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Abstract: Flexible electronic textiles are the future of wearable technology with a diverse application
potential inspired by the Internet of Things (IoT) to improve all aspects of wearer life by replacing
traditional bulky, rigid, and uncomfortable wearable electronics. The inherently prominent char-
acteristics exhibited by textile substrates make them ideal candidates for designing user-friendly
wearable electronic textiles for high-end variant applications. Textile substrates (fiber, yarn, fabric,
and garment) combined with nanostructured electroactive materials provide a universal pathway for
the researcher to construct advanced wearable electronics compatible with the human body and other
circumstances. However, e-textiles are found to be vulnerable to physical deformation induced dur-
ing repeated wash and wear. Thus, e-textiles need to be robust enough to withstand such challenges
involved in designing a reliable product and require more attention for substantial advancement in
stability and washability. As a step toward reliable devices, we present this comprehensive review
of the state-of-the-art advances in substrate geometries, modification, fabrication, and standardized
washing strategies to predict a roadmap toward sustainability. Furthermore, current challenges,
opportunities, and future aspects of durable e-textiles development are envisioned to provide a
conclusive pathway for researchers to conduct advanced studies.
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1. Introduction

Wearable technologies have created a universal platform for innovation and advance-
ment towards the 4th industrial revolution in versatile areas to connect the virtual world
with reality. Wearable electronics can facilitate human quality of life in all possible aspects
by properly monitoring different actions in real time [1]. However, the traditional electronic
components are often rigid, uncomfortable, and difficult to integrate with the complicated
architecture of the human body, which substantially limits their practical application [2,3].
Textile materials (clothing) are always worn by the wearer and are considered the most
ideal platform for designing and incorporating electronics without compromising comfort
and aesthetics. The smart textiles are capable of sensing, reacting, and adapting to external
events or stimuli to capture, process, and analyze data remotely using electronics built with
e-textiles and can be used for wearable applications [4]. E-textiles constructed of fibrous
textile materials are expected to exhibit their inherent characteristics (i.e., comfortability,
flexibility, stretchability, breathability, light weight, etc.) when there is no alteration of
properties involved in the fabrication process. Moreover, e-textiles can be adapted to any
sophisticated electronic components [5]. Besides, e-textiles can be constructed with various
hierarchical architectures (Figure 1) in the form of fiber, yarn, fabric, and garments to
facilitate the application perspective in future high-end miniature electronics. Levi’s in
collaboration with Philips introduced the first commercial wearable e-textile (jacket) in
summer 2000 [6]. Since then, e-textiles are of great interest and have experienced disrup-
tive innovation and advancement in terms of research and application. So far, e-textiles
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have been proposed to be utilized in different areas, i.e., healthcare [7,8], sensing [9,10],
defense [11,12], sports [13,14], personal protection [15,16], fashion [17,18], energy [19,20],
thermal management [21,22], magnetic shielding [23,24], communication [25,26], etc. The
incorporation of metal nanoparticles (silver [27,28], gold [29,30], copper [31,32], zinc ox-
ide [33,34], gallium [35,36], platinum [37,38], aluminum [39,40], nickel [41,42], cobalt [43,44],
tin [45,46], etc.), carbon nanomaterials (carbon nanotube [47,48], graphene [49,50], carbon
black [51,52], activated carbon [53,54], etc.), conductive polymers (Polypyrrole-PPy [55,56],
Polyaniline-PANI [57,58], poly(3,4-ethylenedioxythiophene) polystyrene sulfonate-PEDOT:
PSS [59,60], etc.) and other 2D materials (MXene [61,62], TMD [63,64], etc.) with textile
substrates (non-conductive in nature) is an important aspect of e-textiles fabrication. The
electrically functionalized textile substrate of different forms ranging from fiber/filament to
fabric/garment can be achieved via different approaches, i.e., coating (dip-coating [65,66],
spray coating [67,68], ultrasonic coating [69,70], knife coating [71,72], spin coating [73,74],
etc.), printing (screen printing [75,76], inkjet printing [77,78], extrusion printing [79,80],
gravure printing [81,82], laser printing [83,84], stencil printing [85,86], 3D printing [87,88],
etc.), electrospinning (melt spinning [89,90], dry spinning [91,92], wet spinning [93,94],
etc.), electrodeposition [95,96], polymerization [97], thin-film deposition [98,99], nanopat-
tern [100], etc. The conductive materials adhere to intrinsically nonpolar textile materials
mainly through physical absorption [101] and mostly fail (detach or decay from the sub-
strate surface) to comply with different actions of the wearer, i.e., bending, twisting, friction,
etc. Different approaches with advanced material processing and chemistry are availed to
alleviate such challenges in designing practically viable and wearable devices.
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Figure 1. Hierarchy of textile structures.

To date, many high-performance e-textiles with improved performance are
reported [102–106], however, poor stability and washability have been the major chal-
lenges restricting their true practical essence. Moreover, the incompetent durability of
the e-textiles may encounter environmental and safety concerns by releasing toxic or-
ganic/inorganic nanostructured compounds to the ecosystem and wearer [107]. Hence,
to improve stability and washability, variant structures have been proposed that differ
from material choice, modification, fabrication, and even assessment protocols. Although
much research claimed that their constructed e-textile components had superior durability,
they could barely withstand repeated laundry and mechanical deformation for a long
time without compromising their electro-conductive properties [108,109]. It is evident that
remarkable progress has been achieved toward sustainable e-textiles products, but there
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remains a large gap in the adopted tactics and output reliability. There are a limited number
of standard wash assessment protocols entirely focused on e-textiles present in academia.
So, individually designed wash assessment protocols along with traditional approaches
are being followed to verify researcher interest in this regard. In many cases, the product is
claimed to be durable despite exhibiting poor fastness, and some research even claimed
durability without stability and wash tests [110–112]. Therefore, reliable and standard-
ized wash protocols with defined circumstances and evaluation criteria will facilitate the
researcher’s ability to predict their product behavior and make reliable comparability of
different e-textiles.

So far, various review articles have been published [113–119] mostly focusing on
materials, fabrication strategies, architecture, multifunctional properties, and the appli-
cation perspective of the wearable e-textiles, ignoring the importance of wash durability
enhancement. Very few review articles [120–122] are available in the academia that entirely
focus on washability and attempt to summarize different wash strategies, influencing
parameters, and enhancement opportunities, but lack a pragmatic review that favors the
improvement of the reliability and washability of e-textiles. Thus, this review summarized
the most advanced multidisciplinary approaches from the substrate to consumer product
design with regard to advanced stability, washability, and explained different aspects of
washing features, leading toward standardized evaluation protocols. Initially, recently
developed durable e-textiles of different hierarchical structures (fiber, yarn, fabric/garment)
are discussed along with the state-of-the-art advances in reliable device fabrication. Af-
terward, all aspects of the stability and wash durability are addressed, from traditional
testing to the establishment of standardized protocols. In the end, the remaining challenges,
opportunities, and the future perspective of this area are discussed. This comprehensive
review is expected to tremendously facilitate a proper understanding of this area and open
a new direction for the research community toward the evolution of durable electronic
textile components.

2. Architecture of E-Textiles

E-textiles are the traditional textiles of different hierarchies embedded with multi-
functional nanomaterials to be utilized in different areas, for instance, human motion
monitoring, i.e., joints bending, walking, running, facial expression, vocal vibration, pulse,
breathing, laughing, etc. (Figure 2a), healthcare applications, i.e., EMG, ECG, EEG, sleep
monitoring, drug delivery, cell culture, etc. (Figure 2b), thermal heating (Figure 2c-i), elec-
tromagnetic shielding (Figure 2c-ii), antimicrobial protection (Figure 2c-iii), self-cleaning
(Figure 2c-iv), energy storage/harvesting (Figure 2d-i), fire alarm (Figure 2d-ii), electronic
display (Figure 2d-iii), color-changing (Figure 2d-iv), etc. with a wide spectrum of functions
by mitigating the wear complexities associated with non-flexible and bulky wearable elec-
tronics. In other words, e-textiles can be electronically integrated textiles built with different
responsive electronic components to sense, react, and adapt themselves in a given circum-
stance [123]. In a wearable e-garment, different sensors [124,125] and actuators [126,127]
that are necessarily made of textiles are embedded and connected to a flexible power
supply (fibrous supercapacitor [128,129], solar cell [130], nanogenerator [131,132], etc.) data
processor, along with an external communication platform (Wi-Fi) for the acquired data to
be further processed and monitored remotely. All these components are interconnected
with each other using conductive yarn/line and are woven into the garment for wearable
application. However, the electronic components built in textiles attached to the garment or
clothing must exhibit similar characteristics in terms of stretchability, flexibility, sensitivity,
and comfort against the skin of the wearer. Traditional textile materials with conductive
features imparted by nanomaterials are used as a terminal to employ electronics and de-
sign wearable devices. The inadequate durability of nanomaterials’ coating on textiles,
causing poor stability of electroconductive properties against human body joint-induced
mechanical deformation, chemical phenomena (sweat, blood, liquid, detergent), and other
challenges that may be involved in daily life, restricts the commercial essence of e-textiles.
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Thus, designing washable and durable e-textiles is the key to satisfy consumer require-
ments for future wearable e-textile devices with consistent performance in daily life events
with comfort. The washability of e-textiles depends on the geometry of adopted textile
interfaces, that is, 1D (fiber, yarn, filament), 2D (warp/weft knitted, woven, nonwoven),
and 3D (triaxial composite structure, braided). Thus, e-textiles with a reliable substrate and
architecture are important and are substantially examined for washable component design,
which is briefly outlined in the next section.
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Figure 2. Different areas of application of e-textiles. (a) Human motion monitoring. (i) facial ex-
pression, vocal vibration, breathing, different pulse. (ii) different joints (finger, wrist, knee, elbow)
motion, (iii) laughing. Reproduced with permission [133]. Copyright 2018, American Chemical
Society. (iv) Signals originated from different finger bending. Reproduced with permission [134].
Copyright 2022, Elsevier. (b) Healthcare applications. (i) Monitoring of EMG, ECG, and EEG. Re-
produced with permission [135]. Copyright 2020, American Chemical Society. (ii) Sleep monitoring.
Reproduced with permission [136]. Copyright 2020, Elsevier. (iii) Drug delivery. Reproduced with
permission [137]. Copyright 2020, Merck KGaA, Darmstadt, Germany. (iv) Cell culture. Reproduced
with permission [138]. Copyright 2013, Nature. (c) (i) Thermal heating. Reproduced with permis-
sion [139]. Copyright 2020, Royal Society of Chemistry. (ii) EMI shielding. Reproduced with
permission [140]. Copyright 2021, Elsevier. (iii) Antimicrobial application. Reproduced with
permission [141]. Copyright 2016, Wiley. (iv) Self-cleaning. Reproduced with permission [142].
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Copyright 2016, Royal Society of Chemistry. (d) (i) Energy harvesting. Reproduced with permis-
sion [143]. Copyright 2016, Science. (ii) Fire alarm. Reproduced with permission [144]. Copyright
2022, American Chemical Society. (iii) Electronic display. Reproduced with permission [145]. Copy-
right 2021, Nature. (iv) Color-changing e-textiles. Reproduced with permission [146]. Copyright 2016,
Royal Society of Chemistry.

2.1. Fiber Shaped Durable E-Textiles

Fiber is the first phase of the textile hierarchy which serves as the basic construction
block of e-textiles, conductivity at the fiber level facilitates seamless integration of electronic
function for the next generation of miniature devices. Nanomaterials with fiber components
are expected to exhibit strong adhesion at the molecular level with improved electrical
properties, mechanical properties (strength, flexibility, stretchability), durability (stability,
washability), comfort, etc. Fiber materials can be made of natural (cellulose, protein)
or synthetic resources. Synthetic fibers (the filament, i.e., continuous fibrous strand or
nanofiber) are manufactured from polymer solution following different electrospinning
processes. Traditional cellulosic textile fiber can be functionalized in the typical yarn
manufacturing phase (sliver/roving) and subsequently spun into yarn.

Yang et al. demonstrated that the incorporation of nanomaterials at the roving level
gives the ring-spun yarn improved stability and washability compared to the cotton yarn
coated with carbon nanotube (CNT) via the dip-coating technique. The roving modified
ring-spun yarn can withstand repeated bending (180◦) of 100 cycles with nominal resistance
change (<10%), optimum stability for abrasion (up to 400 cycles), and displayed washabil-
ity with minimal changes (R/R0 < 1.3) in resistance for 8 consecutive wash cycles while
the CNT-coated cotton yarn was vulnerable and could barely satisfy such circumstances
(Figure 3a) [147]. Alternatively, Jia et al. constructed a conductive core yarn wrapped with
cotton fiber (roving) where a CNT yarn was introduced prior to the twisting zone. The mul-
tifunctional cotton fiber-wrapped CNT yarn retained its electrical properties without change
in subsequent folding-releasing (~100 cycles) and washing (~5 cycles) (Figure 3b) [148].

