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Summary

Sequence data is a common pattern in real world observational datasets. The extra temporal

dimension poses new challenges when applying deep learning techniques. Research leaps

were made possible with the introduction of Long-Short Term Memory cells, as well as Gated

Recurrent Units. However, these classical sequence data models all are based on the implicit

assumption that sequences are sampled in regular intervals and are fully observed. In real world

scenarios however, this is rarely the case. Most time series are irregularly sampled and often

only partially observed.

It must therefore be the goal to have a universal model capable of handling arbitrary sequential

data at low computational cost. Most of the proposed approaches in literature are heavily

over-engineered in order to cope with certain properties. While working on this thesis however,

a new method was proposed that utilizes controlled differential equations (CDEs) to create

a continuous time recurrent neural network that is indifferent to partial observations. In this

thesis, I apply the idea of CDEs to create a continuous time echo state network, which inherits

the advantageous properties that echo state networks have in comparison to standard recurrent

neural networks. This is the main contribution of this work. As a secondary contribution, a

non-conclusive analysis of the most popular and powerful methods from literature is given.
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1. Introduction

Research in the area of time series analysis has recently accelerated rapidly as yet another type of

neural network architecture has been proposed by Chen et al. [1] (Neural Ordinary Differential

Equations, see Chapter 2.3). While universal approaches to real world sequence data were

only sparsely researched up until then, the area itself is by no means a new field of research.

However, we now have methods that can naturally handle the universal case of irregularly

sampled and partially observed time series in an expressive and powerful way. This leap was

possible by utilizing the ever more powerful means of deep learning capabilities to represent

complex dynamical systems using mathematical concepts that have been researched for over a

hundred years (cf. [2]).

This work follows this trend of research by providing a two-fold contribution. First, an

outline over the rapidly unfolding lines of research is given. This part aims to be a reference of

categorizations over different methods’ capabilities. The second and main contribution thereafter

is the proposal and empirical evaluation of a novel method for universal time series analysis.

This method builds upon the new understandings we now have thanks to recent research.

The remainder of this work is organized as follows. This present chapter introduces and

motivates the topic of research. Afterwards, Chapter 2 entails the relevant foundations and

theoretical backgrounds which this thesis is based upon. Chapter 3 presents the first major

contribution as it outlines related work and thereby serves as a reference over the different lines

of research proposed in literature. The next chapter proceeds to outline the main contribution

by introducing a new method, which is subsequently and empirically evaluated. Chapter 5

concludes this work.

1.1. Motivation

Living in a world of three spatial and one temporal dimension, temporal sequence data is only

natural to us and occurs everywhere. Examples are meteorological developments, stock prices,

the spoken word, medical data, or dynamical systems in physics. Even enterprise workflows

can be represented as temporal sequences [3]. Abstractly speaking, any time series is an ordered

sequence of observations. In this work, all observations are considered to be real-valued (i.e.,

every observation is represented as a vector of real numbers). We will extend this to a formal

definition in the ensuing section.

When applying Recurrent Neural Network (RNN) approaches to such data, it is usually assumed

that observations are collected at regular time intervals. RNNs are specifically designed to

handle this well and have been shown repeatedly to outperform classical approaches (e.g. [4, 5]).

However, in reality, data is rarely collected at regular intervals. This is either due to irregular

intervals at which data is actually collected (e.g., medical patient examinations or manually

dated data such as archaeological data), or due to the fact that data collection is coupled to events

that happen irregularly (e.g. user actions or economic transactions). Most classical and deep

learning methods fail at this task as they cannot adequately represent the temporal dynamics of

irregular intervals. To deal with this, data is often re-sampled by binning or interpolating the
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original observations to end up with regular time intervals. However, this approach leads to

massive amounts of lost information and is therefore not the correct way to go. It is much more

preferable to employ a system that can internally handle irregular time intervals in a natural

manner without making assumptions on the data in between observations or even throwing

entire bits of information away.

Recent advances now are capable of representing continuous dynamics using deep learning

technologies. However, they still suffer from drawbacks, such as increased computational costs.

Furthermore, as only early stage research is available, empirical evaluations and extensions to

the basic ideas are still being actively investigated.

Another motivating factor are the recent rapid advances in the field. Building on top of the

collective knowledge that was only recently published and contributing to this field is intrinsic

motivation in itself. Furthermore, the connections between deep learning advances and long

known mathematical concepts are highly intriguing to me.

A third and last (but not least) motivational factor are the topics of research of my supervisor.

Echo State Networks (ESNs) shine in that they require less training time and less computationally

expensive operations to yield good results. Applying the ideas from recent research with the solid

knowledge of ESNs to reduce computational costs is therefore very promising.

1.2. The Fundamental Problems

We may now further specify the definition of a time series. As motivated before, observations in

time series data are usually not sampled at regular intervals. In order to gain a complete picture of

the recorded sequence, we must record the timestamp together with each observation. Therefore,

the ith observation (ti, x
<ti>) is comprised of the time of observation (its timestamp) ti ∈ R

and the actual observed data x<ti> ∈ Rdx . In the case of regularly sampled sequences of length

n, each ti − ti−1 is constant for every i = 1, .., n. In this case we would not need to record

the timestamp along with every observation, as the information is redundant. However, in the

general case, the time in between observations is irregular, even chaotic, prompting us to record

every timestamp. This insight might be even extended to individual dimensions. The individual

intervals in between observations across dimensions are not necessarily synchronized. Medical

surveillance data for instance is often recorded one by one (e.g., first the heart rate is measured

before blood pressure). This notion is illustrated in Figure 1. Hence, we introduce∅ as a symbol

representing missing data and must redefine x<ti> as x<ti> ∈ (R ∪ {∅})dx .

We can now define a time series in the most universal case as follows:

Definition 1.1 (Time Series). Let ti ∈ R, x<ti> ∈ (R ∪ {∅})dx with dx ∈ N the

dimensionality of the observed data and n ∈ N the number of observations. Then

TS = ((t1, x
<t1>), (t2, x

<t2>)), . . . , (tn, x
<tn>) with t1 < t2 < · · · < tn is a time series

1.

1The notation in this thesis will follow mainly [2]
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Figure 1. A taxonomy of time series sampling results. In (a) data is observed in regular intervals. In (b)

some observations are missing, while intervals in between observations in (c) are completely chaotic.

Notice the depiction of two dimensions, where times of observation across dimensions do not line up in

(c).

This work focuses on three fundamental problems when dealing with multivariate universally

sampled time series data. The methods proposed in literature will be classified in Chapter

3 with regard to their capabilities to cope with these problems. Chapter 4 proposes a novel

method that is capable of processing sequences independently of how they have been sampled.

Outlining methods – both from literature and new in this work – that can naturally handle

universally sampled time series is the main contribution of this thesis. It must be stressed that

only methods that can handle all three problems naturally can yield results based on all available

information. If only one problem cannot be dealt with, this means that some information has to

be disregarded.

The three fundamental practical issues to consider when processing irregularly sampled and

partially observed data are as follows:

1. Irregular Sampling.

As stated, the intervals ti − ti−1 in between observations are not necessarily constant.

Furthermore, different time series in a dataset can have differing amounts of observations

and the times of observation across different time series may not line up. To feed this

information to the model, it is frequently proposed to concatenate the time of observation

to the observed data and feed (ti, xi) to the model [2]. However, this is not sufficient, as

the model itself must be able to distinguish this temporal information from observed data.

2. Partial Observation.

This notion directly follows from (1) for multivariate data when applying (1) to every

11



dimension individually. Hence, at every timestamp ti only a subset of the recorded

dimensions may be observed. Since we still want to be able to represent interdimensional

dependencies, we must feed all dimensions to the same model. Otherwise, we could use

separate models for every dimension only dealing with problem (1).

A common proposal for feeding this information to the model is to use an observational

mask ψ(xi) [2] and concatenating this to yield (ti, xi, ψ(xi)). As in (1), feeding this mask

in addition to the observed data and time of observation to the model is not sufficient. The

model must be able to internally represent data coming in only partially.

