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ABSTRACT

We investigate the possibility of avoiding the escape of chaotic scattering trajectories in two-degree-of-freedom Hamiltonian systems. We
develop a continuous control technique based on the introduction of coupling forces between the chaotic trajectories and some periodic
orbits of the system. The main results are shown through numerical simulations, which confirm that all trajectories starting near the stable
manifold of the chaotic saddle can be controlled. We also show that it is possible to jump between different unstable periodic orbits until
reaching a stable periodic orbit belonging to a Kolmogorov–Arnold–Moser island.

© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0090150

Control of chaos in Hamiltonian systems is a relevant topic in
physics that has aroused much attention in recent decades. How-
ever, mainly, discrete control schemes have been implemented.
In this manuscript, we show that a continuous control inspired
by the Pyragas method can be used to avoid the escape of tra-
jectories in two-degree-of-freedom Hamiltonian systems, which
are quite common in chaotic scattering problems. The control
scheme starts with a systematic search of symmetric periodic
orbits (SPOs) and their crossings with a predefined control axis.
Once an arbitrary trajectory crosses this axis, a coupling force
between the trajectory and a symmetric periodic orbit is activated.
In the presence of the control force, the trajectory approaches
the desired periodic orbit, thereby avoiding the escape. After
some time, the control force becomes almost negligible and the
system recovers its original energy. We test the effectiveness of
the method by applying the control to a huge number of initial
conditions, distributed along representative Poincaré sections.
The numerical simulations show that a significant percentage
of escaping initial conditions can be kept within the scatter-
ing region by using weak coupling forces and a relatively small
amount of symmetric periodic orbits. The initial conditions that

are not possible to control are those located far from the stable
manifold of the chaotic saddle. In the final part of the work, we
show that once a trajectory is stabilized into some periodic orbit,
it is possible to move it to different periodic orbits by chang-
ing the coupling force at an appropriate time. The goal of this
extension of the method is not only to avoid the escape but also
to choose in which particular periodic orbit we want to stabilize
the system. We hope this work will be useful in research fields
such as fusion plasmas, celestial mechanics, conservative flows,
and laser-driven reactions.

I. INTRODUCTION

Chaotic scattering is an important topic in nonlinear science
and it has numerous applications in classical1 and quantum physics.2

Many chaotic scattering processes occur in open Hamiltonian sys-
tems, which are conservative systems characterized by a potential
through which trajectories can escape toward infinity. Therefore, in
a standard chaotic scattering problem, trajectories exhibit a transient
chaotic motion inside a scattering region. Many works on the subject
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have studied the main characteristics of the escape dynamics and the
associated ubiquitous fractal structures.3,4 However, another impor-
tant task is to prevent the escape of trajectories by using control
techniques.

After the pioneering work of Ott, Grebogi, and Yorke (OGY),5

the field of controlling chaos blossomed and many experimental,
theoretical, and numerical results have been obtained since then.
In addition to dissipative systems, much work has been done in
the context of conservative chaos. In particular, some early works
extended the OGY method to Hamiltonian chaos.6,7 Also, dif-
ferent existing techniques like the partial control method8 have
been applied to conservative systems. Nevertheless, specific meth-
ods have also been developed.9,10 Some examples of applications
include the control of periodically driven Hamiltonian systems,11

control of anomalous transport in plasmas,12 and control of con-
servative flows in the presence of noise.13 Despite the wide variety
of research, continuous control techniques have not received much
attention.

The main goal of this paper is to provide a continuous con-
trol method to avoid the escapes of trajectories in open Hamiltonian
systems. In particular, we have chosen as a model the paradigmatic
Hénon–Heiles Hamiltonian,14 which is a two-degree-of-freedom
dynamical system. For our purposes, we have implemented a con-
tinuous control method without feedback, inspired by the Pyragas
control method for dissipative systems.15

The basic idea of the method is to avoid the escape of trajec-
tories by including a coupling force between the chaotic escaping
trajectory and a periodic orbit. For that purpose, first we need to
establish in which periodic orbit of the system we want to stabilize
the trajectory. Since most open Hamiltonian systems exhibit sev-
eral symmetries, their periodic orbits are also symmetric and can
be easily obtained. Our results show that by considering only a few
symmetric periodic orbits (SPOs), it is possible to keep most trajec-
tories within the scattering region. In particular, all the trajectories
starting from initial conditions close to the stable manifold of the
chaotic saddle can be controlled.

