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Abstract: The formation of Ag nanoparticles on the surface of TiO2 (AgNP/TiO2) to enhance photocat-
alytic efficiency was studied. The Ag nanoparticles (AgNP) size, form, and distribution dependence
on the initial thickness of Ag thin films, annealing temperature, and time were analyzed. The optimal
annealing temperature of 400 ◦C and annealing time of 60 min were chosen to form AgNP from
the initial Ag thin films with a thickness of 5, 7.5, and 10 nm. The formation of AgNP was done
on amorphous TiO2 (a-TiO2), which crystallized into the anatase phase after the annealing. The
photocatalytic efficiency (k–degradation rate constant, Defi–degradation efficiency) was evaluated
by the photodegradation of Rhodamine B aqueous solution. The results suggested that the highest
photocatalytic efficiency of Rhodamine B aqueous solution was reached where the average diam-
eter (DA) of AgNP was ~38 nm (k38 = 0.017 min−1, Defi_38 = 63.5%), compared to 27 and 82 nm
(k27 = 0.012 min−1, Defi_27 = 51.2% and k82 = 0.011 min−1, Defi_82 = 52.1%, respectively). The acquired
results did not show clear correlation between the size and distribution of the AgNP on the TiO2

surface and photocatalytic efficiency. Nevertheless, the results suggest that AgNP can enhance the
photocatalytic efficiency of TiO2 thin films (kTiO2 = 0.008 min−1, Defi_TiO2 = 36.3%).

Keywords: titanium dioxide; silver nanoparticles; photocatalysis

1. Introduction

Hazardous organic contaminants from many sources, such as farms and factories,
are frequently found in wastewaters and can cause environmental issues [1]. Therefore,
photocatalytic degradation of various organic compounds in water has been investigated
in the last few decades [2]. Various materials and their composites can decompose organic
dyes in water: binary oxides (e.g., TiO2, ZnO, ZrO2), ternary oxides (e.g., SrTiO3, LiTaO3,
NaTaO3), solid solutions (e.g., βAgAl1−xGaxO2, (AgNbO3)1−x(NaNbO3)x), nanocomposite
materials (e.g., TiO2 nanorods, ZnO nanorods, TiO2/ZnS) [3], or hybrid photocatalysts
(Bi3TaO7/Ti3C2, Bi2S3/Bi2O3/Bi2O2CO3) [4,5]. Of the many different photocatalysts, TiO2
has been the most widely studied and used in many applications because of its strong
oxidizing ability to decompose organic pollutants superhydrophilicity, chemical stability,
long durability, nontoxicity, low cost, and transparency to visible light [6]. When TiO2 or
another photocatalyst absorbs a photon with energy equal to or higher than the band gap
energy (Eg), electrons (e−) jump from the valence band (VB) to the conduction band (CB),
and an electron-hole (h+) in the valence band forms. The e- and h+ pair can recombine
or move to the TiO2 surface. These charge carriers react with the surface hydroxyl group
or water and dissolved oxygen to produce hydroxyl (OH), peroxide (H2O2), and super-
oxide (O2

−) radical anions. Later, the ·OH radicals react with the organic molecules to
form CO2, H2O, NO3

−, and NH4
+ compounds [7]. However, the major drawbacks of

TiO2 as a photocatalyst are wide band gap, short recombination time of charge carriers
in bulk or on the surface, and reusability if it is in powder form [8]. This limits the ap-
plication of TiO2 in the visible light region, affects photocatalytic efficiency, and slows
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down commercialization. Researchers proposed many methods to solve these problems:
heterojunction formation [9], doping [10], noble metal deposition, inorganic acids mod-
ification, dye sensitization, or metal ion implantation [11]. For example, an increase in
photocatalytic efficiency was observed when TiO2 thin films were doped with a low amount
of Cu (0.6 wt.%; kCu = 0.022 min−1), followed by Mg (0.9 wt.%; kMg = 0.019 min−1) and
Ni (0.5 wt.%; kNi = 0.013 min−1) [8]. The metal nanoparticles/semiconductor heterojunc-
tions also have great potential in high-performance photocatalysis (plasmonic photocatal-
ysis) [12]. The benefits of metal nanoparticles/semiconductor heterojunctions emerge
via metal-semiconductor junction and localized surface plasmon resonance (LSPR). The
metal/semiconductor junction extends the e− and h+ separation time and increases the
charge transfer rate. The LSPR enhances visible light response, UV light absorption, local
heating effect, and reduces e− and h+ diffusion length, etc. [13]. Different effects can be
obtained depending on the wavelength of the light. [13,14]. After UV light irradiation,
only the semiconductor is excited. Metal nanoparticles act as sinks for photo-induced
electrons due to the Schottky barrier [15]. It prolongs the lifespan of photoelectrons, i.e.,
slows down the recombination process [16]. After VIS light irradiation, LSPR occurs. Three
outcomes are possible for LSPR: photon scattering, plasmon resonance energy transfer, and
hot electron transfer [14]. These processes increase charge carrier concentration or, in other
words, photocatalytic efficiency. After UV-VIS light irradiation, a synergetic effect of UV
and VIS light occurs [17].

