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Summary 

Visual comprehension is essential activity in everyday interactions and occurs unconsciously. 

However, understanding the visual for individuals affected by Alzheimer's disease is often a 

challenging task. Because Alzheimer's disease is defined by a memory processing impairment, this 

study examines the visual cortex of an AD patient before memory processes begin. The study proposes 

a face inversion system that utilizes raw EEG data, performs preprocessing, transformation into GASF 

images, augmentation using the RGAN technique, and finally classification into two groups based on 

whether the visible face is upright or inverted. It has been demonstrated that transforming the EEG 

signal into images improves classification accuracy and reduces training time. Because the impacts of 

emotions and familiarity on this EEG signal data were found to be insignificant, study focused on the 

effects of colors. When comparing the performance of four different classifiers, including ResNet-50, 

Custom CNN, and EEGNet SSVEP; our proposed CNN, which was designed for smaller datasets 

utilizing the best regularization approaches, produced the greatest results in both color and grayscale 

analyses. Meanwhile, just a quarter of the data injections based on RGAN-generated signals 

demonstrated weak statistical significance. The study's findings suggest that extracting EEG signal 

features of facial processing in color images is more successful than in grayscale images. The control 

subject data achieved the average accuracy of 61.7% in detecting face inversion position processing 

color images and only 57% when processing grayscale images. Comparing the results between the 

oldest subject and the AD patient, the data from the Alzheimer's patient indicated very low feature 

extraction success. This could mean that the disease directly affects the human visual cortex, making 

it more difficult to recognize objects using memory resources. 
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Santrauka 

Vizualinis suvokimas yra kasdienių sąveikų procesas, vykstantis nesąmoningai. Tačiau suprasti 

atvaizdus Alzheimerio ligos paveiktiems asmenims yra dažnai sudėtinga užduotis. Kadangi 

Alzheimerio liga apibūdinama atminties apdorojimo sutrikimu, šiame tyrime analizuojama AD 

paciento regėjimo žievė prieš prasidedant atminties procesams. Darbe siūloma veido inversijos 

sistema, kuri naudoja neapdorotus EEG signalus, atlieka išankstinį apdorojimą, transformavimą į 

GASF vaizdus, padidinimą naudojant RGAN techniką ir galiausiai klasifikavimą į dvi klases pagal tai, 

ar matomas veidas yra vertikalus, ar apverstas. Įrodyta, kad transformavus EEG signalą į vaizdus, 

pagerėja klasifikavimo tikslumas ir sutrumpėja modelio apmokymo laikas. Kadangi buvo nustatyta, 

kad emocijų ir pažįstamumo įtaka šiems EEG signalo duomenims yra nereikšminga, tyrimas buvo 

analizuojamas pagal spalvų poveikį. Lyginant keturių skirtingų klasifikatorių, įskaitant ResNet-50, 

Custom CNN ir EEGNet SSVEP, našumą; mūsų siūlomas CNN modelis, kuris buvo sukurtas 

mažesniems duomenų rinkiniams, naudojant geriausius reguliavimo metodus, pateikė geriausius 

rezultatus tiek spalvotoms, tiek pilkoms nuotraukoms. Tuo tarpu RGAN generuojamais signalais 

duomenų padidinimas ketvirtadaliu parodė silpną statistinį reikšmingumą. Tyrimo išvados rodo, kad 

EEG signalo veido apdorojimo ypatybių ištraukimas spalvotuose vaizduose yra sėkmingesnis nei 

naudojant pilkų atspalvių vaizdus. Kontrolinio subjekto duomenys pasiekė vidutinį 61.7% tikslumą 

nustatant veido inversijos padėtį apdorojant spalvotus vaizdus ir tik 57% apdorojant pilkos spalvos 

vaizdus. Palyginus seniausio tiriamojo ir AD sergančio paciento rezultatus, Alzheimerio liga sergančio 

paciento duomenys rodo, kad esminių signalo savybių išgavimo sėkmė yra labai maža. Tai gali reikšti, 

kad liga tiesiogiai paveikia žmogaus regėjimo žievę, todėl naudojant atminties išteklius jam yra 

sunkiau atpažinti objektus. 
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Introduction 

The ability to assign meaning to visible objects is an essential part of everyday life. The brain 

constantly performs visual recognition of the environment, although we do not always consciously 

understand the result. To monitor brain activity information, the most popular tools are computed 

tomography, magnetic resonance imaging, but electroencephalography (EEG) systems are currently 

the most available. Therefore, this work uses EEG data that records the voltage at each electrode 

placed on the scalp to measure electrical potentials. 

Accurate prediction of visual stimuli can help design better human-computer interactions for both 

healthy and sick individuals. Knowing what type of object, word, number, or other visual stimuli a 

person is concentrating on might help provide more targeted tool commands or help with better 

communication. For instance, paralyzed patients and those with memory loss may benefit from the 

ability to predict visual cues. This can assist paralyzed people connect with the outside world and 

express needs, and conversely, it can help patients with Alzheimer’s communicate with themselves. 

As in the latter case, trained models based on brain signals may be able to give additional information 

about the visible face and the state of the relationship. Similar applications could be developed for 

integrated computer games or smart house devices. 

Unlike recent publications that try to determine whether a person is suffering from memory loss 

diseases. This study aims to discover the possibilities of recognizing facial stimuli from brain signals, 

thus paving the way for the development of brain-computer interfaces for patients with memory 

problems. Faces have been proven to be processed in the brain differently from other stimulus types, 

making them a distinct niche. Given that memory impairment is frequently linked to issues with facial 

recognition, there may be possibilities to classify an image category during the visual processing 

region of the brain before the brain understands how to label it. If it is true, this might be a valuable 

insight into the effects of memory loss on the brain. 

The study uses electroencephalography data, which helps to analyze the brain and its behavior in 

relation to the signal frequency, as well as allowing for a more accurate interpretation of brain diseases 

such as epilepsy or memory loss. The participants in the data collected are the elderly and one patient 

with Alzheimer's disease with a facial recognition deficit. During the experiments, photos were shown 

in both upright and inverse positions. The first experiment we focus on employs color face photos 

with an emotion factor, whereas the second uses grayscale images with a familiarity component. The 

face inversion classification provides additional information on whether picture color, emotion, or 

familiarity influence the visual processing of the face. The study leverages EEG signal channels from 

the occipital lobe of the brain to create a facial inversion recognition system from a single-trial epoch. 

Project novelty and relevance 

Although the face inversion classification task has been performed in the past, in this work, inversion 

recognition based on color influence is performed. The data used in the research comes from older 

people's signals, which are sensitive, noisy, and unstable, which is unusual in non-sickness related 

tasks.  Because Alzheimer's disease is more common in elderly people, this group is chosen as a 

control group. Consequently, data from an Alzheimer's patient with a face recognition deficit is used 

to test the hypothesis that if memory processing in the brain is impaired but not the part of the brain 

responsible for visual comprehension, then brain-computer interfaces can be used to help memory 

loss patients identify visible stimuli. This hypothesis is being explored by seeing if deep learning 
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models can extract essential features from Alzheimer's patient data in the same way that they do from 

healthy people. Such a condition has never been studied previously, to our knowledge. 

Aim and Objectives 

The aim of the study is to determine if visual stimuli could be predicted from EEG signals as precisely 

in Alzheimer's patient as they can in healthy people, in order to better understand how similarly these 

two groups process visual information. 

Objectives: 

 Predict the scope of attention of the control subject and the patient with Alzheimer's disease from 

single-trial EEG data from color images of visual stimuli. 

 Predict the scope of attention of the control subject and the patient with Alzheimer's disease from 

single-trial EEG data from grayscale images of visual stimuli. 

 Investigate how augmenting synthetic data created by generative adversarial networks to a 

training dataset may improve the classifier's performance. 

Structure of the Report 

This paper focuses on face inversion processing investigation for a healthy subjects and an 

Alzheimer's disease patient using EEG signals. The structure is organized as follows. The first section 

discusses similar work in visual stimulus observation, a literature analysis, and technical details of 

the study's approach. The second section focuses on project planning, visioning, and architectural 

construction. The final section highlights and examines the results. Finally, the final section 

summarizes the work and makes recommendations for future improvements. 
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1. State of the Art 

The human brain is one of the most complex organs that interacts with billions of neurons [1]. There 

are several techniques to map brain signals, but EEG technique is non-invasive, quick to use, and 

provides high temporal resolution at milliseconds time precision [2]. Not to mention lower costs than 

other devices, EEG has been shown to be effective in extracting brain signal features, even when the 

subject is not yet aware of the stimuli [1]. 

Furthermore, the ability to detect abnormal rhythms by monitoring brain potential can assist disabled 

individuals in properly diagnosing illnesses [3]. EEG has been proven to be a suitable tool for 

distinguishing between dementia severities [2], traumatic brain injuries, and post-traumatic stress 

disorder [4]. Individuals with brain problems tend to lose long-term attention throughout a task, 

making cognitive and perceptual processes harder to complete [4]. Based on the classified EEG 

frequency bands, subjects affected by Alzheimer’s have higher activity in the theta and delta 

frequency bands and lower activity in the alpha and beta frequency bands  [2]. Meanwhile, the normal 

signal frequency range is between 1 Hz and 100 Hz, bearing in mind that the frequency of 100 Hz is 

very rare, and the amplitude varies between 10μV and 100μV [1]. 

An important feature of EEG signal is that it is highly sensitive to individual differences [5], therefore 

any brain-computer interface (BCI) must be user-specific. The activity itself also depends on age, 

mental state, and many other factors [1]. Consequently, only adjusted BCIs can be used for people 

with disabilities to give commands using a brain signal to a computer [1].  

Poor spatial resolution and low signal-to-noise ratio cause many problems for EEG data. Due to the 

ongoing signals of various brain activities, the signal has various artifacts. Another important 

challenge is the feature extraction of random time-varying EEG signals [1]. The other problem is how 

to classify EEG as accurately as possible using only one stimulus presentation [1], as it is known that 

multiple presentations can drastically improve performance [5], but this is not suitable for use in real-

time applications. However, with the development of signal processing techniques and innovative 

solutions for machine learning and deep learning, it is now possible to better understand and predict 

brain impulses than ever before. 

1.1. Visual Observation using EEG 

Visual observation, otherwise known as attention, is used to analyze whether different visual stimuli 

cause different brain responses. For many years, scientists have been trying to distinguish what a 

subject observes in front of using only brain signals. Such a task is usually successful in predicting 

patterns of two very different classes of displayed images. The following is a brief overview of the 

articles that try to anticipate the scope of attention. 

In a study that analyzes attentional focus, it was discovered that single-trial EEG activity could be 

used to predict stimulus type or even performance errors (whether the observer was correct or not). 

These conclusions were made using a machine learning algorithm - a linear pattern classification. 

In the first experiment, thirteen participants received stimuli consisting of an odd or even number, 

and in the second experiment, a word, or a random set of letters. The authors used standard linear 

discriminant analysis for pattern classification, where the input data were all 64 electrodes. For the 

dimensionality reduction, the responses of each electrode were divided into non-overlapping 20 ms 

time bins and averaged, starting with stimulus onset. Until finally, the results were evaluated using a 
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10-fold cross-validation scheme. The ability to distinguish between two classes of stimuli and the 

correctness, even when individuals are distracted, suggests that pattern classification algorithms 

combined with continuous measurement of EEG response may be a promising tool for monitoring 

cognitive states [6]. 

The study, which included eight individuals, used a linear support vector classifier, which reliably 

decoded the perception of upright and inverted faces against a gray background. The EEG signal data 

were used at each time point (~ 1ms resolution) using approximately 62 electrodes. The results were 

validated by a 10-fold cross-validation procedure. The aim of the study was to identify the time bins 

in which the model successfully determined the EEG correlate. The results showed that the accuracy 

of facial inversion (56% on average) peaked over the 125–250ms latency after stimulus onset, which 

coincides with the ERP component N170. In future research, the authors recommend further 

increasing the accuracy of prediction by using the average signal over time or by applying Bayesian 

statistics [7]. 

Another article used a deep neural network model to predict human response times to visual stimuli. 

The models were fed with periodogram features, and the highest accuracy was achieved using the 

convolutional neural network (CNN) - around 94% for binary class classification and 78% for 3-

class classification. This research was unique because it used spectrotemporal features from different 

EEG channels rather than temporal ones. And finally, after evaluating the importance of each channel, 

it was found that at least 7 channels are needed to perform the visual response task of attention with 

almost maximum accuracy. Out of all 30 EEG channels, the dominant ones were distinguished to be 

the left central (C3, CP3 and CPZ), parietal (P3, PZ and P4) and occipital (OZ) lobes. Although this 

study is not directly related to visual stimulus detection, but only to reaction time prediction after 

visual stimuli, its success in achieving high accuracy and faster model performance that would be 

suitable for real-time use reveals deep neural network’s potential in working with EEG signals [8]. 

Meanwhile, in the other two articles, in which the face class was included as a visual stimulus, the 

support vector machine (SVM) classifier was used and an accuracy of 77% [4] and ~80% [9] was 

achieved. The first article used composite images of overlapping face and outside pictures, and the 

second used face versus non-face data. 

