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Summary 

With recent advances in machine learning (ML) and a rapidly accelerating new frontier of digital 

logic design tooling for Field-Programmable Gate Array (FPGA) development, new opportunities 

exist for exploring the use of FPGAs in the ML field. In this work, the current state of the art digital 

logic design tool-chains and their use in the field of ML is explored and a design methodology is 

proposed for efficiently utilizing FPGAs as accelerators for compute-intense ML tasks. An FPGA 

prototype design for accelerating the Singular Value Decomposition (SVD) algorithm as well as the 

QR decomposition using the Coordinate Rotational Computer (CORDIC) as an abstraction layer 

arithmetic core is presented and analyzed with emphasis on DSP utilization. 
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Santrauka 

Atsižvelgiant į naujausius pasiekimus mašininio mokymosi (ML) srityje bei sparčiai besiplečiančią 

modernių skaitmeninės logikos projektavimo įrankių aibę programuojamos logikos (FPGA) 

projektavimui, atsiveria naujos galimybės FPGA panaudojimui ML srityje. Šiame darbe 

išnagrinėjami moderniausi skaitmeninės logikos projektavimo įrankiai bei jų panaudojimas ML 

srityje ir pristatoma projektavimo metodika, leidžianti efektyviai išnaudoti FPGA kaip didelius 

skaičiavimo kiekius turinčių ML užduočių spartintuvą. Šiame darbe taip pat pateikiamas ir 

išanalizuojamas FPGA spartintuvo prototipas, skirtas pagreitinti Singuliarioji matricų dekompozicija 

(SVD) bei QR dekomponavimo algoritmus, pritaikant Koordinačių Posūkio Skaitmeninį Kompiuterį 

(CORDIC) kaip abstrakcijos sluoksnį lokalių signalų apdorojimo procesorių panaudojimui.
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Introduction 

Over the last decade, there has been a massive increase in the use of ML & Deep Learning (DL) 

algorithms [1], both at the datacenter level as well as the internet of things (IoT). Accelerated by the 

growing computational capacity of Graphics Processing Units (GPUs), ML is now used in a wide 

variety of fields from signal processing to natural language generation. In the field of digital signal 

processing, adaptable filters are used for noise cancellation [2], audio detection as well as 

classification [3]. In the field of image processing, linear regression-based algorithms are used for 

classification tasks, such as face recognition [4], autonomous driving [5] and defect detection in 

factories [6]. Natural Language Processing is used for translation, sentiment analysis [7] and even 

generating new text [8]. The field is incredibly wide and many of the tasks have unique requirements 

such as achieving low power, low latency or high bandwidth. FPGAs are especially suited for 

problems having unique requirements such as these. By adapting hardware to unique problem sets, 

overheads can be eliminated which exist in conventional processing units such as CPUs and GPUs. 

Additionally, while an optimized processing unit could be turned into an application-specific 

integrated circuit (ASIC), FPGAs fill the niche of design, allowing for more rapid prototyping and 

exploration of efficient hardware architectures. Additionally, FPGAs feature reconfigurability – the 

ability to change the design at runtime. Many studies have been conducted on the use of FPGAs in 

these fields showing great result such as in  [9], [10], and [11]. In this work, lucrative use cases for 

FPGA acceleration are outlined in detail, with focus on matrix algorithms and how they may be 

transformed to better fit FPGA acceleration. 

In recent years, there has also been an explosion of RTL design tools. Given the slow nature of RTL 

development using conventional languages like Verilog, VHDL and SystemVerilog and the growing 

complexity of designs, a necessity for raising productivity in hardware development has arisen. It can 

take months to years to design accelerators using Verilog, while a software implementation of an 

identical solution from an algorithm perspective can often be achieved magnitudes of time faster. 

Software has advanced significantly in improving work-flow, with rising popularity of functional and 

object-oriented programming. The second most popular programming language in the world as of 

this writing is Python [12], a highly abstract multi-paradigm language. Given the vast amount of 

redundancy in designing low-level RTL, the gap could be bridged, adapting software-based design 

methodologies for hardware development. In this work, high-level language libraries and tools are 

explored which allow rapid development of RTL with special focus put on the Migen Python library, 

which allows Verilog design modeling using Python object-oriented constructs. 

Lastly, an algorithm that has not seen much attention in recent years, yet shows vast potential as a 

standardized arithmetic unit in FPGAs is the Coordinate Rotational Computer (CORDIC) [13]. This 

algorithm can be used for computing many of the standard arithmetic operations necessary in ML 

algorithms, while having great malleability in regards to design trade-offs and can be used as a 

powerful abstraction layer for FPGA DSP cores. This work outlines a prototype implementation, 

utilizing CORDIC for solving the underlying arithmetic operations of the Singular Value 

Decomposition (SVD)[14] as well as QR factorization using Givens Rotations. 
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1. Overview 

The following overview sections present current trends in the use of ML in the context of FPGAs, 

focusing on  data center and edge computing use cases as two separate domains ( 1.1). Numerous 

software libraries in high level programming languages are overviewed as potential acceleration 

targets (1.2). In section (1.3), a set of design tools for hardware development with FPGAs are outlined. 

Numerous algorithms which are of great interest for acceleration are covered in (1.4). Lastly, the 

CORDIC algorithm is explored in (1.5) as a potential architecture for designing FPGA accelerators 

for the aforementioned algorithms of previous sections with a specialized variant also reviewed. 

Section (1.7) summarizes the literature review, states the hypothesis and the primary tasks of this 

work. 

1.1. Fields of application 

1.1.1. Datacenters 

Most computational tasks can be split into two domains in which they are executed: server tasks and 

client tasks. 

Datacenters have made heavy use of FPGA acceleration in recent years for a wide array of problems. 

[15] is a framework for hybrid CPU-FPGA databases. [16] explores Microsoft’s use of FPGAs in 

their datacenters to serve deep neural networks at scale. Meanwhile, [17] explores data processing 

pipeline acceleration with FPGAs. Additionally, Intel has made large strides in the datacenter field 

with Intel FPGA SDK for OpenCL, which has already been reviewed in a number of published works, 

[18] examines relational query processing, [19] examines spatial-spectral classification and [20] 

explores single-precision floating point vector addition kernels. From the literature, a strong set of 

use cases can be gathered for FPGAs in datacenters for big data tasks. 

One of the most computationally intensive task in the field of ML when looking at big data is image 

processing [21]. While this field is dominated by GPUs, there exists a portion of imagine processing 

that is often left for CPUs – preprocessing. Before an image can be loaded into a deep learning engine, 

it needs to pass a wide range of preprocessing steps, such as: reshaping, resizing, cropping, recoloring, 

normalization, whitening and so on. These steps, while majorly consisting of basic matrix 

multiplication, have enough uniqueness to their algorithms where a specialized solution could be 

used. In [22] the authors explore DL image preprocessing with FPGAs in a cloud setting. In the 

outlined research, 1.35x to 2.4x image preprocessing throughput was achieved while using only 1/10 

of the CPU cores and reaching 1/3 the latency when performing inference. Furthermore, the authors 

noted the bottlenecks that develop when using CPUs and GPUs for preprocessing when tackling tasks 

such as image cropping, resizing and rotation which measure as high as a 30 percent performance 

degradation. In this work, the Singular Value Decomposition (SVD) and QR Decomposition 

algorithms are tackled as an exploration of image processing acceleration using FPGAs. 

1.1.2. Edge Computing 

From the field of DSP, the Multiple Signal Classification (MUSIC) algorithm continues to be widely 

used for Direction of Arrival (DOA) estimation, [23] while having a relatively simple 

implementation. There has been work done in optimizing different aspects of spectrogram-based 

DOA algorithms, which could be split into a.) steering matrix calculation, b.) spectrogram generation 
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and c.) peak finding. Notably, [24] explores the use of the Particle Swarm Optimization algorithm for 

peak finding, while [25] explores novel algorithms for steering matrix calculation with arbitrary 3D 

microphone array layouts. At the same time, [26] is a dataset for exploring DOA using a drone with 

8 mounted microphones in a closed room. This dataset can be used to explore FPGA implementations 

of DOA algorithms, given that FPGAs match the requirements of mobile, small form factor devices 

such as drones. Some examples of such requirements being: latency, energy efficiency and hardware 

utilization. Additionally, spectrogram generation is often done using Eigenvalue Decomposition [27] 

[28] (EVD-MUSIC) To this end, the Coordinate Rotation Digital Computer (CORDIC) [29] [30] is 

an algorithm of significant note, allowing to implement trigonometric functions via the use of vector 

rotations, using only addition and bit shifting operations, bypassing the need for multiplication and 

division units. There is little research done on the use of CORDIC for DOA. 