Moreover, we also show that once the original escaping trajec-
tory has been stabilized into a controlled periodic orbit, it is possible
to jump between different SPOs until achieving a desired and prede-
fined periodic orbit. We illustrate this idea to show the stabilization
of the system in a periodic orbit located in the center of a Kol-
mogorov–Arnold–Moser (KAM) torus. Since this orbit is stable,
we can turn off the coupling force here once the desired orbit is
reached. For low energy levels, most Hamiltonian systems exhibit
KAM islands embedded within the chaotic saddle, so to reach one
of them is a natural control strategy.

The organization of this manuscript is as follows. First,
in Sec. II, we describe the model of study. In Sec. III, a
brief explanation about the method for computing SPOs is
offered. The control scheme and some particular examples of its
implementation are shown in Sec. IV. A general analysis of the
effectiveness of the method, based on extensive numerical sim-
ulations for many different initial conditions, is carried out in
Sec. V. The extension of the control method, showing the possi-
bility of moving between different SPOs, is explained in Sec. VI.
Finally, in Sec. VII, we present the main conclusions of this
manuscript.

II. MODEL DESCRIPTION

The Hénon–Heiles system is a paradigmatic 2D time indepen-
dent Hamiltonian system in nonlinear dynamics, and this explains
why is so widely studied. It owes its name to the French astronomer
Michel Hénon and the American astrophysicist Carl Heiles, who in
1964 used it in their search for the third integral of motion. The
Hamiltonian is given by

H =
1

2
(ẋ2 + ẏ2) +

1

2
(x2 + y2) + x2y −

1

3
y3. (1)

As a consequence, the equations of motion read

ẋ = px,

ẏ = py,

ṗx = −x − 2xy,

ṗy = −y − x2 + y2.

(2)

To visualize the system, we represent the isopotential curves
for different values of the energy in Fig. 1. When the energy is below
the threshold Ee < 1/6, known as the escape energy, the isopoten-
tial curves are closed. However, when its value is above the escape
energy, three symmetrical exits separated by an angle 2π/3 radi-
ans appear. This is a consequence of the presence of three saddle
points in the potential well, which are represented with red dots in
the figure. Therefore, it is for E > Ee when the system becomes a
paradigmatic example of chaotic scattering.

There are trajectories that do not escape from the scattering
region for energy values slightly above the escape energy. Most of
these trajectories describe periodic or quasiperiodic motion inside a
KAM torus. Nonetheless, as a consequence of the destruction of res-
onant islands and the subsequent formation of cantori, there are also
non-escaping chaotic trajectories inside the KAM islands. In this
work, we have applied the control method to the system with energy
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FIG. 1. Isopotential curves of the Hénon–Heiles system for different values of the
potential V(x, y) = 1

2
(x2 + y2) + x2y − 1

3
y3. The color of the curves indicates

the value of the potential, according to the color bar. Values below and above the
escape energy Ee = 1/6 are represented. The red dotes are located in the three
saddle points of the potential.
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E = 0.2, for which only one small region of KAM orbits exists, occu-
pying a negligible fraction of the phase space. Inside and around this
KAM island, there may be small resonant islands of higher order
that we have not considered as a target in the control scheme.

III. SEARCH OF SYMMETRIC PERIODIC ORBITS

The basic idea of the continuous control method that we have
implemented is to avoid the escape of trajectories by stabilizing a
periodic orbit of the system. Our aim is not to show that a particu-
lar trajectory can be kept in the scattering region but to construct a
set of periodic orbits that allows us to avoid the escaping of a high
percentage of arbitrary initial conditions. Hence, the first step is to
obtain the location of some periodic orbits of the system.

As long as we are facing a Hamiltonian system, there are no
chaotic attractors in the phase space. However, a skeleton of sym-
metric periodic orbits is embedded within the chaotic saddle. The
stable directions of these periodic orbits make up the stable manifold
of the chaotic saddle. To locate and compute the skeleton of periodic
orbits in a Hamiltonian system is an old and challenging problem,
for which many different techniques have been developed (see, for
example, Refs. 16 and 17). In this research, we have located and
computed SPOs following the accurate method described in Ref. 18,
which for completeness we will briefly summarize here.

The Hénon–Heiles system is time-reversible and has a D3 sym-
metry (this is the symmetry group of an equilateral triangle). As
a consequence, the periodic orbits are symmetric about the y axis
and two other axes. Bearing this in mind, SPOs can be found by
looking for perpendicular intersections with any of these symmetry
axis. For convenience, we find the periodic orbits that are symmet-
ric about the y axis. Therefore, we can say that if a trajectory starts
at x = 0 being perpendicular to the y axis (hence, ẏ0 = 0 and ẋ0 is

fixed by the energy such that ẋ0 =
√

2E − y2
0 + 2y3

0/3), and even-
tually crosses that axis again perpendicularly, then this trajectory
is an SPO. The number of crossings between perpendicular inter-
sections is the multiplicity m of the SPO. On the other hand, the
double the time needed to return perpendicularly to the y-axis is
the period T of the SPO. Therefore, the condition for an SPO is
x(0, y0, ẋ0, 0; T/2) = ẏ(0, y0, ẋ0, 0; T/2) = 0.

