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Abstract: A synthesis of 2-((4-phenyl-5-(2-(p-tolylamino)ethyl)-4H-1,2,4-triazol-3-yl)thio)-N’-(1-
phenylethylidene)acetohydrazide from 2-[(3-{2-[(4-methylphenyl)amino]ethyl}-4-phenyl-4,5-dihydro-
1H-1,2,4-triazol-5-yl)sulfanyl]acetohydrazide and acetophenone is reported. The title compound has
been tested to possess 1.5-fold higher antioxidant ability than the control, butylated hydroxytoluene,
as determined by a Ferric reducing antioxidant power assay.
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1. Introduction

Oxidative stress is caused by an imbalance between the production and accumulation
of reactive oxygen species (ROS) in cells and tissues and the ability of a biological system
to detoxify these reactive products. ROS are normally generated as by-products of oxygen
metabolism; however, environmental stressors, such as pollutants, ionizing radiation, and
heavy metals, contribute to a significant increase in ROS production, therefore causing the
imbalance that leads to cell and tissue damage [1]. Oxidative stress occurs when there is an
imbalance in redox homeostasis, with ROS producing processes overcoming antioxidant
defensive processes [2]. Oxidative stress has been implicated in the pathogenesis of many
diseases, such as diabetes, cancer, cardiovascular and neurodegenerative diseases, and
different digestive disorders [3]. Antioxidants are involved in the defense mechanism of
the organism against pathologies associated with the attack of free radicals by slowing
or inhibiting completely the oxidation processes caused by reactive radicals. In recent
years, several classes of organic compounds have attracted the attention of researchers as
potential scaffolds for the synthesis of novel compounds possessing antioxidant activity.

1,2,4-Triazole derivatives exhibit a series of pharmacological activities such as an-
tibacterial, antifungal, antitubercular, anticancer, antioxidant, antiviral, anti-inflammatory,
antidepressant, etc. [4–7]. The triazole scaffold is present in molecules of several potent,
biologically active compounds, such as trazodone (antidepressant drug), rizatriptan (an-
timigraine drug), hexaconazole (antifungal drug) and alprazolam (hypnotic, sedative, and
tranquilizer drug) [8]. The lipophilicity, polarity, and hydrogen bonding capacity of a
molecule can be influenced by the presence of the 1,2,4-triazole moiety, thus improving
the pharmacokinetic, pharmacological, toxicological, and physicochemical properties of
the derivatives [9]. Presence of sulfur atom adjacent to the triazole moiety often enhances
pharmacological activity compared to that of the parent derivatives [10,11]. 1,2,4-Triazole-3-
thione derivatives are attractive scaffolds in medicinal chemistry for their broad biological
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activity, e.g., antibacterial, antifungal, antioxidant, antiviral, anticonvulsant, antidepressant,
anti-inflammatory, etc. [12–18].

Hydrazones, a separate type of Schiff bases, constitute another significant class of
biologically active compounds in medicinal and pharmaceutical chemistry. Schiff bases
have been shown to possess potent antioxidant activity to scavenge free radicals due to the
presence of labile hydrogen in the NH group [19].

As a continuation of our interest in search for the potent antioxidant agents bear-
ing heterocyclic moieties [20–23], herein we report the synthesis of 2-((4-phenyl-5-(2-
(p-tolylamino)ethyl)-4H-1,2,4-triazol-3-yl)thio)-N′-(1-phenylethylidene)acetohydrazide (2)
and evaluation of its antioxidant activity.

2. Results and Discussion

2-((4-Phenyl-5-(2-(p-tolylamino)ethyl)-4H-1,2,4-triazol-3-yl)thio)-N’-(1-phenylethylidene)
acetohydrazide (2) was synthesized by the reaction of 2-[(3-{2-[(4-methylphenyl)amino]ethyl}-
4-phenyl-4,5-dihydro-1H-1,2,4-triazol-5-yl)sulfanyl]acetohydrazide (1) [20] and acetophe-
none in methanol at reflux temperature of the reaction mixture in 89% yield (Scheme 1). In
the 1H-NMR (nuclear magnetic resonance) spectrum for 2, the protons of the methyl group
in the p-tolylamino moiety gave a singlet at 2.11 ppm [20], while the methyl group protons
in the 1-phenylethylidene moiety gave a double set of singlets at 2.25 ppm and 2.30 ppm in
the intensity ratio 1.8:1.2 (Supplementary Materials).
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Scheme 1. Synthesis of the target compound 2.

The protons of the methylene group adjacent to the S atom also resonated in a double
set of resonances at 4.12 ppm and 4.45 ppm with the intensity ratio of 0.7:1.3. This splitting
of the proton resonances indicates that the title hydrazone exists as a mixture of Z/E isomers
in DMSO-d6 solution due to the hindered rotation around the amide bond. In most cases,
the Z isomer predominates [22,24,25]. A multiplet in the range of 7.55–7.64 ppm attributed
to phenyl protons additionally proves the presence of the phenylethylidene moiety in the
target molecule. In the 13C NMR spectrum for 2, the resonance at 169.48 ppm has been
attributed to the triazole ring carbon to which S atom is attached.