Table 1.1. Summary of papers classifying EEG visual stimulus 

Article Methods Goal Accuracy 

„Decoding Information 

Processing When Attention Fails: An 

Electrophysiological Approach“ [6] 

Linear Pattern 

Classification 

predict stimulus type: 

• odd/even number 

• word/letters 

90% and 72% 

respectively 

„Pattern classification of EEG signals reveals 

perceptual and attentional states“ [7] 

Linear support 

Vector 
• upright/inverted faces 56% 

„Deep Neural Network for Visual Stimulus-Based 

Reaction Time Estimation Using the Periodogram 

of Single-Trial EEG“ [8] 

Convolutional 

Neural Network 
• estimate visual 

stimulus reaction time 

94% (binary)  

and  

78% (3-class) 

„Decoding Attentional State to Faces and Scenes 

Using EEG Brainwaves“ [4] 

Support Vector 

Machine 
• scene/face images 77% 

„EEG Correlates of Categorical and Graded Face 

Perception“ [9] 

Support Vector 

Machine 
• natural 

scenes/genuine faces 

~80% 



 

15 

A summary of the reviewed articles analyzing brain responses to visual stimuli is provided in Table 

1.1. The classification of upright and inverted faces was achieved with only 56% accuracy, while 

there are situations where visual stimuli can be predicted with 94%. Although there are many factors 

that can lead to incomparable results: the inability to replicate studies identically, the different data 

quality, the different number of channels, and so on. Nevertheless, the analyzed papers provide a 

global picture of the methods used and the accuracies achieved. 

1.2. EEG Channels 

EEG signal data is collected from a device called an electroencephalogram, in which electrodes are 

placed to perform electrical activity measurements from the scalp of the brain [3]. However, it is 

important to understand that this data is only a crude representation of brain activity. Electrodes on 

the scalp measure the activity of large groups of neurons, and small signals are attenuated and 

scattered due to the physical barrier between the brain and the electrodes [5]. These electrodes are 

arranged according to the specified standards and marked by letters (F - Frontal, T - Temporal, C - 

Central, P - Parietal, O - Occipital, z - midline region). Here, odd numbers indicate the left hemisphere 

and even numbers the right hemisphere [3]. Because the brain is divided into two hemispheres, lower 

case letter 𝑟 or 𝑙 can be added to the component name to indicate from which side of the brain it was 

measured. 

 

Fig. 1.1. 10-10 electrode system for EEG recording [10]  

Different electrode positions describe different brain functions: 

- "Cortex around Cz, C3 and C4 locations deals with sensory and motor functions" [3]. 

- "Pz, P3 and P4 are related to cognitive processing" [3]. 

- "Oz, O1 and O2 deals with visual processing stimuli" [3]. 

- "Fz is placed near intentional and motivational centers" [3]. 

- "F8 and F7 are located close to emotional and verbal expressions" [3]. 

- "F3 and F4 are located at motor planning activities" [3]. 

- "FPz, FP1 and FP2 deal with attention and judgment impulses" [3]. 

As a result, it is possible to make judgments about distinct parts of the brain by analyzing brain 

activity. The frontal lobe, for example, can have an impact on emotions and memory. The occipital 

lobe, on the other hand, is involved in perception and visual information processing [3]. 
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1.3. Face Inversion Effect in EEG Signal 

Face inversion effect occurs when stimuli are inverted 180o. This effect tends to increase the 

perception error rate and response time of inverted faces compared to upright faces. For example, in 

one study with normal vision volunteers, the processing of inverted faces in ERP components such 

as N170 and N250r has a significant delay of about 30ms [11]. The amplitude of N170 facial 

component is consistently higher and delayed longer, there is evidence that it is sensitive to facial 

identity and facial emotions as well [9]. Another study with the same data found that P1, N170, and 

N250 are related to face-like processing, including the inversion effect [12]. Meanwhile, there are 

sources where the delay of N170 is thought to be small, about 10ms, but consistent, and facial 

inversion is also observed with a delay of 11ms from the N200 [13]. There have been a lot of debates 

whether the latency in inverted faces is caused by memory or perceptual encoding. However, because 

inversion in ERPs is obtained on a very early potential peaking around 170ms after stimulus, there is 

a growing consensus that face inversion effect occurs primarily through perceptual level encoding 

rather than long-term memory encoding [13][11]. Processing tends to be delayed because when 

individuals see upright faces, they perform holistic processing, and when they see inverted faces, they 

perform feature processing [12]. 

1.4. Emotional and Familiar Faces 

Visual processing in EEG is influenced by emotions and familiarity. It was found that facial 

expressions encoded in EEG from 120ms to 750ms after the visual stimulus onset, with the highest 

peak at 270ms [14]. The largest variances in different emotions were seen in the alpha and beta waves, 

according to an investigation that detected the emotional stages in EEG signals while listening to 

music [15]. Whereas facial familiarity increases signal amplitude at an early stage due to the 

knowledge and memories of the individuals involved [16]. The sensitivity of familiar faces is 

determined at a frequency of approximately 250ms [14]. 

1.5. Color Influence on Visual Stimuli 

Color enhances environmental perception. While it may appear to be a minor feature, color presence 

has a significant influence, therefore it is worth considering while dealing with EEG signals. For 

example, in an article classifying landscape images such as forest, desert, and water, it was found that 

color images were more accurately predicted than gray images [17]. Using the SVM classifier, 

performance varies with an accuracy of 5% [17]. This task was investigated using data from 20 

healthy volunteers aged 25 to 55 years [17]. Another article, with an average age of 31 years old 

participants, supported the same idea that better classification results could be achieved using color 

images rather than grayscale, as this allows more useful information to be extracted [18]. Here, it was 

demonstrated that the average accuracy of color images was 3.4% greater for the SVM classifier [18]. 

Furthermore, research on face perception discovered that color information improves the 

classification of human faces, with colored faces again being classified more accurately [19]. This 

leads to the conclusion that the impact of colors must also be considered. 

1.6. Different Frequency Brain Waves 

„One way to analyze EEG data is to look at the spectral power of the signal in a set of frequency 

bands, which have been observed to correspond with certain types of neural activity“ [5]. EEG 

waveforms consist of different frequencies that determine a normal or abnormal rhythm. The usual 
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classification according to the frequency of the signal is divided into alpha, beta, theta, delta, and 

gamma waves [3]. They can be derived from the frequency bands listed in the Table 1.2. 

Table 1.2. Brain wave frequency bands [3] 

Frequency Band Frequency Range (Hz) 

Delta 0 - 4 

Theta 4 - 8 

Alpha 8 - 13 

Beta 13 - 30 

Gamma 30 - 100 

„Brain wave frequency differs corresponds to different behavior and mental states of the brain“ [3]. 

- Delta wave activity is found at all stages of sleep and reflects gray matter in the brain [3]. 

- Theta waves reflect subconscious activity and can be observed in deep relaxation and 

meditation [3]. 

- Alpha waves are observed during the relaxed awakening phase and reflect white matter in the 

brain [3]. These waves have a higher amplitude when the participant is sleepy or bored [20]. 

- Beta waves are related to behavior and are observed in a conscious state [3]. 

- Gamma waves reflect processes of perception and consciousness [3]. 

Performing visual tasks, theta and alpha waves were found to be the most active ones. Their 

fluctuations play an important role in sensory tasks associated with constant attention and mental 

fatigue [8]. 

1.7. Event-Related Potential 

The event-related potential (ERP) is the most widely used technique to study cognitive processing in 

response to a stimulus. Since the EEG signal activity is noisy, the experiment is repeated several times 

for each individual and then the average of the EEG signals is taken to derive the ERP values, 

resulting in a grand average ERP [6]. „These grand average responses can be compared across 

different stimulus classes to make statistical statements about the signals“ [5]. By averaging and 

aligning multiple signals with the onset of the stimulus, noise is reduced and only the systematic 

electrical potential associated with the processing of that stimulus remains [6]. Grand average ERP 

statistical analysis is useful and helps to better understand different brain responses, however, to adapt 

to real-time computer interfaces, a single-trial signal must be sufficient to predict visual stimuli [5]. 

The most important feature of ERP is that it has temporal resolution that measures brain activity in 

milliseconds, where states of perception and attention appear. In G. F. Woodman’s article, he 

summarized it as follows: "ERP components are defined by their polarity (positive or negative going 

voltage), timing, scalp distribution, and sensitivity to task manipulations" [20]. He argues, based on 

many sources and experiences, that all the different ERP components are different in amplitude when 

presented with different stimuli and varies by individuals [20]. In general, „ERP components such as 

N100, N170 and N200 which appears 100, 170 and 200ms after the onset of a visual stimulus 

correspond respectively to a selective attention, the processing of color, shape, and rotation (e.g., 

processing of human faces) and a degree of attention“ [21]. Meanwhile, in a more general case, ERP 

is divided into early (100–220ms) and late (350–550ms) features. Early features correspond to visual 
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processing, and late features - to post-sensory processing, where the brain consciously decides what 

was presented as a stimulus [5]. 

 

Fig. 1.2 Event-related potentials main components [21] 

In the Fig. 1.2 the ERP waveforms voltages are plotted with negative going up to make them easier 

to interpret [21]. Here, N means “negative” and P means “positive” polarity, and the number defines 

the delay in milliseconds. 

Here are the most influential components in terms of peak time after face stimulus onset: 

- The N170 component is particularly important for visual discrimination and perceptual 

processing, especially when distinguishing faces [20]. Moreover, N170 response is sensitive 

not only to human faces but schematic faces as well, this component is higher in the left 

hemisphere for featural processing (eyes, nose, and mouth), and in the right - for holistic 

processing [12]. 

- The N250 is particularly sensitive to face identity. This component relates to personal 

detection processing in the right hemisphere, where the amplitude increases by observing 

familiar objects such as friends or family [12]. 

- The P1 or P100 „reflects the processing of low-level physical properties, including contrast, 

luminance, spatial frequency, and color“ [12]. It has also been observed that the amplitude of 

unpleasant stimuli P1 is higher than that of pleasant stimuli, so there is a correlation between 

P1 and facial expression [21]. 

Because the post-stimulus signals up to 250ms contains the most descriptive information for face 

processing, 250ms EEG windows can be used as input for the predictor [22]. 

1.8. EEG Signal Processing Stages 

Traditional EEG signal processing stages consist of 4 main steps (see Fig. 1.3): 

 

Fig. 1.3. Traditional EEG signal processing stages [3] 

Artifact removal and data filtering is a preprocessing step, and feature extraction and classification 

defines post-processing [3]. However, the structure of this study will be similar but different, the time 

series are encoded as images and the deep neural network learns to find the optimal features itself. 

The following sections describe the steps of the implemented design. 

Artifacts 
Removal

Data Filtering
Feature 

Extraction
Classification
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1.9. Preprocessing 

The raw EEG signal data record electrical activity (voltage fluctuations) from multiple neurons 

around the electrode, therefore the signal itself is reduced due to the resonant signals and contains 

noise [3]. Consequently, the preprocessing stage is very important and usually consists of following 

steps (see Fig. 1.4): channels selection from relevant areas of interest, data filtering, data trimming 

into epochs, and artifact removal. 

 

Fig. 1.4. EEG signal preprocessing steps 

Some noise in the continuous raw signal can be filtered out. To eliminate low-frequency noise caused 

by breathing, it is common to use high-pass-frequency filters with a cut-off frequency of 0.5Hz. In 

contrast, low-pass-frequency filters with a 40-70 Hz cut-off are used to eliminate high-frequency 

noise. Also, spatial filtering can be performed using the Common Average Reference technique, using 

a window length of 4s with a 3.75s overlap [1]. However, most ERP components are in the same 

frequency band as the noise, and it is not possible to remove the noise without distorting the signal of 

interest [20]. Therefore, usually studies select lower frequency limits (~0.1–30Hz) [5][7][9] or (~0.1–

40Hz) [23][4] and use a band-pass hamming windowed finite impulse response (FIR) filter [23] for 

inherited stability and computational efficiency [5]. A high-frequency filter of 1 Hz was selected in a 

study examining the deficits of Alzheimer's facial recognition [24]. Pre-filtering at very low 

frequencies (less than 0.5 Hz) may be inefficient, while filtering high-frequency data between 1 and 

2 Hz has been demonstrated to improve signal-to-noise ratio and single-trial classification accuracy 

[25][26]. 

Prior to working with artifacts, the continuous signal must be segmented into epochs of the desired 

length. In one article, a segment begins 100ms before the stimulus onset with a length of 600ms [9]. 

Elsewhere, 1-s epochs are used with 250ms before the stimulus to 750ms after stimulus onset [7]. It 

is very important to choose the right window size, as incorrect settings can corrupt time and amplitude 

measurements, especially when removing artifacts [20]. 

Identifying and removing artifacts is a complex step as they can be caused by a variety of factors such 

as head movement, blinking (±100µV), device and head connection problems. These artifacts will 

create signals of abnormal frequency and shape [3]. It is common practice to simply discard trials 

containing artifacts and perform further analysis of the "clean" data [6]. In this way, ambiguous data 

are avoided, as eye movements radically change the input of the visual system. As an example of 

artifact removal, in one article that analyzed face perception using EEG data, segments were excluded 

for blinking activities (threshold +/− 70μV) or eye movements (threshold +/− 50μV). The individual 

channels were then marked as bad if the amplitude difference between the maximum and minimum 

values across the segment exceeded 80μV. If more than 10% of the channels in the segment were 

marked as bad, the entire segment was not included, otherwise the bad channels were replaced using 

spherical spline interpolation [9]. In another article, meanwhile, the trials with an amplitude greater 

than 75μV were eliminated to exclude facial movement artifacts [4]. 