Thin films technology could solve the reusability problems. Thin films of the de-
sired material are deposited in various ways: spin coating [18], chemical vapor deposition
(CVD) [19], e-beam evaporation, magnetron sputtering [20], etc. The magnetron sputtering
technique has advantages against chemical methods such as controllable structure, stoi-
chiometry, and thickness, good adhesion, homogeneity, low concentration of impurities,
etc. The properties of thin films can be controlled by changing sputtering power, gas
pressure, the ratio between oxygen and argon, the distance between sample and target,
or even the deposition angle [21–25]. The nanoparticles can also be formed using various
techniques, but solid-state dewetting is the simplest and probably cheapest method [26].
Pre-existing defects, such as holes, grain boundaries, and thin-film edges, are common in
thin films. When such metallic thin films are heated to high enough temperatures, they
often dewet the substrate and form isolated islands. The flat films start to form a rim at
the grain boundaries, the edges of the film, or other defects. The mass diffuses from the
triple point of grain boundaries (or from the defect site) to the flat film resulting in a rim
on the surface [27]. The holes expand and develop a thickened surface around them (edge
retraction) due to the local curvature gradient at their edges. The net curvature decreases
as the rim gets thicker, and edge retraction slows down. The result is a thick rim and valley
behind it [28]. From this moment, two outcomes, pinch-off and fingering instability, are
possible [29]. The rim cuts off the rest of the mass during the pinch-off process. On the other
hand, the rim starts to form finger-like structures of the film during the fingering process
if coalescence of the holes occurs. The last part of this evolution is Rayleigh instability,
which causes the fingers or wire-like structures to decompose into nanoparticles [30]. The
kinetics of the dewetting process and the properties of nanoparticles mainly depend on the
temperature, annealing time, and thickness of thin films.

The aim of this paper is to evaluate photocatalytic efficiency by investigating the
photodegradation of Rhodamine B aqueous solution under UV light using prepared
AgNP/TiO2 structures as photocatalysts. For this reason, AgNPs were formed on the
surface of TiO2 thin films using the solid state dewetting technique. Later, the size, distribu-
tion, structure, and photocatalytic activity of AgNPs on TiO2 thin films were analyzed.

2. Materials and Methods
2.1. The Preparation of TiO2 Thin Films

TiO2 thin films (hTiO2 = 100 nm) were deposited on glass substrates using a reactive
magnetron sputtering technique (PVD-75 Kurt J. Lesker). Before the deposition, a high vac-
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uum (up to 4 × 10−3 Pa) was reached using a dual-stage rotary vane and turbo-molecular
pumps. Then, the chamber was filled with Ar and O2 gases (99.999% purity) with a ra-
tio of 20% and 80%, respectively, while ~1.87 Pa pressure was reached. Two Ti targets
(99.995% purity) with a diameter of 50.8 mm were used for the deposition. A 1.6 nm/min
growth rate using a DC power supply at 250 W sputtering power was achieved.

2.2. Formation of Ag Nanoparticles on the TiO2 Surface

The Ag thin films (hAg = 5; 7.5; 10 nm) were deposited on the surface of TiO2
(Ag/TiO2) by using a magnetron sputtering technique. After creating a high vacuum
(up to 4×10−3 Pa), the chamber was filled with a high purity Ar gas until a working pres-
sure of ~2.4 Pa was reached. One Ag target (99.995% purity) with a diameter of 50.8 mm
was used for the deposition of Ag thin films. A growth rate of 2.5 nm/min for Ag thin
films was reached using a DC power supply at 31 W sputtering power. AgNPs on the TiO2
surface (AgNP/TiO2) were formed using the solid-state dewetting (SSD) process. Thus,
Ag/TiO2 structures were annealed immediately after deposition in a vacuum chamber
(2.4 Pa Ar gas pressure) at different temperatures (Ta) and times (ta). Since the formation
of AgNPs was carried out in a vacuum, the oxidation of silver nanoparticles should be
negligibly low. Furthermore, previous research suggests that the concentration of Ag+1 and
Ag+3 oxidation states were not higher than 17%, even though the calcination was done in a
furnace under constant Ar gas flow [31].