3. Informative Missingness. Consider the recording of medical data at an ICU in hospital.

Without knowledge about the data recorded, the simple fact that in a certain period of

time assessments were collected at a higher frequency than before might by itself lead to

the conclusion that the state of the patient has deteriorated. The fact that data is recorded

at different frequencies therefore might carry information about the state of the observed

system. This notion is known as Informative Missingness. This information can be fed to

a model by concatenating the cumulative number of observations to the input vector.

A notion fundamental to the field of deep learning and especially in the domain of time series

analysis is mostly only implicitly assumed by authors. Since it poses an essential basis for the

goals of the present work as well, I decided to explicitly highlight the otherwise usually implicitly

assumed.

Deep Learning methods rely on the idea that every observed system has a true latent state at every

time. When having knowledge about this latent state, every desired information is available. This

holds true for classification tasks, that can be deduced from this state, as well as for regressive

or predictive tasks. It is therefore the goal of most machine learning approaches to estimate this

latent state – also called hidden state – as best as possible. For instance, Echo State Networks

(ESNs) usually employ an expansion of the observed variable into a higher dimensional space,

the reservoir, to then learn the readout from this reservoir to do inference on the observed states.

Standard RNNs and specializations thereof, such as LSTMs and GRUs, similarly keep a hidden

state that is regularly updated once a new observation comes in.

As depicted in Figure 2a, this hidden state is updated discretely upon a new observation and kept

constant in between observations. The perfect model (which of course is not achievable) however

learns a representation of the true hidden state, which is continuous in time. It is the main focus

of this work to outline existing and propose a new model that estimates a continuous hidden state

and thereby allows for all the three problems depicted above to be tackled. A continuous hidden

state also allows irregular generative sampling and classification from a learnt model.
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Figure 2. Discretely updated (A) vs continuously updated (B) hidden state in sequence models. Vertical

lines depict times of observation. When doing inference in between observations, model (A) will yield

the same result as during the last observation, whereas model (B) will allow evolving inference at any

time.

Illustration adapted from [6]

1.3. Contribution and Scientific Importance

This thesis aims to give a two-fold contribution to current literature about continuous time series

analysis. First, Chapter 3 outlines in detail different recently (and not so recently) proposed

methods for dealing with irregularly sampled data. Every method will be classified and evaluated

(not empirically). This section will serve as a reference over existing methods, how, and where

to apply them to. Drawbacks and advantages are discussed. Furthermore, the chapter was written

with the intent to provide intuition for all the presented methods. Such a comprehensive reference

is, to the best of my knowledge, missing to this day in literature.

Second, the main contribution will be outlined in Chapter 4 where a novel method is proposed and

empirically evaluated. As this method builds upon only recently gained knowledge about new

approaches – especially their drawbacks – this serves as further research into these new methods,

recombinations and extensions, as well es empirical evaluation thereof.
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2. Foundations

This chapter outlines the relevant theoretical background necessary for the understanding of the

reviewed and proposed methods in the upcoming chapters. It is organized in increasing order of

complexity and puts a clear focus on topics relevant to time series models.

It starts with a very brief review of Artificial Neural Networks (ANNs) (assuming the reader is

already familiar with the topic), before looking at RNNs and specializations thereof. The final

section explains in greater detail the mathematical background of Neural Differential Equations

(NDEs) assuming little familiarity on the side of the reader.

2.1. Artificial Neural Networks

Artificial Neural Networks are without question the dominant branch of Artificial Intelligence

today. The reason being that ANNs are universal function approximators. Any smooth and

differentiable function of arbitrary dimension can be approximated arbitrarily close by using

one or the other form of ANNs. This was proven relatively early in 1989 by Hornik et al.

[7] after earlier works have come to different conclusions (cf. [8]). The reason is that the

true expressivity of ANNs is only apparent once enough layers of depth are added. Due to

this approach the area of research and technology is commonly referred to as Deep Learning.

However, as with everything, ANNs get no free lunch either, and the more expressive they are

made, the higher the computational cost becomes. With infinite resources of computational

power, one can theoretically build a huge neural network to approximate the laws of physics

themselves and use this network to simulate the entire universe. However, this is and will

be infeasible for the forseeable future. As such, the main bottleneck of ANNs today is their

computational complexity. The exponential rise in available computational power in the early

2000s gave a rebirth to the field, as the fundamental ideas have already been researched in the

middle of the 20th century. At that time, the available computational resources unfortunately

were insufficient to put the theoretical works into practice.

Today, the enormous amounts of available resources allow Deep Learning to be utilized

for complex tasks, such as image classification as well as generation, human language

communication, or medical diagnosis assistance. However, since computational power still

is the main bottleneck, research still focuses on reducing the costs by clever techniques and

algorithms.

Neural Networks can be used for different types of objectives, such as classification (mapping

an input to a class label), regression (predicting some value based on an input) or dimensionality

reduction (mapping input data from dx dimensions to dh dimensions with dx >> dh). Any neural

network therefore approximates a function ftrue : X → Y that maps data from the input space

X ∈ Rdx onto the output space Y ∈ Rdy . The function ftrue is unknown and must therefore be

approximated by fθ with θ being the parameters of the neural network. The network is trained

by supplying it with many pairs of observations (x, y), for instance x being an image of dog and

y being the number 1 meaning that the image is classified as containing a dog.
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Throughout this work, ŷ will denote a prediction given some input x, while y denotes the true

output.

This section motivates Artificial Neural Networks (ANNs) and defines the algorithms used to run

and train them. Most of the notation derivation is inpired by [9, 10].

2.1.1. Motivation – Logistic Regression

Consider the simple case of a linear regression problem, such as predicting housing prices based

on multiple parameters. We have a set of observations which we can use to train the model we

build. Under the assumption that the data follows a linear dependency, and given the input and

output dimensionality dx and dy respectively, the goal is to estimate the true function ftrue :

Rdx → Rdy by the affine function fθ : Rdx → Rdy . θ are the parameters of the function, the

weightsW ∈ Rdy×dx and the bias b ∈ dy, which we need to find, such that ftrue ≈ fθ. We define

fθ as follows:

ŷ = fθ(x) = Wx+ b (1)

This simple linear regression problem can be solved – finding parameters W and b that best

approximate ftrue – using a one-shot analytic solver. We will see later that finding analytic

solutions will not be feasible any more for more complex models and we have to fall back to

heuristic solvers, such as stochastic gradient descent (cf. Ch. 2.1.3).

Now suppose that we want to solve a binary classification problem, hence dy ∈ {0, 1}. Since
we are building continuous models, our goal is to find the probability ŷ ∈ [0, 1] of y being equal

to 1 given any input x. As before: x ∈ Rdx . Parameterizing the function fθ to this problem is

called Logistic Regression. The function is defined as before, only nowwrapped with the sigmoid

function) σ : R → [0, 1] (see Fig. 5):

fθ(x) = P (y = 1|x) = σ(Wx+ b) (2)

To utilize the found probability to make a prediction about the class, we can set a threshold value

t ∈ (0, 1), such that:

ŷ =

0, if fθ(x) < t

1, else
(3)

This approach allows to non-linearly map input data onto a probability for simple classification

tasks. However, since sigmoid functions are monotonic, this approach still only works on linearly

dependent variables, finding a cutoff point on a regressed spectrum. For non linearly dependent

variables we therefore must extend this approach.

2.1.2. Multi Layer Perceptron

The approach for separating two classes by means of a linear separator was first introduced by

Frank Rosenblatt in 1958 as the Perceptron [11]. The term stemmed from the inspiration he drew

for his approach from the human brain. Every human neuron has input connections and output

connections. Any neuron then fires once a threshold of weighted input signals is reached. The

perceptron was modeled to replicate this behavior, the nonlinearity in the shape of a sigmoid

function was only added later, thereby also making the function continuous.

15



(a) Linear Regression (b) Logistic Regression

Figure 3. (a) Linear regression finds the line of best fit for the given data. (b) Logistic regression on the

other hand produces a continuous separator between two linearly separable classes.

As stated in the preceding section, logistic regression (as the continuous extension to the

perceptron) is not capable of modeling any non-linear separation of classes. Therefore, the

human brain is further used as inspiration to form a network of multiple interconnected

perceptrons, arranged in multiple layers, and therefore called a Multi Layer Perceptron (MLP).

In order to be able to do arithmetic operations in such a network, commonly logistic regression

nodes are used instead of discrete perceptrons. Every single one of these nodes is also called a

neuron, while the entire network is therefore referred to as an Artificial Neural Network (ANN)

[10].