1.2. Software computational libraries 

In an effort to explore which types of libraries are commonly used for data center workloads, popular 

cloud providers are looked at. 

 

Google has multiple articles on deploying Scikit models at scale [31] and cite libraries for improving 

parallelism written in Python. [32] A strong push for the use of Tensorflow in regards to ML tasks is 

also noted. [33]. [34] outlines tradeoffs of using FPGAs for accelerating Tensorflow with promising 

results. Meanwhile, Amazon presents tools such as Sagemaker as Python libraries and urge the use 

of Scikit for data analytic tasks. [35] Additionally, the majority of Kaggle competition problems are 

indeed solved using Python. [36] Thus, Python is looked at as the language that is commonly used by 

consumers for their data analytics tasks and from there three libraries stand at the forefront: 

Tensorflow[37], Scikit [38] and Numpy [39]. 

 

From looking at varying workloads, it can be seen that while Tensorflow can be used for general 

computing tasks, it is primarily used for building machine learning models, while preprocessing steps 

are left to be done in Scikit or Numpy [40]. Additionally, looking further into Scikit, it can be noted 

that the primary functions wrap Numpy calls for the computations. Scikit simply acts as a higher 

abstraction layer for implementing specific algorithms. Numerous attempts have been made to 

accelerate Numpy with GPUs to great success, showing further promise in the pursuit. For example, 

[41] accelerated Numpy operations with the CUDA framework. [42] Explored efficient numerical 

computation in Python using GPUs. 

 

Additionally, looking at digital signal processing libraries, a notable example is [43] in which Numpy 

is heavily utilized to solve beamforming and eigen decomposition related tasks for sound signal 

processing and direction of arrival estimation. 

 

Thus, it is concluded that in order to accelerate the outlined image and digital signal processing 

algorithms, Numpy is a strong candidate library to accelerate. This would also allow the employment 

of this type of acceleration for a multitude of other computational tasks which use Numpy underneath. 

 

In addition, further push to use Python as 'glue logic' to write performance-sensitive applications 

exists in regards to message passing. The Reactor model [77] is a newly proposed communication 

model for real time systems. The model works by the same principle as the actor model, but introduces 
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logical time, allowing to control determinism of the system. The approach is highly promising for 

encapsulating hardware accelerators and providing deterministic data movement while applying 

partial reconfiguration on the FPGA fabric. Notably, the Reactor model borrows many ideas from 

RTL design, with basic communicating elements (reactors) having the same input output module 

structure as Verilog/VHDL modules. This makes encapsulation of an FPGA accelerator much more 

straightforward and allows to greatly utilize the determinism which can be obtained from a hardware 

design and retain it in the software layer. 

1.3. High-level RTL design tools 

Commercially, the leading vendors of FPGAs are Xilinx, Intel, National Instruments and LatticeSemi, 

each hosting their own Electronic Design Automation (EDA) toolchains. Vivado, Vivado HLS [44] 

and Vitis all being juggernaut toolchains for each step of RTL design in the case of Xilinx. Meanwhile 

"Intel SDK for OpenCL" as well as Quartus Prime [45] are the toolchains used by Intel. The NI 

LabVIEW [46] and Lattice Diamond [47] are notable toolchain designed by National Instruments and 

LatticeSemi respectively. Synpsys, MentorGraphics and Cadence are also notable EDA suppliers, 

working on verification, Place and Route, simulation and HLS.[48] [49], [50]. 

Looking further at Xilinx, they provide two methods for increasing the abstraction level of RTL 

design – block diagram design and Vivado HLS. In the case of block diagrams, the user can utilize 

Xilinx’s repository of IP cores (or add their own) and connect them using a user interface. This 

provides plenty of convenience for rapidly designing accelerators for standard FPGA problem sets. 

They are, however, limited to standard interfaces provided by Xilinx unless the user implements their 

own interface wrapper cores. In the case of HLS, users can write C/C++ code which is then converted 

into Verilog or VHDL. This is a large design system, focused on allowing the user to specify hardware 

functionality rather than design. The tooling then infers the necessary hardware constructs. Heavy 

use of pragmas is employed for specifying hardware generation specifics for different portions of C 

code. For example, users would write loops and then specify a pragma to unwrap said loops. This, in 

turn, converts the loops into a series of parallel processing units in hardware. 

Additionally, Xilinx recently introduced the Versal Architecture[93], which features an ‚all in one‘ 

package of both deterministic real-time and high-performance processors, AI cores, DSP cores, 

expansive interconnect and dense FPGA cells. The solution is marketed for adaptability and 

necessitates rethinking hardware design further to fully utilize local processors of varying forms to 

solve different tasks. The architecture is designed for using a combination of C++ HLS, Matlab graphs 

and packaged RTL source files. 

Other notable HLS-style solutions are Bluespec [51], Catapult C [52], Matlab HDL Coder [53] and 

Status HLS (by Cadence) [54] among many others. However, the vast majority of HLS tools input C 

code and work in a similar fashion to Vivado HLS. Focusing on problem statements and pragmas. 

The authors have not seen any notable higher level language (such as Python) HLS solutions. Multiple 

papers have been written on the prospect of HLS in current FPGA design. [55] is a notable open-

source tool suite for binding Python to HLS-suitable C functions and generating wrappers for ease of 

accelerator development. [56] further surveys the HLS tool landscape in full. 

Other solutions in the RTL design field are based around new hardware description languages 

(HDLs). All of these solutions are based around defining hardware systems in high-level languages 

such as Python or Scala which are then converted into Verilog, VHDL or SystemVerilog. (In the vast 
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majority of cases – Verilog). To further emphasize the difference in approach, HLS-style solutions 

are focused on modeling algorithms and giving compiler hints for how they should be implemented 

in hardware, while high-level HDL solutions are used to directly model RTL, but with additional 

high-level constructs to ease design. 

Two of the most notable solutions are Chisel [57] and Migen[58]. Chisel is a Scala-based HDL, 

allowing the designer to write hardware designs using functional and object oriented programming 

patterns in the Scala programming language which are thus converted into Verilog for hardware 

implementation. Migen, on the other hand, is a Python programming language solution, focused 

entirely on object-oriented design patterns, allowing the designer to define Verilog modules as Python 

class objects. 

Both of these solutions are under active development and have garnered significant attention from 

the hardware community. Migen in particular, has sparked numerous side projects, such as Litex 

[59],[60], which is a high level Python library for designing systems on chips (SoCs). There now 

exist standard Python DSP libraries which allow converting FIR, NIR and similar filters into Verilog 

by using Migen as an intermediary [61]. All of these solutions have already been used for design of 

shipped hardware products. 

In this work, Migen is chosen as the key design solution for modeling a CORDIC accelerator, 

interleaving Verilog-based designs where necessary. 

1.3.1. Vivado Block Diagram design 

The Vivado Block Diagram is Xilinx's Graphical UI-based hardware development methodology. 

Individual hardware modules are packaged as IP cores, which can then be moved around in a 

graphical interface, with pin connections being possible to add by hand or using automation tools. 