From a computational point of view, we proceed to
launching initial conditions (0, y0, ẋ0, 0) for many values of
y0 (we recall that ẋ0 is perfectly fixed by the energy). For
every initial condition, we calculate the coordinates after m
crossings with the y axis. If for two consecutive values of y0 the sign
of ẏ in the mth crossing changes, it means that between these two val-
ues there is an SPO. For a simple realization of the method, we will
observe as many changes in the sign as SPOs can be detected with
the precision of the numerical simulation. In particular, the smaller
the step between values of y0, the higher will be the number of SPOs
that we can detect.

Once a change in sign is detected, we proceed with a bisection
method that returns with high accuracy the coordinate ys where the
SPO crosses perpendicularly the y axis. In our case, we have located
the SPOs with a double precision of up to 16 significant decimal dig-
its. Once the coordinate ys is known, we just have to compute the
orbit during one period in order to know its coordinates at any time.
We repeat this procedure for every change in sign obtained.

It is worthwhile to mention that the method not only detects
the SPOs of a given multiplicity m but also the SPOs of multiplici-
ties that are integer divisors of m. For example, a unique numerical
simulation brings the SPOs of multiplicities 10, 5, 2, and 1.

To illustrate this method and the SPOs themselves, we show
some examples of SPOs of different multiplicities in Fig. 2. The blue
curves represent the SPOs, while the dots located in the y axis refer to
the perpendicular intersections of the SPOs. These points are exactly
the ones that are detected by the search algorithm. The red dots
indicate that the SPO is unstable, while the green dots indicate the
opposite.

Four different SPOs are depicted in Fig. 2(a), all of them of mul-
tiplicity 1. Three of these orbits, labeled 54,7,8 following the notation
of Churchill,19 are called nonlinear normal modes (NNMs). They
have received special interest as their existence is a direct conse-
quence of the symmetries of the system. 57,8 follow the same path
but in the opposite direction, as a consequence of the time-reversal
symmetry. 54,5,6 (here only 54 is represented) are a consequence of
the D3 symmetry. Finally, 51,2,3 only exist when the system is closed
(E < 1/6) and, therefore, cannot be represented here. The last SPO
appearing in Fig. 2(a), labeled as L1, is one of the three Lyapunov
orbits.20 We recall that when any trajectory crosses a Lyapunov orbit
with its velocity vector pointing outward of the exit, it will escape
to infinity and will never come back. These orbits are located in the
vicinity of the exits, passing through the saddle points of the poten-
tial. In Sec. VI, we will show that the Lyapunov orbit L1, due to
its singular location close to the exits, is the only SPO that is not
possible to use to stabilize the trajectories of the system.

On the other hand, in panels (b), (c), and (d) of Fig. 2, we repre-
sent three SPOs of multiplicity 2, 4, and 8, respectively. The SPO of
multiplicity 2 is special since it is the main stable symmetric periodic
orbit of the system, and it corresponds to the center of a KAM island.
In Sec. VI, we will show that, if desired, it is possible to use the con-
trol scheme to move any stabilized SPO into this singular periodic
orbit.

Since the system is open, the stable or unstable character of a
periodic orbit can be elucidated on the basis of whether trajecto-
ries starting from initial conditions that are infinitesimally close to a
periodic orbit escape or not. In this sense, trajectories starting from
initial conditions close to a stable periodic orbit will remain close
forever and, therefore, will not escape. On the contrary, initial con-
ditions close to an unstable periodic orbit will eventually leave the
chaotic saddle and escape to infinity. The reason is that the unsta-
ble periodic orbits form a set of Lebesgue measure zero. Therefore,
an infinite precision is required in order to find an initial condi-
tion that belongs to an unstable periodic orbit. Put another way,
the probability that randomly chosen initial conditions belong to an
unstable periodic orbit is zero. This simple criterion is not valid in
the case of unstable periodic orbits trapped inside a KAM island. In
these situations, different methods could be used to determine the
stability.21,22 Nevertheless, in this work, we have considered unstable
periodic orbits located in the chaotic sea, so the criterion based on
the escape is appropriate.