The antioxidant activity of the title compound 2 was evaluated using the Ferric re-
ducing antioxidant power assay (FRAP) [26]. The FRAP assay is based on reduction
of colourless Fe3+-2,4,6-tripyridyl-s-triazine complex to the intensively blue Fe2+-2,4,6-
tripyridyl-s-triazine complex in acidic medium once it interacts with a potential antioxidant.
At low cost, this method has been proven to be useful for screening of antioxidant capacities
and comparing efficiencies of different compounds [27]. Reducing power as a measure of an
antioxidant activity of 2-((4-phenyl-5-(2-(p-tolylamino)ethyl)-4H-1,2,4-triazol-3-yl)thio)-N’-
(1-phenylethylidene)acetohydrazide (2) was 106.25 µM Fe2+, whereas those of a commonly
used antioxidant butylated hydroxytoluene (BHT) and a well-known antioxidant ascorbic
acid were 70.61 µM Fe2+ and 103.41 µM Fe2+, respectively, thus proving this type of hybrid
compounds to be potent candidates for the development of antioxidant agents.

3. Materials and Methods
3.1. Synthesis

The reagents were purchased from Sigma-Aldrich (St. Lous, MO, USA). The reaction
course and purity of the synthesized compounds were monitored by TLC using aluminium
plates precoated with silica gel 60 F254 (MerckKGaA, Darmstadt, Germany). Melting
point was determined on a MEL-TEMP melting point apparatus (Electrothermal, A Bibby



Molbank 2022, 2022, M1380 3 of 5

Scientific Company, Burlington, NJ, USA). The 1H and 13C-NMR spectra were recorded
in DMSO-d6 on Varian Unity Inova 300 spectrometer (300 and 75 MHz, respectively)
operating in the Fourier transform mode. Chemical shifts (δ) are reported in parts per
million (ppm) calibrated from TMS (0 ppm) as an internal standard for 1H NMR, and
DMSO-d6 (39.43 ppm) for 13C-NMR. FT-IR spectra (ν, cm−1) were recorded on a Perkin–
Elmer Spectrum BX FT–IR spectrometer using KBr pellets. Elemental analyses (C, H,
N) were performed using the CE-440 Elemental Analyzer (Exeter Analytical, Inc., North
Chelmsford, MA, USA).

2-((4-Phenyl-5-(2-(p-tolylamino)ethyl)-4H-1,2,4-triazol-3-yl)thio)-N’-(1-phenylethylidene)
acetohydrazide (2)

To 1 [20] (0.58 g, 1.5 mmol) dissolved in methanol (20 cm3), acetophenone (0.23 cm3,
2 mmol) was added dropwise. The reaction mixture was heated at reflux for 2 h; the
precipitate started to form from the reaction mixture while still hot. The reaction mixture
was cooled and water (40 cm3) was added. The precipitate was isolated by filtration,
washed with diethyl ether, and recrystallized from ethanol to give 0.71 g (89%); m.p.:
160–161 ◦C; 1H NMR (300 MHz, DMSO-d6): δ = 2.11 (s, 3H, CH3), 2.25 (s, 1.8H, CH3), 2.30
(s, 1.2H, CH3), 2.74 (q, J = 7.5 Hz, J = 15.5 Hz, 2H, CH2-C), 3.22 (q, J = 7.5 Hz, J = 15.5 Hz,
2H, NHCH2), 4.12 (s, 0.7H, CH2), 4.45 (s, 1.3H, CH2), 5.44 (t, 1H, J = 8 Hz, NHAr), 6.25 (d,
J = 8.4 Hz, 2H, H(2,6)Ar), 6.80 (d, J = 8.4 Hz, 2H, H(3,5)Ar), 7.38–7.44 (m, 3H, H(3,4,5)Ar’),
7.46–7.52 (m, 2H, H(2,6)Ar’), 7.55–7.64 (m, 3H, H(3,4,5)Ar“), 7.70–7.83 (m, 2H, H(2,6)Ar’),
10.90 (s, 1H, NH) ppm; 13C NMR (75 MHz, DMSO-d6): δ = 13.78, 14.25 (CH3), 20.04 (Ar-
CH3), 24.71 (CH2), 34.99, 35.58 (CH2), 40.73 (C-7), 112.08 (C-2, 6), 124.24 (C-4), 126.09, 126.35,
127.45 (C-3′, 5′), 128.32, 128.38, 129.20 (C-4′), 129.35, 129.94 (C-2′, 6′), 130.00 (C-3, 5), 130.13,
132.82 (C-1′), 133.01, 137.89, 137.98, 145.72 (C-1), 148.42, 149.78 (C-9), 152.13, 154.02, 154.18
(C=O), 164.00, 169.48 (C-10) ppm; IR (KBr) νmax (cm−1): 3323–2858 (NH), 1677 (C=O) cm−1;
Anal. Calcd. (%) for C27H28N6OS: C, 66.92; H, 5.82; N, 17.34., found: C, 66.99; H, 5.92;
N, 17.53.

3.2. Evaluation of Antioxidant Activity

The FRAP reagent was freshly prepared to contain: 2.5 mL of a 10 mM TPTZ (2,4,6-
tripyridyl-s-triazine) solution in 40 mM HCl, 2.5 mL of FeCl3 (20 mM) and 25 mL of
acetate buffer (0.3 M, pH = 3.6). 100 µL of the tested compound (20 mM) were mixed
with 3 mL of the FRAP reagent. The absorbance of the reaction mixture at 593 nm was
measured spectrophotometrically on a UV-200-RS spectrophotometer (MRC Ltd., Israel).
For comprising of the calibration curve, five concentrations of FeSO4·7H2O (5, 10, 15, 20,
25 µM) were used and the absorbances were measured as a sample solution [28]. Each
experiment was conducted in triplicate.

Supplementary Materials: The following can be download online. Figure S1: 1H-NMR Spectrum of
2; Figure S2: 13C-NMR Spectrum of 2.
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