2.3. Morphological and Structural Analysis

The crystal structure of deposited TiO2 thin films was investigated by an X-ray diffrac-
tometer (XRD) Bruker D8 Discover (Bruker, Billerica, MA, USA) at 2θ in a range of 20◦ to 70◦

(with a 0.01◦ step) using a Cu Kα (λ = 1.54059 Å) radiation. The peak analysis was carried
out by using a “Match!” crystallographic analysis software. The morphology of TiO2 thin
films and AgNP/TiO2 structures were analyzed by a scanning electron microscope (SEM)
Hitachi S-3400N (Hitachi High-Technologies Corporation, Tokyo, Japan). The obtained
surface images were analyzed by “ImageJ” software to evaluate the parameters of formed
AgNPs. The optical properties of prepared samples were measured by a UV-Vis spectropho-
tometer USB4000 (Ocean Optics Inc., Rochester, NY, USA) in a range of 250 to 800 nm (with
a 0.2 nm step) wavelength, and the spectra were analyzed by “OceanArt” software.

2.4. Photocatalytic Efficiency Evaluation

The photocatalytic efficiency was evaluated by the photodegradation of RhB (rho-
damine B) (10−5 Mol/L) solution under UV-C (254 nm) light irradiation. The samples
were immersed in the beaker with 50 mL of RhB solution and placed on the magnetic
stirrer under the UV-C light irradiation. Additionally, oxygen gas was introduced into
the solution during the measurements, with a 3.6 L/h flow rate, to slightly enhance the
photodegradation of RhB. The measurements were conducted in the following order. First,
the setup was left in the dark for 30 min to reach the equilibrium between the photocatalyst
and RhB solution. Then, the specimen of ~3 mL of RhB was taken, and the light absorbance
was measured (which corresponds to the C0). The subsequent measurements were taken
under UV-C irradiation every 20 min. The obtained absorbance values corresponded to C1,
C2, C3, etc. The taken RhB solution was returned to the beaker after each measurement. The
light absorbance was measured by a UV-Vis spectrophotometer USB4000 (Ocean Optics
Inc., Rochester, NY, USA) in the 500 nm–600 nm range, and the spectra were analyzed
using the “OceanArt” software. The degradation rate constant (k) was calculated using this
formula [32]:

k = −
ln
(

Ci
C0

)
t

, (1)

where C0 is initial concentration of RhB, and Ci is concentration of RhB at time t.
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While the degradation efficiency Defi was calculated using the formula [33]:

De f i =
C0 + Ci

C0
· 100%, (2)

3. Results and Discussion
3.1. The Synthesis of the AgNP/TiO2 Structures

The kinetics of the SSD process depend mainly on the three factors: annealing tem-
perature, annealing time, and initial thickness of thin films [34]. Thus, the mentioned
dependencies were analyzed. The Ag thin films with an initial thickness of 10 nm were
deposited on the TiO2 surface and annealed at different temperatures (Ta): 300, 350, 400,
and 450 ◦C for 60 min to observe the SSD dependence on the annealing temperature. The
highest circularity of AgNPs was 0.918 (0—line, 1—perfect circle) for Ag/TiO2 structures
annealed at 400 ◦C, according to the analysis of the surface images of AgNP/TiO2 (Figure 1).
The coverage area and average diameter were 23.18% and 81.97 nm, respectively. Further-
more, the highest ordering (size distribution and coverage) of AgNPs was observed for Ag
thin films annealed at 400 ◦C. Thus, the optimal annealing temperature for Ag thin films
with an initial thickness of 10 nm is 400 ◦C. Furthermore, Serrano et al. found that thicker
Ag thin films require higher annealing temperatures for the complete transition from thin
films to nanoparticles through the dewetting process [35]. Based on their study, the highest
ordering was achieved when Ag thin films of 10 nm thickness were annealed at 400 ◦C,
while further increase in temperature resulted in agglomeration of nanoparticles to larger
3D structures.
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Figure 1. The diameter (d) distribution of AgNPs on the TiO2 surface and SEM images of AgNP/TiO2

structures obtained by SSD process (ta = 60 min, hAg = 10 nm) at different Ta: (a,e) 300 ◦C; (b,f) 350 ◦C;
(c,g) 400 ◦C; (d,h) 450 ◦C.