For the implementation of the control scheme, we have com-
puted a total of 200 SPOs of multiplicities 8, 4, 2, and 1. The only
reason to select this number of SPOs is to show that it is possible to
avoid the escape of the trajectories by using a relatively small number
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FIG. 2. Projections in the physical space of SPOs of multiplicity (a) 1, (b) 2, (c) 4, and (d) 8. All these periodic orbits are symmetric about the y axis, which is highlighted with
a dark dashed line. The red and green dots along the y axis are located in perpendicular crossings of the SPOs with that axis. The color red (green) of the dots indicates that
the SPO is unstable (stable). From the SPOs represented in panel (a), three are nonlinear normal modes (54,7,8) and one is a Lyapunov orbit (L1).

of SPOs. However, to compute a higher number is computationally
effortless, so the total amount of orbits that are used to control the
escape will depend basically on the needs of the particular problem.
In our case, for calculating the SPOs, we have made a single numer-
ical simulation in which we have launched 5 × 104 equally spaced
initial conditions along the segment y ∈ [−0.542, 1.2].

These 200 SPOs cross the y axis a total of 2460 times. All these
crossings define the set of points that we will use to start the control
of the trajectories. For each individual trajectory, the choice of the
target SPO will be based on the Euclidean metric in the y − ẏ plane
between the trajectory and the crossings.

IV. IMPLEMENTATION OF THE CONTROL SCHEME

In Sec. III, we have explained the method that we have used
to compute the SPOs of the system. Once these orbits have been
obtained, we can use them in our control scheme to avoid the escape
of the trajectories.

Now, we consider that a random initial condition has been
launched. Without control, the trajectory will escape after describ-
ing a chaotic transient. Our aim is to introduce a coupling between
the trajectory and an SPO, achieving a controlled periodic behavior
instead of a transient chaotic motion. The control of the trajectory
will start at the moment in which it crosses the y axis. However,
which SPO should we use for the coupling? For taking this decision,
we calculate the Euclidean metric between the crossing point and all
the crossings of the SPOs that we have previously calculated. From
all of them, we choose the one that minimizes the Euclidean metric,
namely,

min{di} = min

{

√

(yc − ys,i)
2 + (|ẏc| − |ẏs,i|)

2

}

, (3)

with yc, ẏc being the coordinates of the trajectory in x = 0 and
ys,i, ẏs,i the coordinates of the ith crossing of our 200 SPOs (we recall
that here i = 1, 2, . . . , 2460). We have taken absolute values in the
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FIG. 3. Different trajectories starting from the same initial condition (see green dots in the figure). In panel (a), a trajectory without control is represented, while in panels (b),
(c), and (d), a control force is activated in the first, second, and third crossing with the y axis, respectively. The color of the curves in panels (b)–(d) represents the trajectory
before (red) and after (blue) the control is applied. The red dots indicate the position where the control is activated. The values of the coupling constant and the maximum
required force are (b) F = 0.054, K = 1.1, (c) F = 0.065, K = 1.7, and (d) F = 0.044, K = 1.6.

momentum variables since, due to the time-reversal symmetry, if
(0, ys, ẋs, ẏs) belongs to an SPO, so does (0, ys, −ẋs, −ẏs). In other
words, the time direction of the SPO can be perfectly reversed in
order to be closer to the trajectory that we want to control.

Once we have selected the closest crossing to our trajectory,
we introduce a coupling force with the SPO associated with that
crossing. With the control included, the equations of motion read

ẋ = px,

ẏ = py,

ṗx = −x − 2xy + K(ẋs − ẋ),

ṗy = −y − x2 + y2 + K(ẏs − ẏ),

(4)

where K is a coupling constant and ẋs, ẏs are the momentum coordi-
nates of the SPO that we are trying to stabilize.

The coupling terms can be understood as a vector force with

modulus F = K
√

(ẋs − ẋ)2 + (ẏs − ẏ)2. Therefore, the control con-

sists of introducing continuous accelerations to direct the trajectory
toward a desired periodic state. The value of F and the direction of
the control force vary with time, depending on the distance between
the trajectory and the target SPO. Since the majority of the SPOs
with which we couple the trajectories are unstable, the control term
should be continuously forcing the trajectory. Nonetheless, once the
trajectory is close to the desired state, the control term is negligi-
ble and only very small corrections are necessary. The only case in
which the control can be turned off is when the SPO is stable.

In a general situation, one of the limitations of the implemen-
tation of the control method might be the magnitude of the force
that we can generate. For this reason, we have considered in our
simulations that a maximum coupling force Fm exists, which can be
introduced in the system. This means that we say that the control
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has been successfully achieved if the trajectory converges to the tar-
get SPO and ∀t, F(t) < Fm. Otherwise, we say that the control is not
possible.