Each neuron computes its activation a as before:

a(x) = σ(Wx+ b) (4)

The nodes are arranged in layers, starting from the input layer, which take just the

multidimensional input to the network, then the hidden layers, where each neuron from

layer i receives the activations from every neuron in layer i − 1 and sends its activation to each

neuron in layer i + 1. The neurons in the first hidden layer simply receive the network input as

their individual inputs. Finally, the output layer contains as many neurons as there are desired

dimensions in the output. To compute the output to any input, the data is passed from layer to

layer in a forward pass through the network. The computations can be decomposed into a series

of matrix multiplications, additions and the application of the activation function [10].

While the original approaches used logistic activation functions (such as the sigmoid), many

different activation functions have been proposed in literature to this day [12], with ReLU being

the most commonly used due to its simplicity and computational efficiency. The choice of

activation function for the output neurons is based on the desired shape of the output of the

network. For classification tasks, logistic functions are commonly used as they map into a

bounded interval which may be interpreted as class label probabilities. On the other hand, the

identity might be useful for regression tasks. See Figure 5 for an illustration of different activation
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(a) Linear Regression Node

(b) One-layer ANN

(c)Multi Layer Perceptron

Figure 4. The derivation of a Multi Layer Perceptron or deep neural network from logistic regression.

functions proposed in literature.

An ANN is a non-linear function fθ : Rdx → Rdy parameterized by its weights and biases θ.

Given a lot of input-output pair data, the parameters can be learnt to accurately model the desired

dependency (cf. Sec. 2.1.3). It has been shown that ANNs are universal function approximators,

given that the network has enough neurons [7, 13].

2.1.3. Backpropagation

Finding values for theweights and biases of the network such that fθ accuratelymodels the desired

dependency (i.e., fθ ≈ ftrue) is referred to as training the network. For this purpose, noisy training

examples (x, y) (i.e., y ≈ ŷ(x), but y 6= ŷ(x)) are collected and passed through the network one

by one. We can now define a loss function L that captures how much the predicted value fθ(x)

differs from the observed y. A common choice for L in the context of binary classification is the

log-loss:

L(ŷ, y) = −(y ln(ŷ) + (1− y) ln(1− ŷ)) (5)

Lθ(ŷ, fθ(x)) = −(fθ(x) ln(ŷ) + (1− fθ(x)) ln(1− ŷ)) (6)

While this captures the loss of one training example, L can be subsumed to the cost function C

which captures the loss over allm training examples:

C(θ) =
1

m

m∑
i=1

Lθ(ŷ
(i), fθ(x

(i))) (7)

The goal is to minimize this function, i.e., get the network to produce predictions as close as

possible to the desired outputs. For very simple predictors, such as a single perceptron, this

optimization problem might be solvable analytically. However in bigger neural networks, this

becomes infeasible. The function though is differentiable which is why we can take the following

approach to find the best values for the weights and biases of the network. We compute the

gradients with regard toW and b and then take small iterative steps (by updatingW and b) into

the direction of minimization. This approach is known as gradient descent and is predominantly

used for ANN training. Therefore, every cost function used must be differentiable [14].

In deep neural networks, gradients can only be computed iteratively from “right to left”. Gradients

are computed for the weights and biases in every layer only with regard to the output of the
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Figure 5. Different activation functions used.

neurons in the previous layer. Hence, we do a backward pass (or backpropagation) through the

network after having computed the predictions and cost function in the forward pass.

After training, only the forward pass is required to make predictions for any given input.

2.2. Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are one of the major sub-branches of ANNs that are capable

of handling sequence data and temporal relationships. This section introduces the idea, the most

common types of RNNs and a variation that is fundamental to the core of this thesis.

2.2.1. Motivation

Sequence data, such as time series, consist of ordered pairs of observations (see Def. 1.1). They

are intrinsically different to static observations – which are captured at a specific point in time,

yet are independent of the time when they have been captured – in that they entail temporal

dependencies. Several further difficulties arise (see Sec. 1.2), however this section outlines the

classical approaches and therefore assumes regular sampling and full observation.

When processing sequence data, MLPs are incapable of learning temporal relationships since they

have no memory. All they can do is output a prediction given data from one timestamp, without

taking the previous timestamps into account. One possibility to solve this problem is to input the

entire sequence all at once into the network. This however limits the model to fixed-size time

series. RNNs solve this problem by introducing recurrent connections into neurons. At every

observation timestamp t, the neurons receive as input not only the observation x<t> itself, but

also the activations a<t−1> of the previous timestep. It then computes its activation as follows:

a<t> = σ(Wreca
<t−1> +Winx

<t> + ba) (8)
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The prediction ŷ at every timestep can then be computed as follows:

ŷ<t> = σ(Wouta
<t> + bout) (9)

Sometimes, the observation xt is concatenated to the activation:

ŷ<t> = σ(Wout[a
<t>|x<t>] + bout) (10)

Where [·|·] denotes vector concatenation. The activations at which are computed at each timestep
and then passed as input to the next timestep are also commonly referred to as the hidden or latent

state ht of the model.

The parameters θ of such a Recurrent Neural Network now consist of the recurrent weightsWrec,

the input weightsWin, the output weightsWout as well as the biases ba and bout:

θ = [Win,Wrec,Wout, ba, bout]

Training can still be achieved using gradient descent by utilizing backpropagation through time

[15, 16, 17].

Short-term relationships can now be captured by such a model, however it still is unable to model

long-term relationships due to vanishing gradient problems [18]. Several different architectures

for extending one layer of neurons by clever gating techniques have therefore been proposed

in literature. The two most widely used cell types are Long-Short Term Memory (LSTM)

and Gated Recurrent Unit (GRU). They are briefly presented in the ensuing sections. Echo

State Networks (ESNs) are yet another extension to RNNs and were designed to counteract the

enormous computational cost of deep RNN training. They are outlined in Section 2.2.4.

2.2.2. Long-Short Term Memory Units

The Long-Short Term Memory cell was proposed by Hochreiter and Schmidhuber in 1997 [18]

and was a major step forward in the research of RNN training. Their design includes several

gates – an update, forget, and output gate – and two distinct hidden states. Thereby the model is

able to capture long-term dependencies by learning what information to keep or discard at every

timestep.

An LSTM is goverened by the following equations:

Candidate Memory: c̃<t> = tanh(Wch h
<t−1> +Wcx x

<t> + bc) (11)

Update Gate: Γu = σ(Wuh h
<t−1> +Wux x

<t> + bu) (12)

Forget Gate: Γf = σ(Wfh h
<t−1> +Wfx x

<t> + bf ) (13)

Output Gate: Γo = σ(Woh h
<t−1> +Wox x

<t> + bo) (14)

Cell State: c<t> = Γu ∗ c̃<t> + Γf ∗ c<t−1> (15)

Hidden State: h<t> = Γo ∗ tanh(c<t>) (16)

Prediction: ŷ<t> = σ(Wyh h
<t> + by) (17)
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with σ the sigmoid function, · the dot product and ∗ the element-wise multiplication. Learnable
parameters now are:

θ = [Wca,Wcx,Wua,Wux,Wfa,Wfx,Woa,Wox,Wya, bc, bu, bf , bo, by]

The model has become more complex and the amount of learnable parameters increased

significantly, at the same time the model’s expressiveness also increases, rendering it more

powerful than a simple RNN [19].

2.2.3. Gated Recurrent Units

Gated Recurrent Units were introduced by Cho et al. in 2014 [5] and are a simplification of LSTM

cells. GRU cells have fewer gates, parameters, and only keep one hidden state. It has been shown

that GRUs are almost as expressive as LSTMs and sometimes even outperform LSTMs in certain

tasks [20, 21]. They are now the preferred unit cell architecture in RNNs.