The functional protein fibers (i.e., silk) are mostly produced by electrospinning
(dry/wet/bio-mimetic) processes, which are accused of damaging the micro and nanos-
tructures of the fiber. Thus, directly modified silkworm spinning is admired for keeping
the inherent properties of the fiber intact. Wang et al. developed a functional native silk
fiber via the continuous force-reeling and dip-coating technique (with CNT, Ag, and ther-
mochromic paint) directly from Antheraea pernyi (A. pernyi) silkworms (known as Chinese
Oak Tussah silkworms and having a similar primary structure to spider silk [149]). The
functional fiber was highly stable and could withstand 48 h of washing without affecting
the surface morphology (Figure 3c) [150]. Natural fiber in the form of liquid suspension
is often prepared and utilized for improved electrochemical performance. Zhang et al.
developed a thermally reduced graphene oxide (GO) cellulose composite paper-based
pressure sensor (TRG-PS) from cotton pulp dispersion which displayed great cyclic stability
(~8% changes in resistance for 300 bending-releasing) and washability up to 20 washing
cycles with minimal resistance changes [151].

Fibrous materials are highly flexible to retain any shape as desired at the pre-stage
of e-textiles development. Distinctive fiber architecture often offers better performance
than regular configuration. A recent study reported a 3D helical fiber-shaped sensor with
improved sensing performance (<1% detection limit), superior stability (no obvious change
in >20,000 stretching cycles), and washability (no decay of electrical output in ten washing
cycles) than regular fiber-shaped triboelectric nanogenerators (TENG). The helical fiber was
obtained from the multiaxial winding of two core-shell braided fibers (Ag core in both fibers,
whereas the shells were polytetrafluoroethylene-PTFE and nylon, respectively) followed
by alternative winding on a stretchable fiber substrate (Figure 3d) [152]. The Helical fiber
produced in a different but facile way, that is, pre-stretched (100–400%) polyurethane (PU)
fiber with adhered copper fiber wrapped with glue, also showed satisfactory durability
(stable against 500 stretching cycles and 100 min ultrasonic washing (Figure 3e) [153].



Nanomaterials 2022, 12, 2039 6 of 47

Fibers of all categories in the form of aqueous suspension synchronized with nano-
materials are of great interest and are produced through electrospinning, printing, and
other solution-based methods for the development of e-textiles with long-lasting stability
and durability. Liao et al. developed large-scale continuous fiber (~1500 km) lithium-ion
batteries using the solution-extrusion method that displayed excellent stability (withstands
up to 10,000 bending cycles with negligible decay) and durability (<10% loss of capacity)
against different hostile events, i.e., water immersion, heavy pressure, washing, and ham-
mer strike (Figure 3f) [154]. Conductive fiber materials are the fundamental building block
of wearable e-textiles but are usually converted into the shape of yarn (continuous length)
to enhance cohesion between them and make them suitable for subsequent transformation
as required.
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Figure 3. (a) Schematic of the roving coating technique (i) and (ii) ring spinning process, resistance
change upon repeated bending (iii), washing (iv), and abrasion cycles (v). Reproduced with permis-
sion [147] Copyright 2018, Springer. (b) Optical image (i) and (ii) SEM image of the core-spun yarn,
(iii) change of temperature as a function of time, and (iv) cyclic stability under 100 bending cycles.
Reproduced with permission [148] Copyright 2022, Springer. (c) (i) Schematic of the functionalized
silk fiber production, (ii) Structural hierarchy of the developed fiber, (iii,iv) SEM images of the
fiber and cross-section, (v,vi) Surface morphology before and after 48 h of wash. Reproduced
with permission [150] Copyright 2022, Elsevier. (d) (i) Schematic of the stretchable helical fiber,
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(ii) SEM images of the fiber surface, and (iii) cross-section, (iv) different steps involved in helical fiber
manufacturing, (v) output voltage under repeated stretching-releasing, and (vi) washing. Reproduced
with permission [152] Copyright 2022, ACS publications. (e) (i) Fabrication of 3D helical fiber, SEM
images of the fiber (ii) and its cross-section (iii), electrical resistance upon ultrasonic washing (iv)
and after wash surface morphology (v), cyclic stability under 35% strain (vi). Reproduced with
permission [153] Copyright 2020, Wiley. (f) (i) Schematic of the fiber batteries production process
with corresponding fiber morphologies at different phases of manufacturing, (ii) capacity retention
under cyclic operations, and (iii,vi) durability underwater immersion, pressing, washing, and striking
respectively. Reproduced with permission [154] Copyright 2022, Nature.

2.2. Yarn Shaped Durable E-Textiles

In general, yarn is a continuous assembly of fibers or filaments twisted/bonded to-
gether for improved mechanical properties, i.e., strength, flexibility, etc. Electronically active
yarn can be constructed in different ways, i.e., by converting conductive fibers/filaments
into yarn, imparting functionality at the yarn stage, and synthetic spinning of polymeric
solution with conductive filler. The conductive yarn plays an important role in the archi-
tecture of the wearable system by interconnecting different units within the system and
facilitates the fabrication of mass-scale electronic devices in the form of fabric or garments.
The conductive yarn must be robust enough to withstand different physical, chemical, me-
chanical, and other hostile stimuli involved in daily use. The combination of nanomaterials
at the yarn level expedites functionality-induced performance enhancement because of the
increased contact surface area.

Gunawardhana et al. developed wearable triboelectric nanogenerators (TENGs) made
of textiles (fabric made of Ag-coated nylon yarn) with differently coated triboelectric mate-
rial (Polydimethylsiloxane-PDMS). It was observed that yarn-coated TENG outperforms
other TENGs (i.e., screen printed and dip-coated fabric made of the same conductive yarn)
in output due to higher triboelectric contact surface area. The electrical output of the yarn-
coated TENG (i.e., open circuit voltage (VOC) ~ 34.5 V, short circuit current (ISC) ~ 60 nA,
short circuit charge (QSC) ~ 12 nC) was superior to that of other TENGs (screen printed;
VOC ~ 17.3 V, ISC ~ 43 nA, QSC ~ 5 nC and dip-coated; VOC ~ 4.9 V, ISC ~ 11 nA, QSC ~ 2 nC)
and showed better cyclic stability up to 3000 contact separation cycles [155]. Xiao et al.
developed cotton yarn-based sweat-activated batteries (CYSAB) by drop coating black
carbon (cathode, 4 cm), a bare portion (salt bridge, 0.5 cm), and subsequently wrapped
with Zn foil (anode, 1.0 cm) of the same pristine cotton yarn. The device could withstand
2000 bending cycles and 16 washing cycles of 10 min each without a significant change
in voltage output of the battery activated with 100 mL of salt solution (NaCl) (Figure 4a).
The higher durability of the device was further verified by the unaffected surface mor-
phology of the cathode portion against washing [156]. Electroactive regenerated cellulose
yarn produced via roll-to-roll coating with poly(3,4-ethylenedioxythiophene):poly(styrene
sulfonate) (PEDOT: PSS)/Ethylene glycol (EG) showed high conductivity (36 Scm−1) and
durability. A thermoelectric energy harvester was designed by sewing the electronic yarn
into a multilayered fabric. No resistance changes were observed for the device after re-
peated bending (1000 cycles) and machine washing (insignificant changes in the first five
cycles, while further washing (<10) leads to notable changes) (Figure 4b) [157].

The core-sheath yarn structure holds great promise toward durability by combining
nanoparticles in the core securely and preventing it from decay. Zeng et al. developed
a highly durable wearable strain sensor based on a spandex dip-coated CNT core and
cotton fiber sheath yarn. The sensor showed promising stability under 20% cyclic stress
and ultrasonic washability (<5% deviation in resistance, five cycles) against water, acid,
and alkali solution [158]. The self-powered sensor made of commercially available ny-
lon/spandex yarn dip-coated with multi-walled carbon nanotubes (MWCNT) followed by
spray coating with silver nanoflakes (AgNFs) and covered with silicone rubber showed
good durability (~10,000 cycles of repeated operations) and washability (no significant
decrease in performance against five repeated washing cycles) (Figure 4c) [159]. Zhou et al.
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demonstrated a polyester yarn twisted around a steel rod (10 µm dia.) covered with ul-
trathin silicon and weaved into a back textile substrate with the serpentine structure for
sleep monitoring. The substrate was consistent under the repetitive pressure test up to
20,000 cycles and with insignificant variation in the electrical output after 8 weeks (20 min
per week) of repetitive washing (Figure 4d) [160]. In the case of core-sheath yarn, where
the conductive fiber is wrapped around a textile core, the twist count (number of twists per
inch/cm) also plays an important role in enhancing conductivity and robustness. Higher
twist counts (over twisting) tend to exert more stability in larger deformation and repeated
washing actions [161].
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Figure 4. (a) (i) Schematic of the working principle of yarn-based sweat-activated battery, (ii) optical
image of the substrate along with surface morphologies of different sections, (iii,iv) durability against
cyclic operations and repeated washing cycles, (v,vi) surface morphology before and after 16 washing
cycles. Reproduced with permission [156] Copyright 2022, Wiley. (b) (i) Roll (70 m) of conductive
cellulose yarn, Schematic of the machine-sewn stitches (ii), and thermoelectric generator with 40 out-
of-plane thermocouples (iii), (iv) resistance change after 10 machine washing and (v) 1000 bending
cycles. Reproduced with permission [157] Copyright 2020, American Chemical Society. (c) (i) SEM
images of the stretchable multifunctional fiber sensor, (ii,iii) Morphology of the MWCNTs-coated and
AgNFs-doped-MWCNTs-coated fiber, and (iv,v) Current output (ISC) under repeated operations and
washing. Reproduced with permission [159] Copyright 2022, Elsevier. (d) (i) Schematic of the sensing
unit prepared by weaving functional yarn onto a black textile substrate, (ii) real-time sleep monitoring,
and (iii) cyclic stability and washability (iv). Reproduced with permission [160] Copyright 2020, Elsevier.
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(e) (i) Schematic of the core-sheath yarn production process, (ii) Underwater sensing application,
(iii) SEM images of the outer and inner layer of the yarn, (iv,v) Change of resistance under 50%
cyclic strain and ten washing cycles. Reproduced with permission [162] Copyright 2019, Wiley. (f) (i)
Schematic of triboelectric yarn production, (ii) SEM image of the yarn cross-section, (iii) CNT yarn core,
(iv,v) Power output of the yarn upon 200,000 tapping cycles and changes in the surface morphology,
(vi,vii) Wash durability and corresponding surface morphology of the yarn after repeated washing.
Reproduced with permission [163] Copyright 2021, American Chemical Society. (g) Schematic of the
electrospinning process (i), SEM image of the electrospun yarn (ii), cyclic stability (iii), and wash
durability (iv) of the yarn. Reproduced with permission [164] Copyright 2021, Elsevier.

Pre-stretching of the yarn (in case of stretchable substrate) prior to nanomaterial incor-
poration leads to the formation of a wrinkled surface, which allows the electroconductive
properties to be more stable against mechanical deformation by a gradual release of the
surface wrinkles upon stretching. Zhang et al. developed an underwater wireless charging
patch made of pre-stretched polyurethane filament spray-coated with multi-walled carbon
nanotubes (MWCNT), silver nanowire (AgNW), and styrene-(ethylene-butylene)-styrene
(SEB), respectively. The device could withstand more than 100,000 stretching cycles under
50% strain and displayed good washability (up to ten cycles without significant resistance
change) (Figure 4e) [162].

Electrospinning is widely being used for yarn-based washable e-textile development,
which enables nanomaterial integration at the molecular level in the form of polymeric
suspension (which contains both substrate and nanoparticles) spun into a continuous
filament directly or the spinning of functional nanofiber around a conductive filament. A
unique triboelectric yarn was manufactured via electrospinning of Poly(vinylidene fluoride)
(PVDF) nanofiber around a CNT filament. The device showed phenomenal stability
(~200,000 fatigue cycles) without a decrease in RMS (root mean square) power output;
instead, a 33% increase in energy harvesting capability was observed with a peak power
density of 20.7 µW cm−2. Furthermore, the yarn could withstand ten repeated washing
cycles without a significant change in RMS power output. The slight resistance change
observed in between five and ten washing cycles may be due to the small amount of water
residue inside or slight damage due to washing (Figure 4f). However, the morphological
analysis of the yarn after repeated tapping and washing showed no significant damage,
apart from slight tearing of the PVDF fiber surface while the core was completely intact [163].
Medeiros et al. developed omniphobic silk-based coils (OSCs) made of electrospun yarn
composed of silk fibroin, multi-walled carbon nanotubes (MWCNTs), and chitin carbon
(ChCs) to power the wearable electronics remotely via magnetic resonance coupling. The
device possessed great stability upon the repeated strain of 100% for 2500 cycles without a
significant drop in performance. Furthermore, no performance degradation was observed
even after 50 washing cycles (Figure 4g) [164].

Different yarn-shaped e-textiles and their endurance properties are presented in Table 1.
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Table 1. Summary of different yarn-shaped durable wearable electronic textiles.