Another important issue is the value of the coupling constant
K. On one hand, if it is very strong, it could be counterproductive.
In addition, it could generate physically meaningless strong forces.
On the other hand, if the coupling is very weak, the trajectory will
escape even if the control is applied. Depending on the value of K,
the stabilization of the SPO will be possible or not. Even when sta-
bilization is possible, different values of K will generate a different
trajectory before the convergence to the target SPO. Therefore, the
maximum required force depends on the value of K. To deal with
this issue, one option is to try the stabilization with different values
of K and choose the one that minimizes the maximum necessary.
In all our simulations, we have tried coupling constants between 0.1
and 4 in steps of 0.1. With this procedure, we can find an optimal
response of the system. However, we highlight that we have tested
that the overall efficacy of the method is not significantly reduced
when choosing a constant value K = 1.

Once we have explained the control scheme, we show its
application to a particular case. The initial condition (x0, y0)

= (0.25, −0.25), launched toward (x, y) = (0, 0), crosses five times
the y axis before escaping in a short time t = 12 [see Fig. 3(a)].
Nevertheless, it is possible to avoid the escape by introducing appro-
priate coupling forces in any of the first three crossings. Despite this,
it is not possible to avoid the escape by introducing the control in
the last two crossings. The result of the three options of control is
represented in panels (b), (c), and (d) of Fig. 3. The evolution of the
trajectory before the control is introduced is colored in red, while the
controlled orbit is represented in blue. The green dot is located in
the initial condition, while the red dot represents the position where
the control is activated. As we can see, the SPO that is stabilized
changes depending on the crossing where we introduce the control.

To show the evolution of the control force and the energy of
the system, we represent both magnitudes in Fig. 4. The data have
been obtained from the numerical simulation of the previous exam-
ple, concretely in the case where the control is introduced in the
first crossing with the y axis. As we can see, both quantities fluc-
tuate until reaching stabilization. The modulus of the control force
is almost negligible after t = 100, which is the approximate value
where the energy returns to the original value E = 0.2. We highlight
that the fluctuation in the energy is very low, not exceeding 5% of
the reference value.

V. GENERAL EFFECTIVENESS OF THE METHOD

In this section, we test the effectiveness of the control method
by trying to avoid the escape of many initial conditions distributed
along all the phase space. To do so, we choose the initial condi-
tions in two representative Poincaré sections: the (x, y) plane and
the (y, ẏ) plane. Since the system has three free variables (the fourth
is determined by the energy), in both cases, we have to fix one more
variable or to add a constraint to the shooting. In the case of the
(y, ẏ) plane, we simply define x = 0, and, hence, ẋ is given by the
Hamiltonian. On the other hand, in the (x, y) plane, we prefer not
to fix any of the momentum but the direction of the shooting. Once

FIG. 4. Example of the typical evolution of (a) the modulus of the control force
and (b) the energy of the system when the control technique is applied. The data
have been obtained from the trajectory that we have represented in panel (b) of
Fig. 3.

the initial coordinates (x0, y0) are chosen, we launch the trajectory
toward (x, y) = (0, 0).

Once the shooting methods are defined, we divide the corre-
sponding plane into a grid of initial conditions. For each one of
them, we follow the trajectory until it escapes, recording all its cross-
ings with the y axis. Next, in each one of the crossings, we find the
closest SPO among the ones that we have previously located. At that
time, we try to achieve the stabilization of the trajectory in every
crossing. For this task, we try different coupling constants. Finally,
we consider the crossing and the coupling constant that minimize
the required force. The general results are shown in Fig. 5, where
grids of 500 × 500 initial conditions have been used. The colors
indicate the maximum required force for achieving the stabiliza-
tion. Cold colors refer to low forces, while hot colors indicate high
forces. For each Poincaré section, we have considered two situations
where the maximum acceptable force is Fm = 0.1 [panels (a) and
(b)] and Fm = 0.02 [panels (c) and (d)]. White regions inside Hill’s
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FIG. 5. Color-coded representation showing the required force to avoid the escape of many initial conditions distributed in a grid along the (x, y) plane [panels (a) and (c)] and
the (y, ẏ) plane [panels (b) and (d)]. Cold colors refer to low forces, while hot colors indicate high forces. White dots inside Hill’s region refer to initial conditions that cannot
be controlled with the given maximum force Fm = 0.1 [panels (a) and (b)] and Fm = 0.02 [panels (c) and (d)]. The percentage of initial conditions that can be controlled
depends on the maximum force and plane considered: (a) 94% (b) 86%, (c) 82%, and (d) 78%.

region (represented with dark solid lines) correspond to initial con-
ditions that cannot be retained in the scattering region with the given
maximum force.

