fit differentiation [38]. The principle of
differentiation algorithm of the DIC post processing software VIC-3D from Correlated
Solutions [41] used in this study is shown in Figure 3a. A grid of triangles (similar to FE
triangular mesh) having the subsets center points of known displacement data at their
vertexes is used. The strain distribution over each triangle is calculated from the deformed
shape of each triangle FE element based on the strain shape functions defined over each
triangular finite element.

Because the edge length of each triangle is about several pixels, strain results without
additional smoothing techniques would be noisy. Because of this, DIC strain filters which
smoothen the strain results over the strain filter area (Figure 3b) are applied. The filter size
is a user defined parameter which can be expressed by the number of the DIC step sizes
(e.g., filter 5–5 steps sizes, filter 35–35 step sizes, etc.). The DIC user should select between
the high noise when using a small size strain filter vs low accuracy when using large strain
filter (Figure 3b).
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The subset size and the distance between two consecutive subset centers denoted
as the step size are also user-defined parameters related to images post-processing, see
Figure 2c. Although the proper subset size selection guidelines is given in the literature and
DIC manuals [6,37], to make the subset size selection easier for the user, the DIC software
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calculates default subset values according to the speckle size. The general recommendation
for the step size selection is about 1/4 of the value of subset size [42]. The step size is
related to the spatial resolution (although the subset size and shape function have much
higher effect on it) of the DIC measurements because with a smaller step size more DIC
data points are taken and the resolution of the results increased, but the computation time
and noise increase as well [42].

The proper DIC parameters selection for each step of the method (namely specimen
preparation, images recording and images post processing) has an impact on the DIC
results accuracy, especially strains. The main DIC parameters affecting the results accuracy
are summarized in Table 1. This study deals with the DIC step size (ST) and strain filter
size (FS) which together with the subset size (SS) can be combined to a single parameter,
called virtual strain gauge (VSG) and expressed as [38]:

VSG = (FS− 1)·ST + SS. (1)

VSG influence on the DIC strain results accuracy and the possibility to improve the strain
results accuracy by using the PDDO to differentiate DIC displacement field are analyzed in
this study.

Table 1. DIC parameters determining the measurements accuracy.

Specimens Preparation Experiment Post Processing

Speckle size
Speckle pattern quality

(randomness, contrast, etc.)

Calibration
Camera resolution

Camera focus
Lightning

Camera noise

Subset size
Step size

Subset shape function
Displacement sub-pixel

interpolation
Strain filter size

2.2. Peridynamics Theory and Peridynamics Differential Operator

The peridynamics (PD) theory [26,43] reformulates the classical continuum mechanics
theory by including spatial integrals instead of spatial derivatives in its equations of
motion. Owing to this feature, the PD model enables the possibility to effectively simulate
discontinuities (e.g., cracks, defects) without the need of any additional models. In the PD
model the domain is discretized into a square grid of equally spaced material points (PD
grid spacing ∆x, see Figure 4) and each material point x, defined by the position vector x,
interacts with the material points x′ in the interaction range Hx called PD horizon, which
is a measure of the material non-local behavior defining the range of interaction of the
material points. The horizon size δ is, usually expressed as a radius equal to a multiple of
the PD grid spacing δ = m∆x (Figure 4). According to studies on the parameter m [44], a PD
horizon of about 3·∆x ensures the PD model stability and convergence in most cases. The
PD model grid size ∆x should be selected to evaluate the local effects with suitable accuracy,
and can be found based on results of convergence analysis. The interaction between the PD
points x and x′ is called PD bond, and the deformation of the body (displacement vectors
u and u′ of points x and x′) causes deformation of the PD bonds and thus forces f and f ′

acting on the PD bonds between the points x and x′.
Due to formulation of bond forces f and f ′ being opposite in direction and of equal

magnitudes (bond-based PD), interactions of a material point to other points are limited
in the range of the PD horizon and it results that the Poisson’s ratio can only be 0.25 for
3D case and 0.33 for plane stress case [45]. This limitation is released by including new
mathematical operators–deformation and forces states (state-based PD) in the PD theory
resulting that the PD bond forces are not equal in magnitude (PD bond force depends on
the current bond deformation and the deformation of all other bond connecting the same
point). The PD states map undeformed horizon points on any deformed configuration of
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the horizon (detailed description of the PD states can be found in [45]). The state-based PD
equation of motion is written as:

ρ
..
u(x, t) =

∫
Hx

{
T[x, t]

〈
x′ − x

〉
− T

[
x′, t
]〈

x− x′
〉}

dVx′ + b(x, t), (2)

where ρ is the material density, b(x, t)—body forces, and Vx—volume of the point x.
T[x, t]〈ξ〉 is a force state valued function of position x and time t and operating on the vector
ξ = x′ − x (Figure 4).
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The classical continuum mechanics concepts of strains and stress are not included
in the PD theory, their PD equivalents being the PD bond stretch and the PD bond force.
However, retrieving the conventional strain quantities from the PD formulation is possible
based on differentiation of the integral PD equations of deformation. Derivatives of the
discrete (PD grid) PD field, even in the presence of discontinuities, can be found by applying
the peridynamic differential operator (PDDO) [29,30].

According to the PD theory [26,43], the variation of a scalar field f = f (x) at the point
x is influenced by its interaction with other points x′ in the horizon Hx (Figure 4). Moreover,
the degree of interaction between the PD points is specified by a nondimensional weight
function ω(|ξ|) which reflects the degree of non-locality among the points of the domain.
The weight function ω is chosen such that it captures the physical characteristics of the
material behaviour, namely decreasing degree of interaction with increasing distance |ξ|
between the points. The PDDO allows for the calculation of the spatial derivatives of
the field function f = f (x) based on integral equations. For the 3D case (Figure 4), the
expression of the PDDO for the first order derivatives of the function f can be derived
as [29,30]:

δ f
δxi

= A−1
∫

Hx
ω(|ξ|) f (x + ξ)ξidV, i = 1, 2, 3, (3)

where the quantity A is given by A =
∫

Hx
ω(|ξ|)

 ξ2
1 ξ1ξ2 ξ1ξ3

ξ1ξ2 ξ2
2 ξ2ξ3

ξ1ξ3 ξ2ξ3 ξ2
3

dV, and dV is the

volume of the PD point. The effect of the weight function ω is analyzed in [38,39]. Se-
lesona et al. [39] concludes that a linear function (e.g., ω(|ξ|) = δ/|ξ|) is enough for 3D
problems and a cubic order function is well suitable for 2D case.

In this way Equation (3) allows for an integral-based calculation of the derivatives
of displacements u1, u2, u3 at point x (by considering the function f in Equation (3) as
u1, u2, u3, respectively): ∇ou = δu

δx ; which allows for the calculation of the conventional
continuum mechanics Lagrangian strain tensor at point x:

E =
1
2
(∇ou + (∇ou)T +∇ou·(∇ou)T). (4)
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In the discretized form of Equation (3) (i.e., replacing the integral over the horizon Hx
with summation over the PD points inside of the horizon), the function f in Equation (3)
becomes the discrete values of the function at the discrete PD points inside of the horizon Hx.

3. Method
3.1. Experimental Setup

Synthetic DIC images from DIC Challenge [11] (DIC Challenge 2.0 Star 6 for PDDO
performance evaluation, DIC Challenge 1.0 Sample 12–the same plate with hole as pre-
sented in Figure 1) and in-house experimental DIC measurements are considered for the
PDDO applications to compute strains. Plate with hole tensile test specimens of dimen-
sions 180 mm × 35 mm and hole diameter 10 mm were prepared for experimental DIC
measurements. The plate material–DIBOND composite [46] is a sandwich material of total
thickness 3 mm, composed of three layers: polyethylene core of thickness 2.4 mm, and
aluminum EN AW 5005 external layers of thickness 0.3 mm. The PDDO code was used
for strain calculation from the DIC displacement field, and because of this the material
properties (Young modulus, Poisson ratio) are not required. No special testing standard
was used for the specimen preparation because our purpose was to measure the strains
near the hole with DIC rather than testing the material properties.