Substrate Nano Materials Fabrication Initial Output
Durability

Application Ref.
Stability Washability

Pu/PAN core-
sheath yarn GO/CNT ink Dip Coating

Conductivity,
14.8 S m−1

~100,000 operation cycles, 99.3%
capacitance retention

5 cycles, no significant deterioration
of capacitance

Pressure sensor,
motion sensing [161]

Cotton/Lycra
yarn CNT Dip coating Resistance,

2.39 kΩ cm−1
~Cyclic stretching-releasing for

2000 s, high stability
10 cycles, slight increase of resistance

(∆R/R0 ~ 1.6)
Strain sensing,

thermal heating [165]

Pu/PET braided
yarn CNT Dip Coating

Conductivity,
0.12 kΩ cm−1

~1000 stretch-release cycles, no
obvious change in resistance

5 cycles, slight increase
(∆R/R0 ~ 10%) of resistance Wearable strain sensor [166]

PET yarn Cu Electroless
deposition

Resistance,
0.34 Ω cm−1

~1000 tapping cycles,
no change of voltage output

20 cycles, negligible change (<0.6 Ω
cm−1) of yarn resistance

Respiratory
Monitoring [167]

SS/terylene yarn SS filament Spinning Output voltage,
28 V

~100,000 loading-unloading
cycles, excellent stability 40 cycles, no change of output voltage Physiological signal

monitoring [168]

Nylon yarn Silver Nano coating Resistance,
53 Ω m−1 - 50 cycles, notable resistance change

(108%)
Biomedical textile

computing [169]

Lyocell yarn PPy Polymerization
Conductivity,
21.6 Ω Sq−1

~2000 cyclic operations, 90%
capacitance retention

20 cycles, minor variations in
electrical response Wearable electronics [170]

Cotton yarn RGO Dip Coating Conductance
(2.60 ± 0.1 µS)

~1000 bending cycles, slight
variation (2.42%) in conductance

5 cycles, minimal (2.96% variation)
conductance change Gas sensing [171]

CNT yarn CNT, PEI, FeCl3 CVD, Doping
Conductivity,
3695 S cm−1

~5000 bending cycles, retained
90% PCE 10 cycles, slight change of PCE Solar cell [172]

Silk yarn PEDOT:PSS, EG Roll to roll dyeing
Conductivity,

70 S cm−1
~1000 bending cycles, stable

resistance profile
15 cycles, slight change after 1st wash

than resistance kept constant Wearable keyboard [173]

Cotton yarn RGO Dip Coating Resistance,
42.7 kΩ cm−1

~1000 bending and compression
cycles, stable resistance variance

10 cycles, resistance increased initially
then kept constant Temperature sensor [174]

Silver-plated
nylon yarn CNTs, TPU Electrospinning

Sensitivity,
84.5 N−1

~5000 pressure (5 N) cycles, stable
current signal obtained

2.5 h of washing, constant order of
magnitude (only 1.4% variation) Pressure sensor [175]

Abbreviation: Pu—Polyurethane, PAN—Polyacrylonitrile, GO—Graphene oxide, RGO—Reduced graphene oxide, CNT—Carbon nanotube, PET—Polyethylene terephthalate,
SS—Stainless steel, PPy—Polypyrrole, PEI—Polyethyleneimine, CVD—Chemical vapor deposition, PCE—Power conversion efficiency, PEDOT: PSS—Poly (3,4-ethylenedioxythiophene)
polystyrene sulfonate, EG—Ethylene glycol, TPU—Thermoplastic polyurethane.
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2.3. Fabric Shaped Durable E-Textiles

Fabric is the final phase of the textile hierarchy that enables mass-scale development
of the e-textile component by either integrating it as an individual functional unit in the
clothing or converting it into a complete wearable garment. Washable electronic fabrics can
be obtained in many ways, such as by knitting or weaving the electroconductive yarn, by
electrospinning an electronic nanofiber mat/film (nonwoven), or by direct incorporation of
nanomaterials with them, etc. Satharasinghe et al. revealed that the washability assessment
of photodiode-embedded yarns in both the e-yarn and the fabric form showed distinctive
performance. For the e-yarn, the first failure was observed after 5 washing cycles and
only 20% of them survived 25 washing cycles, while the fabric remained unaffected up to
15 cycles and 60% of them fully functioned after 25 cycles [176]. The e-yarns in the fabric
form performed much better than in the yarn form and can be ascribed to the structural
stability and compactness offered by the woven fabric.

The type, structure, and composition of the fabric affect not only the mechanical perfor-
mance but also its operational longevity when combined with nanoparticles. Salavagione et al.
demonstrated that different types of woven fabrics (regenerated cellulose, cotton, nylon,
polyester, acrylic, and wool) have variant washability when coated with graphene/elastomer
composite ink via hand printing. Although all samples showed stable performance (no
change in resistance) against repeated folding (1000 cycles), in the case of washing, surpris-
ingly, nylon and acrylic fabric had superiority (retained their initial resistance even after ten
machine wash cycles) over others (significant loss of resistance) [177]. In a different study,
polyester fabrics of different architectures, i.e., knit, woven, and nonwoven, demonstrated
variable washing performance when coated with silver ink through the inkjet printing
process. The woven fabric showed superior wash durability (insignificant resistance change
after 15 machine washing cycles), while the knit fabric’s resistance doubled (>1 kΩ) after the
same amount of wash cycles and 50 times higher resistance (2.3 Ω to >100 Ω) was observed
for the nonwoven fabric only after a single wash. The poor resistance to washing of the
nonwoven fabric may be ascribed to the looseness of the structure. Compact nonporous
fabric structures (i.e., woven and knit) ensured better integration of conductive ink in the
inkjet printing process, leading to better durability [178].

Kim et al. prepared a wearable supercapacitor made of supersonically sprayed cot-
ton fabric with reduced graphene oxide (rGO)/silver nanowires (AgNWs) that revealed
long-term cyclic stability (86% capacitance retention) under 10,000 operation cycles and
exceptional aqueous wash durability (100 times) within acceptable relative resistance
change (40% increase) up to 80 cycles and remained stable afterward (Figure 5a) [179].
Feng et al. developed a self-healing and self-cleaning triboelectric nanogenerator through
the liquid-phase fluorination technique via dip-coating of silk and nylon fabric with ure-
thane perfluorooctyl silane (NHCOO-PFOTS). The device showed superior durability. The
water contact angle of various liquids (tea, coffee, juice, milk) experienced an insignificant
decrease (5.02–8.21%) and the output voltage of the silk/nylon pair remained constant
(maintained 96.77% of its original 465 V) even after 70 h of repeated washing. Furthermore,
the device exhibited remarkable stability against 45,000 repeated contact/separation cycles
with stable electrical output (power density 2.08 W.m−2 at 10 MΩ load) (Figure 5b). Such
outstanding durability of the device was attributed to the strong bonding force between
the hydroxyl and ethoxy groups of the fabric and the NHCOO-PFOTS molecules, respec-
tively [180]. In a different study, He et al. developed a water-assisted self-healing polymer
(WASHP) film based on covalent imine bonds crosslinked with hydrogen bonds with
excellent mechanical flexibility (9050% strain) and self-healing capability (95%) in a shorter
time (1 h). Later, the WASHP-based light-emitting touch-responsive device exhibited high
stability (up to 72 cycles) under cyclic stretching at 30% strain and excellent reproducibility
against cyclic switching (on/off) for 515 cycles under pressure (Figure 5c). The application
of such self-healing polymers together with nanoparticles can be applied to textiles for
designing highly flexible, durable, waterproof, wearable soft electronics [181].
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Qi et al. developed a wearable e-textiles pressure sensor by plain weaving of CNT
embedded electrospun nanofiber yarn. The device had superior stability with insignifcant
resistance change against 10,000 operation cycles under 0.1 N pressure. Besides, no ob-
vious change in electrical response was observed after 1 h of continuous water washing
(Figure 3d) [182]. The functional nonwoven fabric made of electrospun cellulose/polyaniline
(PANI) nanofiber showed excellent electromagnetic interference (EMI) shielding efficiency
even under cyclic twisting (1000 times) with no decay (99.68% of the wave dissipated) and
ultrasonic washing (99% of the incident EM wave attenuated) for 10 min. Morphological
analysis of the fabric revealed substantial damage to the surface fiber even in a quick wash
(10 min) indicating the vulnerability of such a porous nonwoven structure and ineffective
integration of PANI molecules in the dip-coating process [183]. Jin et al. demonstrated
that an electrospun nonwoven photothermal fabric made of nylon and carbon is capable of
absorbing 94% solar spectrum with 83% solar energy utilization efficiency. The fabric was
highly washable (100 hand wash cycles) and could withstand different harsh environments
(Figure 3e) for a longer period (3 weeks) [184].
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Figure 5. (a) (i) Schematic of the rGO/AgNw coated fabric and (ii) wearable supercapaci-
tor, (iii) Change of resistance against repeated washing (100 times), (iv) Cyclic stability under
10,000 charge-discharge cycles. Reproduced with permission [179] Copyright 2021, American Chemi-
cal Society. (b) (i) Schematic of the self-cleaning functionalized silk production process, (ii) Waterproof
properties against various liquids, (iii,iv) water contact angle and output voltage after 70 h of washing,
(v) Surface morphologies of the substrate before and after washing, (vi) Stability of the TENG device
upon repeated contact-separation cycles. Reproduced with permission [180] Copyright 2022, Elsevier.
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(c) (i) Schematic of the self-healing mechanism of the developed water-assisted self-healing polymer
(WASHP), (ii) stability, and (iii) reproducibility of the WASHP-based light-emitting touch-responsive
device upon cyclic stretching and cyclic switching, respectively. Reproduced with permission [181]
Copyright 2021, Wiley. (d) (i) Fabrication of the wearable e-textiles pressure sensor, (ii) operational
stability of the pressure sensor, and (iii) wash durability. Reproduced with permission [182] Copyright
2020, Elsevier. (e) (i) Energy utilization efficiency of the photothermal nonwoven fabric after washing
and exposure to harsh environments, (ii) Optical and SEM images of the substrate after exposure
to different harsh environments. Reproduced with permission [184] Copyright 2018, Royal Society
of Chemistry. (f) (i) Schematic of the 3D nonwoven fabric-based piezoresistive sensor fabrication
process, (ii) relative resistance change against 5000 compression/release cycles, and (iii) 40 h of
washing. Reproduced with permission [185] Copyright 2021, Elsevier. (g) (i) Schematic of the 3D
braided technology (ii–iv) Rectangular, Square and Toroidal shaped 3D TENG, respectively, (v,vi)
Output voltage for prolonged operations (one month) and washability for 20 cycles. Reproduced with
permission [186] Copyright 2020, Nature. (h) (i) Fabrication of 3D fabric-based micro supercapacitor,
(ii) capacitance retention of the device over 3000 bending cycles, (iii) cyclic voltammetry curve of the
supercapacitor before and after washing. Reproduced with permission [187] Copyright 2021, Wiley.

Tian et al. reported a wearable piezoresistive sensor from polyester (PET)/polyethylene
(PE) fiber-based 3D nonwoven fabric coated with multi-walled carbon nanotubes (MWCNT).
The sensor showed excellent operational stability against 5000 compression/release cycles
with a constant relative resistance change (RCR) pattern. The initial slight drop in RCR
may be attributed to slight plastic deformation of the fiber under pressure. Furthermore,
the pressure sensor could withstand 40 h of vigorous washing with an acceptable change in
RCR (8.4%) (Figure 5f) [185]. Dong et al. reported a 3D-shaped braided TENG via multiaxial
winding of commercial silver-plated nylon yarn coated with PDMS. The 3D braided TENG
structure displayed an improved electrical output than the traditional 2D TENG fabric
due to its larger contact separation gap. In addition, the device showed long-term stability
(one month of cyclic loading) and washability (20 times) without a significant decrease in
electrical output (VOC, ISC) (Figure 5g) [186]. Li et al. developed a 3D fabric-based micro su-
percapacitor through screen printing of the poly(3,4-ethylenedioxythiophene):poly(styrene
sulfonate) (PEDOT:PSS) interdigitated pattern followed by MnO2 deposition and elec-
trolyte penetration. The excellent stability of the supercapacitor was confirmed by the
higher capacitance retention (94%) after 3000 bending cycles. The device showed excel-
lent durability, with no changes in the cyclic voltammetry (CV) curve before and after
washing. Furthermore, the 3D fabric-based supercapacitor exhibited a remarkable areal
capacitance (~135.4 mF cm−2) 3.5 times higher than that of the planar substrate (PET) based
supercapacitor (Figure 5h) [187].

Different fabric-shaped e-textiles and their endurance properties are presented
in Table 2.
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Table 2. Summary of different fabric shaped durable wearable electronic textiles.