The equations governing a GRU are as follows:

Candidate Memory: h̃<t> = tanh(Wha (Γr ∗ h<t−1>) +Whx x
<t> + bc) (18)

Update Gate: Γu = σ(Wuh h
<t−1> +Wux x

<t> + bu) (19)

Reset Gate: Γr = σ(Wrh h
<t−1> +Wrx x

<t> + br) (20)

Hidden State: h<t> = Γu ∗ h̃<t> + (1− Γu) ∗ h<t−1> (21)

Prediction: ŷ<t> = σ(Wyh h
<t> + by) (22)

with σ the sigmoid function, · the dot product and ∗ the element-wise multiplication. Learnable
parameters now are:

θ = [Wha,Whx,Wuh,Wux,Wrh,Wrx,Wyh, bc, bu, br, by]

The amount of trainable parameters has significantly decreased with regard to LSTM units

rendering this cell more computationally efficient. However, it also has lost expressiveness as it

is a specialization of LSTM cells.

2.2.4. Echo State Networks

While RNNs and especially their extensions, LSTMs and GRUs, are powerful techniques to

build sequence processing models, they still suffer from a major drawback. As computationally

expensive as all deep neural networks are, so are RNNs. In the early 2000s, when computational

powerwas still sparse, multiple researchers therefore proposed similar ideas to tackle this problem

by – instead of optimizing – randomly initializing the recurrent and input weight matricesWrec

andWin in a clever fashion, increasing the size ofWrec to a huge number, and then only training

the readout weightsWout. This approach was independently published by Jaeger in 2001 [22], as

Echo State Networks, and by Maas et al. in 2002 [23], as Liquid State Machines. The concept has

become jointly known as Reservoir Computing. The only conceptual difference is that the latter

uses discrete neuron outputs, while ESNs utilize continuous activation functions. We therefore

focus on the former and use the term Echo State Networks throughout this work.
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Figure 6. A schematic view of an ESN. Only the connections drawn bold are trained. Figure from [24]

The motivation stems from the fact that having a big reservoir of randomly connected hidden

neurons serves as a non-linear expansion of the observed input data and is therefore able to

capture the dynamics of the system under consideration. In essence, ESNs define a random

non-linear expansion of a sequence of observations onto a fixed-length hidden space, from which

a readout then can be trained. Usually, simple linear regression is chosen for this. This enables

efficient one-shot learning [24, 25]. However, since a huge reservoir is needed to capture enough

information for a linear readout, ESNs trade off memory space for expressivity.

More than two decades have passed since the first introduction of reservoir computing

approaches. At that time, ESNs had a decisive advantage over fully trained deep Recurrent

Neural Networks in that they did not need computational power, but lots of memory space,

which was already available then. Today, RNNs of the same size as an ESN can be fully

trained, thereby increasing their expressiveness. However, the growing societal consciousness

about energy consumption has revived the justification and need for approaches that are energy

efficient, such as ESNs.

The basic approach is as follows (this paragraph is adapted from2 [24]). Just like RNNs, vanilla

ESNs are also designed to handle only fully observed and regular time series. We therefore

consider a time series TS with a fixed interval t′, i.e., ti − ti−1 = t′ for all 0 < i < n, and

x<ti> ∈ Rdx . We then initialize the model by defining the two random weight matrices using the

hidden state size dh (a hyperparameter of the model):

• The input weight matrix Win ∈ Rdh×(1+dx) is randomly sampled from a uniform

distribution. The scaling can be tuned as a hyperparameter of the network. The additional

column is to encode the bias directly inside of the weight matrix. For that purpose, prior to

computing the dot product betweenWin and an observation, the constant 1 is concatenated

to the observation, yielding valid dimensions: [1|x<ti>] ∈ R(1+dx)×1.

• The recurrent weight matrix Wrec ∈ Rdh×dh is also randomly sampled from a uniform

distribution. During hidden state updates, this matrix is then multiplied by the hidden state

h<ti> ∈ Rdh×1.

2However, notice the different notations used.
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The scaling of this matrix requires special attention and is of essential importance for the

ESN to yield good results. For this purpose the matrix is scaled in such a way that its

spectral radius (another hyperparameter) is of a certain size (usually close to 1). It has

been shown that this ensures that the reservoir incrementally discards information from

previous timesteps which is essential for the hidden state not to explode in magnitude in

response to earlier observations. This is known as the echo state property [24]. The proper

scaling requires a computation of the eigenvalues of the matrix which is one of only two

computational bottlenecks of ESNs.

To then train the readout, wemust first collect the hidden states from every timestep of the training

data by computing h<ti> ∈ Rdh:

h̃<ti> = tanh(Win [1|x<ti>] +Wrec h
<ti−1>) (23)

h<ti> = (1− α) h<ti−1> + α h̃<ti> (24)

where tanh(·) is element-wise applied, [·|·] denotes vector concatenation, h̃<ti> is the update

for the hidden state neuron activation h<ti>. The leaking rate α (another hyperparameter)

determines how much information to keep from timestep to timestep, essentially defining the

memory duration. It is used to update the hidden state as a weighted average of the previous

hidden state h<ti> and the update h̃<ti>. A common choice is α = 0.3. Different activations

functions than tanh are sometimes used [24].

The linear readout ŷ<ti> ∈ R(1+dx+dh)×1 for timestep i is then defined as:

ŷ<ti> = Wout [1|x<ti>|h<ti>] (25)

The additional 1 on top of the vector again serves as the bias. The readout takes the observation

x<ti> as well as the current hidden state h<ti> into account.

Notice that the readout at every timestep is independent of both observations and hidden states

from different timesteps. By horizontally concatenating [1|x<ti>|h<ti>] = H ∈ R(1+dx+dh)×n

across all timesteps, we can therefore define the one-shot linear regression readout problem as

follows:

Y = Wout H (26)

where Y ∈ Rdy×n are the horizontally concatenated observations. A common choice to solve

this forWout is ridge regression, which minimizes the mean squared error [24].

Notice, that this approach also seamlessly allows batching of multiple time series:

• Horizontally concatenate all observations across the m time series at timestep i to form

x′<ti> ∈ Rdx×m.

• The hidden state h<ti> will now have dimensions Rdh×m.

• Now, instead of concatenating vectors to form the matrices H and Y , horizontally

concatenate the matrices across time series to get H ∈ R(1+dx+dh)×(m∗n) and

Y ∈ Rdy×(m∗n).

With this, datasets consisting of multiple time series can be modeled by an ESN.

There is one remaining caveat. The hidden state of the previous timestep is not available at step t1.
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Therefore, h<t0> is commonly initialized to 0dh . It takes a few steps for the network to properly

capture the currently modeled time series, therefore the first few steps per series, referred to as

the network warmup, are usually discarded during training.

2.3. Neural Differential Equations

Deep learning research has evolved from simple MLPs to complex composite networks to solve

specific tasks efficiently and powerfully. The two most prominent and well-researched branches

are Convolutional Neural Networks for image processing and Recurrent Neural Networks for

sequence processing which can both be seen as having brought a major leap to the field [26].

Over the recent years, several big new proposals of network architectures have beenmade, such as

Residual Networks [27] or Transformers [28]. The common denominator of all such approaches

is being based on a hidden state propagation through discrete layers. Therefore, the introduction

of Neural Ordinary Differential Equations (Neural ODEs), which utilize a continuous hidden

state, brought another big leap forward to the field as recently as in 2018 [1]. The applications

of Neural ODEs with regard to time series data are especially exciting and will be discussed in

more detail in Section 3.5.

The present section merely introduces the conceptual architecture as well as the mathematical

background of Neural Differential Equations.

2.3.1. Motivation – Differential Equations

Generally speaking, differential equations are equations that contain a dependent and an

independent variable in addition to one or more derivatives of the dependent variable. The

canonical example differential equation is the following:

dy

dt
= ky

Here, the derivative of y with regard to t is a function of y itself. A solution to this differential

equation is the function y(t) that satisfies the condition above. In the case of such a simple

equation, the solution can be obtained analytically. Here, the solution happens to be y(t) = cekt

for every arbitrary constants c, k ∈ R.

Differential equations are usually interpreted to represent dynamical systems evolving with time.

Therefore, the symbol t is chosen to denote the independent variable instead of x.

Since the equation contains y and its first-order derivative, it is called a differential equation of

first order. Higher order differential equations, where the function would contain higher order

derivatives, are also possible, yet much harder to solve.

The equation above contains only one derivative with regard to one independent variable. It is

therefore called an Ordinary Differential Equation (ODE). In contrast, if the equation contained

multiple derivatives with regard to multiple independent variables, it would be called a Partial

Differential Equation (PDE). PDEs are generally much harder to solve. Throughout this work we

will only deal with Ordinary Differential Equations of first order.