The (experimental) strain computation setup is shown in Figure 5. Strain computation
stage using PDDO (only this stage was necessary for the strain computation from DIC
displacements calculated from DIC Challenge [11] images) is excluded with dashed line
in Figure 5. In order to perform a tensile test for experimental DIC measurements, an
electromechanical testing machine INSTRON E10000 with maximum force 10 kN was used,
and the specimen with hole was loaded in tension at 3 mm/min crosshead speed. The
full field displacement and strain measurements were done with the 3D DIC system from
Correlated Solutions [2] equipped with two CMOS cameras Basler acA4112 of 12 Mpx
resolution, sensor size 14.1 mm × 10.3 mm, pixel size 3.45 µm × 3.45 µm, and lenses of
focal length 25 mm. Adjustable power LED lamp ProfiluxLED1000 with maximum power
185 W was used as light source. A black dots speckle pattern of 0.18 mm size was painted
on the specimen surface, previously coated with white paint, using a painting roller from
Correlated Solutions. A total of 25 calibration images of a 14 × 10 dots calibration plate
with 10 mm dots spacing were taken before the experiment to calibrate the DIC system.
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The DIC displacements calculated from experimental and synthetic images were
analyzed and based on them the DIC strains were computed by using the DIC software VIC-
2D and VIC-3D [40]. The subset size was set to 29 px for experimental DIC measurements
and 41 px for synthetic DIC images according to the system-suggested value and then
step sizes were set equal to 1/4 of the subset sizes. The other parameters of DIC for all
computations were set as default: normalized squared differences correlation criterion
between undeformed and deformed speckle, and 6th order polynomial for the sub-pixel
displacement interpolation. The Exhaustive search option was enabled resulting that all
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initially failed correlation between the tracked points is repeated [40] and more data points
can be retrieved.

A number of 104 images of the DIBOND composite specimen were taken with the DIC
system during the in-house experimental testing. The DIC displacements were exported
from the VIC-2D or VIC-3D software to calculate strains by applying the PDDO (the
DIC-PDDO strains). Moreover, in case of experimental DIC measurements, FE simulation
of the specimen was performed in LS-Dyna to confirm the correctness of both in-house
experimental DIC and DIC-PDDO strain fields.

3.2. PDDO Implementation

The PDDO (see Section 2.2) was applied to a regular square grid of PD points of both
DIC Challenge [11] and in-house experiment virtual specimens surfaces, where displace-
ments were measured from the images by DIC. For this purpose, the export data options
Pixel Grid and Metric nodes in the DIC software VIC-2D and VIC-3D were used. These
options enable to export points coordinates, their displacement and strain values from
the DIC field over a selected regular square grid to .csv file. Then the exported DIC data
from .csv file was directly imported to the PDDO code by ensuring the same location of
the virtual and experimental specimens data points. When exporting the DIC displace-
ment data at selected grid spacing to PDDO applications, the corresponding DIC step size
adjustments are unnecessary. This is because only displacements are required for PDDO
strain calculations and DIC VSG size has no effect on PDDO-calculated strains. Moreover,
no additional data transformations (e.g., interpolation between the points, coordinates
reposition) were applied in the PDDO code.

In order to find the value of the PD grid spacing ∆x (see Section 2.2) for which the
DIC-PDDO strains converge to the DIC strains, in-house experimental DIC displacement
measurements data (DIBOND composite specimen data) were exported at different grid
spacing values from VIC-3D to PDDO applications. The lower bound of the PD grid
spacing can be considered equal to one DIC camera pixel size (on the specimen surface),
which can be calculated as:

FOV
Camera sensor size ·Camera pixel size = 180×131

14.1×10.3 .

3.45·10−3 × 3.45·10−3 = 0.044 mm× 0.044 mm.
(5)

To collect strain data only around the hole (high strain gradients can be captured in
this region), a 30 mm × 30 mm square area of the DIBOND composite specimen surface
around the hole was used for the DIC-PDDO calculation (see Figure 6a).
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The PDDO based on Equation (3) adopted for the 2D plane stress case was imple-
mented in MATLAB. Basic MATLAB code principles were followed according to [47]. In
order to find the 2D strain (displacement gradient F(xj)) at point xj from the discrete dis-
placement data points, the integral Equation (3) is modified and discretized as summation
of the n discrete data points over the integration domain:

F
(

xj
)

i =

[
n

∑
k=1

ω(|ξk|) f (xk + ξk)ξih∆x2

]
A−1, i = 1, 2, (6)

where ξk = xk − xj, h∆x2 − 2D PD point volume. Substitution of the discretized form of

A = ∑n
k=1 ω(|ξk|)

[
ξ2

1 ξ1ξ2
ξ1ξ2 ξ2

2

]
h∆x2 to Equations (2) and (3) finally results:

F
(

xj
)
=

[
n

∑
k=1

ω(|ξk|)
(
(uk + xk)−

(
uj + xj

))
⊗ ξk

]
·
[

n

∑
k=1

ω(|ξk|)(ξk ⊗ ξk)

]−1

, (7)

here uj, uk and xj, xk are displacement and position vectors associated with the discrete
points xj, xk (also see Figure 4). The MATLAB code calculates and plots the strain field
using the DIC displacement field given at the regular grid of points on the specimen surface.
The main parameters of the PDDO code are the horizon size δ and the weight function
ω
(∣∣ξ j

∣∣) which in our case is defined as a ω
(∣∣ξ j

∣∣) = δ3/|ξ|3.

3.3. FE Model

The FE model of the in-house test specimen was created in LS-PrePost 4.6 and simula-
tion was run in LS-Dyna R11.0. The hole geometry was defined according to the specimen
coordinates imported from DIC such that the hole shape in FE is not idealized but identical
to the real shape and thus the strain concentration can be more effectively evaluated. The
loading scheme of the model is shown in Figure 6b. The bottom of the FE model is fixed
while the top is loaded by applied displacements in X, Y, Z directions which values were
taken from 10 points DIC displacement measurements at the top of the specimen to reduce
the errors due to possible specimen imperfect alignment in the testing machine.

Mixed quadratic-triangle fully integrated 1st order SHELL elements with an average
element size of 5·10−4 mm over the area of interest were used. The LS-Dyna material
model PIECEWISE_LINEAR_PLASTICITY was selected. The material properties were
measured according to inhouse tensile testing of the DIBOND composite plate without
hole: the effective elastic modulus Ef = 43 GPa, effective Poisson ratio υ = 0.3, and yield
limit σy = 100 MPa. Moreover, the experimental tensile diagram was uploaded to the FE
material model by using the LS-Dyna material model curve definition keywords. Non-
linear implicit time integration with Broyden–Fletcher–Goldfarb–Shanno algorithm [48]
was used in LS-Dyna.

4. Results and Discussion
4.1. Effect of the PD Grid Spacing and PD Horizon Size

Plots of the absolute maximum values of the εx and εy Lagrangian strains computed
on in-house tensile experiment specimen surface by applying the DIC-PDDO method,
as function of the PD grid spacing ∆x when the PD horizon size is fixed to δ = 3.1∆x,
are presented in Figure 7. Each dot in Figure 7 represents the DIC-PPDO maximum
absolute strain value at selected PD grid spacing ∆x, while the strain-PD grid spacing
relation approximation with linear function is shown with dashed line. The same strain
values calculated by the DIC algorithm for different setup values of the DIC VSG, are also
plotted in Figure 7. The PD grid spacing ∆x, as parameter independent on the particular
specimen dimensions, is expressed as number of specimen pixels (calculated according to
the Equation (5)).
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The results in Figure 7 show that the maximum values of
∣∣εy
∣∣
max, |εx|max absolute

maximum strains are achieved for the minimum setup values for the PD grid spacing (for
the DIC-PDDO strain calculation) and DIC VSG size (for the DIC strain calculation). This is
because more localized strain values are calculated by decreasing the PD grid spacing and
the DIC VSG, avoiding thus the averaging effect when using larger PD grid spacing and
DIC VSG.

Moreover, the results from the DIC-PDDO and DIC converge when using the minimum
setup values for the PD grid spacing and DIC VSG showing thus the potential of the PDDO
to capture localized strain values (situation in which the DIC results are highly prone to
noise/oscillations [12–14], also see Figure 1). Relative differences of 1.6% for the εy and
2.6% for the εx strain components are obtained between the PDDO and DIC calculations,
for the minimum setup value of 1 px for the PD grid spacing and VSG = 57 px for the
DIC VSG.