Substrate Nano Materials Fabrication Initial Output
Durability

Application Ref.
Stability Washability

Nylon Fabric SWCNT, MoO3 Spray Coating Resistance,
8.55 MΩ

~10,000 stretching-releasing cycles,
outstanding stability

10 cycles, no change of relative
resistance Supercapacitor [188]

PET Fabric Ag ink Inkjet Printing
Conductivity,

0.9 ± 0.02 Ω·sq−1
~10,000 bending cycles, no significant

change of resistance
15 cycles, resistance increased by 2

times of initial resistance Conductive Textiles [178]

Nanofiber
membrane

Poly(Ionic
Liquid) Electrospinning Resistance,

3 × 106 Ω·sq−1
~300 loading/unloading cycles, no

capacitance degradation 10 cycles, consistent performance Pressure sensor [189]

Woven Fabric SS core yarn Weaving
Power density,

9.9 µWm−2
~4200 pressing cycles, with no
degradation of current output

4 h washing, constant electrical
output (voltage) Triboelectric sensing [190]

Cotton Fabric PEDOT:PSS Screen Printing Resistance,
22.70 kΩ - 50 cycles, maintained similar ECG

wave pattern ECG electrode [191]

Nylon Fabric CNT Screen Printing
Conductivity,
0.2 kΩ·sq−1

~2000 bending cycles, no obvious
change in resistance

10 h of water immersion, negligible
changes in resistance

Self-powered
gesture sensor [192]

Cotton Fabric RGO/
SWCNT Dip Coating Gauge factor,

5.4
~100,000 bending (11.6% strain)

cycles, excellent stability
10 cycles, no change of surface

resistance Motion sensor [193]

Textile Fabric Gold nanowire Dip Coating Resistance,
12.4 MΩ

30,000 Sec of loading-unloading
cycles, constant output signal

48 h of washing, a slight increase
(7.3%) of resistance Health monitoring [194]

Cotton Fabric RGO Dip Coating Sheet resistance,
0.9 kΩ·sq−1

~400 bending cycles, Stable resistance
change

10 cycles, slight increase of resistance
(0.9 to 1.2 kΩ/sq) Strain sensor [195]

Cotton Fabric Ag nanowire Dip and Dry
Power output,

1.25 Wm−2
~3000 cyclic bendings, no change of

voltage output (Voc)
15 cycles, output voltages of the

electrode preserved well Nanogenerator [196]

Wool Fabric RGO Pad Dyeing Sheet resistance,
12.3 kΩ·sq−1

~500 stretch-release cycles, steady
change of relative resistance

10 cycles, moderate increase of
resistance (14 to 20.5 kΩ/sq) Strain sensing [197]

Cotton Fabric PAH, Cu,
F-POSS/POTS Deposition Sheet resistance,

0.33 Ω·sq−1
~5000 bending cycles, slight change

of resistance (0.52 ± 0.18 Ω·sq−1)
100 cycles, Conductivity maintained

well (0.32 Ω·sq−1)
Self-cleaning,

E-textiles [198]

Abbreviation: SWCNT—Single-walled carbon nanotube, MoO3—Molybdenum trioxide, SS—Stainless steel, PEDOT: PSS—Poly (3,4-ethylenedioxythiophene) Polystyrene
sulfonate, RGO—Reduced graphene oxide, PAH—Poly (allylamine hydrochloride), F-POSS; Fluorinated-decyl polyhedral oligomeric silsesquioxane, POTS—1H,1H,2H,2H-
perfluorooctyltriethoxysilane.
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3. Interconnections

The wearable electronic system may involve the integration of different multifunc-
tional, stimuli-responsive electronic textile components interconnected with other circuit
elements for operation (Figure 6a). Interconnections among different sensing, data ac-
quisition, and processing units are very crucial to transmit information in the form of a
data signal from one unit to another in synchronization with the actions of the wearer.
Thus, interconnection lines must maintain optimal endurance against all physical, chemical,
mechanical, and other stresses that may occur during operations without affecting their
signal transmittance capability. Electroconductive fibers and yarns offer the optimum
degree of flexibility required in wearable operations, in comparison to commercial metallic
wires that are incompatible and may fail in repeated operations. Thus, conductive textile
fibers/yarns are the best suit for wiring different components present in a wearable system,
but they need to be robust enough to consistently serve their purpose throughout the lifes-
pan of the wearable architecture without losing their functionality. The interconnections
among different wearable components can be achieved via physical (soldering, conduc-
tive/nonconductive paste, crimp) or mechanical (embroidery, printing, sewing) bonding of
the interconnects with the clothing/garment embedded into the complete wearable system.
The physical methods are mostly adopted for interconnecting commercial rigid electronic
components which involve a high welding temperature (soldering), may easily break under
greater deformation (clamp), and may easily be affected by humidity and temperature
(adhesive paste) [199], etc. These interconnection techniques are not suitable for designing
flexible and comfortable wearable systems. On the other hand, the mechanical bonding,
i.e., stitching of flexible yarn/filament-shaped interconnects via sewing or embroidery,
ensures firm and reliable connections among the existing units of the wearable system.
Such integration of interconnects is compatible with the textile-based wearable architecture
and may not affect wearer comfort. However, the endurance of the transmission line is
crucial, which depends on the type and durability of the conductive substrate adopted for
interconnection, the integration method, and the pattern.

Eom et al. demonstrated highly conductive (1300 S/cm) and stretchable ionic liq-
uid/poly (vinylidene fluoride-co-hexafluoropropylene) modified dry spun CNT fibers
for interconnections in wearable e-textiles. A commercial sewing machine was used to
design a variety of patterns on a fabric. The linear interconnection pattern showed the
lowest electrical resistance (88.9 Ω) while an increasing trend was observed for more com-
plex patterns, respectively. The CNT fiber showed optimal durability under 30 min of
domestic washing with a slight loss of conductivity (1015 S/cm). The fiber interconnection
with the serpentine pattern also displayed excellent cyclic stability under 50% strain for
1000 stretch-release cycles with only a 2.9% variation in relative resistance (Figure 6b) [200].
Koshi et al. demonstrated that serpentine interconnects with different laminated structures
(Type A/B/C) exhibit a distinctive failure lifetime against consistent elongation. Type C in-
terconnection was found to be the most durable (survived 224 cycles) against applied strain
compared to other types of interconnects. Moreover, the cloth face mask built with type C
interconnects showed optimum skin temperature monitoring performance even after eight
washing cycles, beyond which multiple failures were observed (Figure 6c) [201]. Atakan
et al. revealed the durability performance of the silver-plated polyamide yarn transmission
lines on the cotton fabric produced by the sewing technique (single-line stitch) and the
embroidery technique (three-line stitch). Martindale abrasion tests of the interconnection
lines under both dry and wet conditions showed that the silver coating was more damaged
in the wet states than in the dry medium. However, in terms of integration technique, em-
broidery transmission lines exhibited better electrical performance promoted by numerous
interconnection points present in the embroidery network (Figure 6d) [202]. In a different
study, one-stop production of multilayer structured four-button textile touch sensors was
achieved via embroidery of a silver-coated polyamide yarn sensing pattern interconnected
by embroidered metal composite yarn onto commercially metalized nylon fabric. Mesh
spacer fabric was inserted to act as an insulation layer between the top layer (conductive
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fabric) and the bottom circuit layer. Both the embroidered sensing unit and the interconnec-
tions are expected to be highly durable against external impacts during operations, as they
are securely held within the compact fabric assembly structure (Figure 6e) [203].
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CNT fibers (i) and (ii) cyclic stability of the serpentine pattern under 50% strain. Reproduced with
permission [200] Copyright 2019, Elsevier. (c) (i) Optical images of the differently attached serpentine
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upon cyclic deformation, (iv) variations in temperature before and after the first washing. Reproduced
with permission [201] Copyright 2021, Institute of Physics. (d) Interconnection pattern made by
single-line stitch sewing (i) and three-line stitch embroidery (ii). Reproduced with permission [202]
Copyright 2020, Elsevier. (e) One-stop production of a four-button touch sensor. (i) Embroidery
of the sensing pattern using Ag coated PA yarn, (ii) Embroidered metal composite yarn circuit
for interconnections, (iii) placement of mesh spacer insulation layer, and (iv) attachment of upper
conductive layer in the assembly by normal yarn satin stitch. Reproduced with permission [203]
Copyright 2017, Sage Publications. (f) Different components attached to the filament using solder
paste (i), post-bending failure of the copper tracks with no fillet (ii), filleted at the edge (iii), and
center of the bond pad (iv), failure of the copper tracks upon bending without (v) and with glob-top
encapsulation (vi), optical images of the circuit before (vii) and after washing (viii). Reproduced with
permission [204] Copyright 2019, Wiley. (g) Schematic of the stretchable conductive adhesive (SCA)
paste preparation (i), change of conductivity upon cyclic bending (ii) and stretching (iii), ECG output
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ACS publications. (h) (i) images of Amphenol and Nicomatic Crimp, (ii) resistance of different crimp
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Komolafe et al. reported filament circuits containing LEDs and other components
along with connection wires attached by using anisotropic conductive paste and stencil
printed solder paste, respectively. The joint between the track and the bond pad was
the main failure point in bending for both filleted and unfilleted filaments and could
withstand similar bending cycles (62) before failure. However, glob-top encapsulation of
the filaments significantly improved bending resistance and survived twice the number
of cycles of the unencapsulated filaments. The filament circuits were later successfully
incorporated inside a narrow pocket within the fabric during the weaving process to
assess durability against repeated bending and washing. The encapsulated filaments
embedded in the fabric survived 1500 repeated 90◦ bending cycles at a bending radius of
1 cm. The glob-top encapsulation resulted in improved durability but could not provide full
protection for a prolonged duration, as the failure point migrates toward unencapsulated
areas of the filaments. Therefore, encapsulation of the entire filament could provide a
reliable performance output upon mechanical stress. The unencapsulated filament showed
poor washability and after only five cycles interfacial crack and dendritic stress on the
circuit were noticed. Moreover, the fully encapsulated filament with thermally molded
Kapton within the fabric survived up to 45 domestic washing cycles (Figure 6f) [204].
Ko et al. reported a stretchable conductive adhesive (SCA) paste containing Ag particles,
MWCNT, and silicon rubber to be utilized as printable interconnects in the joining of
e-textile components. The printable interconnects were highly stable under larger stretch
(120%) and exhibited no resistance changes when connecting LEDs to the battery. The
higher stability of the adhesive specimen was further confirmed by repeated bending at
a radius of 15 mm and stretching under 50% strain for 3000 cycles with an insignificant
change of conductivity (σ/σ0) of 0.97 and 0.91, respectively. The SCA paste was applied to
the PDMS and bandage to assess its durability against paste mixer and domestic washing,
which revealed its excellent endurance with almost no change in electrical resistance. The
excellent washability of the SCA electrodes was further confirmed by the unchanged ECG
signal pattern even after washing (Figure 6g) [205]. Sima et al. evaluated the stability and
durability of two commercial crimps for detachable interconnections of textile ribbons
containing four conductive paths made of a hybrid thread containing PET, Ag, and Cu. The
Amphenol crimp connectors showed superior stability under 50 domestic washing cycles
compared to the Nicomatic crimp, which showed instability or deterioration of contact
between the crimps and the conductive paths of the ribbon. The protective coating of UV
polymer and latex near the ribbon connector had no influence on the durability of the
interconnections after washing (Figure 6h) [206].

Interconnections are an integral part of the wearable e-textile assembly to satisfy the
customer’s reliability in data acquisition and analysis. Thus, the interconnection lines
must be flawless and exhibit the same degree of robustness as the whole wearable system.
Flexible interconnect materials, connection patterns, and joining techniques all must be in
synchronization to achieve the highest possible endurance throughout the entire life cycle
of the wearable garments.