If an ODE is arranged such that the derivative of y is a function of y itself (i.e., dy
dt
(t, y) =

· · · ), then the right-hand side · · · can be interpreted as a representation of the vector field of all
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Figure 7. The slope field of the ODE dy
dt = y sin(t) and three solutions in black. The orange trajectory

shows an Euler estimation with constant step size. Notice the accumulating error.

possible solutions to this differential equation. Each line in that vector field depicts the slope of the

function at that coordinate. It directly follows from this that a differential equation is deterministic

and solely dependent on its slope field, as well as an initial condition (i.e., given dy
dt
(t, y) = · · ·

and an initial condition (t0, y0), the solution is deterministically defined by following the slope

field starting from (t0, y0)). See Figure 7 for an illustration.

2.3.2. Differential Equation Solvers

While simple ODEs such as the one above are easy to solve analytically, it becomes infeasible

quite fast with more complex equations. Consider the following for instance:

(
dy

dt
)5 + 3c = yc

It is unclear whether it is possible to solve such a differential equation. We therefore need to fall

back to using approximate solving techniques.

As mentioned before, a solution to a differential equation can be found by starting at some

coordinates and then following the slope field since we know the gradients at every point (given

by the differential equation itself).

The naive approach is to take fixed step sizes in the direction of the gradient (see Fig. 7). Small

step sizes are essential here, due to the error accumulating over time. This approach is known as

the Euler estimation:

y(t+∆t) ≈ y(t) + ∆t ∗ dy
dt

(t, y) (27)

with ∆t the fixed step size. This approach can be seen as time discretization of the dynamical

system represented by y(t).

ODEs are well researched for over one hundred years [29, 30, 31]. More robust solvers adapt

their step size to the magnitude and the rate of change of the gradient.
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2.3.3. Neural Ordinary Differential Equations

Neural ODEs were popularized by Chen et al. in 2018 [1], although similar research was done

independently by other authors [32, 33, 34] and has already been done in the 1980s and 90s [35,

36, 37, 38, 39, 40].

Consider a residual neural network architecture where the hidden state of the network is

propagated using skip connections [27]:

h<ti> = h<ti−1> + fθ(h
<ti−1>) (28)

where h<ti> is the hidden state at depth ti and fθ is a layer of a neural network. Notice that t

now represents the depth of the network as it can be interpreted as a dynamical system evolving

with time, hence the propagation from one layer to the next. This can be interpreted as the Euler

discretization of some continuous hidden state dynamics with constant step size ∆t = 1 (see

Eq. 27). By adding more layers, thereby making the step size smaller and smaller, we reach a

continuous-depth, and continuously evolving hidden state, in the limit. The gradients, hence the

vector field, of the hidden state is then determined by fθ. We thereby arrive at the definition of a

Neural Ordinary Differential Equation according to Kidger [2]:

Definition 2.1 (Neural ODE). “A Neural [Ordinary] Differential Equation is a [ordinary]

differential equation using a neural network to parameterize the vector field”. It is defined by the

input to the network which is also the initial condition of the ODE x = h(0) and neural network

fθ parameterizing the vector field of the ODE:
dh
dt
(t) = fθ(t, h(t)).

The function h(t) is the solution of the ODE and determines the propagation of the hidden state.

The ODE is then evolved starting at the initial condition h(0) (the input to the network) until

some fixed “depth” T . The then obtained hidden state can be read out using linear regression or

any type of feed-forward neural network architecture. The input x can also be first non-linearly

expanded by some network before feeding that into the Neural ODE [2].

Notice that t here does not denote time but rather the depth of the network, although it is unclear

whether depth is even the right term to use here, since the notion of layers has disappeared in this

architecture.

Figure 8b shows a standard residual neural network (ResNet) on the left and a Neural ODE on

the right. Notice how the ResNet evaluates the hidden state only on the discrete depth levels of

the network, whereas the Neural ODE on the right allows hidden state evaluations at any network

depth.

The Neural ODE architecture formulates the computation graph in Figure 8a. The ODESolve

block consists of a series of Euler discretization steps (or other solvers), which can be

backpropagated through one by one even with existing automatic differentiation tools provided

by most modern deep learning frameworks. However this poses high memory costs and extra

accumulating error. Therefore, the authors of [1] proposed to use the well-known adjoint

sensitivity method [41] in order to compute the gradients necessary for training the network.

This approach allows a tradeoff between speed and error and poses only constant memory costs

as it uses a second ODE to solve backwards in time.
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(a) Adapted from [2]

(b) Source: [1]

Figure 8. (a) The computation graph of a simple Neural ODE. (b) Illustration of the discrete-depth

hidden state propagation in residual neural networks (left) and the continuous-depth hidden state

propagation in Neural ODEs (right).

The original Neural ODE architecture [1] was proposed as the continuous limit of feed forward

ANNs and not on sequence data models. However, the potential of a continuously evolving

hidden state for sequence models is apparent and was already followed up on by Rubanova [6],

inter alia. One issue preventing Neural ODEs to be applied to time series directly is the fact

that the hidden state evolution is deterministically determined solely by the initial condition. To

overcome this drawback, Kidger showed that yet another type of differential equations – Neural

Controlled Differential Equations (CDEs) – are the continuous time limit of RNNs [42]. We will

dive deeper into this approach in Section 3.5.

2.4. Summary

The present chapter roughly outlines the required theoretical background necessary for the

remainder of this work. It is meant to be an overview of different relevant topics, it was not

written to be a detailed and comprehensive tutorial of these topics. The reader may refer to [1,

4, 9, 10, 14, 19, 22, 24, 25, 28] for deeper insights.
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3. A Taxonomy of Universal Time Series Analysis

After having grasped the problem statement and relevant theoretical background, the now

following chapter provides the first contribution of this thesis by outlining and categorizing most

of the proposed approaches in modern literature. While classic problem specific approaches

have existed for a very long time (cf. [43, 44, 45, 46]), they were mostly over-engineered or not

generalizable. Standard domain-independent deep learning blueprint architectures for sequence

processing to this day only exist in the form of discrete-time RNNs. This blueprint has only

recently been generalized to the continuous-time domain [42] and will with high probability

become the new blueprint approach. However, this approach was only conceptually derived and

has yet to be proven to be effective on real world data domains.

This chapter gives an overview over the many different types of approaches to deal with

sequence processing, taking multiple objectives into account. Special attention is given to the

three fundamental problems which were outlined in Section 1.2. Every discussed method is

evaluated with regard to these challenges. The goal of this chapter is to serve as a reference for

many different approaches, their capabilities, advantages, and disadvantages.

These are the aspects which the analysis of the respective methods will center around (cf. also

[2, 47]):

Different lengths. Two sequence observations in the real world are hardly ever of the exact

same length. For a method to be universally applicable it is therefore essential that it can handle

datasets that contain sequences of different lengths without discarding information.

Irregular Sampling. For much the same reason as above, real world data usually comes with

irregular temporal intervals in between observations. While simple methods can be used to

pre-process datasets by artificially re-sampling them into regular intervals, each of these methods

discards some information along the way (see Sec. 3.1 for a discussion). It is therefore desirable

for a model to naturally “live” in continuous.

Missing Values. This is distinct from the concept of irregular sampling. Some models may still

assume a constant time interval in between observations (i.e., it expects values at each timestep),

however are still able to represent missing values. True universally applicable methods however

can be used by only feeding them the actual observations as they come in, instead of having to

input tokens for missingness when no data is observed.

Partial Observation. As stated in Section 1.2, partial observation directly follows from

irregular sampling, when observing dimensions separately. For the same reasons, incoming

data therefore must be allowed to provide new inputs only to a subset of the dimensions under

consideration.

Informative Missingness. This refers to the insight that the fact that an observation is missing,

or a gap between two observations is longer or shorter than usual, carries information on its own.

Not every model that can handle partial observations and irregular sampling also is able to learn

from this concept.
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Discrete or Continuous Hidden State. Since the hidden state of a model is an encoding of the

information it deems to be relevant at the time in question, it is desirable that the hidden state is

continuous in its entirety. This allows readout sampling at every point in time and also updates to

the hidden state without regard for regular temporal intervals. Since the state of every enclosed

and observed system is considered to be encodable into a fixed dimensional space, continuity

only follows from this assumption.