These results confirm that it is possible to avoid the
escape of a high percentage of initial conditions. In partic-
ular, by considering Fm = 0.1, 94% [(x, y) plane] and 86%
[(y, ẏ) plane] of the total initial conditions can be satisfactorily
controlled. These percentages are reduced to 82% and 78% in the
case of considering Fm = 0.02.

We highlight that the general effectiveness of the method does
not vary significantly when deciding to apply the control always in
the first crossing. Moreover, as we have mentioned before, we have
tested that it is also possible to choose the same coupling constant for
all the initial conditions (K = 1 is the most convenient value in this
system). Of course, this goes hand in hand with assuming greater
coupling forces.

Looking at Fig. 5, we can observe that there are large regions
consisting of initial conditions that cannot be controlled. In fact,
even if we consider clearly higher maximum forces, the percentage
of controllable initial conditions cannot be significantly increased.
The reason is that these regions are located far away from the

stable manifold of the chaotic saddle. Therefore, their dynamics is
less intertwined with the periodic orbits and they leave the scattering
region in short times. Moreover, in some hopeless cases, the tra-
jectories do not even cross the y axis before leaving the scattering
region.

The regions consisting of controllable initial conditions shown
in Fig. 5 resemble the stable manifold of the chaotic saddle, which
has been computed in Ref. 23. Since for the control method we are
using a set of periodic orbits that are embedded within the chaotic
saddle, it is natural that the initial conditions that we can control are
exactly the ones that are close to its stable manifold. For comparative
purposes, we have computed the stable manifold of the chaotic sad-
dle in the same Poincaré sections considered in Fig. 5. The result is
shown in Fig. 6, where a good correspondence can be found between
the stable manifold and the set of controllable orbits. To carry out
this simulation, we have taken into consideration that in many dis-
sipative dynamical systems with two or more different attractors,
the points lying in the boundary of the basin of attraction corre-
spond to points belonging to the stable manifold of the chaotic set.24

Bearing this in mind, the stable manifold can be obtained simply by
computing the basin boundary. In the Hamiltonian systems
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studied here, exit basins25 play the role of basins of attraction. We say
that the exit basin of the exit i of an open Hamiltonian system is the
set of initial conditions whose trajectories escape through the exit
i. Therefore, exit basins can be computed numerically by shooting
initial conditions and recording the exit through which they escape.
On the other hand, the basin boundary is obtained as the set of ini-
tial conditions that have at least one nearest neighbor that escapes
through a different exit.

The good correspondence between the stable manifold of the
chaotic saddle and the set of controllable points implies that for
every initial condition lying close to the stable manifold, we can find
an arbitrarily close SPO. For simplicity, we consider only a small
number of SPO, but by considering higher numbers, the required
forces can be arbitrarily reduced. However, this also implies that the
effectiveness of the method is directly linked to the size of the chaotic
saddle. Specifically, the larger it is, the greater the percentage of ini-
tial conditions that we can control. Interestingly, the chaotic saddle
is responsible for the chaotic dynamics, but it is also composed of an
infinite set of periodic orbits that can be used to control the escape
of trajectories. In this way, there is a counterintuitive relationship
between the complexity of the phase space and the possibility of
controlling the trajectories.

VI. STABILIZING THE SYSTEM IN A TARGET

SYMMETRIC PERIODIC ORBIT

The previous results provided strong numerical evidence con-
firming that it is possible to control the escape of all the initial
conditions located close to the stable manifold of the chaotic saddle.
In this section, we investigate the possibility of not only avoiding the
escape but also choosing the SPO that we want to stabilize.

We can imagine that we want to stabilize certain initial con-
ditions into a concrete SPO. The reason could be that it has a
particularly beneficial period or it passes through a point of interest.

In general, it happens that our initial condition does not cross the
y axis close to this SPO. In this scenario, the previous method leads
to the stabilization of the trajectory into an SPO in which we are
not interested. However, if we do so, our system will be describing
a controlled periodic motion into some SPO. At this point, nothing
prevents us from repeating the coupling process again and moving
between different SPOs until reaching our target. This is the basic
idea of the technique that we have implemented.

Every SPO crosses the y axis in multiple points, some of
them being close to other SPOs. In fact, as we have mentioned in
Sec. V, the periodic orbits are dense in the chaotic saddle, so we
can always find a different SPO arbitrarily close. Nevertheless, the
goal of our method is to control the escape with a finite number
of SPOs, there will surely be some non-negligible distance between
them.