4. Durability Enhancement Strategies

Although different textile structures with variant incorporation techniques with a
wide range of nanomaterial selection windows have been investigated, poor durability of
the e-textiles is still challenging and may be linked with the mismatch of properties between
the substrate and electroactive materials. Thus, to retain the functionality even in a hostile
environment, the researcher often adopts different durability enhancement strategies to
be employed in various stages, i.e., pre-treatment, during the process, post-treatment, etc.
The following section of the article briefly describes numerous techniques aimed at the
development of durable e-textiles.
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Surface Modification

The surface modification of the substrate is usually done in the pre-treatment stage
prior to nanomaterial integration, and it is found to be an effective way of introducing a
functional chemical group on the non-polar textile’s surface to accelerate chemical bonding
and adhesion in between the substrate and nanoparticles for improved endurance. The
mussel inspired bio-protein, i.e., dopamine, is known to be an efficient material for prompt-
ing interfacial bonding in textile functionalization by mimicking the adhesive behavior of
the natural mussel with minimal environmental impact. The pH plays an important role in
dopamine interaction and adhesion properties with the formation of different complexes,
i.e., mono, bis, and tris complexes with Fe3+ (Figure 7a) [207]. Polydopamine (PDA) ob-
tained through in situ polymerization (pH ~ 8.5) of dopamine is enriched with a catechol
and amine functional group which facilitates strong adhesion of the coating materials
with the textiles. Sadi et al. developed a highly durable multifunctional cotton fabric
via polydopamine-templated dip-coating of single-walled carbon nanotubes (SWCNTs).
The modified cotton fabric showed a greater adhesion behavior, which resulted in higher
conductivity (41.5 Ω/Sq.) and performed consistently upon repeated bending (no change,
∆R/R0 (%) ~ 0%) and washing (slight change, ∆R/R0 (%) < 10%) while the fabric without
PDA was vulnerable to such actions (Figure 7b) [208]. In another study, an antibacterial
fabric made of PDA-inspired polyethylene terephthalate (PET) fabric coated with RGO
and Cu2O showed higher conductivity (~2.7 times) than the original substrate. The fabric
was highly washable and could withstand repeated washing with optimal antibacterial
performance (90% for S. aureus and 88% for E. coli) even after 40 cycles (Figure 7c) [209]. A
self-protective and reproducible e-textile (SPRET) was constructed by hierarchical ‘steels-
concrete’ construction with a multifunctional polypyrrole (PPy)-polydopamine (PDA)-
perfluorodecyltrlethoxysilane (PFDS) polymer ‘concrete’ layer on CNT ‘steel’-coated PET
substrates. The promising machine washability of SPRET (three cycles, no change in contact
angle; CA > 150◦) over CCET (CNT-coated e-textiles) coated with PPy-PFDS (after only
one cycle, CA decreased sharply) can be attributed to the presence of PDA-induced strong
adhesion between polymer concrete and CCET. Additionally, no visible degradation of the
output current in 3000 compressive cycles confirmed the higher stability of the composite
(Figure 7d) [210]. Liu et al. demonstrated that the PDA layer between the cotton sub-
strate and reduced graphene oxide (rGO) promotes greater durability under cyclic loading
(800 cycles). The rGO/PDA/carbonized cotton fabric showed more stable and durable
behavior with no notable resistance damage because of the improved connections between
the fabric surface and the rGO. Alternatively, in the absence of PDA, the strain-induced mi-
crocracks in the rGO layer can barely merge after strain release, resulting in more unstable
and larger variations of resistance (Figure 7e) [211]. Gao et al. developed an EMI shielding
textile via the dip coating of PDA functionalized polypropylene (PP) nonwoven fabric with
silver nanoparticles (AgNPs). The presence of PDA in the composite fabric greatly enhances
the stability of the surface conductivity with almost no change upon repeated bending
(2000 cycles), whereas no PDA modification of the same substrate leads to the sharp decline
of conductivity (7.4 S/cm to 0.33 S/cm). Additionally, the composite showed excellent
aqueous (acid solution, pH = 1) durability by retaining 84% of its shielding efficiency after
6 h of immersion (Figure 7f) [212].

Bovine serum albumin (BSA), an amphiphilic bioprotein often termed ‘universal glue’,
offers a promising pathway to enhance the durability of e-textiles by attaching different
organic and inorganic materials to the substrate via hydrophobic and hydrophilic interac-
tions [213]. Zhou et al. developed a fiber-shaped supercapacitor by coating BSA templated
cotton thread with MWCNTs/graphene hydrogel suspension. The device showed out-
standing cyclic durability during 8000 operation cycles with 95.51% capacitance retention
ability [214]. A flexible yarn-shaped gas sensor made of BSA-modified cotton yarn coated
with RGO/MoS2 displayed excellent stability (normalized resistance change, ∆R/R0 ~ 2.1%,
for 1000 bending cycles) and washability (100 times, with only 6% resistance loss) due to
the strong molecular interactions of the coating materials with the yarn (Figure 7g) [215].
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Yu et al. demonstrated that the BSA-induced surface modification turns ultra-high molecu-
lar weight polyethylene (UHMWPE) fiber into an adhesive platform for efficient assembly
of MXene via the electrostatic wrapping technique. The strong interfacial bonding between
UHMWPE fiber and MXene initiated by BSA resulted in improved mechanical properties
(64% increase in interfacial shear strength compared to pristine fiber) but did not affect
inherent fiber properties. The fiber morphology was found to be intact even after 30 min of
ultrasonication with consistent electrical output (current, µA) [216].

Instead of using a common cross-linking agent, Cai et al. proposed a ternary solvent
(CaCl2/C2H5/2H5OH/H2O) surface modification technique of silk fabric before coating
it with RGO to develop flexible supercapacitor electrodes. Pretreatment with ternary
solvent significantly improved the RGO loading on the substrate and showed 1.69 times
lower sheet resistance (Ω) than without ternary solvent modification. In addition, the
electrode maintained excellent capacitance retention (148%) at 10,000 charge-discharge
cycles (Figure 7h) [217]. Du et al. constructed a highly durable wearable heater from
Tannic acid (TA)/Aminopropyltriethoxysilane (APTES) functionalized Polyamide 6 (PA6)
woven fabric coated with electrolessly deposited copper (Cu). The device could withstand
1000 stretch-release cycles with greater stability (R/R0 ~ 2.5) and retained a 95% current
interception rate for 200 repeated operations (voltage on-off). Furthermore, the superior
washability (50 times, nominal increase in resistance, 0.01 Ω/Sq. to 0.0375 Ω/Sq) of the
device can be attributed to increased adhesion due to the presence of the TA/APTES anchor
layer between the fabric surface and Cu molecules (Figure 7i) [218].

The homogeneous suspension of nanomaterials and modifiers is often prepared and
preferred to facilitate mass-scale e-textile fabrication with improved durability rather
than separately modifying the substrate in the pretreatment stage followed by functional
coatings. Jiang et al. developed a polyamide fabric electrode via screen-printing of homo-
geneous thermoplastic polyurethane (TPU)/multi-walled carbon nanotube (MWCNT) ink.
The excellent stability (0.8% resistance after 1000 bending cycles) and washability (only
2.1% increase in resistance after 20 wash cycles) of the electrode are attributed to increased
adhesion due to the abundance of carbonyl and amino functional groups present in the TPU
polymer matrix, which initiates direct bonding of MWCNT molecules with the polyamide
fabric surface [219]. Li et al. developed a waterproof and breathable membrane from elec-
trospun polyacrylonitrile (PAN) and blocked isocyanate prepolymer (BIP) nonwoven fabric
dip-coated with fluorine-free waterborne hydroxyl acrylic resin (HAR). Cross-linking of the
BIP enables the long hydrocarbon chain of HAR to be firmly attached to the PAN surface,
thus improving the durability. The water contact angle (WCA) of the functionalized BIP
membrane remained unchanged after 24 h of washing and UV irradiation. On the contrary,
the WCA of the membrane without BIP decreased significantly upon 24 h washing (150.6
to 129.9) and UV irradiation (147.5◦ to 132.9◦) (Figure 7j) [220]. Zhu et al. developed a
highly conductive woven fabric via dip-coating with a homogeneous composite suspen-
sion containing single-walled carbon nanotubes (SWCNTs) and biomass-derived glucaric
acid/chitosan (GA-chitosan) organic salt. GA-chitosan acts as an organic solvent-free green
cross-linking agent to facilitate the higher stability and durability of conductive textiles.
The fabric exhibited constant electrical performance (maximum resistance change <13%)
for 1000 bending cycles and stable washing behavior with a slight loss of conductivity
(15.1 S/cm to 12.5 S/cm) after 20 cycles [221].

Plasma-induced surface modification of textile substrates can substantially enhance the
adhesion of functional nanomaterials for higher conductivity and endurance. Deogaonkar
(2020) demonstrated that dielectric barrier discharge-atmospheric pressure plasma (He, O,
Ar) pretreatment of the polyester cotton blend fabric significantly improved the binding
strength of the Polypyrrole (PPy) coating with the substrate, resulting in a higher conduc-
tivity (75 Ω/Sq.) than that of the untreated fabric (210 Ω/Sq.). The surface resistivity of the
modified sample experienced a minor increase (38%, 75 Ω/Sq. to 99 Ω/Sq.) after 2500 abra-
sion cycles, while the unmodified fabric was not competent (168% increase, 210 Ω/Sq. to
568 Ω/Sq.) (Figure 7k) [222].
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Figure 7. Different surface modification strategies. (a) pH-dependent chemistry and adhesion
mechanism of polydopamine. Reproduced with permission [207] Copyright 2020, Royal Society of
Chemistry. (b) (i,ii) Stability and washability of the PDA-modified CNT-coated cotton composite
fabric. Reproduced with permission [208] Copyright 2019, Springer. (c) (i) Schematic of the PET
fabric modification process with dopamine, and (ii) Antibacterial properties against different washing
cycles. Reproduced with permission [209] Copyright 2022, Elsevier. (d) (i) Schematic of the self-
protective and reproducible e-textile (SPRET), (ii) optical images of the substrate, (iii–v) SEM images
of the SPRET, CNT network, and CNT polymer composite, respectively, (vi) washing assessment,
and (vii) cyclic stability against 3000 loading/unloading cycles. Reproduced with permission [210]
Copyright 2019, Royal Society of Chemistry. (e) Cyclic stability of the RGO-coated PDA-modified
cotton fabric (i,ii). Reproduced with permission [211] Copyright 2020, Springer. (f) Changes in
conductivity of the dopamine-modified nonwoven under 2000 bending cycles. Reproduced with
permission [212] Copyright 2019, Elsevier. (g) (i) Schematic of the composite yarn production process
pre-modified with bovine serum albumin (BSA), (ii) stability, and (iii) washability. Reproduced
with permission [215] Copyright 2017, Elsevier. (h) (i) Schematic of the RGO/silk fabric fabrication
process, (ii) Stability under cyclic operation cycles. Reproduced with permission [217] Copyright
2022, Elsevier. (i) (i) Schematic of the metal nanoparticles deposited PA6 fabric development process,
(ii) relative resistance change upon repeated bending, (iii) current output stability, and (iv) washability
test. Reproduced with permission [218] Copyright 2022, Elsevier. (j) (i) Schematic of the membrane
production, surface modification, and functionalization process, (ii) Changes in water contact angle
(WCA) after washing. Reproduced with permission [220] Copyright 2022, American Chemical Society.
(k) (i) Surface resistivity of the PPy-coated polyester cotton blend fabric pre-treated with various
plasma, and (ii) durability against repeated abrasion cycles. Reproduced with permission [222]
Copyright 2020, Taylor & Francis.

Table 3 summarizes different surface modification techniques toward durable e-textiles.
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Table 3. Durability of e-textiles achieved by different surface modification techniques.

Substrate Modification Nano Materials Fabrication Initial Output
Durability

Ref.
Stability Washability

Cotton Fabric PDA Ag NW Dip Coating Resistance,
7.12 Ω/cm

~2000 bending cycles, constant
resistance change

10 cycles, insignificant change
of resistance [223]

Nylon 6 Yarn BSA RGO Electrostatic
assembly

Conductivity
(>1000 S/m)

~400 bending cycles, negligible
variations in conductivity

9 cycles, no significant change
of conductivity [224]

PET Substrate Plasma Treatment AgNW, GO Blade Coating Conductivity
(>20 Ω/Sq.)

~700 bending/stretching cycles,
slight change in ∆R (%)

6 cycles, no change of sheet
resistance [225]

PP nonwoven Plasma Treatment PEDOT:TOS Immersion
Coating

Conductivity,
2.19 S/cm

~300 bending cycles, 20% loss of
electrical resistance

3 h of washing, conductivity
lost and got stable after 1.5 h [226]

Polyester Fabric PVA MXene Dip Coating Resistance,
930 Ω

~1000 loading/unloading cycles, no
changes in resistance

30 min washing, good
washability [227]

Cotton Fabric Ink with PVA binder CB Dip Coating Resistance,
25–28 kΩ/Sq.

~1000 bending cycles, durable and
reliable performance

12 cycles, resistance increased
initially but was stable [228]

Cotton Yarn β-lactoglobulin RGO Dip Coating Conductance,
0.91 ± 0.32 µS

~1000 bending cycles, slight changes
(~1.47% in SD)

5 cycles, no dramatic change,
(∼0.063 µA in SD) [229]

Cotton Fabric GMA grafting and
APA PANI In-situ

polymerization
Resistance,

2× 109 Ω/Sq.
Reversible conductivity switching (5

cycles) behavior
40 cycles, with almost no
change of conductivity [230]

Nylon 6 Fabric PA/APTES Cu Electroless
deposition

Resistance,
0.0056 Ω/Sq.

~1000 bending cycles, stable
performance (R/R0 ~ 2.1)

50 cycles, slight increase in
sheet resistance [231]

Cotton Fabric MPTS Silver Electroless
deposition

Resistance,
0.33 Ω/Sq. - 200 cycles, slight increase of

resistance (to 2.49 Ω/Sq.) [232]

PET Fabric GA GO Laser Scribing
Capacitance

(756 µFcm−2)
~1000 operation cycles, 98.3%

capacitance retention
Good wash fastness

properties [233]

Cotton Yarn Polyelectrolyte
brushes Cu Electroless

deposition
Conductivity,

1 S/cm
~30 stretch/release cycles, unchanged

conductivity
5 cycles, no degradation of

conductivity [234]

Abbreviation: PDA—Polydopamine, BSA—Bovine serum albumin, PVA—Polyvinyl alcohol, GMA—Glycidyl methacrylate, APA—4 Aminophenethylamine, PA/APTES—
Phatic acid/Aminopropyltriethoxysilane, MPTS—3 Mercaptopropytrimethoxysilane, GA—glutaraldehyde, CB—Carbon black, PEDOT:TOS—Poly(3,4-ethylene dioxythiophene):p-
toluenesulfonic acid, PANI—Polyaniline, R/GO—Reduced/Graphene oxide, NW—Nanowire4.2. Encapsulation.
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The encapsulation of the e-textiles is commonly adopted to elevate endurance be-
havior and is performed mainly in the post-treatment phase. The thin layer of different
encapsulating material provides versatile protection for the conductive pattern to be firmly
anchored to the substrate and remains unaffected or less affected by the mechanical stress
involved in daily use. It has been well established that the encapsulation of e-textiles
provides better performance in terms of stability, flexibility, durability, washability, etc.