Burden on Training. Does the proposal extend another approach in such a way, that training

becomes significantly more time or energy consuming? Or does it even make training more

efficient?

Some methods may appear in multiple categories. In this case the discussion on the models was

done with regard to their current categorization.

3.1. Basic Methods

Before considering actual model-based approaches, a rational approach to tackle several of

the aforementioned problems is to properly pre-process the sequence prior to feeding it into

a standard discrete model incapable of handling universal time series observed in irregular

intervals. Usually, such approaches yield a high loss of information and are therefore undesirable

in general. They trade off information loss versus simplicity.

Methods in this section are mostly not proposed by certain literature, they rather the rational

choice decisions for how to approach the given problems using well-known models.

3.1.1. Discretization Methods

When using models that were designed for regular time intervals, one could simply fit the input

data into the model one after the other, without regarding the differing intervals in between

observations. However, this is highly undesirable for multiple reasons. First, a lot of information

is discarded (that’s what informative missingness means). And second, each model is based on

an assumption about the temporal evolution of observations. An RNN for instance is based on

the assumption that observations are evenly spaced in time. Given three observations at times

0s, 10s, 100s and feeding them sequentially into the network, the network would give the same

results as if the observations have been recorded at times 0s, 10s, 20s, although the desired results

can be vastly different.

The classical approach for still using a plain RNN with irregularly sampled data is therefore to

pre-process the data in such a way, that the resulting sequence is evenly spaced in time again.

This is achieved by binning multiple observations within a certain time span by averaging them

for instance. The result is a time series that has regularly spaced observations. However, the

operation of averaging multiple observations also discards information. Furthermore, when there

are really big gaps in the series, then the bin intervals have to be at least as big as half of the biggest

gap. The larger the bin size, the more information is lost since one has to average over more

observations. For these reasons, this approach can only be used under certain circumstances,

where there are no big gaps in the time series, and every interval in between observations is so

small that the binning does not discard relevant pieces of information (i.e., the standard deviation
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of the binned observations are small, see [1] e.g.). In that case, binning can even help to speed

up computation times.

3.1.2. Imputation and Interpolation

Missing data (i.e., given a regular time interval, observations are made only at a subset of all

possible timesteps) can be replaced with imputed or interpolated values prior to feeding the data

to a model. The actual data the model then receives is regularly spaced in time and can therefore

be processed by a huge variety of models designed for this purpose. Interpolation refers to the

technique of filling in missing data by taking only the last and next observation into account.

The simplest form is linear interpolation, where the linear function (a straight line) connecting

the two adjacent observations is used to re-sample at missing timesteps. Imputation on the other

hand refers to generating the missing data based on all the values of the entire sequence. A

simple example is to just fill in the missing spots with the overall average of all observations

across time.

Notice that this technique can in principle be applied to every irregularly samples sequence, by

setting the time interval to the shortest gap between two observations of the series. However,

this often leads to the majority of the inputs to be the token for missing data, which comes

at a greater computational cost. It is therefore advisable to apply interpolation or imputation

only to sequences which are regularly sampled, with just a few data points missing at some

timesteps.

An important distinction has to be made in terms of the different types of approaches for filling in

missing data. One can either choose to interpolate or impute based on a priori knowledge about

the data domain under consideration. Che et al. [47] for instance note that in medical datasets,

each observed variable tends to fall back to a certain default value during long intervals of missing

data. Based on this observation, it is rational to fill in missing data points with this known default

value, or at least with the overall average of the observed data. Such approaches are possible

without looking at the training data to select a function for imputing. On the other hand, when

no a priori knowledge is available, the imputation function may be learnt from the training data

[47, 48, 49, 50]. The result of both types of methods however is the same: A regularly spaced

time series which can be fed into any model.

Since such methods rely on prior pre-processing before feeding data into a model, the notion of

a continuous hidden state is not considered here.

It is furthermore necessary to distinguish based on the randomness of the missing data, as [51]

noticed, so as to not introduce a bias when imputing data into these missing spots:

• Missing Data Completely at Random (MCAR): Here, missing data occurs completely at

random and does not depend on other missing or known data.

• Missing at Random (MAR): In this case, the probability of an occurrence of a missing

datapoint may be dependent on other known values, but independent of other missing

values. In other words, the missing data may be imputed based on other attributes or

timesteps in the series.
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• Not Missing at Random (NMAR) This occurs, when the probability of missing data is

dependent on the actual value of the missing data. In such a case, imputation based on

other values may introduce a bias and become unreliable.

While any imputation method may be used for MCAR, more caution is required when working

withMAR data. Imputationmay be completelymisleadingwhen dealing with NMARdata.

Basic imputation methods that do not require training as summarized by [47] are:

• Filling in the arithmetic mean over all observations in the series.

• Filling in the arithmetic mean of the two adjacent observations.

• Filling in the last-observed data.

• Linearly interpolating based on the two adjacent data points.

• Interpolating by means of a cubic spline.

• etc.

Approaches that do not rely on any a priori knowledge and need to be trained on the training data

are usually more sophisticated. The most relevant approaches proposed in literature are therefore

collected and will be dedicated a paragraph each for discussion. The ordering is chronological of

the publication dates.

K-Nearest-Neighbor (Batista et al. [52])

The authors of this approach propose to utilize k-nearest neighbor search for imputing missing

values in any multivariate time series. Given a suitable similarity measure between sequences,

missing values are imputed by retrieving the k nearest neighbors to the sequence, according to

the similarity measure in use, and then using the retrieved sequence to extract the necessary

information for imputation. This can be done for instance by averaging over the retrieved

sequences. It is also possible to retrieve only short chunks of high similarity and use only the

direct vicinity of the missing data point.

As the main advantages of this approach, the authors state that the method is suitable for both

discretely and continuously valued attributes (as only the similarity measure has to be defined

on these domains). They also note that this approach is training-free. No training is required, as

the data itself is used as a “lazy model” [52]. It is therefore also possible to add more data later,

as this increases the model expressivity as it becomes more likely that new sequences find other

sequences of high similarity which already are stored in the dataset.

However, as with all case-based approaches, the main drawback is that in order to perform the

k-nearest neighbor search, similarities have to be computed with each sequence in the dataset.

This can become expensive quite quickly. To mitigate this, it is possible to pre-process the

dataset in a way that clusters sequences of high similarity together (such that only one similarity

computation is done thereafter) or prunes sequences to remove parts of less relevance [3].

The authors also note that their approach is very universal and has to be adapted to the specific
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domain where it is deployed on. The approach therefore works on data which contains missing

values according to MCAR, the most universal unbiased case.

Irregular sampling, missing values and partial observation can all be handled by this approach,

depending on the similarity measure chosen. The authors unfortunately do not go into detail on

this issue.

MICE – Multiple Imputation by Chained Equations (Azur et al. [53])

This paper serves as a meta study on the approach of chained equations for time series imputation.

They show that this method can be used for MAR data, making it slightly more restrictive.

The term chained equations refers to the fact that the imputation process is done in multiple

steps:

1. First, basic imputation is performed by, for instance, inserting the mean value of each

respective attribute over the entire sequence into all the spots where data is missing. The

authors denote this as setting “place holders” [53] into these spots.

2. Then, one attribute is set back to missing, resulting in only one attribute having missing

values.

3. Regression is performed by setting the attribute that has missing values as the dependent

variable, and all other attributes as the independent variable. That way, the missing data

points can be predicted based on the other variables. Notice, that here a noise component

must be introduced as well.

4. Now the missing spots are replaced by the values obtained via the regression model. When

performing regression thereafter for the other attributes, these newly imputed values will

also be used for this.

5. Steps 2 to 4 are repeatedly executed for each attribute which contains missing values. At

the end, each attribute has been imputed with missing values based on regression using the

other attributes as independent variables.

This cycle is repeated for a pre-determined number of times, with the goal of the values

converging towards the end.

Furthermore, the entire process is done on multiple copies of the original dataset, yielding

multiple datasets with slightly differently imputed values in each of them in the end. Inference

shall then be conducted on all these copies, and the results aggregated afterwards.