The method that we have used to move between SPOs is as fol-
lows. For some initial SPO, we want to know whether it is possible
or not to move to a target SPO by changing the coupling force in the
appropriate time and crossing with the y axis. To do so, we have to
choose in which crossing of the initial SPO we will stop the actual
coupling and in which crossing of the target SPO we will introduce
a new coupling. For this purpose, we calculate the Euclidean metric
in the y − ẏ plane between all the crossings of the initial and target
SPO. We consider that the most favorable combination of crossings
is the one that minimizes such metric. For example, if both initial
and target SPO cross the y axis 8 times, we have 64 combinations of
crossings where we can change the coupling from the initial to the
target.

Once this is done, we calculate the optimal coupling constant
and the required force. If in our numerical scheme this force is
acceptable, we say that it is possible to move between these SPOs.
Repeating this procedure for every single SPO, we construct a map
of all the possible paths that connect the SPOs between each other.
Moreover, for every initial and target SPO, we already know the

FIG. 6. Stable manifold of the chaotic saddle in the (a) (x, y) plane and (b) (y, ẏ) plane. The black dots belong to the manifold while the white ones do not. For obtaining
this figure, we have computed two exit basins in different Poincaré sections and represented only the points that belong to the boundary between the basins. The resolution
of each figure is 500 × 500. The dark solid curve defines Hill’s region.
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FIG. 7. Illustrative network of 200 SPOs of the Hénon–Heiles system. There is
an edge between two SPOs if it is possible to move from one to the other by using
a maximum control force Fm = 0.1.

optimal coupling constant and the required maximum coupling
force. Therefore, once some initial condition is stabilized in
an initial SPO, we already have the information about when
and where to change the coupling terms to achieve the target
SPO.

We have followed this procedure for the set of 200 SPOs that
has been used in Sec. V. Surprisingly, the result shows that the

network of SPOs is strongly interconnected, meaning that for a
given initial SPO, there exist multiple options for moving to different
SPOs. Only for illustrative purposes, we have used a graph to show
the network in Fig. 7, where the nodes (dots) represent SPOs and
the edges (lines) the possibility of jumping from one SPO to another
with a maximum force Fm = 0.1.

The network represented in Fig. 7 offers a helpful visual infor-
mation. However, it does not allow a deeper analysis of the method.
In particular, it cannot be appreciated whether it is possible or not
to connect two arbitrary SPOs. In order to bring more general infor-
mation, we use a color-coded map in Fig. 8 to show the required
number of jumps to move between two arbitrary SPOs. We have
done the numerical simulations considering two different maxi-
mum forces Fm = 0.1 and Fm = 0.02. The colors in the grid refer
to the number of necessary jumps, that can be 1 (green), 2 (blue),
3 (orange), and 4 (red). White color refers to the option of moving
from one SPO to itself, so no jumps are necessary. Finally, dark col-
ors indicate that the jump is not possible. In the higher force case
[see panel (a)], most of the target SPOs can be reached after only
1 or 2 jumps, existing in only 1 connection (100 to 39) that needs
3 jumps. In the lower force case [see panel (b)], we do not observe
a substantial difference. Simply, there are fewer connecting options
with a single jump as well, some connections requiring three or four
jumps.

In both panels of Fig. 8, a horizontal dark line can be observed,
meaning that there exists one SPO that is unreachable from any
other. This SPO is the Lyapunov orbit, plotted in the (a) panel of
Fig. 2. Due to its special location close to the exits, it is useless in this
method.

It is important to highlight that in general, the necessary force
to achieve the stabilization of the initial SPO is higher than the
one required to jump to a different SPO. This means that the hard
part of the control method is to avoid the escape of the trajectories.
Once this is done, to chose a target SPO is not challenging in terms

FIG. 8. A color-coded representation showing the number of jumps required to move from an initial to a target SPO. In each subplot, a different maximum force has been
considered: (a) Fm = 0.1 and (b) Fm = 0.02. The colors indicate the number of required jumps, with white for zero jumps, green for one jump, blue for two jumps, orange
for three jumps, and red for four jumps. The dark color indicates that the movement is not possible. This situation occurs only when trying to move from the Lyapunov orbit
to any other.
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FIG. 9. In red, evolution of a single trajectory while being coupled with four different SPOs at different times. Each SPO is depicted in blue, unless in panel (d), where both the
SPO and the trajectory are identical. Each panel shows only the time lapse in which the trajectory is coupled with the SPO. The green (red) dots along the y axis represent
the location where the coupling with the SPO is started (finished). Then, a red dot in a panel corresponds to a green dot in the next one. If we overlap the red curves of all
four panels, we obtain the whole evolution of the trajectory. All the SPOs but the one of panel (d) are unstable.

of the required coupling force. Furthermore, the intensity of the
necessary force to achieve the change of SPO depends on the total
number of orbits that we consider. By increasing the quantity of
SPOs, and, hence, the number of crossings with the y axis, the most
convenient paths between SPOs change, leading to new connections
that require weaker forces. On the other hand, if we decrease signif-
icantly the number of SPOs, the connection between them is more
difficult. In general, it is convenient to adapt the number of SPOs to
the needs of the particular system that we want to control.