This presents a clear and hierarchical picture of the design and can help increase engineer 

productivity. Figure 1 features an example block diagram. A standard ZYNQ design using the block 

diagram would feature a processing system IP core, which connects the Programmable Logic (PL) 

and Processing System (PS), with additional compute units being connected to the PS. A full 

application meeting generic IP core specifications can be made using just the block diagram, without 

having to look at any HDL code. In the example presented in Figure 1, a CORDIC core has been 

connected to an AXI stream, which, in turn, is connected to the PS. After a hardware design bitstream 

has been generated, it would be possible to directly call the CORDIC function from software running 

on the device CPU. The necessity to use standard interfaces and Xilinx's IP being black boxes, 

however, are the main downsides, which can severely limit the potential scope of applications the 

design methodology can be used on. While any application is possible to implement in block diagrams 

by using low level primitives for operations, it would severely lack design malleability, which is one 

of the focuses of this work. 
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Fig. 1.  Example Vivado block diagram design. Features such as the Processing System and acceleration 

cores can be added at will 

1.3.2. ZYNQ 

The ZYNQ architecture [81] is Xilinx's heterogenous computing solution for FPGAs. The general 

outline is to host a hard CPU on the same device as the FPGA fabric and present a large software 

stack allowing to interface FPGA programmable logic registers from software constructs, such as C 

variables, while at the same time, allowing Direct Access Memory (DMA) from either direction. The 

main two parts of the chip having this interface being the PL and PS. Developers create hardware 

designs and load them onto the PL via the PS using bitstreams and then interface with the PL design 

from PS. The main benefit of a ZYNQ architecture is the severely decreased latency between the PL 

and SDRAM, given that both are featured on the chip, while a conventional homogeneous solution 

would have to interface the PL with external memory in the host device via an interface such as 

Ethernet or PCIe, which are substantially slower than DMA.  

The ZYNQ architecture, however, presents an overhead in the data management interface between 

the PL and PS. Exploration into how efficient this interface really is can be a target of research. 

In this work, a PYNQ board-based prototype is developed for the SVD and QR algorithms. The Xilinx 

DMA core is used to this end in conjunction with the processing system core. 

1.4. Often used and demanding algorithms in Machine Learning 

1.4.1. EVD-MUSIC 

Eigenvalue Decomposition-based MUSIC is an algorithm designed for spectrogram generation using 

a steering vector as well as a sorted and filtered out eigenvector matrix. The combination of the two 

can generate spectrograms which accurately pinpoint the direction of arrival of incoming signals. To 

this end, EVD-MUSIC is widely used for DOA tasks. [85], [86] including designs implemented via 

FPGAs [87]. Notable is the use of sine transforms for the beamforming portion of EVD-MUSIC, 

which could be prone to acceleration using CORDIC. 



15 

1.4.2. Particle Swarm Optimization 

The Particle Swarm Optimization algorithm [82] is a nature-inspired optimizer based on modeling a 

flock of birds. Using a series of particles, each having their own velocity, position and search-space, 

as well as having a connected global bias depending on the positions of other particles, it is possible 

to find minimum points of a multi-dimensional plane. PSO is of great interest in the field of ML given 

how it can be used for peak finding with a minimal, yet extremely wide search field. The algorithm 

is highly parallelizable, suggesting that a unified FPGA solution could be of great interest. 

1.4.3. Principle Component Analysis 

The Principle Component Analysis algorithm [83] is used in tandem with the Singular Value 

Decomposition (SVD) to capture the primary features of a dataset. In addition, PCA can be used to 

further augment individual samples of a dataset by applying a filtering which is based on the dataset 

as a whole. This can be used for tasks such as dimensionality reduction. [84]. PCA is generally 

computed using the SVD and thus matrix decompositions are of key interest as the underlying 

algorithms. 

1.4.4. Matrix Decompositions 

Matrix Decompositions are of key interest in the field ML due to their abundant use cases. They may 

be utilized to achieve dimensionality reduction with methods such as the PCA, solve linear  systems 

of equations, capture eigenvalues.[89] Two decomposition methods stand out as being of particular 

interest in the ML field: SVD and QR. Using the SVD, one can begin the Principle Component 

Analysis scheme [63] to obtain the primary components of a matrix. This has a wide variety of uses 

in image processing applications in regards to image augmentation, feature extraction as well as 

compression. The QR decomposition, on the other hand, can be used for linear problem solving, such 

as least-squares using Gaussian Elimination [88] as well as an intermediate step for SVD 

computation. 

The SVD is expressed as the matrix product 𝐴 = 𝑈𝑊𝑉𝑇, where U and V are orthogonal matrices and 

W is a diagonal matrix of singular values. The terms U, V and W can be used to reconstruct the original 

matrix with W value truncation leading to dimensionality reduction. 

The QR factorization scheme, on the other hand, is expressed as the matrix product 𝐴 = 𝑄𝑅, where 

𝑄 is an orthogonal matrix and R is an upper triangular matrix. Each of sizes nxn for an input matrix 

of size nxn for both decompositions. 

 

The SVD and QR decompositions can both be computed using a wide variety of methods, in many 

cases the same ones, such as the one-sided or two-sided Jacobi matrix method [64] more widely 

known as Jacobi-SVD or Jacobi-QR, Householder reflections[91], Gram-Schmidt [90], Givens 

rotations [65] and many more. Of note is the method of utilizing QR for solving the SVD: the 

Kogbetliantz method[78].  

 

The method explored in this work is the utilization of Givens Rotations [65] for implementing both, 

the SVD and the QR decompositions utilizing the Kogbetliantz method for the SVD and shall be 

explored in the following section. 
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1.4.5. Givens Rotations for Matrix Decomposition 

The Givens Rotation [65] approach for computing matrix decompositions functions by sequentially 

eliminating matrix elements from the original matrix, while adjusting the row or column values in the 

original matrix of the respective eliminated element to achieve a vector rotation. Figure 2 illustrates 

the process. Each iteration, to eliminate element 𝑎𝑖𝑗 from the matrix, a 2x2 matrix, known as as Givens 

Rotation is computed using 𝑎𝑖𝑗 , 𝑎𝑖−1𝑗, 𝑎𝑖−1𝑗, 𝑎𝑖−1𝑗−1 elements by solving a system of equations as per 

Equations 1-12. 

 

Fig. 2. A Givens Rotation process for QR decomposition. Matrix elements are eliminated 1 by 1, while 

adjusting the remaining elements of the row to retain matrix information. Image taken from [94] 

Subsequently, the operands A,B,C,D of Equation 13 equate the [0,0],[0,1],[1,0] and [1,1] elements 

respectively of each 2x2 matrix. For the QR decomposition, only the first product matrix, composed 

of sines and cosines of the β value are necessary. The matrix is multiplied by the original input matrix 

to zero out the element 𝑎𝑖𝑗 while adjusting the remaining values of the row (or column, given that the 

algorithm is symmetrical) as can be seen in Figure 2. When every lower triangular element of the 

input matrix has been eliminated, the upper triangular portion equals the R matrix in a QR 

decomposition, while all Givens Rotations computed up to that point can then be multiplied by an 

eye matrix to achieve the Q portion of the decomposition. 

 

𝐸 =
𝐴 + 𝐷

2
 

 (1) 

𝐹 =
𝐴 − 𝐷

2
 

 (2) 

𝐺 =
𝐵 + 𝐶

2
 

 (3) 

𝐻 =
𝐵 − 𝐶

2
 

 (4) 

𝑄 = √𝐸2 + 𝐻2  (5) 

𝑅 = √𝐹2 + 𝐺2  (6) 

𝑤1 = 𝑄 + 𝑅  (7) 

𝑤2 = 𝑄 − 𝑅  (8) 

𝑎1 = atan2(𝐺, 𝐹)  (9) 

𝑎2 = atan2(𝐻, 𝐸)  (10) 

𝛾 =
𝑎2 − 𝑎1

2
  (11) 
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𝛽 =
𝑎2 + 𝑎1

2
 

 (12) 

 

[
𝐴 𝐵
𝐶 𝐷

]  =  [
𝑐𝑜𝑠 𝛽 𝑠𝑖𝑛 𝛽
−𝑠𝑖𝑛 𝛽 𝑐𝑜𝑠 𝛽

] [
𝑤1 0
0 𝑤2

] [
𝑐𝑜𝑠 𝛾 𝑠𝑖𝑛 𝛾
−𝑠𝑖𝑛 𝛾 𝑐𝑜𝑠 𝛾

] 

 

 (13) 

The Givens rotation-based approach for computing the SVD by incorporating a QR decomposition, 

known as the Kogbetliantz method[78], does so by  first computing the QR matrices of the initial 

matrix, then breaking down the upper-triangular matrix R into a series of 2x2 matrices and repeating 

the Givens Rotation scheme as with the QR decomposition, but this time eliminating all the remaining 

non-diagonal elements of the matrix with two-sided rotations. Givens rotations are applied from both 

left and right to R for each Givens Rotation, nullifying the two off-diagonal elements each time and 

modifying both a row and a column. A series of sweeps are done on the entire matrix, such that data 

between elements of different intermediate matrices traverse the entire global matrix. 