This method is mostly proposed for non-sequential data, however the ideas are useful in the

context of time series models as well.

Random Forests (Stekhoven & Bühlmann [54])

This method seeks to propose an approach that is applicable to arbitrarily valued and multivariate

datasets. Even mixed-type datasets containing both categorical and continuous data can be

handled by their model, called missForest. It furthermore works without assumptions about the
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stochastic data distribution underlying the dataset.

They propose to train a random forest on the observed data, and then iteratively use this random

forest to make predictions on the missing data. This allows a parameter-free model that can be

quickly deployed. They show that this approach is more powerful than using k nearest neighbors

or chained equations.

Principle Component Analysis (Josse & Husson [55])

Principle Component Analysis (PCA) is a staple of multivariate statistics for a long time. This

method aims to identify a low-dimensional representation of the data being observed. The

individual dimensions of this found representation represent the principle components of the

dataset.

The authors propose to iteratively perform PCA until convergence. Each step using the found

principle components for imputing the missing data.

PCA is a highly manually engineered methods and requires deep knowledge of the domain where

it is applied to in order to get reasonable results. The choice of the number of dimensions is only

one issue.

Gaussian Processes (Rybicki & Press [43], Alvarez & Lawrence [56], Li & Marlin [57] Futoma

et al. [58], Soleimani, Hensman & Saria [59])

Now this type of approach has been proposed by many researchers as it is a simple yet effective

way to model data frequency separately from the actual data. Sometimes, this method is used for

imputation [58] while others use the frequency estimation as additional input to a model without

imputing data [6].

The individual proposed approaches are discussed in greater detail in Section 3.4. Here, we will

only give a short overview of the idea with regard to imputation.

The underlying assumption that must be applicable to the data at hand is that the variables must be

sampled from an assumed normal distribution. When this is the case, gaussian process methods

are applicable.

With this assumption, it is then possible to create a regressor based on gaussian processes that

will provide a probability distribution for every regressed value. It thereby inherently models

uncertainty about the missing values and allows for sampling from a probability distribution

to generate these missing values. Such methods can naturally handle partially observed and

irregularly sampled sequences of differing lengths. Furthermore, this approach also allows for

sampling new observations from previously completely unobserved timesteps.

While the data itself can be modeled using a gaussian process, it is also possible to model just

the frequency of observations. This allows for models to learn from this frequency, which allows

inference and the notion of informative missingness to be taken into account by a model.
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GRU-D (Che et al. [47])

This approach is very popular among those which are willing to modify the model architecture

of an RNN. It is therefore discussed in detail in Section 3.2.

However, it is still mentioned here since the approach only works given some underlying

assumptions on the data. In this approach, a GRU cell is modified in such a way, that the hidden

state gradually decays over time until a new observation comes in. The authors designed this

approach for application on medical datasets which is a well-known domain. They pose the

reasonable assumption that after a certain variable has not been observed for a long time, the

influence of this variable on the current state should be minimal. They therefore also let the

input variables decay over time towards some default value. This is a type of imputation that can

only be applied when certain assumptions about the underlying data hold.

BRITS (Cao et al. [48])

The authors of this approach seek to propose a solution for imputing data without making any

assumption about the distributions or inter-dependencies of the underlying dataset. Instead, the

propose to use a bidirectional Recurrent Neural Network to learn these dependencies on its own.

By using a bidirectional network, information is taken into account from both the ensuing and

preceding data of missing observations. An RNN can naturally produce the outputs at the data

points of missing spots. Furthermore, the authors showed that the same network can be used for

imputation and inference at the same time. This is achieved by feeding observed values into the

network at steps where data is available, while feeding predicted data back into the network when

no actual data is observed.

This approach however does not allow for irregularly sampled or partially observed data directly.

The first issue is overcome by the authors by introducing a decay term that lets the hidden state

inside the network decay over time. The latter problem is not explicitly stated in the paper.

However, this may also be overcome by combining the observed with the predicted values and

feeding a complete set of data back into the network.

Figure 9. The proposed method by Cao et al. Figure from [48]
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Generative Adversarial Networks (Luo et al. [50])

Here, the authors propose to use a Generative Adversarial Network (GAN) to not only predict the

missing values, but to generate the entire sequence. For this purpose, a GAN is trained such that

it will generate sequences based on a sample from a latent space that consists of random noise.

This model therefore learns a distribution over all possible sequences in this domain. Arbitrary

intervals are possible to be generated by this GAN since it uses an adapted GRU cell for this

purpose.

Given a sequence to impute, random noise is generated in such a way that the resuling generated

sequence has high similarity with the observed one. Since the generated sequence will be fully

observed and regular, missing data points can be imputed in that way. The then constructed fully

observed series can be fed into any normal network architecture.

Overall, this approach is certainly an overkill in most situations as it poses very high additional

costs.

Figure 10. The proposed method by Luo et al. Figure from [50]

Interpolation Neural Network (Shukla & Marlin [49])

The authors of this approach use a manually engineered interpolation network with only sparse

learnable parameters in order to interpolate data and produce an intensity function that provides

the data frequency at every point. By combining high and low pass interpolation approaches, it

is possible to construct a stable interpolation prediction network.

The interpolated data together with the frequency map is then fed into any type of standard neural

network as it is regularly sampled and partially observed.
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Figure 11. The interpolation network. Figure from [49]

3.1.3. Additional Input

Neural networks are arbitrary function estimators and as such can model in theory every mapping

from input to output data. They learn to extract the relevant information from the incoming data

to produce as accurate results as possible. It is therefore reasonable to simply feed additional

information to the network when series are not sampled regularly. For instance, the interval ∆t

can be concatenated to the observed data and fed to any model. In the case of missing data or

partial observation, an observation mask can be created and also concatenated to the observation

and then fed to the network. Thereby the model receives all information necessary to entirely

describe the observed time series. It can learn to interpret the observational mask as a means to

decide which information from the other input it deems to be relevant.

In literature, two distinct approaches can be found. The naive approach is, as described, to not

alter any model architecture and simply concatenate the observed data, the time interval, as well

as the observational mask and feed everything to the model [60, 61, 62]. In many cases however,

model convergation can be significantly enhanced by altering the architecture in such a way to

take advantage of the different kinds of inputs. Several such approaches of the latter category

will be described in this section.

Let us first formally define how to construct an observational mask as proposed by Kidger

[2].

Definition 3.1 (Observational Mask). Consider a time series TS = ((t1, x
<t1>), ..., (tn, x

<tn>))

according to definition 1.1. An Observational Mask is then constituted by a function ψ:

ψ : R ∪ {∅} → {0, 1}

z 7→

0, if z = ∅
1, if z ∈ R

that replaces the missing value token ∅ with 0 and every other value by 1.

The data itself is then also mapped onto real values by simply replacing the missing value token

∅ with 0:

φ : R ∪ {∅} → R
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z 7→

0, if z = ∅
z, if z ∈ R

Together with the observationalmask, themodel can then learn that a 0 does only sometimesmean

that the data was observed with value 0, while it sometimes means that no data was observed at

all. It can then draw different conclusions from this information [61].

The methods reviewed here are (in chronological order of the data of publication):

Intensity Functions (Du et al. [63], Rubanova, Chen & Duvenaud [6])

Instead of simply concatenating more information to the input of a model in use, the idea of

intensity functions is to continuously model the frequency of observation at any given point. [6]

use simple poisson point processes, which model the likelihood of an observation at any given

point, and feed this information to the model addtitionally. They showed empirically that this

information enhances model performance in principle by applying it to a toy dataset. In their

real word physionet dataset however, they noticed that this additional information yielded no

performance gain.

[63] on the other hand propose an extension to a RNN architecture that not only outputs

predictions about the observed data, but also models the poisson process likelihood of a next

observation coming in.

Since such models have access to the current observational rate (frequency of observations), they

are able to extract information from the fact that data is either missing or unusually frequently

observed.

Time Embeddings (Sousa, Pereira & Soares [64])

Instead of just feeding ∆t or ti to a network in addition to the observed data, the the authors

propose to embed this information into a latent space containing information also on the frequency

of the observed data.