EEG Channel 
Selection

Filtering 
Continuous EEG

Segmenting Into 
Epochs

Artifact Removal
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All preprocessing thresholds are approximated and selected for a specific task. Experiments are 

usually conducted in a relatively calm atmosphere so that the brain signals are not affected by 

background noises and the subject can maintain a stable signal. Each person, however, is unique, and 

therefore each signal strength in the brain is distinct. One of the most common issues with EEG is 

that the characteristics are difficult to generalize across all participants [27]. All EEG signal 

acquisition is basically done in the time domain. For a method to be valid for a BCI, it must use EEG 

data from a single-trial and be able to perform calculations quickly. Thus, after data processing 

follows a further step – encoding time series as images. 

1.10. Encoding Time Series as Images 

Feature extraction techniques are used to obtain the most informative properties that reflect brain 

activity. Signal features can be obtained by combining them from both domains: temporal and 

frequency [4] or used separately. The most popular way to extract features is to use the Fourier 

transform for the divided signal into four frequency bands (delta, theta, alpha, and beta) [3]. However, 

this approach is noise sensitive [3]. Not to mention, the accuracy and time efficiency of the classifier 

are highly dependent on this choice of features. High processing time can affect the interface so that 

it is not suitable for real-time solutions. 

In time series modeling, extracting temporal correlations from time series data remains a major 

difficulty [28]. Therefore, one study proposed a novel method to encode time series into images called 

Gramian Angular Summation (GASF), Difference Fields (GAFD) and Markov Transition Fields [29]. 

This approach was inspired by deep learning success in computer vision and created by Zhiguang 

Wang and Tim Oates in 2015 [29]. Since medical images have recently been classified with very high 

accuracy using CNN architectures, scientists believe the possibility to explore signals in the form of 

images [30]. This transformation to images proved to be affected: "The recognition accuracy of motor 

imageries of movement with the right and left hand and the state of rest was 97% for the studied EEG 

signals [31]". In another article, the epilepsy detection from EEG signals was classified using GASF 

transformation and an F1 score of 0.90 was obtained [30]. And using a new method based on 

visualization of GASF images of Hjorth parameters, the study achieved 86% accuracy in classifying 

an arrhythmia case [32]. After time series encoding to images, the pre-trained or customized 

convolutional neural network architectures can be trained to automatically extract features. And, once 

trained, these networks quickly calculate outputs, making them more suitable for brain-computer 

interfaces [33].  

1.10.1. Gramian Angular Fields 

The Gramian Angular Fields (GAF) method converts the signal data to a polar coordinate system to 

get a 2D matrix [31].  Firstly, signals are treated as time series, then a two-step procedure is performed 

to normalize into the range of [0,1] and map signals into polar coordinates. Finally, the temporal 

correlation over different time intervals is determined using the angular field between each 

observation point [33]. A detailed explanation with formulas is provided below. 

Having a time series 𝑋 = 𝑥1, 𝑥2, … , 𝑥𝑇 with the number of real-value observations 𝑇, rescale values 

to the interval [0, 1] by [29]: 

𝑥𝑖 =
𝑥𝑖 −min⁡(𝑋)

max(𝑋) − min⁡(𝑋)
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡ 

(1) 
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Rescaled data to [0, 1] will have angular bounds in [0,
𝜋

2
]. 

Then, the procedure for mapping the normalized values to the polar coordinates are obtained by the 

following formula [33]: 

𝜑𝑖 = 𝑎𝑟𝑐𝑐𝑜𝑠(𝑥𝑖), 𝑥𝑖 ∈ [−1,1]

𝑟𝑖 =
𝑡𝑖
𝑇
, ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑡𝑖 ∈ 𝑁⁡⁡⁡⁡⁡⁡⁡⁡⁡

 
(2) 

Here 𝑡𝑖 – the time instant, 𝑇 – the vector length, 𝑟𝑖 – the radius, 𝜑𝑖 – the angle in the Cartesian 

coordinate system. Due to the arccos bijective characteristic of the values in the range [0,1], it 

associates the data of each time series with only one possible polar coordinate [33]. 

To form a Gramian (or so-called Gram) matrix, the angle operation is considered [33]: 

𝑥 + 𝑦 = 𝑐𝑜𝑠(𝜑𝑥 +𝜑𝑦) (3) 

Then, a Gram matrix is created where each element is equal to the cosine of the sum of angles [33]: 

𝐺𝐴𝐹 =⁡ [
𝑐𝑜𝑠(𝜑1 + 𝜑1) … 𝑐𝑜𝑠(𝜑1 +𝜑𝑇)

… … …
𝑐𝑜𝑠(𝜑𝑇 + 𝜑1) … 𝑐𝑜𝑠(𝜑𝑇 + 𝜑𝑇)

] 
(4) 

And Gramian Angular Field Summation is build using this formula [33]: 

𝐺𝐴𝐹𝑆 = ⁡𝑐𝑜𝑠(𝜑𝑖 +𝜑𝑗) = 𝑋′ ∙ 𝑋 − (√𝐼 − 𝑋2)
′
∙ √𝐼 − 𝑋2 (5) 

Here 𝑋 – the time series row vector and 𝐼 – the unity vector [1,1, … ,1]. Given the sine of the angle 

difference, the Gramian Angular Field Difference matrix can be defined and calculated analogously 

[33]. 

𝐺𝐴𝐹𝐷 = 𝑠𝑖𝑛(𝜑𝑖 +𝜑𝑗) = (√𝐼 − 𝑋2)
′
∙ 𝑋 − 𝑋′ ∙ √𝐼 − 𝑋2 (6) 

After the transformation, GAFS and GAFD matrices are converted to images with a single-color 

channel (see Fig. 1.5) [33].  

 

Fig. 1.5. An example of GAFS and GAFD building by taking a sin-wave [33] 
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In summary, the advantage of these matrices is that the diagonal values are rescaled initial time series 

values [33]. Then, the temporal relations are considered, because as time increases, the position 

moves from top left to bottom right [29]. The main drawback is that the size of the data has changed 

from a single vector to a 2D matrix based on the length of the time series [33]. 

1.10.2. Signal Encoding to Images Using Other Methods  

Traditionally, signal data is converted to an image using a Short Time Fourier Transform (STFT). In 

this way, the analysis of the time-frequency signal can be considered as the analysis of non-stationary 

signals with time-varying frequency content. Analyzing the signal by frequency usually improves the 

performance of classification systems [34]. However, most methods require some domain knowledge 

[35], then parameters need to be optimized as well, such as that STFT has window type and window 

length parameters that need to be set and can significantly distort the time and frequency spectrum if 

not set properly [36]. Such dependencies, as well as the changing signal-to-noise ratio, have attracted 

researchers to use neural networks for the ability to learn to distinguish features based on data and 

the problem [37]. Numerous studies with different approaches have been performed to obtain a better 

classification accuracy and a shorter training time, but often they cannot be compared due to 

differences in data, and the inability to replicate experiments identically. Information on the studies 

performed where images of EEG signals were used is presented in the Table 1.3. 

Table 1.3. Summary of papers that used signal encoding into images 

Study Experiment Goal Feature extraction Classifier Accuracy 

[38] Participants who watched 

music videos and classified 

them into 4 emotional states 

Emotion 

recognition 

Time frequency 

domain features 

Optimized SVM 93.86 % 

[39] Participants who watched 

music videos and classified 

them into 4 emotional states 

Emotion 

recognition 

The spatio-temporal 

representations 

Three-dimensional 

convolutional 

neural networks  

99.73% 

[36] Patients who underwent 

ENT surgery 

Prediction of 

depth of 

anesthesia 

Modified Short-time 

Fourier transform 

CNN (VGG) 93.50% 

[35] Child scalp EEG data from 

23 cases with 163 epileptic 

seizures 

Classification 

of four 

epilepsy 

conditions 

Power spectrum 

density energy 

diagrams 

DCNNs based on 

transfer learning 

90% 

[30] Normal and epileptic 

participants 

Epilepsy 

detection 

Gramian Angular 

Summation Field 

The Custom CNN 90% 

[37] Participants who performed 

imagery tasks 

Identifying left 

and right 

hands motion 

imagery 

Continuous Wavelet 

transform  

Simplified 

convolutional 

neural network 

83.2% 

[31] Participants watched a 

black screen and imagined 

the movement of the hand 

for three seconds 

Motion 

imagery 

classification 

GAF conversion for 

each signal from 64 

channels 

CNN 97% 

1.11. Deep Learning for EEG classification  

Deep Learning models learn hierarchical representations of input data through sequential nonlinear 

transformations. This could improve EEG processing to make it more general: steps such as 
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preprocessing, feature extraction, and classification would be trained and learned automatically. 

However, there has been minimal research on the architectures of deep learning models in the context 

of time series analysis tasks [28]. One study reviewing 154 articles found that the most used classes 

of deep neural networks for EEG are convolutional neural networks (40% of all papers) and recurrent 

neural networks (13%) [40]. As a result, transforming time series to images is beneficial because 

there is more scientific support for two-dimensional data. 

Since EGG signal features are encrypted into images, several studies have already been conducted 

that show that CNNs work well with these new images. One such study shows that CNN does not 

overfit, and another important finding was that adding layers or increasing the complexity of the 

model does not appear to have helped achieve higher accuracy [33]. In another research where normal 

and epileptic cases were categorized using transformed images from GASF, the EEG classification 

task was performed using several CNN architectures, such as AlexNet, VGG16, VGG19, feature-

based Deep-ANN, and custom CNN. In their findings, all approaches generated less than 0.8 F1-

scores, except for the custom CNN, which gave 0.9 F1-score and surpassed all methods tested [30].  

There are also possibilities to use recurrent neural networks (RNNs), it is recommended in some 

articles [33], but there are no studies that apply RNN to EEG data using Gramian Angular Field coded 

images on this day. 

1.11.1. Custom CNN 

Here, the custom CNN architecture provided by the article “Implementation of Deep Neural 

Networks by Classifying EEG Signals Using a Gram Angular Summation Field for the Diagnosis of 

Epilepsy” [30] is described. This high-precision custom CNN consists of three convolutional layers 

with a ReLU activation function, followed by a Batch Normalization and a Max Pooling layer. Then, 

using Dense layers with a Sigmoid activation function, high-level features are obtained. Until the 

final classification layer consists of the SoftMax activation function for binary classification [30]. 

  

Fig. 1.6. Deep learning blocks and configurations of the custom CNN architecture [30] 

More informative parameter configurations and visual representation of blocks according to the 

analyzed study are shown in the Fig. 1.6. 
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1.11.2. Residual Neural Network 

The performance of a neural network is heavily influenced by its depth. When the number of layers 

is too big, however, degradation occurs [41]. To overcome this problem, a ResNet residual learning 

framework was created [42]. The layers are reformed as learning residual functions with reference to 

the layer inputs; such networks are easier to optimize and can benefit from increasing depth [42]. 

 

Fig. 1.7. Example of a simple CNN block and a ResNet block [41] 

In the basic CNN block, layers are immediately fitted to the activation function 𝐻(𝑥). On the other 

hand, a ResNet block has a distinct residual learning objective 𝐹(𝑥) = 𝐻(𝑥) − 𝑥, which implies that 

it learns the residual of 𝑥 in 𝐻(𝑥) [41]. 

With ReLU and batch normalization blocks, the ResNet model is implemented by skipping 

connections on two or three layers. The key advantages of this network are that it is not 

computationally costly and that it does not suffer from performance degradation due to deep layers. 

Resnet has been tested using 18-layer and 50-layer networks for biomedical imaging, with ResNet-

50 proving to be the most trustworthy [43]. 

1.12. EEG Data Augmentation 

Deep learning methods require a large amount of training data to obtain sufficient accuracy. For this 

reason, the use of augmentation models is recommended if it is difficult or impossible to collect more 

data [44]. This challenge constantly occurs in EEG signal experiments because data collection is time-

consuming and demanding on human subjects [45]. Signal data could be augmented using 

interpolation or mathematical modelling, but it was proven to have drawbacks such as information 

loss and suffering from artifacts [46]. Therefore, with the growing popularity of neural networks, 

Generative adversarial networks (GANs) were introduced as a suitable way to learn the statistical 

characteristics and generate artificial EEG signals [44][33][47]. Several modifications have been 

made to better adapt this framework for EEG signals. The study "Biosignal Data Augmentation: 

Based on Generative Adversarial Networks" showed that data augmentation based on RNN using 

hidden layers of long-term short-term memory (LSTM) is effective for time-series data [44]. 

Meanwhile, other studies have used the Wasserstein GANs (WGAN) [47] and the recurrent GANs 

(RGAN) models [33]. However, it is not known which modification is most suitable in general, but 

all papers suggest a similar conclusion that GAN significantly improved the performance of 

classification models using small data sets. More information on specific cases provided in Table 

1.4. 
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Table 1.4. Summary of papers on EEG data augmentation 

Study Goal Augmentation method Classifier Improved accuracy 

[48] Classify Steady State Visual 

Evoked Potential (SSVEP) 

Improved Wasserstein 

GAN (WGAN) 

SSVEP 

Convolutional 

Unit (SCU) CNN 

From 69% to 71% 

Deep Convolutional GAN 

(DCGAN) 

From 69% to 72% 

Variational Auto-Encoder 

(VAE) 

From 69% to 67% 

[45] Classify EEG Motor 

movement/imagery events 

The recurrent generative 

adversarial network 

(RGAN) 

Deep feed-

forward neural 

network 

From 54.3% to 93.4% 

SVM From 59.7% to 72.5% 

Random forest 

tree (RFT) 

From 67.1% to 79.7% 

[46] Reconstruction from low-

sampling-sensitivity EEG 

(LSS-EEG) signals to high-

sampling-sensitivity EEG 

(HSS-EEG) signals to 

improve performance of 

motor related datasets 

WGAN and a temporal-

spatial-frequency (TSF-

MSE) loss function 

Filter bank 

common spatial 

patterns (FBCSP) 

and SVM 

From 65.1% to 68.5% 

CNN model 

FBCSPNet 

From 68.8% to 70.3% 

The augmentation of EEG data can be done in the image space or directly in the signal space. 