 

For the SVD incorporating Givens Rotations, equation 14 outlines how the computed values equate 

each factor of the decomposition: 

 

𝐴 = 𝑈(𝛽)𝑊𝑉(𝛾)   (14) 

 

Once the set of sine and cosine of the final γ and β values is taken from all the Givens Rotations used, 

together with the w values, a final SVD decomposed matrix is achieved by additionally applying them 

on the original Q matrix. 

 

This approach avoids the 𝑂(mn2 + n3) time complexity necessary for a standard dot-product based 

SVD computation for nxm size matrices and has a complexity of 𝑂(
1

2
mn2) with a critical added 

benefit of being highly parallelizable as shall be outlined in the implementation section. The downside 

of the algorithm is the necessity to compute sine, cosine values as well as a higher number of 

arithmetic operations needed in general for small matrices. However, as shall be explored in the 

following sections, a CORDIC accelerator can be used to highly efficiently compute these 

trigonometric operations. 

 

1.5. CORDIC 

1.5.1. General theory 

The Coordinate Rotation Digital Computer (CORDIC) [29] is a hardware algorithm first proposed by 

Volder [13] and later generalized by Walter [66] which uses rotations of vectors to calculate 

trigonometric, linear and hyperbolic functions. 

CORDIC's power lies in its simplicity, being capable of handling most arithmetic operations using 

only two bit-shifters, three adders and three multiplexers. As such, it belongs in the class of 'shift and 

add' algorithms. The algorithm is approximate, in the classical implementation taking up n iterations 

to compute n bits of precision. This also makes it an algorithm with substantially lower propagation 

delay, allowing for much higher clock speeds to be achieved, with the highest propagation delay 

coming from an n bit adder for the standard implementation using ripple-carry adders. 
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CORDIC's general principle is to implement a rotation of a two-dimensional vector p0 = [x0, y0] by 

an angle θ to obtain a rotated vector pn = [xn, yn] by the use of a matrix product pn = Rp0 where R 

is the rotation matrix: 

𝑅 =  [
𝑐𝑜𝑠 𝜃 −𝑠𝑖𝑛 𝜃
𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃

]  (15) 

If the cosine term in (15) is factored out, the rotation matrix R can be rewritten as (16) and can then 

be interpreted as a product of a scale-factor K as in (17) with a pseudo rotation matrix Rc as in (18) 

 

𝑅𝑐 =  [(1 + 𝑡𝑎𝑛2𝜃)
−1
2  ] [

1 −𝑡𝑎𝑛 𝜃
𝑡𝑎𝑛 𝜃 1

] 
 (16) 

K = [(1 + tan2θ)
−1
2 ] 

 (17) 

𝑅𝑐 = [
1 −𝑡𝑎𝑛 𝜃

𝑡𝑎𝑛 𝜃 1
]  (18) 

The given pseudo rotation operation rotates p0 by an angle θ to change its magnitude by a factor of 

K = cos(𝑡ℎ𝑒𝑡𝑎) and produce a pseudo-rotated vector pn
` = Rcp0. The most basic CORDIC iterations 

are written as in (19,20 and 21). One of two modes of operation is selected: vectoring mode (VM) or 

rotation mode (RM), which influences how the direction of the subsequent micro rotation σ changes 

as iterations progress, with rotation mode causing the direction to be picked based on the z input 

value's sign after a micro rotation or y value's sign in the case of vectoring mode. Circular, Hyperbolic 

and Linear functional modes are additionally picked between and influence the x input value 

convergence by setting the update function to 0 in the case of linear or the inverse in the case of 

hyperbolic mode. The set of modes for CORDIC are architectural decisions, however, they can also 

be implemented in the same circuit at the cost of additional area. 

This results in a wide variety of trigonometric, logarithm, exponent, square root and similar 

operations, all of which can be computed on vectors with the use of only adders and bit shifters. 

CORDIC variations capable of each set of operations can be obtained by only changing the update 

function condition statements, making it easy to design and adapt for certain operator needs. Notable 

is the parameter μ which was implemented by Walter [66] to generalize CORDIC for the use with 

hyperbolic functions, expanding the range of functions CORDIC can calculate tremendously. 

𝑥𝑖+1 = 𝑥𝑖 − 𝜎𝑖 ⋅ 2−𝑖 ⋅ 𝑦𝑖  (19) 

𝑦𝑖+1 = 𝑦𝑖 + 𝜎𝑖 ⋅ 2−𝑖 ⋅ 𝑥𝑖  (20) 

𝜔𝑖+1 = 𝜔𝑖 − 𝜎𝑖 ⋅ 𝛼𝑖  (21) 

A notable feature of CORDIC is the bit precision of an operation run in CORDIC depending entirely 

on the number of iterations. This makes CORDIC capable of runtime precision to latency tradeoffs, 

which can be highly useful in a real-time environment. 

The primary downside of the CORDIC algorithm is the introduction of the scaling factor [71]. When 

a microrotation is performed inside CORDIC, a Ki magnitude is added to the vector, which, while 
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not impacting the way future microrotations are performed, given that the angle remains the same, 

will accumulate over the course of the algorithm's runtime to a constant K and will need to be 

accounted for to yield a correct result. Additionally, CORDIC handles values in the range of -2.0 to 

+2.0, requiring normalized inputs. 

The upside is that the generalized CORDIC's scaling factor is indeed constant and converges to 

1.6467... This results in a 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 ∗  𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 multiplication which can be performed cheapy as a 

final step of a series of CORDIC operations. In algorithms dealing with large arrays, multiple values 

can also be calculated using CORDIC without accounting for the scaling factor initially and then 

multiplying the entire array by the scaling factor when the result is needed, which is still substantially 

more efficient to do than computing individual multiplications of two variables. [72]. Additionally, 

operations such as sine and cosine can be computed without scaling factor adjustment by assigning 

the value 
1

K
) to one of the three inputs. Additionally, the multiplication and division operations 

obtained from a vector mode CORDIC do not require a scaling factor adjustment entirely. The 

normalization downside may also often be ignored if the data is used in the machine learning context, 

given that many such computations already normalize their values to -1.0 - +1.0 range. [92] 

It must also be noted, that by itself, a circular CORDIC only allows input angles in two quadrants 

zi <
π

2
 in rotation mode and z > 0 in vector mode. Thus, an initial angle correction stage must be 

present in each architecture if the full range of input angles is desired. In the implementation section, 

a separate pipeline stage for this correction shall be reviewed. 

Since the original design in 1959, CORDIC has been researched in detail over the years, with 

numerous architectures developed, all with varying trade-offs in latency, throughput, area, power and 

precision. [29] and [30] provide field surveys on the varying architectures, however some must be 

mentioned. 

The Higher Radix CORDIC algorithm [67] halves the number of micro-rotations needed to compute 

a full vector rotation, but requires more hardware to implement the standard rotation cell by using a 

higher radix form for the intermediate values. 

Angle Recoding [68] is an implementation substantially speeding up CORDIC but only if the angle 

of rotation is known ahead of time via the use of additional lookup tables. 

Hybrid CORDIC [69] is an idea of having two separate CORDICs for different stages of the 

computation, one focused on ROM accesses and the other on the shift-add operation.  

Low-Latency CORDIC [76] utilizes multipliers and lookup tables to lower the amount of CORDIC 

microrotations done for an operation to 2/n and then approximate the remaining 2/n bits. 

Lastly, the redundant-number-based CORDIC [70] is an approach of using redundant arithmetic to 

eliminate carries, further increasing performance by substantially lowering the adder propagation 

delays at the cost of a varying scaling factor. 

While only small number of CORDIC architectures have been mentioned in this section, a key insight 

is that CORDIC can be adapted to meet different design constraints at the cost of specific downsides. 

The existence of area-throughput-latency tradeoffs by adapting the architecture imply the use of 
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CORDIC as a malleable general purpose arithmetic unit, utilizing underlying FGPA logic to make 

positive trade-offs. 

However, the rate at which CORDIC is being researched has been steadily decreasing over the years 

which can largely be attributed to the fact that modern ASIC and FPGA boards already feature 

hardware multipliers while CORDIC's key selling point was always being a tremendously low area 

cost arithmetic unit. 