The effect of the PD horizon diameter 2δ (measured in pixels) on the PDDO-calculated
strain values, and comparison against the values calculated for different VSG sizes is shown
in Figure 8 for the PD grid spacing ∆x = 1 px. The same way as in Figure 7, the dots in
Figure 8 represent the DIC-PPDO maximum absolute strain value at different PD horizon
diameters while the linear strain-PD horizon diameter relationship is shown with dashed
line. Although the same PD horizon size δ = m∆x can be achieved by taking different PD
grid spacings ∆x and multipliers m, our study shows that the maximum absolute strain
value correlated well to the PD horizon size independently of the PD grid spacing ∆x
selected to achieve a particular value of the PD horizon in Figure 8.
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Similarly to the conclusions of Figure 7, the results in Figure 8 show that the maximum
values of the PDDO strains are obtained for the minimum values of the PD horizon size and
DIC VSG size, based on reduced strain averaging effect. The effect of the PD horizon for the
PDDO method can be compared to the VSG/strain filter for the DIC method, namely strains
peaks smoothening and averaging over the size of the horizon/filter, and the convergence
of the PDDO and DIC strains with reducing the PD horizon size and the DIC VSG size
can be noticed in Figure 8, which suggests the same possibility of using the PDDO strain
calculation method to capture localized strains, for the situation when strain oscillations
are obtained based on reducing the DIC VSG (in this case strain filter) size.

4.2. DIC, DIC-PDDO and FE Strains Comparison

In order to validate the DIC and DIC-PDDO results, comparison of the DIC and DIC-
PDDO strains against the FE simulation strains computed on in-house tensile experiment
specimen surface is presented in Figure 9, showing a good agreement in terms of magnitude
and location of maximum strains, as well as distribution and magnitude of the overall strain
fields. Based on the results from Figures 7 and 8, VSG of size 57 px was used for DIC and
the PD absolute horizon diameter of 2δ = 24 px (1.04 mm) was selected for DIC-PDDO. A
difference of 8% for both

∣∣εy
∣∣
max and |εx|max strains is obtained between the DIC-PDDO and

the FE results. It is also worth noticing the asymmetric profile of the strain field in Figure 9
(which is due to imperfect circular profile of the central hole and imperfect alignment
between specimen and loading in the testing machine; the method, used to evaluate and
reduce those effects, is defined in Section 3.3) shows bigger differences between DIC and
FE strains than the differences between DIC and DIC-PDDO strains. Moreover, DIC smears
the maximum strain value near the hole and thus FE simulation results higher maximum
strains. Nevertheless, strain fields, captured by the experimental DIC measurement can be
validated by the FEA computational results and are well reproduced by the DIC-PDDO
method in terms of both distribution and magnitude.
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4.3. DIC-PDDO Method Performance Evaluation

Despite the good agreement between DIC and DIC-PDDO strain fields noticed in
Figure 9, a better metric should be used to evaluate the proposed DIC-PDDO strain com-
putation method. Moreover, the agreement of maximum strain values is related to the
spatial resolution not including the effect of measurement resolution. Recently created
metrological efficiency indicator (MEI) [35,36] combines both spatial and measurements
resolutions and for the case of strains is expressed as:

MEI = n2l10%, (8)

where n is the standard deviation of the noise level in analyzed strains, l10%–cutoff period
to the 10% fractional strain bias. Lower MEI values indicate better method performance.

The DIC Challenge 2.0 [11] Star 6 synthetic images are used to evaluate the DIC-
PDDO method against conventional DIC. Star 6 contains 3 speckle images: an undeformed
reference; one deformed image (sinusoidal vertical strain amplitude of 5% “star” pattern
is used to calculate the strain spatial resolution); and a noise floor image to calculate the
measurement resolution. According to the MEI calculation procedure and Star 6 images
definition found in [35], the cutoff period l10% for the deformed Star 6 image is expressed
as l10% = 10 + 290/3999·(X− 1), where X is the minimum X coordinate in px of the
deformed image when the 90% signal value (in this case 4.5% strain) is achieved at the
image horizontal center line-cut as it is shown in Figure 10.

Comparison of the DIC and DIC-PDDO strain on the Star 6 synthetic image is pre-
sented in Figure 10. The VSG size of 81 px for DIC and absolute horizon diameter of
2δ = 140 px for DIC-PDDO are selected to achieve the same spatial resolution at cutoff
period of l10% = 207 px (X = 2721 px).