Augmenting signal data consumes less computational resources, but this type of model is less 

researched than image augmentation. Moreover, EEG augmentation results are difficult to interpret 

even for professionals, they are noisier and more complex [49]. As can be seen from Table 1.4, 

RGAN performance far surpasses other methods. Adding 50% of the synthetically generated data 

increased the accuracy of neural network classification by 39.1% [45]. The article also compared 

Autoencoder and Variational Autoencoder augmentation models and found that RGAN also 

outperforms them by 34.8% and 19.9%, respectively [45]. This is due to the efficiency of this method 

and the ability to model repetitive signal patterns over time [45]. Nevertheless, almost all the 

augmentation models presented improved accuracy, despite being affected by a non-stationary EEG 

signal. Adding augmented data could help overcome the limitation of small EEG data size in various 

BCI applications. 

1.12.1. RGAN Framework 

Generative adversarial networks were introduced in 2014 [50] and since then received considerable 

attention in image generation, but limited work has been exploited to generate time series data [49]. 

The main characteristic of adversarial networks is that they consist of two agents that are trained 

simultaneously. They are called a discriminator (D) and a generator (G). The generator network 

randomly generates data with the same dimensions as the training data and learns to capture the real 

data distribution [50]. And the discriminator is trained to discriminate between real and generated 

data [50]. By competing, G tries to maximize the likelihood of D making a mistake [50]. As a result, 

the generator is increasingly generating more accurate data, but not the same data as training [44]. 

The two main advantages of GANs models are the ability to generate data with gradient values, and 

the representation of degenerate distributions [50]. In order to generate data for more than one 

distribution, the Conditional GAN model was presented [51]. Both the generator and the discriminator 
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can be conditioned by additional information 𝑦 such as class labels [51]. The objective function, 

where the discriminator tries to minimize the mean square error and the generator tries to minimize 

the log⁡(1 − 𝐷(𝐺(𝑧|𝑦))), is described as follows [51]: 

𝑚𝑖𝑛𝑚𝑎𝑥
𝐺⁡⁡⁡⁡⁡⁡𝐷

𝑉(𝐷, 𝐺) = 𝐸𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥)[log𝐷(𝑥|𝑦)] + 𝐸𝑧~𝑝𝑧(𝑧)[log(1 − 𝐷(𝐺(𝑧|𝑦)))]; (7) 

here 𝑝𝑑𝑎𝑡𝑎 and 𝑝𝑧 are the distributions of real and generated data, respectively, while 𝑥 is an actual 

data sample and 𝑧 is a random noise. 

The recurrent generative adversarial network (RGAN) has shown promising results in dealing with 

time-series, as recurrent neural network capture signal time dependencies [45]. In one study, the 

Recurrent Conditional GAN model was proposed to generate realistic medical multi-dimensional 

time series based on certain conditional inputs, such as class labels [49]. The RGAN corresponds to 

the architecture of a regular GAN, the only difference being that LSTM is used in the generator and 

discriminator [49]. Here, the discriminator tries to minimize the average negative cross-entropy 

between predictions and labels, and the generator minimizes the average negative cross-entropy 

between the discriminator predictions [49]. The RNN generator uses a different random seed for each 

epoch along with the additional input and classifies whether it is fake or real data [49]. 

1.13. Evaluation Metrics for Classification 

Choosing proper evaluation metrics assists in the development of the optimal classifier. Metrics are 

used to assess the trained classifier's generalization ability and the overall quality. The evaluation 

metrics are used in the training, validation, and testing phases. In training and validation stages, the 

chosen loss function is used to optimize and tune the classifier. And in the testing stage, the chosen 

metrics are used to evaluate the classifier with the unseen data. The following sections discuss cross-

validation technique and different binary classification metrics. 

1.13.1. Five Times Repeated 2-fold Cross-Validation 

To compare different classifiers, it is standard to calculate their average performance over cross-

validation iterations [52]. In 𝑘-fold cross-validation, the training set is randomly partitioned into 𝑘 

smaller sets, then a model is trained using 𝑘 − 1 subsamples and validated on the remaining part of 

the data [52]. This approach is repeated until all 𝑘 subsets have been used as validation sets. Cross-

validation can be repeated 𝑛 times with different 𝑘-fold subsets to reduce the variance of the 

performance metric [53]. For classification tasks with limited amounts of data, 5 × 2 cross-validation 

is recommended [54]. This technique was proposed by T. G. Dietterich as a good technique to 

estimate the generalization error, and the variance of that error [55]. Although it is well known that 

when 𝑘 is small, less training data is used to learn the task, it is preferable to perform more iterative 

tests to assess the model's generalization ability [54]. To compare the performance of two models 

trained for 5 times and validated using 2-fold cross-validation technique, the author also proposed a 

powerful 5 × 2cv statistic test to detect algorithm differences [55]. The null hypothesis that models 

𝐴 and 𝐵 have similar performance is measured by the 5 × 2cv 𝑡-test statistic as follows: 

𝑡 =
𝑝1
(1)

√(1/5)∑ 𝑠𝑖
25

𝑖=1

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡ 
(8) 
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Where the variables are calculated according to the following formulas: 

𝑝(1) = 𝑝𝐴
(1)

− 𝑝𝐵
(1)
; ⁡𝑝(2) = 𝑝𝐴

(2)
− 𝑝𝐵

(2)
; ⁡ 𝑝̅ =

𝑝(1) + 𝑝(2)⁡

2
⁡; ⁡𝑠2 = (𝑝(1) − 𝑝̅)

2
+ (𝑝(2) − 𝑝̅)

2
; 

(9) 

here, the performance of model 𝐴 for the first fold is 𝑝𝐴
(1)

, and for the second fold is 𝑝𝐴
(2)

. Similarly, 

this applies to model 𝐵, only with 𝐵 indices. Then, the differences in the performance measurements 

of the two models are 𝑝(1) and 𝑝(2). Meanwhile, 𝑝̅ is the average and 𝑠2 is the variance of the 

differences. The null hypothesis is rejected when the 𝑝 − 𝑣𝑎𝑙𝑢𝑒 is less than 𝛼 = 0.05, then the models 

considered to be very different. 

1.13.2. Confusion Matrix 

The confusion matrix describes the classification efficiency of the model on a test data set. There are 

two aspects in this table: the actual value (the actual class of the object) and the predicted value (the 

value assigned by the classifier). When there are only two classes in a confusion matrix, these classes 

are called positive and negative. In this context, these four values in the table are also called: true 

positives (TP), false positives (FP), true negatives (TN), false negatives (FN) [56]. 

Table 1.5. Confusion matrix for positive and negative classes 

 Predicted Class 

Positive Negative 

Actual 

Class 

Positive TP FN 

Negative FP TN 

Table 1.5 shows the expected classes on the x-axis and the actual classes on the y-axis. With these 

values in the matrix, some additional metrics can be obtained: 

- Accuracy. It measures the ratio of correctly predicted observation to total observations. 

Accuracy is the most appropriate metric when data sets are balanced. It is calculated as 

follows: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡ 

(10) 

- Precision. It measures the ratio of correctly predicted positive observations to total predicted 

positive observations. It is calculated as follows: [56] 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡ 

(11) 

- Recall/Sensitivity. It measures the ratio of correctly predicted positives to all observations in 

the actual class. It is calculated as follows: [56] 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡ 

(12) 
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1.13.3. Receiver Operating Characteristic 

The receiver operating characteristics (ROC) curve is a graphical-based metric that is considered to 

be superior to accuracy [57]. It is represented in a two-dimensional probability graph in which the 

TPR (sensitivity) represents the y-axis and FPR (1-specificity) is the x-axis [58]. The ROC curve is 

made by choosing different threshold values and afterwards recalculating the specificity and 

sensitivity [59]. These values are then shown on a graph, allowing for a more detailed analysis of the 

data [57]. The 45° diagonal line represent a random classifier, the higher the curve, the more perfect 

the classifier is (see Fig. 1.8). Many systems, including diagnostic systems, medical decision-making 

systems, and machine learning systems, have been evaluated using the ROC curve [58]. 

 

Fig. 1.8. ROC curves, where A is the perfect classifier, B - the normal, C - the random [59] 

The area under the ROC curve (AUC) was developed as an overall summarizing metric of the ROC 

curve [59]. It represents a classifier's total ranking performance [57]. When the AUC equals 0.5, the 

ROC curve represents random chance, and 1.0 represents perfect accuracy [59]. The AUC value for 

a two-class problem can be determined as follows: [57] 

𝐴𝑈𝐶 =
𝑆𝑝 − 𝑛𝑝(𝑛𝑛 + 1)/2

𝑛𝑝𝑛𝑛
 

(13) 

Here 𝑆𝑝 is the sum of all ranked positive samples, and 𝑛𝑝⁡and 𝑛𝑛⁡are the numbers of positive and 

negative samples, respectively [57]. 

1.14. Conclusions 

The analyzed literature suggests many ways to predict visual stimuli based on brain signals. However, 

traditional methods suggest taking several test data from a single image to obtain an average signal 

value and thus eliminate noise in the data. Such an approach produces sufficiently good results, but 

it is not a suitable way to use for applications in real time. Data should be analyzed using only single 

trial EEG activity, signal processing should not take too long for results to be achieved quickly. 

The visual stimulus studied in this research consists of upright and inverted faces. The inversion effect 

has been shown to affect response time and delay of ERP components. This is explained by the fact 

that the brain performs feature processing for inverted faces before understanding the image. EEG 
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data also have the peculiarity that the data are extremely sensitive to noise, with a higher noise ratio 

when participants are older or unable to maintain attention. Given that EEG data varies from 

individual to individual, this can lead to some problems in analyzing data from Alzheimer's disease 

patients. Therefore, preprocessing steps should be performed with caution. 

To avoid mistakes due to lack of domain knowledge and bias in selecting the most influential features, 

it was proposed to analyze brain signals encoded into images. In fact, this approach ensures that by 

applying the data to the CNN architecture, the application speed will be more suited to the brain-

computer interfaces. However, the use of deep learning architectures requires a larger data set for the 

method to optimize and extract relevant features. Unfortunately, EEG data often suffers from a lack 

of data because medical experiments take a long time to collect and then identical or similar 

experiments cannot be performed, so the data cannot be naturally supplemented from other resources. 

Therefore, to obtain sufficient accuracy, the RGAN augmentation method will be used directly from 

the signal domain to allow the algorithm to learn to generate synthetic data that should help improve 

accuracy and convergence rate. Then with data from healthy elderly individuals who observed visual 

stimuli and one patient with Alzheimer’s disease, it should be possible to predict the visual stimuli 

using electrode data from the areas of cognitive processes. The test dataset should contain data from 

one individual that was not previously seen in the training set to verify the subject independent results. 

The results of the control group and the Alzheimer's patient can then be compared in terms of visual 

processes' influence in the presence of different visual stimuli. 
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2. EEG Materials and Methods 

This section describes all the design process. The "Research Data" section provides the data used in 

the study, the experiments performed to collect brain signals, and the results of the primary research. 

The following sections give an overview of the project as well as the design of potential systems and 

experiments. Then, the architectures of deep learning networks with all adjustments are described, 

such as will be used in the study for the augmentation and classification tasks. The section “Baseline 

Results using Raw EEG signals” discusses results from prior research using the same data for the 

classification of four classes of visual stimuli. Finally, the final chapters define the functional and 

non-functional requirements, as well as the quality criteria and development tools that were 

employed. 

2.1. Research Data 

Data for EEG signal analysis were taken from an open-source web interface "Figshare", which is used 

to manage and disseminate academic research data [60]. The data provided were used to study ERP 

neural correlates in an Alzheimer's disease (AD) patient [24]. Data were collected from healthy and 

AD patient by observing visual stimuli in three different experiments, details of which are described 

in the following sections. 

2.1.1. Subjects 

The experiments were conducted between 2017 and 2018. All participants are females between the 

ages of 63 and 70. One of them is a 67-year-old Alzheimer's patient (initials MCG) with a facial 

recognition deficiency. She completed a separate test in which she failed to distinguish any of the 

famous faces, or the emotions expressed in the faces [24]. A total of eight healthy female volunteers 

without neurological abnormalities were also examined and used as a control group [24]. The findings 

may be influenced by numerous physical attributes or brain activity artifacts because the trials were 

conducted on older women who often have health issues at that age. 