Furthermore, not much research has been done on exploring how CORDIC could be used in 

conjunction with modern multipliers and increased memory capacity. A unifying approach is of great 

interest. 

1.5.2. Approximation scheme 

The decreasing popularity of CORDIC [73] as a research topic might be attributed to the fact that 

modern ASIC and FPGA circuits tend to have on-chip multiplication units, such as the DSP units 

found in modern Xilinx FPGAs. These units can perform many of the primary operations which a 

CORDIC block can, but are hardwired into the chip, giving substantially better performance per area. 

However, making use of hardware DSPs is non-trivial, much as making use of FPGAs in general. 

Although methodologies such as High-Level Synthesis are gaining in popularity [74], most high-

performance accelerators targeting FPGAs are still written in RTL, like Bluespec [75]. Utilizing DSPs 

in Xilinx FPGAs for complicated arithmetic operations such as square root and division, for instance, 

generally require using specific Xilinx IP cores and are notoriously difficult to implement by hand 

using the DSPs. The designs are then also non-vendor agnostic, with a Xilinx IP-utilizing accelerator 

no longer being usable for Intel FPGAs without large additional redesign time. 

A key point to easing the approachability of reconfigurable hardware could be increasing the level of 

abstraction and hiding the underlying circuity. The move towards general IP cores as building blocks 

of modern designs are a common example of this with CORDIC itself being often plugged into 

designs as an IP core, hiding all underlying design details, often as a sine/cosine generator.  

The proposal of this work is that CORDIC, being a highly generalized arithmetic unit, could be used 

as an intermediately layer in hardware to make use of other hardware resources, additionally acting 

as a proof of concept for the use of shift-add hardware algorithms in such a manner. Specifically, one 

approach is to implement the CORIDC 2/n bit approximation as in [76]. LUTs and FFs can be used 

to implement the CORDIC arithmetic unit itself for the first 2/n stages while a DSP unit as well as 

additional memory blocks for lookup tables may be used to implement the remaining 2/n bit 

approximation. A set of CORDIC units may then perform hardware arithmetic in a manner focused 

on minimizing their propagation delay or area, utilizing vastly fewer DSP blocks than when using 

conventional multiplication and division schemes, allowing to achieve a more balanced utilization of 

all available FPGA resources. 

This approach can be generalized to using any hardware logic available to enable larger CORDIC 

designs. Instead of using DSPs and a few multipliers in an FPGA chip, an array of CORDICs can be 

used with the DSP units being used to enable said CORDIC units. This scheme can further be 

balanced by varying the number of CORDIC units to DSP units used as well as the type of hardware 

utilized for specific portions of the computation. 



21 

Figure 3 illustrates the proposed abstract design: Data is streamed in from the host to an array of 

pipelined CORDICs in FPGA fabric, abstracted from the designer, with a set of accelerators tied to 

the array which handle bit approximations as a separate stage in the overarching pipeline. Notably, 

for higher throughput, only two values need to be streamed in and out for most CORDIC operations 

and a 3rd input value can be loaded into a register as a constant. This approach may additionally 

extend into 3D CORDIC architectures. 

 

 

Fig. 3. Abstract CORDIC compute unit array with domain FPGA resources being used for approximating a 

portion of the operation precision 

 

The choice of a CORDIC algorithm to accelerate in this manner is non-trivial. The generalized 

CORDIC is the most straightforward approach, using the DSPs to simply readjust the scaling factor 

by the factor stored in a register. A redundant-CORDIC implementation, however, would put higher 

burden on the accelerator, which could be positive if looking to balance the use of LUTs for CORDIC 

units and the number of DSPs needed for the scaling adjustment, however the propagation delay gains 

are lost if the minimal propagation delay of the DSP multiplications are higher than the redundant 

adders. The proposal in this work is to realize a CORDIC implementation as in [76] for Vectoring 

and Rotation modes as two separate designs, utilizing the DSP units found on the FPGA as a stand-

in for constant multipliers to approximate the final outputs of the initial 2/n stages as well as BRAMs 

to implement a reciprocal lookup table for Vectoring Mode, Figure 3 illustrates this exact scheme. 

The details of such a design are covered in the Implementation section. 
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1.6. Summary 

The primary takeaways from the overview section are that: 

1. There is indeed a plethora of compute problems in the ML field where the utilization of 

FPGAs is of great interest and the technology has already been utilized in various forms to 

good success. 

2. Many of the solutions are highly specialized and domain specific, while there exist plenty of 

software libraries which feature a wider scope of algorithmic problems and are thus more used 

and could be used as potential targets for underlying FPGA acceleration. 

3. RTL design has also sharply improved in recent years with higher abstraction level 

methodologies such as object oriented programing presenting new opportunities for hardware 

design. 

4. Vivado block diagrams and the ZYNQ architecture provides further means of incorporating 

FPGA designs into the software domain, but could make use of more reusable compute units 

to not restrain design use cases. 

5. There are indeed algorithms that utilize overlapping underlying arithmetic, which at a library 

level could be offloaded to FPGAs, the most notable example being matrix decomposition 

using Givens Rotations. 

6. The CORDIC algorithm, especially the low-latency variant, is an algorithm of great note in 

terms of more generalized arithmetic units, capable of handling a plethora of arithmetic 

operations using the same interface and a highly overlapping design. It can also make good 

use of all available FPGA resources to further facilitate effective utilization of the technology. 

Hypothesis: the low-latency CORDIC algorithm, utilizing DSPs and BRAMs found on modern 

FPGAs, could be incorporated into modern ML algorithms, notably, the matrix decomposition 

methods such as the SVD and QR factorization using overlapping arithmetic operations in Givens 

Rotations at the software level, providing a straightforward interface to available hardware resources. 

Additionally, by utilizing modern hardware design methodologies and tools, highly reusable designs 

could be made which could further facilitate FPGA adoption in the field of ML without requiring 

hardware expertise. 

The following set of tasks is outlined to verify the validity of the hypothesis: 

1. Model and implement an FPGA CORDIC accelerator interfaceable from a Python 

environment for use in accelerating software algorithms designed with the Numpy compute 

library. 

2. Model and implement a CORDIC variant utilizing on-chip DSP and BRAM units present in 

modern FPGAs as CORDIC back-ends to solve classical trigonometric operations versus 

implementing them in the DSPs themselves. 

3. Implement the SVD and QR factorization for decomposing matrix datasets via the Numpy 

compute library, using the Givens Rotations method for the underlying algorithms. 

4. Parallelize the SVD and QR algorithms for use with a CORDIC accelerator. 

5. Benchmark the CORDIC accelerators for solving classic trigonometric operations such as 

sine, cosine, multiplication, and division, comparing resource utilization, precision, and 

throughput with a direct DSP approach when possible. 
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2. Research Methodology 

2.1. Criteria for benchmarking 

The primary evaluation metric proposed in this work is to focus on throughput per logic element & 

DSP and BRAM cell consumed by the design as well as operation precision. Special care should be 

put into comparing how different designs perform versus using standard DSP cells found in modern 

FPGA boards as well as hybrid approaches. Rather than focusing on the maximal throughput 

achievable on a device, the standard and logic cell count for the exact arithmetic units will be 

considered. The following list summaries the benchmarks: 

• Logic Unit utilization / CORDIC processing unit, count 

• Flip-Flop utilization / CORDIC processing unit, count 

• FPGA-local Digital Signal Processor utilization / CORDIC processing unit, count 

• Block RAM utilization / CORDIC processing unit, count in Kilobytes 

• Mean square error of the final arithmetic operations, absolute value 

• CORDIC throughput with data loading from RAM, Megabytes / second 

  

2.2. Verification of implemented algorithms 

To properly verify the correct workings of the CORDIC core, as well as the matrix decomposition 

computation steps in the software side, a test suite is to be designed for testing individual CORDIC 

operations (sine, cosine, multiplication, division, square root) on a large array to be run with an input 

sizes carried from 2 to the maximum allowed buffer space in the PYNQ-Z1 device, then compared to 

running Python’s standard numerical library operations on the same array (Numpy.sin, Numpy.cos 

etc). 