Further analysis of AgNPs formation was done by annealing the Ag thin films of
10 nm thickness at 400 ◦C using different annealing times, i.e., 10, 20, 40, and 60 min.
(Figure 2). After 10 min of annealing, the fractal-like structure was observed. This is the
result of the fingering process [36]. The Ag thin films dewetted into smaller AgNPs with
an average diameter of ~53.38 nm, when increasing the annealing time to 40 min. After
60 min of annealing, AgNPs agglomerated into bigger islands with an increased average
diameter of ~81.97 nm. Therefore, 60 min of annealing time was considered optimal for the
evenly distributed formation of AgNPs.

Given these results, further analysis was done with AgNPs obtained by annealing
Ag/TiO2 structures with initial Ag thin film thickness of 5, 7.5, and 10 nm at 400 ◦C temper-
ature for 60 min. The results were AgNP/TiO2 structures where the average diameters of
AgNPs were 27, 38, and 82 nm, respectively (Figure 3 and Table 1). The surface resistance of
the deposited Ag thin films was measured, resulting in the sheet resistance of 16.96 kΩ for
Ag thin films with a thickness of 10 nm. Thus, the Ag thin film was continuous, whereas
Ag thin films with a thickness of 5 and 7.5 nm exhibited an insulating behavior, suggesting
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that thinner Ag thin films were discontinuous. It agrees with the Huang et al. study, where
the sheet resistance drastically increases with a thickness lower than 8 nm for Ag thin
films [37]. Moreover, these findings explain the size dependence of AgNPs on the initial
thickness of Ag thin films. It is known that the number of holes is inversely proportional to
the thickness of continuous films, whereas discontinuous thin films have holes naturally,
and the lower number of holes in thicker films results in the formation of enlarged AgNPs.
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Table 1. The parameters of AgNPs on the surface of TiO2.

The Initial Thickness of Ag Thin Films (hAg) 5 nm 7.5 nm 10 nm

Average area (A), nm2 705 1324 6003

Average diameter (DA), nm 27 38 82

Density (n), µm−2 398 229 42

Coverage (SC), % 28 30 23

The as-deposited TiO2 and Ag/TiO2 did not show any particular peaks (Figure 4)
that are attributed to the crystal phase of TiO2, except the Ag/TiO2 (with initial Ag thin
film thickness of 10 nm) showing the corresponding peak of Ag{111} facet at 38.16◦ [38].
However, after the SSD process, peaks corresponding to the TiO2 anatase phase appeared at
25.43◦, 38.17◦, 48.18◦, 54.04◦, and 55.15◦, with an Ag peak at 44.44◦ [38–40]. It suggests that
the amorphous-to-anatase TiO2 phase transition occurred during the annealing process,
which might positively affect the photocatalytic efficiency of prepared structures [41].
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3.2. Photocatalytic Efficiency

The evaluation of photocatalytic efficiency for prepared AgNP/TiO2 was done by the
photodegradation of RhB solution under UV-C light irradiation. The RhB solution has the
highest light absorbance at ~550–560 nm wavelength. Thus, this range was taken during
the analysis. The light absorbance at 0 min attributes to the initial concentration of RhB
(C0/C0), and the latter light absorbance attributes to the decrease in concentration after 20,
40, 60, and 80 min and is considered as C1/C0, C2/C0, C3/C0, C4/C0 respectively. The 50%
decolorization of RhB was reached in ~50 min for AgNP/TiO2, where an average AgNPs
diameter was ~38 nm (Figure 6a), whereas the 50% decolorization of RhB by using the
AgNP/TiO2 with an average AgNPs diameter of 27 and 82 nm was reached in ~59 min and
58 min, respectively. Considering the TiO2 as a stand-alone photocatalyst, the same result
was reached after ~78 min, and for RhB (without the photocatalyst) only after 100 min.

The LSPR effect can be observed in the transmittance spectra of AgNP/TiO2 structures
(Figure 5). The transmittance of visible light reached minimum values in the 550–650 nm
range. It can be seen that the LSPR effect increased with the size of AgNPs on the surface
of TiO2 thin films.
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The degradation efficiency was evaluated after 60 min of UV light irradiation (Figure 6b).
Clear dependence between AgNPs diameter and degradation efficiency was not observed.
The peak value of photocatalytic efficiency was found for AgNP/TiO2, where an average
AgNPs diameter was ~38 nm (k38 = 0.017 min−1, Defi_38 = 63.5%), whereas degradation
rate constant and degradation efficiency for AgNPs of <dAg> = 27 nm and <dAg> = 82 nm
were k27 = 0.012 min−1, Defi_27 = 51.2% and k82 = 0.011 min−1, Defi_82 = 52.1%, respectively.
It was also found that photocatalytic efficiency of AgNP/TiO2, where <dAg> = 38 nm
(k38 = 0.017 min−1, Defi_38 = 63.5%) was 1.7 times higher than photocatalytic efficiency of
pure TiO2 thin films (kTiO2 = 0.008 min−1, Defi_TiO2 = 36.3%).