2.1.2. Experimental Design and Visual Stimuli 

In all experiments, seated participants looked at the monitor at 57 cm distance. On the monitor, visual 

stimuli were refreshed at a frequency of 85 Hz at a pixel resolution of 1280 × 1024. The experiments 

were constructed in three parts, where participants identified stimuli by clicking buttons 1000 ms 

after the stimulus onset. The electroencephalogram signal was continuously captured at a frequency 

of 1000 Hz with 64 electrodes placed according to the 10-10 international standard, then 

downsampled to 250 Hz. Each control participant performed the experiments on a single day and the 

AD patient on different days. The three experiments are detailed below [24]: 

1. Object recognition: they were asked to distinguish the visible object from three categories: face, 

house, scrambled image [24]. See examples in Fig. 2.1. 

   

Fig. 2.1. Example of experimental data (a face, a house, and a scrambled image) 
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Face emotion detection: they were asked to report a face inversion (upright or inverted) in the 

presence of different emotional visual stimuli (neutral or fearful expression). A total of 72 unique 

colorful images of male and female faces were presented [24]. See examples in Fig. 2.2. 

  

Fig. 2.2. Example of experimental data (neutral and fearful emotions) 

2. Familiar and unfamiliar face recognition: they were asked to identify a face inversion (upright 

or inverted) in the presence of different familiarity visual stimuli (famous or unknown). A total 

of 36 unique black-and-white male and female face photographs were used in this part. In a 

random order, each image was repeated four times [24]. See examples in Fig. 2.3. 

  

Fig. 2.3. Example of experimental data (famous and non-famous people) 

2.1.3. Experimental Results of the Original Study 

The goal of the experiments described in the article was to see whether indicators of facial processing 

might be detected in Alzheimer's patient. The patient recognized the upright position substantially 

faster and more accurately in both second and third experiments. However, unlike the control group, 

MCG showed no inversion effect at the ERP level, supporting the holistic hypothesis of face 

perception whereby vertical face stimuli are processed as a whole whereas inverted stimuli are 

processed using feature-based processing. In addition, the N170 component, responsible for face 

processing, was not present in the EEG signal of an AD patient. Unfortunately, this visual processing 

was unaffected by emotional content as well. The negative component N400, on the other hand, 

shows the memory trace's recruitment [24]. 

2.2. Baseline Results using Raw EEG signals 

To establish a baseline, a side study was conducted. Raw EEG signal data and well-performing deep 

learning algorithms including EEGNet, EEGNet SSVEP, and DeepConvNet are used in the study. L1 

and L2 regularization were added to the best performing EEGNet SSVEP, which designed to classify 

the visual evoked potential. FIR bandwidths ranging from 4 to 40Hz were used to filter the data from 

this experiment. A time window of 200ms before and 800ms after stimulus onset was chosen. At the 

150V peak-to-peak threshold, epochs were eliminated and normalized between -1 and 1. In order the 

deep-learning model to learn the most significant features on its own, 35 EEG channels from the back 

of the head were chosen to preserve a larger number of channels. Additionally, Variational 

Autoencoder was used to train the model to generate synthetic data to pre-train the EEGNet 
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architectures. The test dataset contains all data from one subject (the oldest) while the other test 

dataset contains signals from an Alzheimer's patient. For training and validation, the remaining data 

were combined and divided by 75/25 ratio in order to develop a subject-independent model [61]. 

A total of two experimental studies were performed.  In the first, visual stimuli are divided into 4 

classes of emotion and face inversion: neutral/upright, neutral/uspsidedown, fearful/upright, 

fearful/upsidedown. And in the second, divided into 4 familiarity and face inversion classes: 

famous/upright, famous/upsidedown, unfamous/upright, unfamous/upsidedown. This helps to 

distinguish the influence of different types of images presented and to investigate the influence of 

lower-level facial characteristics on brain signals [61]. 

The models were allowed to train for 500 epochs until the validation loss started declining in the last 

20 epochs. This strategy helps to prevent overfitting. The training procedure was started with a batch 

size of 64 and an Adam learning optimizer with a rate of 0.001. The conclusions were made using the 

pre-trained model "EEGNet SSVEP with regularization" which results were evaluated using 5 times 

2-fold cross validation technique. Finding reveal that identifying the emotion and face inversion effect 

resulted in the maximum accuracy of 50.2% for validation dataset. The accuracy of the oldest person 

test dataset was 32.75%, and Alzheimer's disease was 24.41%. In the second classification scenario, 

the same model classified familiarity and face inversion types with an accuracy of 43.25% in the 

validation dataset, 30.23% in the control group, and 27.72% in the Alzheimer's patient group. Both 

investigations reveal that the model attempts to learn the face inversion effect, but it does not 

demonstrate any patterns of emotion or familiarity learning [61].  

The Alzheimer's patient was unable to appropriately label emotions and familiarity categories during 

the initial experiment [24], hence deep learning models were also unsuccessful. However, because 

the classification results showed some patterns in attempting to categorize the face inversion effect, 

and because a patient with Alzheimer's disease had difficulty differentiating face position, this task is 

examined further. 

2.3. Project Scope 

The project steps identified based on the literature used. To extract meaningful information about 

visual stimulus, single-trial event-related responses from the electrodes that are responsible for visual 

processing will be taken. The preprocessing steps will be performed as described in the section 1.9. 

ERP response will be encoded into an image using GAF method. This approach will help shorten 

classification time and allow CNN to learn features automatically. Therefore, decisions about the 

scope of attention from the EEG signal will be made quickly and will help overcome the biggest 

challenge - to make it available for real-time systems. Eventually, the accuracy of the test sets will be 

compared without and with RGAN augmented data to see if this could improve model performance. 

The final conclusions will be drawn on whether it is possible to predict the scope of attention of a 

patient with Alzheimer's disease from the occipital lobe EEG channels responsible for visual 

processing. The goal here is to predict the face inversion effect and it will be tested under two 

conditions. The first is in an environment with color images and an emotion factor. And the second 

is in an environment with gray images and the familiarity factor. The essential project steps for 

creating a visual stimulus prediction solution are briefly presented in Fig. 2.4 and Fig. 2.5. 
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Fig. 2.4. Scope of the project 

 

Fig. 2.5. The overall concept of the project 

2.4. System Design 

The user of the system can be any person with the required data of the electroencephalography signal. 

They run the model on the selected data segment and receive a response about the stimulus that is 

visible to the subject. Or the user can turn off the system in cases where the response time is too long. 

Use case diagram (see Fig. 2.6) describes the system from the user point of view. Meanwhile, the 

system will initiate the start of the process, perform pre-processing steps on the given signal data, 

encode epochs into images, and provide prediction of visual stimuli using a pretrained model. 

 

Fig. 2.6. Use case diagram 

Activity diagram (see Fig. 2.7) describes sequences of actions in three swim lanes. Activities are 

grouped by who performs the action, whether it is a user, an interface, or an algorithm. Because the 

algorithm uses pre-trained neural network, its operation is faster, and the process is not complicated. 

Much of the complexity is training that model. In this case, the interface is the Python console. No 

exclusive user interface is being developed, given that it is not the system that is being built, but the 

potential performance of the model for future systems is being demonstrated. 

EEG signal 
preprocessing

Data 
augmentation

Encoding signals 
to images

Classifier 
(upright/inverted)

Performance 
evaluation
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Fig. 2.7. System activity diagram 

To predict a visual stimulus, the model must first be trained. Several experiments will be performed 

(as shown in Fig. 2.8) to select the most accurate model process. 

 

Fig. 2.8. Training experiments diagram 

The goal of the research is to find the best classifier for identifying facial inversion stimuli. And then 

to make conclusions about the similarities between an Alzheimer's patient's brain region of visual 

processing and healthy persons of a comparable age. Because there were two sorts of photographs: 

grayscale face images and color face images, the same experimental procedure was used on both data 

sets, and findings were derived correspondingly. Initially, the data are pre-processed to obtain epochs 

corresponding to the given stimulus from the raw continuous EEG signals. The data set is then divided 

into train, test, and validation sets. The test dataset will consist of data from two subjects: the oldest 

subject and a patient with Alzheimer's disease. Such a set of test data guarantees user-independent 



 

35 

testing because the training data did not see examples of signals from these participants. Finally, the 

following process is performed with and without data augmentation performed by the RGAN model: 

1) All selected EEG signal channels are converted to GASF images. 

2) Selected and created neural networks are trained to find the best generalizing classifier. 

3) The trained model is saved. 

4) The visual stimuli of the test data are predicted by the trained model and the classification metrics 

are evaluated. 

2.5. Network Structures 

The system consists of two main neural network structures: one belongs to the data augmentation 

method RGAN, and the other to CNN for the classification of the visual stimulus class. Experimenting 

with different parameters and architectural layers is often a challenging task since it is compute-

intensive and takes a significant amount of time. For these reasons, already assessed architectures and 

RGAN for multi-channel signal augmentation (section 1.12.1), and for training the classifier 4 

different architectures has been tested:  Custom CNN (section 1.11.1), ResNet (section 1.11.2), 

EEGNet SSVEP and a new proposed network. This section discusses all network structures used in 

the research work. 

2.5.1. RGAN Framework 

Vanilla GAN augmentation is not suitable for generating EEG data as it has features such as training 

instability and model collapsing. For these reasons, the RGAN framework is used. Looking at the 

bigger picture, the discriminator is trained to distinguish the real from the fake data (while the 

generator parameters are kept constant). And the generator is then trained to generate fake data that 

the discriminator can no longer distinguish as fake (while the discriminator parameters are constant). 

This process continues for multiple epochs while networks compete. Finally, the generator model is 

saved so that it can be reused to generate realistic data. The diagram of recurrent generative 

adversarial network suitable for EEG signals is shown in Fig. 2.9. 

 

Fig. 2.9. RGAN model flowchart for EEG signals 

A hyper-parameter is a parameter that directly affects the learning process. Its values are set once and 

do not update itself. Hyperparameter values can be an algorithm selection or parameters that affect 

speed and quality. The choice of these values is extremely important and have a significant impact 
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on the results [62]. The predefined hyperparameter values for EEG signal augmentation shown in the 

Table 2.1. 

Table 2.1. RGAN hyperparameters 

Hyper-parameter Description Value 

Learning rate It is the step size to the minimum loss function. 0.001 

Batch size The number of samples to be propagated in the network. The 

larger this size, the more memory is required. 

32 

Number of epochs The number of neural network cycles describing how many times 

the weights will be updated. 

1000 

Loss function The loss function calculates the distance between the generated 

data distribution and the actual data distribution. Sigmoid cross 

entropy with logits is suitable for binary classification. 

sigmoid cross 

entropy with 

logits 

Generator optimizer The optimization algorithm chosen is Adam (adaptive learning 

rate method) with momentum constants 𝛽1 and 𝛽2. 

Adam 

 

Discriminator 

optimizer 

The optimization algorithm chosen is the gradient descent. Gradient 

descent 

Random latent space 

dimension 

It is an embedding space, representing features in multi-

dimensional space. 

16 

Generator rounds The number of rounds of generator training. 1 

Discriminator rounds The number of rounds of discriminator training. 3 

Both the generator and the discriminator have separate network structures. The study [51] proposed 

this multi-channel network architecture for the generator and discriminator (see Table 2.2 and Table 

2.3). 

Table 2.2. The Generator architecture 

Type Activation Options 

Input  (z, condition) 

LSTM tanh num_units⁡ = 100 

state_is_tuple⁡ = True 

RNN  sequence_length⁡ = ⁡ [time⁡points] ∗ batch⁡size 

Dense tanh units⁡ = 8 

Output  (batch⁡size, time⁡points, channels) 

Table 2.3. The Discriminator architecture 

Type Activation Options 

Input  (batch⁡size, time⁡points, channels) 

LSTM tanh num_units⁡ = 100 

state_is_tuple⁡ = True 

RNN   

Dense sigmoid units⁡ = 1 

At each step, the generator takes a random seed and conditional embedding that encodes the visual 

stimulus classes. The input is passed to the LSTM layer with the hyperbolic tangent activation 
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function, followed by the RNN layer, followed by a fully connected layer reproducing the multi-

channel EEG signal output. The discriminator architecture is very similar, except that the last fully 

connected layer is used with a sigmoid activation function that determines whether the signal is real 

or fake. 

2.5.2. EEGNet SSVEP Architecture 

The EEGNet SSVEP is a convolutional neural network for steady-state visual evoked potentials [63]. 

While observing visual stimuli, these potentials are recorded from the occipital lobe of the brain. This 

network was shown to be the top performer in a study using the identical EEG signal data [61]. As a 

result, rather of focusing on the time-series domain, the application of EEGNet SSVEP for imaged 

EEG data will be investigated. The network design is shown in Table 2.4, which uses temporal 

convolution in conjunction with depth wise spatial convolution and separable convolution. This way, 

the number of parameters is reduced. After all convolutional layers, a final dense layer with the 

SoftMax activation function is used for classification. Here in the Table 2.4, 𝐶 - number of channels, 

𝑇 - number of time points, 𝐹1 = 𝐹2 = 96 - numbers of temporal and pointwise filters, 𝐷 = 1 - number 

of spatial filters, 𝐹𝑠 - sampling rate, 𝑁 - number of classes. 

Table 2.4. EEGNet SSVEP architecture [63] 

Layer Type Filters Size Pad Activation Options 

 Input  input=(T, T, C) 

1 
Conv2D 𝑭𝟏 (1, T/2) same none  

Batch Normalization  

2 

DepthwiseConv2D  (C, 1) valid ELU 

bias=False 

depth multiplier=D 

depth wise constraint=max norm (1.) 