Islam et al. constructed highly conductive (49 Ω/cm) and durable e-textiles by screen
printing cotton fabric with graphene ink followed by fine encapsulation of the conductive
pattern with PU-based encapsulant (PE773). The thin PE773 layer ensures the graphene
ink adheres firmly to the substrate surface and protects it from the different hostile stimuli
involved in regular wash and wear. The electrical resistance of the encapsulated fabric
maintained acceptable changes (~3.5 times increase, 49 Ω/cm to 118.0 Ω/cm) for ten home
laundry cycles, while the bare printed fabric suffered a ten times increase in resistance
(49 Ω/cm to 734.0 Ω/cm) for the same amount of washing. The original surface morphol-
ogy of the encapsulated fabric was retained during wash cycles, but substantial damage
and removal of the graphene flake were observed for the bared fabric. In addition, the
encapsulated sample showed excellent repeatability in bending (forward direction) and
compression (backward direction) compared to the unencapsulated sample. The excel-
lent stability of the device (supercapacitor) was further confirmed by higher capacitance
retention (95%) after 10,000 cycles of operation (charge-discharge) (Figure 8a) [235].

Duan et al. proposed a highly durable Polydimethylsiloxane (PDMS) encapsulated
Spandex/Poly (vinyl alcohol) (PVA)/MXene (SPMP) intelligent fiber connected with a
waterproof electronic system for the wireless monitoring of underwater hand gestures.
The resistance of the encapsulated device remained almost unchanged for ten washing
cycles, while the unencapsulated sample became nonconductive (about 1 GΩ) only after six
washing cycles. The excellent underwater reliability of the PDMS coating was confirmed
by no change in resistance for 1 h of water immersion compared to bare fiber (20% increase
in resistance) for the same period. Furthermore, the encapsulated fiber showed excellent
durability and maintained an unchanged resistance profile for 500 stretch-release cycles
compared to the unencapsulated fiber, which could hardly withstand such cyclic defor-
mations (Figure 8b) [236]. The silk yarn dip-coated with Ag nanowires (AgNWs) showed
outstanding durability after being encapsulated with poly(3,4-ethylenedioxythiophene)
polystyrene sulfonate (PEDOT: PSS). The conductive yarn was highly stable against re-
peated washing (ten cycles) with a slight increase (two times) in resistance, while the silk
yarn with only the AgNW coating lost its resistance by four orders of magnitude and
became highly resistive after two wash cycles. The PEDOT: PSS coating provided versatile
protection for the AgNw layer attached to the yarn and resulted in greater durability with
a slight change (<30%) of resistance for 300,000 bending cycles than the unencapsulated
yarn that underwent a two-fold increase in resistance with an unstable output profile
(Figure 8c) [237]. The Polyurethane (PU)/Reduced graphene oxide (RGO)-Single-walled
carbon nanotube (SWCNT) core-sheath yarn sensor encapsulated with thermoplastic
polyurethane (TPU) demonstrated excellent durability for potential application in strain-
induced human motion monitoring. The sensor displayed a completely stable and repeat-
able relative resistance profile pattern after 1000 stretch/release cycles at 50% strain. At
moderate strain (100%), the RGO/SWCNT conductive layer on the unencapsulated yarn
cracked, while the morphology of the encapsulated yarn remained intact. Furthermore,
the higher washability (slight change, ∆R/R0 ~ 10 for 190 min ultrasonic wash) of the
encapsulated sensor compared to that of the unencapsulated yarn (poor wash durabil-
ity, ∆R/R0 ~ 690 at 60 min) validates the need for encapsulation to retain the electrical
functionalities of e-textiles for the long term (Figure 8d) [238].
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Figure 8. Different encapsulation strategies. (a) (i) Schematic of the encapsulated substrate,
(ii) Change of resistance upon ten washing cycles, (iii,iv) SEM images of the encapsulated and
unencapsulated fabric after washing, (v,vi) Variations in resistance upon repeated bending and
compression in the forward direction, (vii) Capacitance retention under 10,000 operation cycles.
Reproduced with permission [235] Copyright 2022, Cell Press. (b) (i) Schematic of the encapsulated
fiber fabrication process, (ii) Stability under 500 stretch-release cycles, and (iii,iv) washability of the
unencapsulated and encapsulated sample. Reproduced with permission [236] Copyright 2022, Else-
vier. (c) (i) Schematic and optical images of the different sections of the functional silk yarn, (ii) Cyclic
stability, and (iii) washability performance of the substrate. Reproduced with permission [237] Copy-
right 2020, American Chemical Society. (d) (i) Stability of the TPU encapsulated SWCNT-RGO/PU
yarn under 1000 stretching/releasing, (ii) Durability against 250 h ultrasonic washing. Reproduced
with permission [238] Copyright 2021, Springer. (e) (i) Schematic of the yarn-shaped supercapacitor
with different (Eco flex/TPU) encapsulation, (ii) washability, and (iii) operation stability. Reproduced
with permission [239] Copyright 2020, Wiley. (f) (i) Change in resistance of the core-sheath yarn
with/without encapsulation under 50% cyclic strain in water and air, (ii) Underwater sonication.
Reproduced with permission [162] Copyright 2019, Wiley. (g) (i) Schematic of the nonwoven fabric
functionalization and encapsulation process, (ii) conductivity ration with 3000 bending cycles, and
(iii) repeated washing. Reproduced with permission [240] Copyright 2021, Elsevier.
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Huang et al. reported a yarn-shaped textile-based supercapacitor (TSCs) integrated
onto fabric via the embroidery technique followed by encapsulation with Ecoflex and TPU
laminating. The Ecoflex-coated supercapacitors suffered the moderate loss of capacitance,
but the lamination of TPU as an additional protection layer over Ecoflex-coated samples
ensured superior washability with no obvious change in capacitance after 20 machine
washing cycles. The encapsulated device could maintain 97% capacitance retention after
10,000 charge/discharge cycles and 9 h of underwater operations (1000 charge/discharge
cycles). Additionally, the sample displayed remarkable stability (94% capacitance retention)
when bending 4000 times (Figure 8e) [239]. In another study, a stretchable core-sheath
Polyurethane (PU)/Muti-walled carbon nanotube (MWCNT)/Silver nanowire (AgNW)
fiber encapsulated with styrene-(ethylene-butylene)-styrene (SEB) showed excellent dura-
bility under ultrasonication and maintained greater stability by retaining its actual electrical
properties (slight change, ∆R/R0 (%) ~ 1.6%) for periodic operations (50 cycles) in water
and air. The absence of an encapsulation layer resulted in a greater variation in resistance
(∆R/R0 ~ 300%) for the same level of underwater/air operations (Figure 8f) [162]. A
superhydrophobic electromagnetic interference (EMI) shielding e-textile was developed
by electroless deposition of silver nanoparticles (AgNPs) on a PDA-pretreated cotton
nonwoven fabric (PDA@NWCFs). The encapsulation of the functional Ag coating was
performed by forming a thin layer of polydimethylsiloxane (PDMS) or polyimide (PI) onto
the fabric surface, which not only prevents oxidation and corrosion of AgNPs but also
provides hydrophobicity. Both samples encapsulated with PDMS and PI showed excellent
stability (~3000 bending cycles) and washability (20 times) with minimal deterioration of
conductivity (Figure 8g) [240].

Table 4 summarizes different encapsulation strategies to develop highly durable e-textiles.
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Table 4. Durability enhancement of e-textiles through different encapsulation techniques.

Substrate Nano materials Encapsulant Initial Output
Durability

Ref.
Stability Washability

Cotton Fabric RGO PE773 Conductivity,
11.9Ω/Sq.

15,000 operation cycles, 98%
capacitance retention 10 cycles, 3.5 times increase in resistance [241]

PU Yarn AgNW Eco-flex
Sensitivity,

0.136 kPa−1
5000 loading/unloading cycles (0.05 kPa

pressure), stable output signals 10 cycles, 14% reduction of capacitance [242]

Cotton Fabric MXene PDMS Conductivity,
126 S/m

500 loading/unloading cycles (20% strain),
sensing signal hardly changed

5 h of ultrasonic washing, maintained
hydrophobicity (~147◦) well [243]

PET Fabric GO ink HDI Planar resistance,
861 Ω/sq

500 stretching-releasing cycles (10% strain),
stable negative response

120 min laundry, insignificant loss
of conductivity [244]

PET Fiber PEDOT PMMA Electric resistance,
600 Ω cm−1

1000 stretching-releasing cycles, gauge factor
became relatively stable - [245]

Cotton Fabric Ag, Cu Silicon Resistance,
6 Ω/in.

500 bending cycles, constant electrical
resistance profile

8 laboratory washing, resistance drastically
changed for unencapsulated substrate [246]

Textile Substrate Polymer Solar cell Acrylic adhesive
Current density,
14.85 mA cm−2

1000 repeated bending cycles, insignificant
changes in output 20 cycles, retained 98% of initial efficiency [247]

Polymer substrate Organic
photovoltaics Parylene PCE,

7.9% Cyclic compression (43%), 99% PCE retained 120 min water immersion (5.4% decrease in
efficiency) [248]

Cotton Fabric Ag NW NOA63 Sheet resistance,
12 Ω/Sq. 500 bending cycles, no change in luminance 50 washing cycles, electroluminescence

remained almost unchanged [249]

TPU Nonwoven GO, CNC Hf-SiO2
Guage Factor,

2.36 × 104
1000 tensile cycles at 10% strain, good

stability (no apparent fluctuation)
20 cycles, encapsulated substrate kept

unchanged, R/R0 ~ 15 for bare substrate [250]

Woven Fabric PEDOT:PSS, RGO EG, DMSO Sheet resistance,
10–15 Ω

10,000 bending cycles, no degradation in
sheet resistance

25 washing cycles, sheet resistance increased
from 20 Ω to 90 Ω [251]

Cotton Fabric PPy, MXene HDTMS Water contact angle,
158◦ Long-term stability (>1000 bending cycles) 5 h ultrasonication, WCA decreased to 144◦

but remained hydrophobic [252]

Spacer Fabric SWCNT, Ag DM-SIP-2500
Sensitivity,

4.2 × 10−2 kPa−1
20,000 loading/unloading cycles, uniform

capacitive changes (<7%)
45 laundry cycles, slight changes (<8.05%)

in capacitance [253]

Abbreviation: PE773—Commercial encapsulant, PDMS—Polydimethylsiloxane, HDI—Hexamethylene diisocyanate, PMMA—Polymethyl methacrylate, NOA63—Norland optical
adhesive, Hf-SiO2—Hydrophobic fumed silica, EG—Ethylene glycol, DMSO—Dimethyl sulfoxide, HDTMS—Hexadecyltrimethoxysilane, CNC—Cellulose nanocrystal, PCE—Power
conversion efficiency, DM-SIP-2500—Commercial encapsulation paste.
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5. Wash Reality

A typical washing cycle involves mechanical rotation or agitation of e-textiles loaded
inside a domestic laundry machine in an aqueous environment containing cleaning chemi-
cals (detergent) and the ballistic workload for a designated period at a certain temperature
followed by rinsing, drum spinning, and drying. Damages or loss of functionality of
e-textiles in washing could be associated with the following stresses: mechanical action
(drum rotation, agitation, spinning) induced stress, temperature-induced thermal stress,
washing media (water, acid, alkali) induced stress, chemical stress (due to cleaning chemi-
cals), and drying stress (in case of machine drying), etc. The degree of damage in washing
greatly depends on the magnitude of these stresses involved in different built-in wash-
ing programs, namely cotton, silk, delicate, delicate short, express, and wool, present in
commercially available household washing machines. Besides, researchers often follow
laboratory washing techniques (in a container/beaker, stirring/ultrasonication) that are
commonly used for the fastness assessment in the clothing industry. Although it is recom-
mended to follow a specific wash protocol based on the composition (natural/synthetic)
of the clothing substrate, retaining the functional properties of the e-textiles under any
washing is very crucial for end-user reliability. It is expected that different washing proce-
dures will have a distinctive impact on substrate properties, making the perception of the
washability of e-textiles ambiguous among researchers. The limited number of standard
washing protocols forced the researcher to adopt different available or customized methods
with varying parameters to define the washability of their product.

Table 5 summarizes various washing protocols adopted by the researcher to determine
the durability.
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Table 5. Different washing strategies in absence of standardized durability assessment protocols for e-textiles.