2.3. Conditions for the test bench 

Standard IEEE-754 Floating Point format is to be used as inputs to the software algorithms and the 

CORDIC accelerator, with 1 sign bit, 8 exponent bits and 23 mantissa bits. Conversion to fixed point 

arithmetic is to be done in hardware, using 1 bit for storing the integer portion and 30 bits for storing 

the fractional portion as well as the sign bit. All input data needs to be normalized to a -1.0 to +1.0  

range due to CORDIC‘s internal limitation of requiring 1 integer bit side fixed point inputs. 
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3. Implementation 

The following sections feature a proposed DSP-enabled architecture for the CORDIC arithmetic cell 

and a design for abstracting the CORDIC accelerator for use in software designs. A methodology for 

computing Givens rotations using the CORDIC accelerator is also presented. 

3.1. Basic CORDIC architecture 

For high-throughput arithmetic, the conventional iterative CORDIC must be converted to a pipelined 

structure. The reason for doing so is the fact that an iterative CORDIC requires a lookup table for 

storing the potential arctangent angles of microrotations used in each iteration. A pipelined 

implementation can use wired shifters and wired register-stored microrotation angles for each 

iteration. In other words, each of the n stages of a pipelined structure for n bit inputs uses dedicated 

hardware for a given bit/stored angle. This increases throughput by a factor of n, while hardware 

complexity is increased by less than n. 

The block diagram in Figure 4 illustrates the pipelined classic configuration for both modes. 

 

Fig. 4. pipelined generalized conventional CORDIC. 3 Adders and two bit shifters per stage are required. 

Image taken from: [95] 

The implementation inputs the data values x,y and z as well as a value alpha for choosing between 

rotation and vectoring modes, to the left can be seen individual atan value inputs hard-wired instead 

of using a lookup table. The baseline design used in this work omits the scaling factor correction, for 
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which either dedicated hardware is used or a final correction is done in software. Conventionally, 

ripple adders are used for each stage of the pipeline, introducing a propagation delay equivalent to 

propagating an n bit carry in a single ripple adder. FPGAs are specifically optimized to have fast 

ripple carries inside individual CLBs (combinational logic blocks) thus redundant arithmetic is not 

considered in this design due to the DSP unit use which shall be outlined in the following section 

dwarfing the maximum propagation delay. Lastly, while the alpha value is mentioned , in this work, 

two separate CORDIC variants are explored and modified: Rotation Mode and Vector Mode, rather 

than using a unified system. The reason for this being that the modifications proposed in later sections 

diverge in resource requirements of the two variants, making a unified approach inefficient if only 

one type of operation is used with an individual CORDIC compute unit. 

3.2. DSP-enabled CORDIC arithmetic cell modification for Vector and Rotation modes 

The low latency pipelined 2D CORDIC as described in [76] utilizes the fact that only the first n/2 bits 

have to be calculated using the add-shift scheme of the conventional CORDIC, while the remaining 

2/n bits can, in fact, be approximated using a truncated constant multiplier and a lookup table. This 

approach is based on the calculation that the final n/2 bits, if approximated with a single rotation, 

suffer from an error rate as low, or even lower, than the full mean error of a conventional CORDIC 

implementation with full n micro rotations. 

The primary upside of this approach is the need to only compute the first 2/n iterations, which halves 

the depth of the pipeline, cutting the necessary hardware in half. The downside is the need for a 

multiplier for implementing the final approximation as well as a lookup table in the case of vectoring 

mode. However, these additional multipliers are truncated to a bit width of 2/n+m where m is log2(n) 

(guard bits and overflow bits), which are substantially cheaper to implement in hardware than full bit 

width multipliers. The lookup table also features a depth proportionate to the number of bits being 

approximated and can be controlled for varying FPGA chip memory budgets. 

The cited work did not feature dedicated multipliers (DSPs) for implementing the CORDICs, for a 

constant multiplier is substantially cheaper to implement in FPGA logic than a regular one and thus, 

the use of DSPs would have lead to minimal gains. The authors additionally outlined that the 

implementation can straightforwardly be used with redundant arithmetic for the first 2/n pipeline 

stages.  

In this work, the novelty presented is to use CORDIC rotations for the first 2/n stages, using the 

implementation presented in [76] for the remaining 2/n+m bits and to utilize DSP units for the 

multiplication instead of constant multipliers and BRAMs for reciprocal computation instead of 

standard lookup tables. 

The prototype design implemented in this work takes in 32-bit floating-point inputs with 8 exponent 

and 23 mantissa bits, converts them to fixed point with 1 integer bit, runs 16 CORDIC micro-rotation 

stages on the first 16 bits of the inputs and then utilizes Xilinx series 7 DSP48E cells for the remaining 

16 bits approximation 

The architecture of the CORDIC cells is presented in Figure 5 and illustrates the proposed 

implementation block diagram with the following set of fully pipelined operations: 
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• Control signals and the constant a value are loaded to the CORDIC auxiliary registers using 

an AXI-lite interface. 

• The b and c streamed inputs are converted from floating point to fixed point using standard 

3-stage pipeline converters. 

• Using the control signals in the auxiliary block, the a, b and c values are multiplexed for the 

desired functionality of a given CORDIC compute unit. 

• An angle correction stage is passed during which the initial rotation quadrant is tested to be 

in the range 0 - 
𝜋

2
  and adjusted accordingly if needed. 

• n/2+1 stages of general CORDIC micro rotations are passed, computing the first n/2 bits of 

the output vector. 

• In both designs, after n/2+1 stages, all 3 values are stored in hold registers to delay by 1 clock 

cycle. 

• In vector mode, this clock cycle is used to look up the 1/x[q] reciprocal in a lookup table 

stored in FPGA BRAM where x[q] equals the n/2 leading bits of x after n/2 iterations of 

CORDIC. 

• In rotation mode, this cycle is used to compute n/2 x n/2 multiplications needed for a and b 

value approximation. 
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Fig. 5. The proposed CORDIC architectures with DSP and BRAM utilization. The Stage j blocks are 

optimized ripple carry adder CORDIC microrotation update blocks. The reciprocal computation is done 

using BRAM-based lookup tables 

• In vector mode, the reciprocal table addressed data is multiplied by the b[q] value to obtain 

the final cf value after an addition. 

• In both circuits, the final values are multiplexed again according to control signals. 

• Lastly, the values are converted back to floating point format in yet another 3-stage pipeline. 
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3.3. Generalization of the CORDIC cell for use as a hardware accelerator 

The generalization of the CORDIC cell for use as an accelerator is now presented. The architecture 

presented in the previous section realizes a pipelined 32-bit CORDIC core, surrounded by two sets 

of multiplexers for generalizing the core to take in 1 register-mapped constant value and two streamed 

values. The design interface can be incorporated into an Advanced eXtensible Interface Stream 

(AXIS) system. 

A homogeneous Xilinx FPGA (ZYNQ), specifically the PYNQ device is used to implement the 

design, using Direct Access Memory (DMA) implementing the AXI4 and AXIS interfaces to feed 

data from the host device to the arithmetic core. A simplified outline can be seen in Figure 8 and a 

full one in Figure 9. 

In the full block diagram, gp_cordic_0 directly corresponds to Figure 7 diagram, using a templated 

Xilinx AXI Stream slave and master interfaces of 64 bit widths and a set of 3 3:1 input and output 

MUXes. 

The gp_cordic_aux_0 block is a simple AXI Lite slave wrapped for directing the initialization signals 

to the gp_cordic_0 block. The rest are generic Xilinx IP blocks, with the DMA set to maximum 512 

value burst reads with a 32bit DDR width interface. 

As concrete implementations to be experimented upon, Vector and Rotation Mode CORDIC 

implementations are realized using the classic CORDIC architecture design as described in [66] as 

well as the modified variants utilizing DSP slices and BRAM cells. Lastly, Xilinx Divider and 

Multiplier IP cores are incorporated using the exact same logic up to and including the input and 

output multiplexers, but switching out the CORDIC core for the IP blocks to compare resource 

utilization. The designs are synthesized with two guard stages for overflow protection.  

Migen [58] is used for modeling the generalized CORDIC RTL design, converting to Verilog and 

synthesizing with the Vivado toolchain.  