Batch Normalization  

AveragePooling2D  (1, 4) valid  

Dropout  rate=0.5 

3 

SeparableConv2D 𝑭𝟐 (1, 16) same ELU bias=False 

Batch Normalization  

AveragePooling2D  (1, 8) valid  

Dropout  rate=0.5 

4 Flatten  

Classifier Dense 𝑵  SoftMax kernel constraint=max norm (0.25) 

2.5.3. Custom CNN Architecture 

The custom CNN architecture, which was used specifically for Gramian Angular Summation Field 

transformed images, is used as a reliable classifier. This network has been described previously in 

section 1.11.1. Because the size of the input image is twice as small, some of the preset settings have 

been changed accordingly (see Table 2.5). 
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Table 2.5. Adjusted Custom CNN architecture, here T- time points, C- channels 

Layer Type Filters Size Strides Activation Options 

 Input  input=(T, T, C) 

1 Conv2D 16 (3, 3) 1 ReLU  

2 Conv2D 32 (3, 3) 2 ReLU  

3 

Conv2D 32 (3, 3) 2 ReLU  

MaxPooling2D  (2, 2) 1  

Dropout  rate=0.25 

4 

Flatten  

Dense 1024  Sigmoid  

Dense 512  Sigmoid  

Classifier Dense 2  SoftMax  

The main differences from the original network are that the size of the convolutional layer filter is 

reduced by 2 times. And the batch normalization layer was removed because the resulting training 

was unstable. 

2.5.4. Proposed CNN Architecture 

Knowing that EEG signal data are difficult to obtain in large quantities, the neural network created 

must be adapted to smaller data sets. Therefore, a network architecture that is suited for smaller sets 

and uses main generalization techniques are proposed in Table 2.6. 

Table 2.6. Proposed CNN architecture. Here C – number of channels, T – number of time points. 

Using a smaller data size makes it more difficult for the neural network to learn the most relevant 

features, which might lead to overfitting. As a result, at the start of the architecture, Gaussian noise 

is injected to the input. Models trained with noise have often been proven to perform better on test 

Layer Type Filters Size Activation Options 

 Input    (T, T, C) 

 GaussianNoise    stddev= 0.1 

1 Conv2D 2 (5, 5) ReLU padding= “same” 

2 Conv2D 4 (5, 5) ReLU padding= “same” 

3 Conv2D 8 (5, 5) ReLU padding= “same” 

4 Conv2D 16 (5, 5) ReLU padding= “same” 

5 Conv2D 32 (5, 5) ReLU padding= “same” 

 Flatten     

6 Dense 128  ReLU kernel_regularizer= “l2” 

 Dropout    rate=0.25 

7 Dense 128  ReLU kernel_regularizer= “l2” 

 Dropout    rate=0.25 

Classifier Dense 2  Softmax  
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data and are less prone to overfit [64]. Including noise in the training phase allows CNN to learn more 

robust features that are unaffected by noise [65]. The selected noise distribution has a standard 

deviation of 0.1. Five two-dimensional convolutional layers with an increasing number of filter sizes 

and a 5 × 5 kernel size follow the input. All layers except the last dense layer employ the rectified 

linear unit's activation function. A L2 regularization penalty is applied to dense layers. The 

regularization strategy also contributes to the generalization and improvement of the model's 

performance [66]. Following dense layers, a 25% dropout is employed to randomly remove the units 

and their connections from the neural network, preventing the units from over co-adapting [67]. 

Afterwards, a final dense layer with a SoftMax activation function classifies the input into two 

classes: 0 and 1 for vertical and inverted classes, respectively. 

2.6. Functional and Non-functional Requirements 

The program has the following functional requirements: 

- The system processes (.set) and (.fdt) raw EEG data. 

- The parameters of the trained model must be saved. 

- A constant file must be created that can be easily adjusted to modify the experiments. 

- The results of all experiments are collected and saved. 

- Each part of the process must have a separate pipeline. 

- A trained model provides an answer from a single epoch after visual stimulation of what the 

subject sees. 

The program has the following non-functional requirements: 

- The system response time is 10 second or less. 

- The system is able to determine the visual stimulus more precise than the random classifier. 

- Model training (retraining) time is limited to 12 hours. 

2.7. Quality Criteria 

Experimental EEG signal data containing visual stimulus events are used to train the neural network. 

To assess the quality of the model, it should meet the following criteria: 

- The model should not be overfitted. 

- A confusion matrix should be used to assess the performance of the model. 

- The process should be automated in cases when the experiment with different parameters 

needs to be repeated. 

It is important to emphasize that the proposed solution would be biased towards women and people 

of a certain age. While age bias should not be a major concern because Alzheimer's disease affects 

people aged 65 and up, it should be noted. However, the model may incorporate gender differences, 

which might be a concern with a different data set in the future. 

2.8. Solution Development Tools 

Software components are selected based on their growing popularity and personal experience. The 

requirements mainly consist of the fact that the programming language must be able to work with 

signal data and must be well adapted to deep learning. Hence, the following tools were selected: 
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- Python programming language. It includes libraries such as TensorFlow which supports the 

CUDA GPU and withstand high performance computing. This allows experimentations with 

GPU acceleration. 

- Pycharm. It is a development environment that helps ensure code quality, supports debugging, 

and has Git integration. 

- Git. This is a distributed version control system that is important to protect against the risk of 

losing code and maintaining the ability to revert to previous versions. 

- Google Colaboratory. This is a Google product that enables the use of computing resources, 

including the GPU, in a cloud environment. 

Python version 3.8 is used. To keep this version stable, pipenv library is used to create a virtual 

environment with required packages. This will avoid the risk that a newly released version of the 

package will corrupt the developed program. Python has many packages that can be used for different 

types of data. NumPy works with n-dimensional arrays while the backend code is well-optimized with 

C language. Pandas works with structured data and provides tabular results that are easy to read and 

use. Electroencephalography signals can also be analyzed using the MNE package, which provides 

state-of-the-art algorithms [68]. Scipy could be used for linear algebra and signal processing. And 

Matplotlib for visualizations. 
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3. Experimental Evaluation of EEG Signal Classification and Results 

In this work, EEG signal data with classes of face inversion visual stimuli are analyzed. Initially, a 

pre-processing process is used, which includes data review, EEG channel selection, noise filtering, 

epoch-cutting, and artifact removal. The extracted epochs are then converted to images using the GAF 

technique. The raw EEG epochs are augmented using the RGAN method, and then the artificial 

signals are also transformed into the image space. Input images are supplied to the network input in 

the form of 8-channel images. Four different classifiers are trained, and performance is assessed using 

5 time repeated 2-fold cross-validations. Each process is performed for both experiments in an attempt 

to classify the face inversion while seeing the color images (experiment 2) and the grayscale images 

(experiment 3). 

3.1. Data Preprocessing 

The section provides steps for pre-processing the data. The data is reviewed first. The accuracy of the 

Alzheimer's patient's response to determine the position of the visual stimulus is then analyzed. After 

reading the data, a channel selection from the occipital lobe is performed with data filtering to remove 

noise. The term “epoching” is introduced, which defines the process of cutting the epochs associated 

with an event from the raw continuous signal. The removal of artifacts is done in a way that removes 

epochs affected by physical movements. In the final step, event-related possibilities are explored in 

order to discover some visible patterns. 

3.1.1. Data Review 

The second and third experiments were chosen for face features characteristic analysis after 

examining the experimental data. The second experiment included several emotion types, such as fear 

and neutral, as well as an inverted face effect, with all photos being in color. The third trial had photos 

in black and white with familiarity categories such as famous and unfamous. A patient with 

Alzheimer's disease has the initials “MCG”, the remaining participants are all in the same age range 

from 63 to 70. The information is labelled as "correct" or "incorrect" because the AD patient did not 

always reply accurately by identifying the face inversion, whether the face was inverted or upright. 

Fig. 3.1 and Fig. 3.2. shows how different stimuli were arranged on the time axis during the 

experiment, the legend also shows the labels of each sample, and how many experimental results 

were correctly and incorrectly predicted by the patient. Here boundary events indicate discontinuity 

in the data when continuous datasets are concatenated.  

 

Fig. 3.1. Distribution of observed events in a patient with AD in the second experiment 
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Fig. 3.2. Distribution of observed events in a patient with AD in the third experiment 

Looking at Fig. 3.3, the experiments with the control subjects lasted on average about 38 minutes in 

the second experiment and about 43 minutes in the third. The experiment with grayscale images 

(experiment 3) reveals a tendency to take longer, which is a common aspect of grayscale image 

observation since the response time is on average longer. Meanwhile, experiments with a patient with 

Alzheimer’s took more than twice as long to keep the patient from getting tired or distracted. Each 

AD patient experiment also took place on different days. 

 

Fig. 3.3. Time allocation for individuals during each experiment 

3.1.2. Accuracy of Visual Stimulus Perception in an Alzheimer’s Patient 

The correctness of the responses of Alzheimer's patients in predicting visual stimuli in both 

experiments is shown in Fig. 3.4. All the upside-down classes received the most misclassifications. 

The upright photos were guessed inaccurately in 51% of the unfamous/upside-down classes and 39% 

of the famous/upside-down classes. Given that the images were black and white, darker hair color 

may blend into the background, and therefore make it difficult for an Alzheimer's patient to detect 

the face inversion. Under this scenario, the AD patient must perform feature processing rather than a 

holistic face processing. The inaccurate classification of inverted emotion images, on the other hand, 

was not far behind. Fear/upside-down stimulus is anticipated wrongly 34% of the time, whereas 

neutral/upside-down is predicted incorrectly 35% of the time. These results indicate that MCG has 

some difficulty in detecting an inverted face. Overall, most misclassifications were made when 

processing gray images with 31% incorrect responses. Meanwhile, there were 19% incorrect 

responses when processing color images. 
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Fig. 3.4. Alzheimer's patient responses in both experiments 

3.1.3. Channel Selection and Data Filtering 

Only the most influential EEG channels for visual processing are selected. These channels are from 

the occipital lobe with indicators O and PO. Selected sensors are marked in black, and channels not 

used in this experiment are marked in red (see Fig. 3.5). Here, the positions of the EEG sensors are 

in three-dimensional space. 

 

Fig. 3.5. EEG sensor positions 

Filtering process is performed on continuous signal data rather than on each epoch to minimize 

filtering artifacts in signal boundaries. The most used zero-phase FIR band-pass filter with a high-

pass of 1Hz and a low-pass of 30Hz is used to purify signal response and eliminate low and high 

frequency noise. The hamming window method is used in the FIR design, with a 6 dB cutoff 
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frequency and a filter order of 111. Breathing or movement artifacts can be removed with the right 

filtering procedure. The chosen frequency range includes delta, theta, alpha, and beta waves because 

theta and alpha waves have been proven to be most active in visual activities, meanwhile alpha and 

beta waves have been demonstrated to identify differences in different emotions. Additionally, a 1 

Hz high-frequency filter was chosen since it has been found to be the most effective at removing 

noise and boosting classification accuracy. Fig. 3.6 presents raw experimental data from a single 

control subject for the selected channels, with the onset of stimulus events marked at the top of the 

diagram. 

 

 

 

 

 

Fig. 3.6. Example of raw and filtered at 1-30Hz EEG signals 

3.1.4. Epochs Segmentation and Artifact Removal 

EEG “epoching” is the process of extracting the desired time windows around a specific event from 

a continuous EEG signal. Here, epochs are extracted 0.2 seconds before the visual stimulus and 0.8 

seconds after it. Thus, one epoch consists of 1 second of signal with 250 time points. The baseline 

correction is done to each epoch and channel independently, right before the stimulus occurs, using 

a range of -0.2 to 0 seconds. The average baseline signal is calculated and subtracted from the whole 

epoch in this correction. This is done to remove temporal drift from a signal and increase the visibility 

of patterns in the EVP. Fig. 3.7 shows an example of extracted epochs from experiment 2, when the 

visual stimuli are upside-down. The numbered epochs corresponding to the given stimulus are 

displayed on the x-axis, while the names of the 8 EEG channels are presented on the y-axis. 
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Fig. 3.7. Epochs of upside-down face stimuli (experiment 2, LG subject) 

Having the epochs obtained, the next step is to determine if they contain artifacts of abnormal shape. 

This appears in the signal most often during blinking, eye, or face movement. If the artifacts are in 

the epoch, the whole epoch must be discarded. The easiest way to identify artifacts is to calculate 

peak-to-peak values. The limit chosen in the experiment is 100𝜇𝑉, which means that the segment 

values can fluctuate ±50𝜇𝑉 and will not be discarded.  

Looking at Fig. 3.8, the MCG patient had the most artifact-affected segments in both experiments. 

This seems logical, given that it is more difficult for an Alzheimer’s patient to concentrate and 

maintain attention. The second highest place in terms of the most rejected artifacts is CK participant, 

she is the oldest of all subjects. In general, the number of dropped epochs per participant is less than 

10%, which is a small part of the data sample, so no action is required to preserve or transform the 

compromised data. Thus, the data is considered pre-processed and ready to use. 

  

Fig. 3.8. Percentages of dropped epochs for each participant during experiments 
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3.1.5. Event-Related Potentials 

Plotting event-related potential helps to investigate whether signal-specific epochs associated with 

specific stimuli have a certain pattern. This reduces noise and helps to better understand the various 

brain reactions. After rejecting bad epochs, all O and PO channels for each stimulus were averaged 

over epochs to obtain event-related potentials. In both Table 3.1 and Table 3.2, the black line shows 

the mean ERP during the epochs, and the gray area shows the noise around the stimuli. A heat map 

showing the amplitude of the epochs is also shown, colored by the voltage strength of the electrodes. 