For the same spatial resolution expressed by the 10% cutoff period of 207 px, standard
deviations of computed strain noise levels are 1.13 × 10−4 for DIC and 0.957·10−4 for DIC-
PDDO methods resulting in 1.4 lower MEI value for the DIC-PDDO strain computation
method (2.65 µε2·px for DIC and 1.98 µε2·px for DIC-PDDO respectively). Figures 10 and 11
present the DIC-PDDO method comparison against conventional DIC strain calculation
algorithms. MEI-based DIC algorithms review was graphically presented in [35] where
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each DIC algorithm spatial resolution (x-axis) vs measurement resolution (y-axis) is plotted.
Plot in Figure 11 replicates the plot from [35] by extending it with the same DIC-PDDO
metrics while DIC algorithms data points from [35] are generalized and shown as grey area
in the plot.
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The proposed PDDO strain calculation method for DIC has higher measurement
resolution than the DIC VIC-2D software algorithm for each selected spatial resolution
value as it is seen in Figure 11. Moreover, increasing DIC-PDDO performance with the
strain spatial resolution (differences between the “DIC-PDDO” and “DIC (VIC-2D)” curves)
shows the proposed method potential to accurately compute localized strains.

4.4. DIC-PDDO for Noise Reduction

In order to analyze the performance of the DIC-PDDO method for strain calculation
on the tensile experiment specimen in the case of high gradients, similarly as in [12–14] (see
Figure 1), the minimum DIC VSG size of 33 px (step 1 px) was used for the selected subset
size. This DIC calculation setup results in an almost invisible displacement oscillations of 2
µm magnitude (0.1% of the maximum value) (the oscillations are also called as artificial
noise in this study and calculated based on the comparison against the DIC displacement
field generated with the DIC step of 7 px used in previous calculations (Figures 7–9) while
the effect of real noise from experimental setup is not considered) (Figure 12a) which in turn
results in an artificial significant noise of the DIC-calculated εx strains of ±0.006 units (33%
of the maximum absolute value) (Figure 12b). The strain εx was selected for this evaluation
because it is more affected by artificial noise (εy strains are up to 7 times higher than εx
strains and thus the noise effect on the εy strains is the same times smaller). The smooth
profile of the curve labeled the “PDDO to noisy DIC” in Figure 12b shows the ability of
the PDDO to eliminate the effect of the oscillatory DIC input displacements on the PDDO
calculated strains as opposed to the DIC method of strain calculation which amplifies the
slightly oscillatory input in the calculated strains (curve labeled “DIC noisy” in Figure 12b).
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Similar conclusion can be done based on the observation of the PDDO application to
synthetic image no. 6 of the plate with hole from DIC Challenge 1.0 Sample 12 (Figure 13,
also see Figure 1). While the smaller DIC VSG leads to an oscillatory solution and larger
VSG smooths out the strain peaks also reducing the strain spatial resolution, the PDDO
solution provides smooth and still accurate strain profile preserving its spatial resolution.

The data in Figure 12 represent a snapshot during the specimens deformation, corre-
sponding to 75% of the failure load (DIC image no. 60 in the set of DIC images recorded
during deformation). In order to analyze the proposed PDDO method at different levels of
deformation, strains were also analyzed at different loading levels of the specimen, from the
test start to the specimens failure (DIC image no. 80), and results are plotted in Figure 14.
The plots in Figure 14 show increasing absolute differences between the curves with the
deformation due to selected artificial noise generation method and the PDDO method is
able to eliminate the effects of the input noise at various deformation levels.
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area, and reduces thus the noise fluctuations. However, the possibility exists that the real 
strain peaks and strain gradients are also averaged out by using the DIC strain filter, and 
the DIC user should carefully select between noisy and smooth but less accurate results 
[41] (see Section 2.1). The results of our study show that not only the PDDO method pro-
vides a smoother (less oscillatory) strain solution (Figures 10–14), but it also preserves the 
accuracy of the results, as shown in Figure 15. Here the same strain field results, namely 
the “noisy DIC” generated by using a DIC step size of 1 px (Figure 15a), the “PDDO to 

Figure 13. The problem of plate with hole analyzed in [12–14] (also see Figure 1) extended by the
DIC-PDDO strain solution.