Fig. 6. Migen Class hierarchy for the Generalized CORDIC cell, white arrow – inheritance, black - 

encapsulation 
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As shown in Figure 6, the Half_Range_Cordic class (white arrow signifies inheritance, black- 

encapsulation), implements the main CORDIC stages with their respective micro rotation and lookup 

tables for atan values. This class is inherited by CORDIC, which has the additional stage for angle 

correction if it does not fall into the 0 - 
𝜋

2
 range. The class is instantiated alongside Float2Fixed, 

Fixed2Float and Reciprocal_Table classes inside the GP_Cordic class, which glues all the 

components together with additional pipelining stages. The reciprocal table incorporates the Memory 

class construct provided by Migen for initializing large memories and was initialized with reciprocal 

values using Numpy. The entire design utilizes branch conditions to reuse most of the code for both 

Vector and Rotation modes, while branching key portions of the design to implement either mode by 

itself. This makes the design highly reusable and parametrizable. Notable, the design can be initialized 

with the parameters: input width, stage count, guard bit count, evaluation mode (pipelined, 

combinational, iterated), CORDIC modes between vector and rotate and functional modes between 

linear and hyperbolic. 

 

 

Fig. 7. Pipelined CORDIC with DSP acceleration, format conversion and control multiplexing in the context 

of an axis interface 

 



30 

 

Fig. 8. Accelerated CORDIC on a PYNQ device simplified block diagram for AXI connections 

 

Fig. 9. The Vivado Block Diagram of the general purpose CORDIC unit communicating via DMA with the 

ZYNQ processing system. Clock signals routing from rst_ps7_0_100M omitted for clarity 
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A processing system IP for connecting the programmable logic with the ARM cores found in the 

PYNQ device is used, alongside AXI4 peripheral, Interconnect and DMA cores for routing the data 

streams and register values to the CORDIC core. Two interface modules are used for AXI Stream 

and AXI Lite protocol wrapping around the core. 

3.4. AXI-Stream interface using Direct Memory Access 

Three layers of communication are used between the ZYNQ processing system on the XILINX 

PYNQ FPGA board and the CORDIC compute units (CUs): AXI-Stream interfaces, a direct memory 

access interface, which moves data from the RAM memory and sends to the AXIS interface and, 

lastly, a round robin scheduler to distribute the compute work among a varying number of CORDIC 

compute units. 

Standard XILINX IP cells are used for implementing the AXI and DMA interfaces but shall be briefly 

discussed regardless. 

3.4.1. DMA 

The Xilinx AXI DMA 7 core, as illustrated in Figure 10 is utilized to initiate streamed data transfers 

between the host main memory (RAM) and AXI-compliant peripherals on the FPGA fabric. S2MM 

and MMS2 ports are used for connecting to the Xilinx processing system which is the master 

controller / interface between the main memory and the FPGA chip. 64-bit words are used, for sending 

two inputs of 32 bits each (1 input is always set constant ahead of time as an AXI-lite signal to be 

kept in a register) and a maximal 256 burst size is utilized. This allows to maximally saturate the 

memory bus and stream data at maximum capacity that the CORDIC CUs can handle. AXI4 memory 

map read/write is used as the port for sending the control signals, as the 3rd, constant, input.  

 

Fig. 10. Xilinx AXI DMA IP block diagram, image taken from [97] 

The AXI4 Memory map read and write interfaces are then connected to the AXIS peripherals 
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3.4.2. AXIS protocol 

AXIS is a handshake protocol with VALID, READY, LAST and DATA signals as illustrated in 

Figure 11.  

 

Fig. 11. AXIS protocol waveform. Image taken from [96] 

The protocol is guaranteed to supply operands in a FIFO order and can be used for both read and 

write operations in parallel. In the proposed design, each packet consists of 64-bit words, which are 

then split into two 32-bit words and loaded into the CORDIC first pipeline stage registers each clock 

cycle. 

3.5. Givens Rotation-based SVD acceleration using the Generalized CORDIC 

The previous sections of this work outlined a method of computing the SVD using Givens rotations, 

as well as a hardware implementation of a generalized CORDIC accelerator. This section goes over 

how the accelerator may be used in the SVD and QR decomposition algorithms. 

The core of the SVD and QR computations is the Givens rotation itself. Given a 2x2 matrix, to 

compute the final β, γ and w values as well as their sine and cosines. Equations 1-9 already outlined 

the necessary arithmetic for obtaining these values. 

Given the set of operations for a Givens rotation, the tanh operations can be replaced with CORDIC 

operations with inputs (x=c+b,y=d-a,z=0 using vectoring hyperbolic mode CORDIC) for a1 using 

the same setup with different x and y values according to the previous expression for a2. 

Next, the β and γ angle coefficients can be extracted using 2 series of Linear Vector mode CORDIC 

functions with value z set to 0. Each of the Givens rotation matrix’s cos and sin values can be 

calculated using CORDIC’s Circular Rotation mode. In total, 4 Vector mode and 8 Rotation mode 

CORDIC calculations are enough to compute the Givens Rotation, followed by 2/n Vector mode 

multiplications for each rotation (not required for the 2x2 matrices themselves).  

The next step is generalizing into larger matrices. For the method to converge and appropriately zero 

out all off-diagonal elements in the initial matrix, only disjoint 2x2 sub-matrices may be used in a 

single step of a sweep in parallel. Figure 12 illustrates a modulus pivot strategy [79] for parallelizing 

the rotations in an n=7 sized square matrix. There are many other proposed schemes, such as [78] and 

further strategies outlined in [79], like the butterfly form. 

It has to be noted that for small matrices, the scheme would be severely bottlenecked by memory 

transfers, given that all future Givens Rotation operations require previous sets to complete. An nxn 
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size matrix may require up to n subsequent Givens rotation batches which cannot be streamed due to 

race conditions. The two primary approaches to overcome this bottleneck are to either compute 

multiple matrices in parallel or to move the final matrix being computed to the hardware memory, 

avoiding any memory transfers between system RAM and CORDIC units. In this work, multiple 

matrixes are computed in parallel as the testcase to simplify design, given that the CORDIC 

accelerator primarily design goal is to work as a simple SIMD-type accelerator. 

 

0 x 2 3 4 5 6 7 

1   x 4 5 6 7 1 

2     x 6 7 1 2 

3       x 1 2 3 

4         x 3 4 

5           x 5 

6             x 

 x/y 0 1 2 3 4 5 6 

Fig. 12. A single sweep across an input matrix using Givens Rotations for the SVD. Values sharing the same 

index are computed in parallel. For example, during the 3rd iteration, Givens Rotations are computed for 

𝑆1 = {2,0}, 𝑆2 = {5,4}, 𝑆3 = {6,2} indexed elements 

The final software system implements the stage diagram as can be seen in Figure 13. 

An input array/matrix is loaded in a Python program, the CORDIC registers are first set using the 

AXI Lite interface, assigning the constant value and multiplexing of the inputs and outputs. 

Afterwards, the input array is decomposed into a series of 2x2 matrices which are parallelizable 

without creating a race condition. The basic addition operation is done in software, followed by a 

loading of the input buffers to the FPGA, proceeded by the sending of the data to the device. In the 

device, the CORDIC compute units are streamed the values, converting to fixed point representation 

and proceeding through the CORDIC cell. Once an output is obtained and converted back to floating 

point format, they are sent back to the host device and a test is done if further Givens rotations are 

necessary, repeating the cycle until the desired precision or maximum sweep count has been reached.   

To handle the scaling factor, for the Rotation mode, input a a is set to 
1

K
 (0.606) to obtain sine results 

without the need for scaling factor adjustment, while the vector mode multiplication operation does 

not generate any gain. For the tahn operation, the final matrix is multiplied once by  
1

K

𝑠
 where s equals 

the number of total sweeps. 
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Fig. 13. State diagram for the GP CORDIC accelerator usage from software. Initially CORDIC auxilary 

registers are set for desired CORDIC functionality and constant (a) value. Once data for processing is ready, 

buffers are loaded to send to the device in a streamed manner 

3.6. The test bench 

The final design test bench comprises of CORDIC design simulations for testing appropriate compute 

unit responses to varying input data sets, testing sine, cosine, multiplication and division operations. 

The datasets comprise of randomly generated Numpy arrays of float values. The rotation and vector 

mode versions of both variants of the CORDIC algorithm (the standard and DSP-enabled) as well as 

the XILINX IP cores for division and multiplication are used for the tests. Resource consumption 

measurements are taken during this phase. 