This allows to examine how frequently a comparable paternal appears in the presence of the same 

visual stimulus. 

Table 3.1. Epochs and event-related field of control subject (LG) for experiment no 2 

 Exp. Upright Upside down 

C
o

n
tr

o
l 

S
u

b
je

ct
 (

L
G

) 

2nd 

  

3rd 

  

It can be seen that the control subject (LG) has a constant similar pattern in EEG signals by observing 

visual stimuli. As an indication of visible faces and face inversion, a negative peak increase of around 

170ms after stimulus onset was seen. This N170 seemed greater and clearer in the second experiment 

than in the third experiment, in which gray pictures were observed. This might indicate that colorful 

faces are recorded more firmly in the EEG signal than black and white ones.  

And as expected, there is more noise in the AD patient data and no clear paternal (see Table 3.2). 

Although, as demonstrated in a previous article [24], data from patients with Alzheimer’s disease 

show a negative component N400. In the second experiment, this component is also more pronounced 

than in the third. When visually clear patterns cannot be observed, neural networks can demonstrate 

their potential by learning the properties of complex signals. 
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Table 3.2. Epochs and event-related field of AD patient (MCG) for experiment no 2 
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3.2. Signal Transformation to Images 

Preprocessed epochs in the form of time series are transformed into GASF images. This is done by 

conducting a polar encoding followed by a Gram Matrix to have spatial representation and retain the 

temporal dependency. At first, the values of all eight channels are normalized between 0 and 1. 

Because the epochs are truncated at one-second intervals, we have 250 time points, resulting in a 

final output image of 250 × 250 dimensions, with values ranging from −1 to 1. Examples of signals 

transformed into a Gramian angular summation field are shown in Fig. 3.9. 

 

Fig. 3.9. Examples of signal transformation into GASF images 
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3.3. EEG Signal Data Augmentation 

Since medical data often lacks large amounts of data, synthetic data augmentation can be very 

beneficial. Generative Adversarial Networks generates artificial data that looks real. Adding data can 

help solve problems of generalization and over-fitting. It should be emphasized that only the training 

dataset is augmented. In the GAN model, the job of the generator is to generate synthetic samples 

similar to the distribution of a training data set, and the task of the discriminator is to train oneself to 

better detect real ones from false samples. Both networks will compete until no one can improve any 

further. Because training for data augmentation can be very time demanding, augmentation is 

performed in preprocessed signal epochs rather than transformed images. To produce multi-channel 

EEG data, a conditional RGAN with stated architecture and hyperparameters was employed (see 

section 1.12.1). Fig. 3.10 shows the average negative cross-entropy loss over training epochs. It is 

observed that the losses of both the discriminator and the generator converge with a small movement 

in the end as there are still attempts to improve. With less than 2000 samples in each class, the RGAN 

training durations for both studies were roughly 3 hours and 40 minutes. See Fig. 3.11 for the real 

and generated synthetic signals.  

Color & View (exp. 2) Grayscale & View (exp. 3) 

  

Training time: 3h 41min 07sec Training time: 3h 43min 21sec 

Fig. 3.10. RGAN performance for face inversion stimuli in both experiments 

Real Signals Synthetic Signals 

  

Fig. 3.11. Example of real and synthetic EEG signals for all 8 channels 
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In Fig. 3.11, the time points on the x-axis are denoted from 0 to 250 because there is an epoch of 1 

second measured at 250 Hz. The y-axis contains different channels with normalized amplitude values. 

The convergence of the generator and discriminator networks, on the other hand, does not imply that 

the generated samples are similar to the actual data samples. It is critical to double-check the 

generated samples. This procedure, however, cannot be accomplished manually since the EEG signals 

are not intuitive. 

Generator performance must be evaluated to determine when the generator produced the most 

realistic samples. This is accomplished using the novel idea proposed in an article "train on real, test 

on synthetic" [49]. The classifier model is trained on actual data and tested on artificial data that was 

generated after randomly selected epochs. To evaluate the model performance on different validation 

splits and gain a comprehensive view of the model noise, the evaluation was conducted using 5 times 

repeated 2-fold cross-validation, as suggested for smaller sets. For RGAN evaluation the classifier 

model EEGNet SSVEP was selected, as it was the best performing model in a previously conducted 

study [61]. The hyperparameters employed in this modeling method are listed in Table 3.3. 

Table 3.3. EEGNet SSVEP classifier hyperparameters for RGAN testing 

Hyper-parameter Value 

Validation ratio 0.25 

Batch size 32 

Number of epochs 1000 

Early stopping epochs 20 

Learning rate 0.0001 

Optimizer Adam 

The validation data trained up to 90% on average for both studies, as shown by box plots (see Fig. 

3.12) and averaged AUC metrics for randomly selected training points for the model reported in 

Table 3.4. 

 

Fig. 3.12. Augmented synthetic data AUC box plots 



 

50 

Table 3.4. Averaged AUC metrics tested using synthetic data 

Stimulus 
Run time 

(sec) 

AUC - 

validation 

AUC - 350 

epochs 

AUC - 500 

epochs 

AUC - 600 

epochs 

AUC - 700 

epochs 

AUC - 800 

epochs 

Color & View 193.412 0.901 0.7 0.524 0.577 0.437 0.477 

Grayscale & 

View 
180.227 0.842 0.592 0.738 0.446 0.672 0.435 

For color images the generator model scored the greatest AUC 70% after 350 epochs. And after 500 

epochs, the generator model produced the most realistically generated data for grayscale pictures, 

with an AUC score of 73.8% on average. Even though the data came from mentally healthy people, 

the signals had a lot of noise and artifacts, which led to the data being rejected in previous steps. As 

a result, it is not surprising that synthetic data produces up to 74% accuracy. Consequently, the 

artificial data generated by these selected generator models will augment 25% of the training data. 

3.4. Visual Stimuli Classification Results 

At the time when raw EEG signals and artificial EEG signals are converted to images using the GAF 

technique, classification of visual stimuli can be performed. Because there are 250 time points in each 

epoch, the data generated is also 250 × 250 dimensional. However, larger images result in a lot of 

training parameters and require a large amount of GPU memory, so images are downsampled by 

applying a "mean" function to local blocks by factor 2. This results in images of the size 125 × 125. 

The input of size (125,125,8) is then passed to different classifiers with the same hyperparameters 

given in Table 3.5. To allow objective interpretation of the models, the training is repeated 5 times 

and verified using the 2-fold cross-validation technique, which considerably assesses generalization 

ability, especially for small data. This assures that the classification results are unaffected by the 

training and test data selections. Meanwhile, the findings are compared to data from Alzheimer's 

patient and one control group participant who is the oldest. This testing separation ensures that the 

subject-independent results are evaluated, and that the model is never exposed to any signal from 

these individuals. Testing on healthy individuals reveals the performance for control group 

participants, whereas testing on Alzheimer's patient reveals the prediction outcomes for a particular 

patient, allowing researchers to compare healthy and not-so-healthy visual processing in the brain. 

Google Colab is used to train classification models since it executes Python code on Google's servers 

and connects with Google Drive to retrieve data and save results. The Python version is 3.7, while 

the TensorFlow version 2.8.0 used with GPU support. Collaboratory utilizes NVIDIA-SMI 460.32 

with CUDA version 11.2. As defined in Table 3.5, the models are trained with a maximum of 1000 

epochs and an initial learning rate of 0.0001 using the adaptive moment estimation algorithm called 

Adam. This approach is one of the most effective, requiring little memory. To avoid overfitting, the 

model training is terminated if the validation loss stops decreasing over the past 20 epochs. Because 

2-fold validation is performed, the validation ratio is 0.5, which means the model is trained on half 

of the data and verified on the other half. And to recalculate the gradients, batches of 32 samples are 

employed to preserve memory space. 
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Table 3.5. Visual stimuli classifier training hyperparameters 

Hyper-parameter Description Value 

Validation ratio The ratio of training data that should be kept aside for 

validation. 

0.5 

Batch size The number of samples to be propagated in the network. The 

larger this size, the more memory is required. 

32 

Number of epochs The number of neural network cycles describing how many 

times the weights will be updated. 

1000 

Early stopping 

epochs 

Stops training when a loss function has stopped improving for 

the defined number of epochs. 

20 

Learning rate It is the step size to the minimum loss function. 0.0001 

Optimizer The optimization algorithm. Adam 

𝑏𝑒𝑡𝑎1 = 0.9, 

⁡⁡⁡⁡𝑏𝑒𝑡𝑎2 = 0.999 

3.4.1. Classification of Facial Inversion in Color Images 

Imbalanced training data when the number of samples for each class is unequal can lead to falsely 

excellent results. As a result, before training any model, it is critical to examine the data distribution 

(see Fig. 3.13). The figure on the left shows the number of epochs in real data for both upright and 

inverted stimuli. The figure on the right shows the distribution of real data combined with 25% of the 

augmented data, colored differently for training and two test data sets. We can observe that both 

stimulus classes have almost the same sample size, indicating that this data set is balanced as a minor 

variation makes minimal impact. 

Real data Real data + 25% augmented data 

  

Fig. 3.13. Distribution of training and testing data with real and augmented data in color images 

When both classes are equally balanced, accuracy is the best metric for measuring performance. 

However, since the amount of data in each class is slightly varies, we will measure two key metrics 

in order to obtain robust estimates: accuracy and AUC (area under the curve). The higher the score 

for both selected metrics, the better the classifier. AUC assesses performance across all classification 

thresholds, whereas accuracy provides an overall assessment of the classifier's correctness. 

The findings of 5 times repeated 2-fold cross validation are summarized in the boxplot diagrams (see 

Fig. 3.14). Boxplots are used to compare distributions between different classifiers to determine how 
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data values are skewed, with whiskers values showing the minimum and maximum values observed, 

and a black line in the interquartile range indicating a typical median value. 

 

Fig. 3.14. Boxplots for estimating the AUC of facial inversion classes in color images 

Comparing the results with raw and supplemented data, it can be observed that the augmented data 

helped to achieve better results. Since 10 different evaluations were generated using 2 cross-

validation for 5 iterations, the value of the 𝑡 − 𝑡𝑒𝑠𝑡 can be calculated as described in section 1.13.1. 

The calculated results for the validation AUC metrics to test the null hypothesis that the models being 

compared are similar are presented in Table 3.6. In this table, the 𝑡 − 𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐 values and the two-

tailed 𝑝 − 𝑣𝑎𝑙𝑢𝑒𝑠 are calculated, and if 𝑝 − 𝑣𝑎𝑙𝑢𝑒 is less than 0.05, then the null hypothesis is 

rejected, meaning that the models are very different. The performed augmentation was statistically 

significant only for the ResNet-50 model, meanwhile the result for Custom CNN and Proposed CNN 

was weakly significant. 

Table 3.6. 5x2 cross-validation statistics comparison for networks trained to recognize face inversion in 

color images on raw data and on augmented data. 

Network name t p-value Is significant 

Proposed CNN 1.666 0.157 False 

Custom CNN 1.993 0.103 False 

EEGNet SSVEP 1.350 0.235 False 

ResNet-50 3.967 0.011 True 

 

Looking at the average evaluation metrics (see Table 3.7) for all architectures tested, it can be seen 

that the injected synthetic data slightly improved the estimated metrics. On average, training accuracy 

increased from 2.4% to 4.6%, according to validation data.  However, the accuracy growth was 

smaller for testing control subject data, with an averaged accuracy decrease of 0.2% for EEGNet 

SSVEP and an increase of 1.3%, 1.1%, 1.1% for Custom CNN, Proposed CNN and ResNet-50, 

accordingly. 
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Table 3.7. The average evaluation metrics for all tested architectures with 5 times repeated 2-fold cross 

validation of facial inversion classes in color images. The results are sorted by the control subject's accuracy. 

Model 
Run time 

(sec) 

Validation 

accuracy 

Control 

accuracy 

Alzheimer 

accuracy 

Validation 

AUC 

Control 

AUC 

Alzheimer 

AUC 

Proposed CNN 
augmented 

150.93 0.853 0.617 0.51 0.9 0.648 0.515 

EEGNet SSVEP 223.046 0.804 0.606 0.496 0.88 0.649 0.508 

Proposed CNN 128.713 0.829 0.606 0.509 0.879 0.638 0.505 

EEGNet SSVEP 
augmented 

206.866 0.832 0.604 0.512 0.899 0.652 0.517 

Custom CNN 
augmented 

66.808 0.9 0.594 0.502 0.937 0.633 0.498 

Custom CNN 54.12 0.876 0.581 0.501 0.914 0.622 0.505 

ResNet-50 
augmented 

138.252 0.805 0.554 0.494 0.844 0.566 0.495 

ResNet-50 144.709 0.759 0.543 0.514 0.796 0.56 0.506 

In Table 3.7, the values are sorted according to the highest accuracy for the data of the control subject. 

This shows that the best model for this particular task was our Proposed CNN, when the data were 

supplemented with artificial samples. Our classifier for the control subject was 1.1% more accurate 

than the second-best method EEGNet SSVEP in classifying the visible facial position. 