Comparison of the results with the literature is complicated due to different exper-
imental conditions, i.e., different initial concentrations of RhB, different active areas of
photocatalysts, different light sources, irradiance, etc. Therefore, the results obtained by
other authors are contradictory. For example, the 50% decolorization of RhB was reached
after ~30 min for anatase thin films by Wang et al. and for TiO2/β-SiC foam by Alle et al.,
while Wannapop et al. reached 50% decolorization of RhB for TiO2 nanorods only after
4 h [42–44]. Nevertheless, our results suggest that AgNPs can enhance the photocatalytic
efficiency of TiO2 thin films. In addition, they are similar to Vezirogl et. al. results [45].
Authors also found that TiO2 thin films decorated with AgNPs (<50 nm) have 1.7 times
higher photocatalytic efficiency than bare TiO2 thin films.
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The photodegradation of RhB using a photocatalyst consists of a series of chemi-
cal reactions (Figure 7): the oxidation reaction on the surface of TiO2 with a photogen-
erated hole–H2O, OH− → OH; the reduction reactions on the surface of AgNPs with
a photogenerated electron–O2 → O2

−; followed by the degradation of RhB solution
itself–H+ →·HO2

−/·OH and ·HO2
− → CO2, H2O, NOx, etc. The oxidation and reduction

reactions occur on the surface of TiO2 (Figure 7a), considering the photodegradation of an
aqueous solution of RhB using TiO2 as a photocatalyst. To this matter, there is a higher
probability of charge carrier recombination.
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AgNPs usually act as electron scavengers [46]. It means that the photogenerated
electron is captured (trapped) in AgNPs, where a reduction reaction occurs, and photogen-
erated holes in TiO2 take place in the oxidation reaction (Figure 7b) [47–50]. Thus, small
and densely packed AgNPs on the surface of TiO2 should increase the probability of charge
carrier separation resulting in higher photocatalytic efficiency. However, such behavior
was not observed in the experiments. It can be explained by excessive AgNPs amount
on the TiO2 surface [46]. Very densely packed AgNPs (DA = 27 nm, n = 398 µm−2) might
decrease the photocatalytic activity due to the blocking effect of incoming UV light to the
TiO2 surface, which leads to the decreased generation of electrons. Moreover, very densely
packed AgNPs might serve as recombination sites. On the other hand, a low number of
trapping sites could be created if the density of AgNPs is low (DA = 82 nm, n = 42 µm−2).

4. Conclusions

The AgNPs formation and investigation to enhance the photocatalytic efficiency
of TiO2 thin films were investigated in this study. The highest circularity of 0.918 of
AgNPs was observed after annealing the Ag/TiO2 at 400 ◦C. This study suggests that
an optimal annealing time of 60 min is required to get the highest possible distribution
of AgNPs when annealing Ag films of 10 nm. A shorter annealing process results in
fractal-like structures. Moreover, the analysis of AgNPs formation dependency on the
initial thickness (hAg) of Ag thin films suggests that thin films with a thickness lower
than 10 nm are discontinuous. The results show that the density of AgNPs is inversely
proportional to the thickness of Ag thin films: hAg = 5 nm, D = 398 µm−2; hAg = 7.5 nm,
D = 229 µm−2; hAg = 10 nm, DA = 42 µm−2. The photodegradation experiments revealed
that the photocatalytic efficiency increases for the AgNP/TiO2 structure compared to stand-
alone TiO2 (kTiO2 = 0.008 min−1; Defi_TiO2 = 36.3%). The highest efficiency of Defi_38 = 63.5%
(k38 = 0.017 min−1) was observed for the AgNP/TiO2, where an average AgNPs diameter
was 38 nm, whereas for the AgNPs with DA = 27 nm—Defi_27 = 51.2% (k27 = 0.012 min−1)
and DA = 82 nm—Defi_82 = 52.1% (k82 = 0.011 min−1). The nonlinear dependence of
degradation efficiency on AgNPs size could be expanded by AgNPs density variation.
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AgNP could block UV light and act as recombination sites when the density of AgNPs is
very high, whereas a small number of trapping sites could be created when the density of
AgNPs is low.
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