The CORDIC variants are then tested on the PYNQ-Z1 board, downloading generated bitstreams of 

the 4 possible sets of designs to the device and comparing: 

1. The precision as well as throughput for sine, cosine, multiplication and division operations, with 

varying input sizes is measured and compared to a software Numpy realization on the same data 

arrays. 

2. CORDIC designs with varying approximated bit counts are generated and compared in regard to 

resource utilization. 
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4. Results 

4.1. Utilization of resources 

Tables 1 and 2 feature the resource consumption of the standard CORDIC algorithm as well as the 

DSP-offloading prototype and DSP-only implementations synthesized for the PYNQ-Z1 board, the 

results in these tables are for the processing units themselves, without additional functionality blocks 

such as the DMA engine, which are featured in a later figure. 

Each implementation's LUT, FF, DSP and BRAM costs are considered only of the exact instance of 

the arithmetic unit (gp_cordic_0), discounting the additional costs of the AXI DMA interface and 

interconnects but including the floating point - fixed point converters. The cost is presented as the 

raw number of resources as well as the percentage of the PYNQ-Z1 board's resources available. “4 

Converters” equates to the floating point to fixed point and vice versa converters for inputs a and b. 

Width equates the input bit-widths for the accelerator, stages-number of CORDIC pipelined stages, 

while ‘approx’ indicates the number of bits being approximated by DSPs/BRAMs. 

Table 1. Resource utilization of single arithmetic unit instantiations in a PYNQ-Z1 board with 4 converters 

for float-fixed and back in each case 

CORDIC mode ops width stages approx LUT FF BRAM DSP 

rotation sin/cos 32 16 16 2608 2579 0 2 

rotation sin/cos 32 32 0 4480 4624 0 0 

vector multi/div 32 16 16 1737 2029 32 1 

vector multi/div 32 32 0 3176 3461 0 0 

DSP multi multi/sin 32 0 0 608 484 0 3 

DSP div div 32 0 0 917 1705 1 13 

4 Converters conversion 32 4 0 411 497 0 0 

Table 2. Resource utilization of single arithmetic unit instantiations in a PYNQ-Z1 board with 4 converters 

for float-fixed and back in each case. Percentages in the PYNQ-Z1 board 

CORDIC mode ops width stages approx LUT FF BRAM DSP 

rotation sin/cos 32 16 16 4.7% 2.6% 0.0% 0.9% 

rotation sin/cos 32 32 0 8.0% 4.6% 0.0% 0.0% 

vector multi/div 32 16 16 3.1% 2.0% 22.9% 0.5% 

vector multi/div 32 32 0 3.1% 2.0% 0.0% 0.0% 

DSP multi multi/sin 32 0 0 1.1% 0.5% 0.0% 1.4% 

DSP div div 32 0 0 1.6% 1.7% 0.7% 5.9% 

4 Converters conversion 32 4 0 0.7% 0.5% 0.0% 0.0% 

 

The resource utilization between a standard CORDIC (rotation/vector standard) and one using the 

16-bit approximation scheme (rotation/vector approximated) is compared in Figure 14 and showcases 

the significant reduction in LUT and FF resource consumption at the cost of BRAM and DSP use. 
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Next, the LUT and FF resource distribution among different parts of the design is considered. Figure 

15 illustrates the PYNQ-Z1 device FPGA fabric‘s resource utilization for each primary component. 

 

Fig. 15. LUT and FF distributions between different components of the design in Rotation mode with the 

approximation scheme 
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As can be seen, the General Purpose CORDIC cell, took up roughly half of both the total LUT and 

FF resources needed for the design, with the remaining half being the processing system (PS7) and 

its respective interconnection engines (AXI interconnect and DMA). This is for a single fully 

pipelined CORDIC core and in total takes up 13.07% of the entire PYNQ-Z1 board‘s LUT count, 

with the CORDIC core itself taking up 6.11%. Thus, a much larger array of CORDIC processors 

could be incorporated into the design for more complex operations. 

Lastly, the % BRAM and LUT consumption for the CORDIC core itself is compared for the Vector 

CORDIC mode with the approximated bit count varied from 2 to 16. The results of this can be seen 

in Figure 16 and illustrates the exponential growth in BRAM utilization as larger lookup tables are 

required for the reciprocal computation. At 13 bits of precision, the percentage utilization is equal, 

suggesting 19 CORDIC stages with the remaining 13 bits approximated as the optimal ratio if 

optimizing for even resource utilization for 32 bits of precision. 

 

Fig. 16. LUT, FF and BRAM resource % utilization on the PYNQ-Z1 board for the bit approximating 

CORDIC vector mode, 13 bits being approximated leads to a roughly even utilization of LUT and BRAM 
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4.2. Throughput and precision 

Each implementation was synthesized and routed for 100 MHz clock speeds with 64 bits total being 

handled each clock cycle.  

After the final Vivado tool place and route operations, the design achieved a 1.032ns negative slack 

and a hold time of 0.029ns, meeting the 100 MHz clock restraint. 

The PYNQ device's Jupyter Notebook environment test bench achieved 700 to 750 MB/s throughput 

using two DMA channels for reads and writes at 100 MHz clock speed.  As seen in Figure 14, this 

requires around 2 MBs worth of data in the buffers. According to documentation, the maximum 

throughput under these conditions for the PYNQ-Z1 is 800 MB/s, thus all implementations managed 

to nearly fully saturate the DMA's maximum capacity. For this same reason, the testbench is limited 

to 100 MHz, due to additional clock rate increases not yielding a performance improvement. Running 

the same operations using Python's Numpy compute library on the PYNQ-Z1 board's Cortex-A9 

ARM core yielded 20 MB/s throughput as a comparison. 
  

As an additional experiment, a software converter from floating point to normalized fixed-point 

format with 1 sign bit, 1 integer bit and 30 fractional bits was implemented and tested. This was done 

in software using the Numpy computing algorithm. Floating point - fixed point conversion operations 

were done by dividing the FP32 by a 32-bit max integer and shifting to the left and right by 1 for the 

input and output stages respectively. This leads to a 9-bit precision loss and is additionally a 20 MB/s 

throughput bottleneck using the Cortex-A9 processor ARM cores found in the PYNQ-Z1 board. The 

performance bottleneck motivated to introduce a hardware floating-fixed point conversion set of 

stages in the final design. 
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For the final SVD/QR algorithm acceleration tests, a mean  squared error of 1e − 23 was achieved 

for each value upon return for each operation tested (sine, cosine, multiplication, division), which 

would make up a Givens Rotation computation as well as the matrix product. 

The primary precision loss is assumed to be the floating to fixed point conversion, given that only 1 

bit is used for storing the integer portion of the fixed point, given CORDIC‘s limitation. Thus, 

normalizing values to -2.0 - +2.0 in the standard 8 exponent, 23 mantissa bit format simply waste a 

great deal of precision due to not utilizing the full scope of the floating-point format. 
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Conclusions 

1. Considering the results, it can be argued that when it comes to complex arithmetic operations, a 

generalized CORDIC unit allows the effective utilization of the entire programmable logic in 

tandem with the DSP units to substantially increase device throughput, which is a strong case for 

the use of CORDIC in a high-performance computing workload. Just two DSPs and 160 KB of 

BRAM are enough to decrease the required LUT and FF sizes by 40% in a standard CORDIC 

implementation. 

 

2. CORDIC allows efficient utilization of BRAM as a lookup table for computing reciprocals by 

shrinking input data widths to  a manageable size, with a 32-bit input having 16 bits handled with 

CORDIC allowing to allocate a lookup table approach for the remaining 16 bits at the cost of 25% 

of a PYNQ-Z1 device’s available BRAM. 

 

3. Significant size inputs are required for the effective utilization of CORDIC in a matrix 

decomposition context, with the PYNQ-Z1 board testbench requiring a full 2 MB of data for the 

input buffers to reach near-maximum capacity. 

 

4. CORDIC shows great promise as an algorithm 'lost in time' with the potential to become a staple 

for FPGA accelerator design in the context of arithmetic-heavy compute workloads, especially 

when an algorithm can be implemented using trigonometric operations as the primary source of 

computational complexity. 
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