The following are the results of the best-performing model. This was the Proposed CNN network's 

third training phase as it achieved the highest accuracy for the control subject - 67.59% (AUC = 

71.19%) and the accuracy of the visual identification for an Alzheimer's patient - 53.32% (AUC = 

53.53%). Fig. 3.15 shows the training history of the proposed CNN model for the 50 epochs before 

it was stopped by the callback to avoid overfitting. The training and validation accuracies are shown 

on the left, while the training and validation binary cross entropy losses are shown on the right. The 

training and validation loss curves appear to behave similarly as one increases and the other increases 

as well. 

 

Fig. 3.15. The proposed CNN model's training history in color images 
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At the end of the training, the model achieves up to 100% training accuracy and 82.23% validation 

accuracy. This means that the model can predict unseen data with 82.23% accuracy, but it has 

potentially begun to adapt to noise to achieve greater training accuracy. Hyperparameter optimization 

may be performed in the future to increase training performance. 

The receiver operating characteristic curves for a control group subject and Alzheimer's patient data 

are shown in the Fig. 3.16. The 1-specificity (false positive rate) is represented on the x-axis, while 

the sensitivity (true positive rate) is plotted on the y-axis, using various thresholds. Images indicate 

that the model is moderate (AUC = 0.75) for the control subject, however the model is only slightly 

above the random for Alzheimer's visual classification (AUC = 0.55). 

Subject from a control group Alzheimer’s patient 

  

Fig. 3.16. The ROC curves for a control group subject and Alzheimer's patient using the Proposed CNN 

model in classifying facial inversion in color images 

Subject from a control group Alzheimer’s patient 

  

Fig. 3.17.  Confusion matrices for a control group subject and Alzheimer's patient using the Proposed CNN 

model in classifying facial inversion in color images 
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The horizontally normalized confusion 2 × 2 matrices (see Fig. 3.7) provide an overview of correctly 

classified and misclassified data using the Proposed CNN model. Here, on the x-axis are predicted 

classes, while on the y-axis are ground truth classes. The aspiration to be seen in the figures is the 

greater true positive and true negative numbers in the diagonal, indicating that the model correctly 

predicted an upright or inverted visual stimulus. For a control group subject, the upright facial position 

is classified with less falsely predicted upside-down classes. The same pattern is present in 

Alzheimer’s upright stimuli prediction. 

3.4.2. Classification of Facial Inversion in Grayscale Images 

First, looking at the distribution of visual stimuli in the training and testing datasets (see Fig. 3.18), 

we make sure that the datasets are evenly distributed among the classes listed on the x-axis. As the 

samples differ only slightly, the data set is considered to be balanced. Therefore, the same accuracy 

and AUC metrics continue to be used. 

Real data Real data + 25% Augmented 

  

Fig. 3.18. Distribution of training and testing data with real and augmented data in gray images 

The results of 5 training iterations using the 2-fold cross-validation technique are shown in the box 

plots (see Fig. 3.19) for the validation set, control's subject set, and Alzheimer's set. Because there 

are multiple randomized events throughout the training process, such as random training set selection 

or a dropout layer, the same model will train slightly differently each time. 

 

Fig. 3.19. Boxplots for estimating the AUC of facial inversion classes in grayscale images 
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As observed in the box plots (see Fig. 3.19), classifiers with supplemented data achieved higher 

validation AUC values than those trained with raw data alone. To determine whether this artificial 

signal generation process using the RGAN network was statistically significant, t-test statistics were 

calculated. Table 3.6 shows the statistics obtained to assess the differences in validation AUC 

performance between the two models. The 5% alpha value was used to evaluate whether the models 

differ significantly. However, since all p-values are larger, the null hypothesis is not rejected meaning 

that the classifications used for supplemented and raw data are similar. On the other hand, the 

proposed CNN and custom CNN models have generated a p-value of less than 15%, suggesting that 

the augmentation process is slightly beneficial. 

Table 3.8. 5x2 cross-validation statistics comparison for networks trained to recognize face inversion in 

grayscale images on raw data and on augmented data. 

Network name t p-value Is significant 

Proposed CNN 2.172 0.082 False 

Custom CNN 1.873 0.120 False 

EEGNet SSVEP 1.482 0.198 False 

ResNet-50 0.963 0.380 False 

Table 3.9  shows the average metrics for each trained classifier. We can estimate that the accuracy 

of custom CNN, EEGNet SSVEP, Proposed CNN, and Resnet-50 validation increased by 4.1%, 

2.1%, 4.5%, and 5%, respectively. Meanwhile, the accuracy of the control subject's data increased 

only from 0.4% to 1.5%. Nonetheless, the augmentation slightly enhances the model's perception of 

the stimuli. 

Table 3.9. The average evaluation metrics for all tested architectures with 5 times repeated 2-fold cross 

validation of facial inversion classes in gray images. The results are sorted by the control subject's accuracy. 

Model 
Run time 

(sec) 

Validation 

accuracy 

Control 

accuracy 

Alzheimer 

accuracy 

Validation 

AUC 

Control 

AUC 

Alzheimer 

AUC 

Proposed CNN 

augmented 
139.543 0.793 0.57 0.503 0.844 0.589 0.507 

EEGNet SSVEP 

augmented 
225.91 0.759 0.559 0.493 0.833 0.592 0.495 

Proposed CNN 113.453 0.748 0.555 0.498 0.798 0.569 0.499 

Custom CNN 

augmented 
67.494 0.854 0.552 0.51 0.901 0.572 0.516 

EEGNet SSVEP 250.49 0.738 0.547 0.493 0.81 0.57 0.494 

Custom CNN 53.971 0.813 0.545 0.501 0.857 0.558 0.504 

ResNet-50 

augmented 
158.834 0.719 0.52 0.492 0.763 0.53 0.495 

ResNet-50 165.107 0.669 0.516 0.498 0.706 0.527 0.493 

The best performing model with the highest average accuracy score for control group subject is our 

Proposed CNN model with augmented data. The model achieved 1.1% higher accuracy than the 

EEGNet SSVEP classifier. Therefore, the results of the Proposed CNN model are presented, where 
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the maximum accuracy of the control group is 58.33% (AUC = 61.22%) and the accuracy score of 

the Alzheimer's patient is 52.21% (AUC = 50.86%). 

Fig. 3.20 shows the accuracy and loss curves during the Proposed CNN training, when the maximum 

training epoch was set to 1000. However, after 30 epochs of training, the model was stopped since 

the validation loss stopped decreasing, as the model goal was to minimize binary cross-entropy loss. 

The validation data had a maximum accuracy of 75.54%, which corresponded to a training accuracy 

of 98.75%. The wide gap between training and validation results indicates that there is some 

overfitting. Because grayscale images showed a less distinct pattern in ERP, training data may be 

unrepresentative, as it has fewer established patterns and contains more noise, making it difficult for 

the classifier to learn the task.  

 

Fig. 3.20. The proposed CNN model's training history in grayscale images 

The receiver operating characteristic curves (ROC curves) (see Fig. 3.21) are one of the most essential 

evaluation measures for evaluating the classification model's performance. The ROC of the control 

group is on the left, and the ROC of the AD patient is on the right. Presented plots indicate that the 

model is better than random (AUC = 0.61) for the control subject, however the model is completely 

random for Alzheimer's visual classification (AUC = 0.51). 

Subject from a control group Alzheimer’s patient 

  

Fig. 3.21. The ROC curves for a control group subject and Alzheimer's patient using the Proposed CNN 

model in classifying facial inversion in grayscale images 
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Subject from a control group Alzheimer’s patient 

  

Fig. 3.22. Confusion matrices for a control group subject and Alzheimer's patient using the Proposed CNN 

model in classifying facial inversion in grayscale images 

To get an overall picture of the classifier's performance, Fig. 3.22 shows normalized confusion 

matrices. Matrices presents comparison for real and predicted response values to describe how often 

visual stimuli were correctly identified. The left graph depicts the performance of the control subject, 

while the right graph depicts the performance of the AD patient. For a control group subject, the 

upright and upside-down facial positions are classified equally correctly. While in Alzheimer’s data, 

there are more falsely predicted upright stimuli. 

3.5. Overview of Visual Prediction System Requirements 

At the beginning of the research, certain requirements were raised, which are taken into account in 

this section. All the described functional requirements have been implemented in the code. For non-

functional requirements, a single-epoch response time test was performed. The average processing 

time for epoch processing is 1.75 seconds, which includes converting the EEG signal into GASF, 

reducing the image size, loading a pre-trained model, and predicting the label. The visual stimulus 

prediction system was able to classify the class with greater accuracy than the random classifier, while 

color images had higher accuracy than gray images. In addition, the model’s one training procedure 

lasted less than 3 minutes, which is a satisfying amount of time. However, due to the generalization 

gap, the learning curves showed a minor overfitting. This could be enhanced by tuning 

hyperparameters or otherwise pre-processing the data. In conclusion, all project requirements were 

met. 
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Conclusions 

In this study, the binary classification of face inversion visual stimuli in a control group and a patient 

with Alzheimer's disease was investigated. Electrodes from the occipital lobe were used to determine 

the visual stimuli using EEG signal data from 8 healthy women aged 63–70 years. It has been 

hypothesized that if a patient with Alzheimer's disease has memory loss rather than visual processing 

impairments, the system should provide classes similarly to healthy people. However, the findings 

were considerably different. In the second experiment, a 20% difference in AUC between healthy 

and AD patient was observed using color images. In the third trial, employing gray images, a 10% 

difference was detected. Noise in all brain regions is known to affect signals for Alzheimer's sufferers. 

The developed system is unable to predict the visual stimulus with greater accuracy than the 

individual, which is 81% and 69%, respectively for color and gray images. This could indicate that 

not only memory, but also visual processes are impaired in this person's brain. 

The developed system consisted of pre-processing of the EEG signal, augmentation using RGAN, 

transformation of the brain channels responsible for image processing into a 2D domain using the 

GAF technique, and classification. Unlike other studies, this one combined training data from seven 

people and tested with data from an oldest person and an Alzheimer's patient separately. In this way, 

the training data did not see any signals from any of the test subjects, indicating that the user-

independent system is being tested that does not require calibration with new user data. Meanwhile, 

it has been common practice in prior studies to conduct training individually for each participant, 

resulting in a unique model for each person. Our approach has the advantage of attempting to extract 

the most common features of visual processing from signals that are experienced by everyone. 

Four different classifiers were investigated in this study: the classical image network ResNet-50, 

Custom CNN as it performed best on EEG signals transformed into GASF images, and EEGNet 

SSVEP as it was proposed as a model for steady-state visual evoked potentials. Our Proposed CNN 

architecture for smaller data sets, on the other hand, produced the best accuracy and AUC results, 

with a 75% AUC in the control group and a 55% AUC in the AD patient while processing color 

images. Meanwhile, grayscale images achieved 61% AUC in healthy subjects and 51% in AD 

patients. The proposed new architecture consisted of five convolutional layers with the most common 

best practices for generalization, such as the use of dropout, l2 regulation, and the addition of 

Gaussian noise. However, due to the limited and noisy training data, a minor overfitting was detected 

during model training. The RGAN data augmentation method has been applied directly to the signal 

space in an attempt to tackle this problem. Although the results showed that the 25% of the data 

augmentation procedure was not statistically significant, it did have small importance, and the models 

did not behave identically. 

The findings should be made considering traditional limitations in medical data, that limited data sets 

were used in the study, having only 9 subjects, all of whom were female and elderly. In summary, 

promising results in healthy patients have been seen, indicating that the visual stimulus of facial 

inversion has the potential to be further researched and developed. This was the first study to our 

knowledge that used deep learning technology to compare the visual cortex of a healthy person and 

an Alzheimer's patient to determine whether a brain area was damaged. The following are the findings 

of this study: 
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1. By classifying the inversion of faces in visible color images with an emotion component, an 

average accuracy of 61.7% was achieved for the control subject. Compared to previous work [7] 

to detect upright and inverted faces, this proposed method achieves 5.7% better results. However, 

the classification using data from Alzheimer’s patients remains almost random. Because 

Alzheimer's disease patients' brain signals are noisier than healthy people's, the Alzheimer's-

specific noise reduction might be investigated. 

2. Predicting the scope of attention when seeing grayscale facial images with a familiarity 

component reached only 57% when tested with data from a healthy elderly subject. Predictions 

for Alzheimer's disease patients, on the other hand, remain random. This might be explained by 

the fact that in this experiment, the AD patient made the most mistakes, accurately estimating just 

69% of the stimuli. Grayscale pictures with a black background may blend in with darker color 

hair, and hair position may be a critical identifier for detecting a face's position. These results 

suggest that the AD patient did not process the visual information in the same way as healthy 

individuals, and the visual cortex may be affected by the disease. 

3. Training the classifier with the augmented data using RGAN model increased the training 

validation overall performance from 2.1% to 5%. The proposed CNN network processes both 

color and gray images with weak statistical significance when compared to the performance with 

25% augmented data and the performance with the original data. This suggests that the outcomes 

of the two models were not identical. In the future, the augmentation process could be tested using 

various percentages of augmented data and tuning hyperparameters. 

Finally, several recommendations are suggested for the future. Collecting more data with a larger 

group of patients is always desirable, but at the same time it is very difficult and time consuming. As 

a result, smarter preprocessing might be done specifically for AD patient data to improve the facial 

inversion system. Preprocessing was done automatically in this study using several techniques, 

however manual removal of artifacts could also improve performance. Additionally, more 

sophisticated feature extraction techniques could be tested, for example, using a new method based 

on GASF images of Hjorth parameters [32]. Finally, optimizing the architecture and hyperparameters 

would contribute to enhance the accuracy of model predictions. 
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