Textiles Washing Tech. Standard
Parameters

Ref.
Time Temp. Deterg. Load Rotation Wash Drying

Cotton fiber/CNT Container wash AATCC 61-2006 45 min 40 ◦C 200 mL 10 SS ball 40 ± 2 rpm 8 Cyc. Hang dry [147]

Cotton yarn/CB Beaker Wash - 10 min 25 ◦C 1 wt% - Magnetic Stirr 16 Cyc. Air Dry [153]

Cellulose yarn/PEDOT:PSS-EG Domestic Laundry M/C Wool Program - 30 ◦C Yes - 800 rpm 10 Cyc. - [154]

Nylon/MWCNT;AgNW Beaker Wash - 10 min 60 ◦C - - 300 rpm Stirr 5 Cyc. - [159]

SS-PET yarn M/C Wash - 20 min 30 ◦C - - - 8 Cyc. Hanging [160]

PAN fiber/rGO;CNT Hand Wash - 5 min 25 ◦C 4 g/L - - 5 Cyc. Air Dry [161]

PDVF/CNT yarn Beaker wash ISO 6330 A7 10 min 30 ◦C No - 400 rpm 10 Cyc Air dry [163]

PET yarn/Cu M/C Wash AATCC 135, Hand
laundry program 40 min 20 ◦C Yes 1.8 kg 119 strokes/min,

430 rpm 20 Cyc. Air hang dry [167]

SS-Terylene yarn Commercial M/C wash AATCC 135 5 min 25 ◦C Yes 1.8 kg 119 strokes/min,
430 rpm 40 Cyc. Air hang dry [168]

PET fabric/Silver ink Canister wash AATCC 61 45 min 49 ◦C 0.24 gm 50 SS ball - 15 Cyc. 50 ◦C, 15 min [187]

PET Fabric/RGO, CU2O Domestic wash GB/T 12490 30 min 40 ◦C NO 10 SS ball - 40 Cyc. Room temp. [209]

PI fabric/TPU-MWCNT Beaker wash ISO 105-C03 60 min 60 ◦C 0.37 wt% - Ultrasonication 20 Cyc 60 ◦C, oven [219]

Cotton Fabric/PANI Dry wash AATCC 86-2005 30 min 30 ◦C 200 mL
TTE Intense Stirring 40 Cyc. Air Dry [230]

Nylon Fabric/Cu M/C wash GB/T 5454–1997 30 min 40 ◦C 5 g/L - - 50 Cyc - [231]

Silk yarn/PEDOT:PSS M/C Wash Hand wash prog. 50 min 30 ◦C 20 mL - 900 rpm 4 Cyc. Line Dry [254]

PET braided yarn/CNT Beaker wash - 30 min - - - Ultrasonication 5 Cyc. Vacuum dry [166]

PI fabric/PEDOT:PSS Household M/C ISO 6330 35 min 40 ◦C 30 mL 2.5 kg 600 rpm 50 Cyc. - [255]

Solar cell/Textiles Hand wash AATCC M5 - - Yes - - 25 Cyc. Line dry [256]

Cu and Ni fabric/PDMS Hand scrubbing AATCC-138 2005 - 50 ◦C 0.3 mL - - 7 Cyc. Oven dry [257]

Abbreviation: Temp.—Temperature, Deterg.—Detergent, CYC.—Cycles, M/C—Machine, SS—Stainless Steel, CB—Carbon black, NW—Nanowire, PANI—Polyaniline.
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From Table 5, it can be concluded that different research groups explained washability
in distinctive ways to confirm the washability of their e-textile products. It is noticeable
that some groups tried to replicate the washing environment of the existing standards
from relevant science fields, while others opted for the traditional technique (only water
immersion, stirring) to verify their claim on durability. It is predicted that the e-textiles
graded as highly durable by following traditional laboratory washing (beaker washing)
might not show the same washing performance under intensified washing actions involved
in a commercial washing machine. A recent study revealed that highly conductive cotton
e-textiles (233.4 S/cm) could withstand ultrasonic water washing with a nominal change in
electrical properties (∆R/R0 < 5%) and their surface morphology was completely preserved.
Alternatively, the same substrate showed greater resistance variations (∆R/R0 ~ 13%) with
substantial damage to the morphology in machine washing [258]. Therefore, it is very
important to understand washing damage and the mechanism before making a conclusion
about washability.

5.1. Washing Stresses

Washing, rinsing, and tumbling are the three main phases of a typical machine-
washing process where the rotation speed (low, high, pause/rest) of the drum varies
according to the chosen wash program (see Figure 9).
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The mechanical stresses are considered the most influential damaging force involved
in machine washing. The degree of drum speed (rpm) is very crucial in determining the
washing effect on the e-textiles. Generally, pre-wash (soaking), main wash, and rinsing
cycles of any built-in wash program involve resting and low/high-speed rotation of the
drum followed by high-speed tumbling. Accelerometer-assisted real-time video analysis of
the washed e-textiles revealed different mechanical actions and stress it had to experience
inside the machine during domestic washing. Regardless of the duration of the washing
program, it is the drum speed and stop time that significantly damage the e-textiles. During
high-speed rotation (400 rpm), the substrate stuck to the drum wall, while at the lower
speed (15–38.5 rpm), the sample fell repeatedly due to gravitational force, which may
lead to significant physical damage to the substrate. The prolonged rest/pause period
generated negligible mechanical stress and damage to the device during washing [259].
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Bao et al. demonstrated the movement of wool fabric inside the washing drum and
analyzed different rotation-induced damage to the fabric. It was observed that a low speed
(34 rpm) rotation caused more damage (30% thread loss) compared to a high speed (66 rpm)
rotation, where only 1% thread loss was reported. At any speed above the threshold value
(66 rpm), the fabric adheres to the drum wall and rotates with it, introducing low impact
and frictional forces between the fabric-wash load and the fabric-drum (Figure 10a) [260].
Zaman and co-workers adopted ‘silk’ and ‘express’ washing programs following the same
standard (ISO 6330) to evaluate the washability of different textile-based ECG electrodes.
The resistance of the copper-based electrodes increased moderately (10–15 times) when
exposed to 50 cycles of the “silk” washing program but showed acceptable ECG signals. On
the contrary, the same electrodes became completely non-conducive only after ten ‘express’
washing cycles and did not produce any ECG signal (Figure 10b) [261]. Interestingly,
Ojuroye et al. in a different study concluded that higher rotation is more destructive
than lower rotation when determining the washability of Polydimethylsiloxane (PDMS)-
encapsulated e-textiles integrated capacitive sensory circuits by following the ISO 6330
standard. When washed with 800 rpm, the circuits lost their functionality after only a
quick wash (15 min), while the same circuits survived 10–15 wash cycles with a lower
speed (400 rpm) but longer wash duration (37–42 min). The instability and poor adhesion
performance of PDMS during high-speed washing resulted in the detachment of the IC
chip from the sensory unit. Therefore, it is very important to choose the right washing
speed to evaluate the washing performance of e-textiles based on their composition and
architectural assembly [262]. The laundry bag is commonly used in domestic washing,
which may reduce the intensity of mechanical stress-induced damage encountered by the
substrate circulating inside the machine drum. Q and XM demonstrated that the resistance
retention ratio (%), i.e., the ratio of the number of knitted fabric circuit boards (FCB) that
maintain electrical integrity to the total number of washed samples, increased by 89%
when the FCBs were washed inside a laundry bag (Figure 10c) [263]. The ballistic wash
load is often recommended in domestic washing, which ensures a uniform distribution
of mechanical stress for efficient dirt/soil removal in case the washing substrates weigh
less than the recommended capacity. However, the washing load could be responsible for
the bending, folding, twisting, stretching, and other mechanical deformations of electronic
textiles during washing (Figure 10d), which could significantly affect their functional
behavior; therefore, the impact of the washing load cannot be ignored and should be
studied extensively.

Apart from mechanical stress, the washing media (aqueous/non-aqueous liquid or
solvent and cleaning chemical) induced stresses are also important and substantially affect
the electroactivity of the conductive substrate upon washing. It is expected that the e-textiles
will exhibit more stable performance upon water-mediated washing compared to detergent
washing. Detergents are chemically active materials that initiate a pH-induced cleaning
reaction to emulsify soils or dirt present in the substrate and may also remove functional
coatings from the substrate surface by the simultaneous formation of micelles around the
coating materials during washing. Gaubert and co-workers investigated the washability
of three different silver-plated nylon yarn electrodes under various washing mediums that
included detergent with and without a bleaching agent (BA), only tap water, and tap water
with sodium percarbonate for standard machine washing (AATCC135) and prolonged
immersion (30 h) without mechanical constraints. The machine washing of electrodes with
BA-containing detergent greatly increased surface resistivity (R30/R0 ~ 93,295), while slight
changes were observed, i.e., 2.4 and 0.9 for detergent without BA and water, respectively.
Washing with sodium percarbonate had the most destructive impact on electrode conduc-
tivity (>10 MΩ) only after 20 cycles and could not be measured with the multimeter used.
Alternatively, prolonged immersion (30 h) of electrodes in the same medium mentioned
above had a much smaller impact on damaging conductive properties. The values of R30/R0
were found to be 1.47 and 0.88 for detergent with and without BA, 0.91 for water, and 1.13 for
sodium percarbonate soaking. In addition, variations in electrical properties after washing
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were evident for the electrodes of different thicknesses (Figure 10e) [264]. Ismar et al. demon-
strated that water immersion of silver-coated polyamide (PA) yarn caused more damage to
the surface coating compared to detergent immersion for the same period (72 h) at 30 ◦C. The
aggressive effect of water was more evident in the surface morphology of the yarn, where
greater damage to the coating layer was observed for immersion in water than for immersion
in detergent. Such interesting results may be attributed to the polar nature of H2O molecules
or the lack of surfactants in the water solution and surfactant-induced homogeneous interac-
tions of Ag particles in the detergent solution to lessen surface damage (Figure 10f) [265]. In
a different study, contradictory washing behavior was observed for a pressure sensor made
of a non-woven fabric coated with carbon nanotubes using the nano-soldering method,
which showed better water washing performance than detergent washing for a period of
48 h (Figure 10g) [266]. However, in another study, screen-printed electronic textiles with
Ag ink showed a more stable electrical behavior for prolonged immersion (24 h) in water
compared to immersion with synthetic perspiration for the same period (Figure 10h) [267].
The water used to wash has a certain influence on the washing efficiency and damages the
functionality of the substrate, especially when there is hardness or impurities present, so
the quality of the water cannot be compromised during washing. Rotzler et al. investigated
the effect of different washing parameters such as duration, temperature, and mechanical
actions on the integrated conductive textile tracks in standard (ISO 6330) machine washing.
The duration (15–35 min) of washing appeared to be the least influential factor in damaging
the conductive tracks present in the circuit. The mechanical action and temperature were the
most influential factors affecting circuit functionality, but for the textile printed circuit board
(TEX-PCB) on polyester woven fabric, the effect of temperature surpassing mechanical stress
in washing may be due to the mismatch of the coefficient of thermal expansion among
different materials used in TEX-PCB construction (Figure 10i) [268]. Uzun et al. revealed
that temperature-mediated washing caused nominal damage to the electrical resistance of
cotton yarn coated with Ti3C2Tx MXene after 45 h of washing. At lower temperature (30 ◦C)
washing, an insignificant resistance change was observed after 20 washing cycles and the
resistance slightly increased by only 3% after 45 cycles when the temperature increased from
30 ◦C to 80 ◦C. The negligible effect of temperature on the electrical properties of the yarn
upon washing is further confirmed by its unaffected surface morphology (Figure 10j) [269].
The wearable heater made of graphene-ink printed cotton fabric sustained 10 washing cycles
in 0.1 wt.% detergent aqueous solution at different temperatures. The effect of the washing
temperature on the heating performance of the device was found to be very minimal (1.38%
and 1.46% variations in the heating temperature profile observed for washing at 20 ◦C and
50 ◦C, respectively) (Figure 10k) [270].