The DIC method to reduce the noise in the calculated strains is the DIC strain filter
(see Figure 3b) which smoothen the calculated strains by averaging over the strain filter
area, and reduces thus the noise fluctuations. However, the possibility exists that the real
strain peaks and strain gradients are also averaged out by using the DIC strain filter, and
the DIC user should carefully select between noisy and smooth but less accurate results [41]
(see Section 2.1). The results of our study show that not only the PDDO method provides a
smoother (less oscillatory) strain solution (Figures 10–14), but it also preserves the accuracy
of the results, as shown in Figure 15. Here the same strain field results, namely the “noisy
DIC” generated by using a DIC step size of 1 px (Figure 15a), the “PDDO to noisy DIC”
generated by applying the PDDO to the slight oscillatory input displacements from the
“noisy DIC” setup (Figure 15b), and the “not noisy DIC” generated by using a DIC step
size of 7 px (Figure 15c), are analyzed.
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The DIC strain filter of size 15 does not effectively reduce the generated noise (Figure 15a
left) resulting in almost 20 times higher maximum absolute strain value than the accurate DIC
values in Figure 15c. Only by increasing the DIC strain filter size up to 57 or 75 reduces the
generated noise, but the peak values of strains are lost (see red circle in Figure 15). On the
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contrary, the results obtained by applying the PDDO to the noisy DIC displacement data do
not lose the peak values (Figure 15b). Thus, it can be concluded that the PDDO method applied
to noisy DIC displacement data can filter the input noisy data and smoothen the results while
not losing the strain resolution due to filtering as it is the case for the DIC strain filter. Based
on this feature, the PDDO can be considered for implantation in DIC calculation software,
as an alternative method to the ones currently existing in different DIC software for the DIC
strain evaluation (e.g., based on displacement shape functions, strain shape functions, strain
filters, etc.).

5. Summary and Conclusions

The improvement of the DIC strain calculation algorithm based on the PDDO was
analyzed in this study. Several conclusions can be underlined based on our results.

1. Although displacements can be directly and accurately measured by DIC, the strain
field requires additional post processing–numerical differentiation. This mathematical
operation is problematic in the case of discrete displacement field measured by the
DIC in the case of high strain gradients, and also induces noise in the calculated
strains. Because of this, there is a need for better differentiation algorithms for the
raw displacement data provided by the DIC. The PDDO based on the PD theory
integral equations offers an alternative approach to cope with the aforementioned
numerical differentiation issues. A differentiation algorithm based on the integro-
differential PDDO can be formulated and applied to the DIC displacement field for
strain calculation.

2. The PDDO strain calculation method was validated considering the synthetic im-
ages from DIC Challenge [11] and in-house experimental measurements. The PDDO-
calculated strains and DIC-calculated strains converge to each other, and to the FE
validation calculated strains, when reducing the PD grid spacing and PD horizon size
for the PDDO calculation, and the DIC VSG size for the DIC calculation. Based on the
PDDO evaluation using MEI, the proposed strain calculation method for DIC resulted
in at least 40% lower MEI values and thus at the same time better performance than
conventional DIC algorithm used in VIC-2D software. Moreover, the PDDO method
efficiency is prone to be increasing for the case of localized strains (e.g., when high
spatial resolution is required).

3. Analysis of both synthetic and experimental DIC images showed that the PDDO method
can effectively reduce the effect of the noisy input (displacement) data on the calculated
strain field, while the DIC method of strain evaluation amplifies the effect of the input
data of the calculated strains. Moreover, the PDDO method has the ability to preserve
the accuracy of the strain results calculated based on oscillatory/noisy input data, while
the DIC strain filter smooths out the localized strain values (high strain gradients).

4. Reducing the DIC VSG size induces oscillations for the DIC-calculated strain fields
and then high strain gradients cannot be effectively captured by the DIC. The afore-
mentioned problem can be solved applying PDDO method to DIC displacement field
calculated with the same small VSG size, and owing to the PDDO method DIC mea-
surements spatial resolution can be increased without changing the DIC setup (speckle
size, cameras).
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