In the final part of this section, we will illustrate the previous
method in a particular case. As we have mentioned in the Intro-
duction, for an energy E = 0.2, the Hénon–Heiles system exhibits
a unique stable SPO of low multiplicity. Naturally, it could be a
convenient target because once it is reached, the control process
can be finished and the trajectory will exhibit a periodic behavior
forever.

Now, we consider again the same example of Sec. IV where
the initial condition (x0, y0) = (−0.25, 0.25) was launched in the
direction of the origin. As we have shown, by using Fm = 0.1, this
trajectory can be stabilized in different SPOs depending on which
crossing we decide to start the control. After including the coupling
force in the first crossing, the system is stabilized into a particular
SPO of multiplicity m = 8. The maximum required force to achieve
the stabilization is F = 0.054 (using K = 1.1). Here, we suppose that
we want to move to the stable periodic orbit of the system. Simply
knowing the initial and target SPO, the best path between them is
already defined in the results of Fig. 8. By establishing Fm = 0.02,
three jumps are required. The whole process since the trajectory is
coupled with the initial SPO is represented in Fig. 9. The blue curves
represent the SPO with which the trajectory is coupled, while the red
curves correspond to the part of the SPO that the trajectory describes
before jumping to a different one. The green dots denote the exact

Chaos 32, 063118 (2022); doi: 10.1063/5.0090150 32, 063118-10

© Author(s) 2022

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

location where the trajectory is coupled with the initial SPO, while
the red dots represent the location where the coupling with the
actual SPO finishes. The maximum required force in the first, sec-
ond, and third jump is F = 0.018 (K = 1.0), F = 0.015 (K = 0.5),
and F = 0.014 (K = 0.1), respectively. As we can see, the required
forces to achieve the change of SPO are significantly smaller than
the one necessary for the stabilization of the initial SPO.

VII. DISCUSSION AND CONCLUSIONS

In summary, we have developed here a continuous con-
trol method for avoiding the escapes in two-degree-of-freedom
Hamiltonian systems. For testing the method, we have used the
Hénon–Heiles system, a paradigmatic and well-known Hamilto-
nian in the nonlinear dynamics and celestial mechanics communi-
ties.

The method that we have implemented is based on the well-
known control method by Pyragas and consists of
including a control force that couples the trajectory with an SPO
of the system. In particular, once the trajectory crosses the y axis, a
coupling force between the trajectory and the closest SPO is intro-
duced. Since there are infinite periodic orbits embedded within the
chaotic saddle, we find the closest one from a reduced number of
SPOs that have been located previously. When the control force is
applied, the trajectory approaches the periodic orbit, so after some
time the coupling term vanishes and the system recovers its origi-
nal energy. We have shown the effectiveness of the method through
numerical simulations where a limited control force is considered.
The results confirm that a high percentage of escaping initial condi-
tions can be controlled by using a relatively small quantity of SPOs as
coupling options. The uncontrollable initial conditions are the ones
that escape in short times and are far from the stable manifold of the
chaotic saddle.

In Sec. VI, we have extended the previous method. We have
shown that once the initial trajectory is stabilized into a periodic
orbit, it is possible to suitably modify the coupled SPO in order
to achieve jumps between different periodic orbits. The goal of
this is to stabilize the system in a concrete periodic behavior in
which we could be interested. We have illustrated this by stabi-
lizing an escaping trajectory into the main stable periodic orbit of
the system. Moreover, a general portrait of the possible connections
between the SPOs has shown that with using a relatively small set of
period orbits, it is possible to move between two arbitrary SPOs. The
required coupling forces are weak and the necessary jumps are less
than 4.

We hope that this work could contribute, by providing new
numerical techniques, to the topic of continuous control in chaotic
scattering problems. Since open Hamiltonian systems appear as a
model in many different problems, we expect potential applications
in various fields of science. In particular, the control scheme could
be useful in restricted cases of the three-body problem26,27 where the
role of the massless body could be played by an artificial satellite
subject to control. On the other hand, it could be applied to control
chemical reactions in reactive systems with open channels.28 Nev-
ertheless, the control scheme must be adapted according to each
particular problem.
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