The washing temperature is sensitive to the substrate and usually varies based on
the type of fiber they are made of and may influence the activation of the detergent and
its effectiveness. In almost all commercially available domestic washing machines, the
washing temperature can be configured from an ambient temperature to 90 ◦C. The after-
wash drying conditions and temperature are very crucial as they may accelerate the damage
of the e-textiles’ functionality and thus cannot be ignored. Hardy et al. investigated the
effect of different after-wash drying techniques on the durability of electronically active
yarn. All (five pieces) conductive yarns (copper wire wrapped over polyester yarn covered
with knit braid) were embroidered on a t-shirt surface followed by domestic washing
(ISO6330) and line or tumble drying. Lack of continuity, intermittent continuity, or higher
resistance value (>5 Ω) of the E-yarn was considered a failure. All E-yarns survived
25 washing and line drying cycles with very nominal variations in average resistance
from 0.8 ± 0.18 Ω (before wash) to 0.7 ± 0.08 Ω (after wash/line dry). However, almost
none of the yarns could withstand 25 wash/tumble dry cycles, and failure started after
5 cycles, and beyond 15 cycles none of the yarns functioned. It was also observed that
incorporating a carrier yarn (Vectran) with the E-yarn as a reinforcement could exert more
durability, but devastating damage in washing/tumble drying was still maintained, while
the washing/line drying sample was consistent (Figure 10l) [271].
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The waterless or water-free non-aqueous washing technique holds great promise in
reducing the water footprint. Ryan et al. investigated the effect of dry cleaning and machine
washing on PEDOT: PSS dyed silk yarn. The yarn showed no change in electrical resistance
after four cycles of domestic machine washing following the “hand wash” program, while dry
cleaning with a common solvent (tetracholoroethylene) resulted in a decrease of conductivity
by a factor of two (Figure 10m) [254]. Kim et al. demonstrated the effect of water washing and
dry cleaning on the thermal insulation properties of natural (goose down, duck down) and
synthetic (Thinsulate 700, Thinsulate 600, polyester) filled outdoor sportswear. The decrease
in the thermal insulation rate for natural fillers was lower with water washing than with dry
cleaning. Natural fillers showed high thermal insulation up to five cycles and decreased slightly
up to ten cycles but maintained a much higher insulation value compared to dry cleaning.
The thermal insulation of synthetic filler materials also decreased after water washing, but the
change was much less than that of natural materials. The resistance to laundry was outstanding
for synthetic filler, but the loss of thermal insulation property was dominant for dry cleaning
compared to water washing (Figure 10n) [272]. Interestingly, in a different study, Pusic et al.
revealed that the EMI shielding efficiency (SE) of the conductive knit fabric made of silver-
coated polyamide yarn was more sensitive to wet (water) cleaning (ISO 3175-3) than to dry
(perchloroethylene) cleaning (ISO 3175-2). At a frequency of 0.9 GHz, the fabric showed a linear
and parallel decline in SE for the dry and wet cleaning techniques, where the largest difference
was observed in the third cycle and continued until the tenth cycle. The loss of SE due to wet
cleaning was more obvious than dry cleaning in this case. At a frequency of 2.4 GHz, better
preservation of SE was observed for dry cleaning than for water washing (Figure 10o) [273].

From the above discussion, it can be concluded that, depending on the type of substrate
to be washed either in a dry or wet medium, the intensity of the washing damage varies. It
is obvious that not all textile substrates are suitable for all wash strategies in different media.
Therefore, the proper selection of the substrate, washing techniques, drying procedure,
assessment criteria, and all other influential parameters must be in sync to understand
and describe washability in the best way. The limited number of standardized washing
and assessment protocols not only forces researchers to rely on different ideas to describe
durability but also hinders the reliability of e-textiles.

5.2. Standardized Protocols

Durability can be termed as the ability of electronic textile components to maintain their
functionality completely intact or to be affected less without compromising the comfort of the
wearer when exposed to any harsh environment involving a variety of physical, chemical,
and mechanical stresses. Therefore, the washability of the e-textiles is measured in the form
of a relative change in their electrical output, i.e., resistance, capacitance, conductivity, voltage,
current, and other performance indicators, which are attributed to changes in contact properties of
nanomaterials inside or at the interface of the substrate. So far, researchers have followed different
alternative standards from other fields, laboratory-scale techniques, and sometimes personally
customized operations to evaluate the washability of electroactive textile components due to the
limited number of standard protocols specially designed for the e-textile systems. It is undeniable
that substantial progress has been achieved in recent years towards highly durable electronic
textiles, but mostly from a laboratory perspective, not on a large scale. Therefore, large-scale
production along with optimum endurance performance will expedite market readiness and
adaptability. This is where more standards will play a great role through proper improvisation
of the current achievements toward customer-reliable e-textile products. Different international
institutions such as AATCC, ISO, ASTM, IEC, IPC, and others are relentlessly working to develop
standards for the durability assessment protocol of electronic textiles, and some of them have
even come up with a draft of their proposed standards, but they have yet to be finalized and
approved. The following table summarizes different existing and upcoming standards related to
e-textiles that could be beneficial to the research community working in a similar area.

Table 6 summarizes different existing and upcoming standards specialized for wear-
able electronic textiles.
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Table 6. Summary of different existing and forthcoming e-textile standards.

Org. Test Method Details Status Ref.

ISO FDIS 24584 Test method for sheet resistance of conductive textiles using non-contact type Under development [274]

AATCC
TM210

Test method for electrical resistance before and after various exposure conditions
(laundering, dry cleaning, water, perspiration, acids and alkalis, ultraviolet (UV)

radiation, and/or microbes)
Published in 2019 [275]

EP13 Evaluation procedure for electrical resistance of electronically integrated textiles Published in 2018 (Revised 2021) [276]

ASTM
WK61480 Method for durability of smart garment textile electrodes after laundering Under Development [277]

D8248-20 Standard terminology for smart textiles Published in 2020 [278]

IEC

63203-101-1 Terminology used in wearable electronic devices and technologies Published in 2021 [279]

63203-201-3 Determination of electrical resistance of conductive textiles under simulated microclimate
(air layer containing humidity and temperature between skin and clothing) Published in 2021 [280]

63203-204-1 Test method for assessing washing durability of leisurewear and sportswear
e-textile systems Under development, expected release in mid-2023 [281]

TR 63203-250-1 Snap fastener connectors between e-textiles and detachable electronic devices Published in 2021 [282]

63203-406-1 Test method for measuring surface temperature of wrist-worn wearable electronic devices
while in contact with human skin Published in 2021 [283]

IPC

8921 Requirements for woven and knitted electronic textiles (e-textiles) integrated with
conductive fibers, conductive yarns, and/or wires Published in 2019

[284]

8921A Requirements for woven, knitted, and braided electronic textiles (e-textiles) integrated
with conductive yarns and/or wires Not published yet

JPCA-8911 Requirements for conductive yarns for e-textiles applications Under development

8952 Design standard for printed electronics on coated or treated textiles and e-textiles Under development, Expected release by the end
of 2022

8971 Requirements for electrical testing of printed electronics e-textiles Under development, Expected release in mid-2022

8981 Quality and reliability for e-textiles wearables Under development, Expected release in early 2023

WP-024 IPC White Paper on Reliability and Washability of Smart Textile Structures—Readiness
for the Market Published in 2018 [285]

WP-025 IPC White Paper on A Framework for the Engineering and Design of E-Textiles Published in 2019 [286]

Abbreviation: Org.—Organization, ISO—International Organization for Standardization, AATCC—American Association of Textile Chemists and Colorists, ASTM—American Society
for Testing and Materials, IEC—International Electrotechnical Commission, IPC—Institute of Printed Circuits.
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So far, several methods have been proposed regarding the terminology and resistance
measurement of e-textiles. However, only a few already published methods are found
to be dedicated to the evaluation of e-textiles’ durability under different conditions, but
surprisingly, they have never been adopted by researchers to date. Besides, different
standards specialized for the assessment of washability of electronic textiles are currently
under development and are expected to be published shortly.

6. Conclusions and Prospects

The wearable electronic textile utilizes different action-driven signals in measurable
quantities with exciting possibilities in versatile areas along with personalized algorithms.
Flexible electronic textiles are of great interest due to their ease of use, comfort, and compat-
ibility at the user level. As discussed in the preceding sections, it is obvious that remarkable
advances have been achieved in all possible aspects, from material selection to end-user-
reliant, durable e-textile product design. Researchers have explored different architectural
textile assemblies with numerous innovative fabrication techniques, along with various per-
formance enhancement strategies toward highly durable and washable wearable e-textiles.
However, challenges related to stability, repeatability, durability, washability, scalability,
and other process-induced flaws limit the manufacture and commercialization of customer
reliable high-end wearable electronic textiles products (see Figure 11). Therefore, for the e-
textiles device to be commercially successful beyond the laboratory, future research should
be focused more on the following issues and research gaps to design multipurpose reusable
wearable electronic clothing as casual wear at the customer level.
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Reliable durability enhancement strategies are to be adopted according to the substrate,
nanomaterials, and processing involved in designing the e-textiles device. Different surface
modification approaches in the pre-treatment stages involving bio proteins, adhesives,
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cross-linkers, plasma, and other chemicals should not affect the structural integrity of the
textile substrate. Bioproteins as surface modifiers are assumed to be eco-friendly, but other
organic cross-linkers and bonding agents may have a higher environmental impact which
cannot be unattended. Besides, post-treatments such as encapsulation of the conductive
textiles with traditional encapsulants (TPU, PDMS, epoxy resins, etc.) have been proven to
be effective in protecting functional properties securely, but in some cases, the lamination
layer was found to be vulnerable and washed away. The encapsulation of the e-textiles
should not affect the breathability, comfort, flexibility, and other inherent properties of the
substrate and should be compatible with human skin.

The internal wiring of the wearable components is very much crucial for the opti-
mum performance of the entire unit but is mostly overlooked and needs more attention.
Therefore, a reliable interconnection pattern among different functional units within the
wearable system is essential for consistent performance, that is, data acquisition and pro-
cessing without interruption. Commercial metallic wires (silver, steel, copper, etc.) are
mostly explored for e-textile interconnections, but they are stiff, incompatible, and may
malfunction under mechanical stresses involved in the wash and wear. The failure or
malfunctioning of interconnections can cause short-circuits within the system, which may
pose a serious safety threat to the wearer. The flexible electroconductive fibers/yarns can
be the best alternative but need to be extensively studied to improve their robustness for
interconnections of various patterns. In addition, the seamless integration possibilities of
the electronic components into the clothing needs broader investigation toward a robust
wearable system.

The scalability of electronic textiles cannot be ignored as it is also directly related to
the productivity and cost of the wearable garment. Future research should be more focused
on designing e-textiles beyond the laboratory environment at a large scale. Fast and facile
manufacturing in combination with traditional textile processing techniques will promote
mass production compared to sophisticated laboratory techniques. In addition to the higher
endurance properties, the cost-effectiveness of the e-textile products should also be taken
into account for potential market expansion. Moreover, inclusive simulation and modeling
of current techniques (substrate treatment, nanomaterial incorporation, post-treatment,
washing, drying, and product design) are required to achieve greater efficiency and in fact
to develop new strategies.

Electronic textile fabrication involves various organic or inorganic chemical treatments
(surfactants, nanoparticles, polymers, metals, acids, bases, etc.) in a wet medium, which
can release substantial amounts of toxic elements to the environment and even pose a
significant threat to the consumer such as skin irritation or carcinogenic disease when in
contact with the human body. Superior washability of e-textiles will promote the lower
toxic release to the body when encountered with a wet environment (sweating, bleeding,
and raining) during wearing. However, the risk of toxic release both to the environment
and the human body is so evident that it cannot be ignored, and greater attention is required
for a more sustainable and cleaner approach. As the e-textile market continues to grow,
a huge burden of countless used wearable electronic textile materials is expected to be
added to the current solid waste chain in the coming years. Such waste is significantly more
toxic and dangerous than the solid waste generated from regular textile wear; therefore, a
sustainable and eco-friendly solid E-waste management is required.

Traditional domestic laundry involves a huge amount of water which may contain
toxic chemicals released from e-textiles during washing, and the release of such contam-
inated water into the environment without further purification may have a catastrophic
effect on the aquatic ecosystem. Waterless washing techniques will prevent such a level
of pollution by lowering the water footprint, but may also increase the operating cost
associated with alternative approaches. The environmental compatibility of dry-cleaning
chemicals should be investigated. Each washing technique (wet/dry) may have a dis-
tinctive impact on the properties of the substrate; therefore, it is important to understand
the washing damages for a particular type of material to be washed following a specific
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technique. More research should be devoted to the synchronization of different washing
techniques with the type, structure, and composition of the e-textile product to be laundered
to minimize washing damages.

Imparting high-end functionality such as self-cleaning properties toward e-textiles
will significantly reduce their washing needs, as they are expected to repel and decom-
pose dirt through photocatalytic action. The superhydrophobic surface achieved via the
coating of different chemicals is also capable of repelling or removing dirt, dust, and other
impurities by rolling water droplets inspired by the lotus effect. Although various chemical
compounds have been explored to exert such functionalities on e-textile components, they
should be biocompatible and not affect the comfort and aesthetic properties. The environ-
mentally friendly fluorine-free chemical reagents or polymers can replace traditional toxic
hydrophobic coatings but require more research for a better understanding of the cleaning
mechanism and efficiency. The self-healing property, i.e., automatic repairing of different
stimuli-induced damages, will substantially improve the robustness of the e-textiles and
make them more viable for practical application. Therefore, extensive research is required
on the development of self-healable polymers and their performance under different hostile
events throughout the life span of the e-textile components.

Despite the efforts of different international organizations to standardize e-textiles’
washing protocols, researchers should focus on mitigating the underlying mismatch in
materials, structure, fabrication, and product design to validate and adopt forthcoming
standards widely. The stability and repeatability of the device performance cannot be
ignored, which needs to be given the same priority as washability and requires standardized
documentation. It is very possible that an e-textile component is claimed to be washable but
may exhibit an unstable, irregular, and unreproducible performance profile for a prolonged
duration. Flexible, lightweight e-textile batteries in fibrous shape are promising and are
expected to replace traditional rigid and heavy power sources embedded in wearables, but
the efficient power generation and management, mobility, and endurance of such flexible
devices require more research attention. Moreover, future work should also address the
accuracy and reliability of the data measurement of the durable wearable electronic textile
system in the context of practical applications.
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