3.2. RNN Cell Adaptation Methods

After looking at approaches that modify steps prior to feeding the data into the model, i.e.,

modifying the data before feeding it to a standard model, we will now look at approaches that

propose to alter RNNmodel architectures to properly take advantage of the additional information

available. Still, the model has to be fed this additional information, which may be done with

sophisticated techniques as discussed in the preceding section.

In the context of RNNs, it is vital to reiterate the fundamental assumption of such networks:

They keep a hidden state which is updated upon receiving new data input. This hidden state is

a representation, or encoding, of the observed system, with regard to the objected inference, off

of which predictions can be made. In standard RNNs this hidden state remains constant – or

undefined – in-between observations. Most of the proposals therefore change aspects about how
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Table 1: Comparison of the presented basicmethods. “(pc)” denotes a partially continuous hidden

state. Most of the approaches serve the pipeline prior to feeding data into the model and therefore

pose no implications for the hidden state of any ensuingly adopted model (–).

Method
Different

Lenghts

Irregular

Sampling

Missing

Values

Partial

Observation

Informative

Missingness

Hidden

State
Costs

KNN [52] × – high

MICE [53] × – low

Random Forests [54] × – low

PCA [55] × – low

Gaussian Proccesses

[43, 56, 57, 58, 59] ( ) – low

GRU-D [47] (pc) low

BRITS [48] × (pc) low

GAN [48] × – high

Interpolation

Network [49] – low

Intensity

Functions [63, 6] – low

Time Embeddings [64] – – low
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the hidden state evolves and how it is updated upon an observation coming in.

The approaches discussed here in chronological order are as follows:

Phased LSTM (Neil, Pfeiffer & Liu [65])

This model is an extension to the standard LSTM cell in the context of Recurrent Neural

Networks. They introduce a new time gate into the architecture (Fig. 12b) that controls when

updates to the hidden and cell state are allowed. It models an oscillation between open and

closed states, thereby forcing updates only in certain intervals. The oscillation’s parameters are

learnt during training.

This approach was motivated by sensor data collections that produce data with very short time

gaps yet still irregularly. It is most probably not suited for applications that include very long

gaps in the sequence.

Figure 12. Illustration of a standard LSTM (a) and the Phased LSTM (b). Figure from [65]

CT-GRU (Mozer, Kazakov & Lindsey [66])

Here, instead of an LSTM, a GRU cell is adapted to be applied to the continuous time domain.

They therefore replace the gating approach with a scaling approach. The idea is to scale stored

information in a way that is dependent on the length of the gap since the last data has come in.

Essentially, the information kept inside the cell exponentially decays over time.
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Figure 13. The governing update equations of a CT-GRU. Figure from [66]

Time-LSTM (Zhu et al. [67])

This approach adapts again the architecture of an LSTM cell. Three distinct types are proposed.

Each time, one or several new time gates are added, which are modeled in a similar way to the

standard LSTM gates, and then included into the update equations. This way, the model can

learn to extract gating information from ∆t, hence learn depending on the time gap, how much

and how to update the hidden and cell states.

Figure 14. An illustration of the different types of extensions to the LSTM architecture as proposed

under this approach. Figure from [67]

Time-Aware LSTM (Baytas et al. [68])

This extension to the LSTM architecture introduces a single additional gate that receives ∆t

at each timestep. This allows the cell state to be updated based on this gating operation. The

model is thereby capable to better represent short and long term dependencies in the irregular

data domain.

GRU-D (Che et al. [47])

This approach was directly motivated by the medical domain. It was therefore developed with

certain assumptions that are applicable to medical data, but not necessarily to other domain. The

two basic assumptions the authors based their architecture on, are:

• The influence of a variable that has not been observed for a very long time should gradually
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Figure 15. An illustration of the architecture of the T-LSTM cell. Figure from [68]

decay.

• A variable that has not been observed for a very long time will tend to fall back to some

default value.

Based on these assumptions, the authors propose the following decay term:

γ<ti> = e−max{0,Wγ∆<ti>+bγ}

Notice that this term contains two learnable parameters Wγ and bγ . As depicted in Figure 16,

such decay terms are inserted both for the hidden state, as well as the input value. It is thereby

possible to draw conclusions based on the fact that data has been missing for a long time.

Figure 16. Top left shows a normal GRU cell, whereas bottom left shows the proposed GRU-D cell

which introduces two decay terms. This cell gets as input the complete set of information as discussed in

the beginning of this section. Figure from [47]

ODE-RNN (Rubanova, Chen & Duvenaud [6])

We now look at the first approach that proposes a continuously evolving hidden state in between

observations. The authors propose to have a standard GRU cell, however, instead of having
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constant hidden states in between observations, they let the hidden state evolve according to a

Neural ODE. They show, that this is a generalization of the CT-GRU cell [66].

After the ith observation, the hidden state evolves continuously according to this Neural ODE

from ti to ti+1 until a new observation comes in, at which point the hidden state is updated based

on standard GRU update equations. However, instead of using the hidden state from the last

timestep, the evolved hidden state at time ti+1 is used instead. This way, the model only implicitly

depends on ∆t.

The hidden state is here evolved continuously in between observation, but updated discretely

upon a new observation, resulting in jumps.

Figure 17. The left shows an illustration of an ODE-RNN. Figure from [6]

GRU-ODE-Bayes (De Brouwer et al. [69])

This approach was published independently from [6] and is very similar. It also utilizes a GRU

cell to build a Recurrent Neural Network for time series inference, by also using a Neural ODE

to evolve the hidden state in between observations. Updates to the hidden state are done upon an

incoming new observations in a discrete bayesian fashion.

ODE-GRU-D (Habiba & Pearlmutter [70])

This approach was motivated by the effectiveness of the GRU-D cell [47] and the applicability of

Neural ODEs to continuous time domains to leverage the notion of informative missingness. It is

yet another similar work to [6] and [69] as it proposes to let the hidden state evolve continuously

according to a Neural ODE. The difference being that this approach is an extension to the GRU-D

cell.

TA-GRU (Lukoševičius & Uselis [71]

The authors here propose to update Equation 22 governing the hidden state update of a GRU cell

as follows:

h<t> = (∆t Γu) ∗ h̃<t> + (1−∆t Γu) ∗ h<t−1>

By adding this to the update equationwithout making further changes, themodel does not increase
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Table 2: Comparison of the presented RNN-adaptation methods. (d) denotes a discrete

hidden state, (pc) denotes a partially continuous hidden state (mostly continuous in-between

observations, but updated discretely upon an observation).

Method
Different

Lenghts

Irregular

Sampling

Missing

Values

Partial

Observation

Informative

Missingness

Hidden

State
Costs

Phased LSTM [65] × × (d) low

CT-GRU [66] × × (d) low

Time-LSTM [67] × × (d) low

T-LSTM [68] × × (d) low

GRU-D [47] (pc) low

ODE-RNN [6] × (pc) low

GRU-ODE-Bayes [69] × (pc) high

ODE-GRU-D [70] (pc) high

TA-GRU [71] × × (d) low

the size of its parameters, thereby making this a very lightweight approach. It allows the update

equation to adapt to the time gap of the observation.

3.3. ESN-based Methods

Echo State Networks are also a staple in sequence processing, however, just as RNNs, are built

to work with regularly spaced and equally observed data. One could also take the naive approach

here an simply feedmore information to the network, however, in the case of ESNs it is evenmore

difficult to get good results since no relationships are learnt, the information is simply expanded

into the reservoir.

Several authors therefore proposed various techniques to extend the basic architecture of ESNs in

order to be applicable in more general circumstances when working with time series data.

In chronological order, these methods were deemed most relevant:

Leaky Integrator Neurons (Jaeger et al. [72], Lukoševičius et al. [73])

The notion of leaky integrator neurons has found its way into standard ESN definitions for a long

time. The standard way of updating the hidden state of an ESN (Eq. 24) includes a leaking rate α

out of the box. This leaking rate specifies the speed of the network. A higher leaking rate leads

to the reservoir evolving more quickly when new data comes in. Another way to think about the

leaking rate is that it specifies how much information of the previous hidden state leaks into the
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Table 3: Comparison of the presented ESN-adaptation methods. (d) denotes a discrete hidden

state.

Method
Different

Lenghts

Irregular

Sampling

Missing

Values

Partial

Observation

Informative

Missingness

Hidden

State
Costs

Leaky Integrator

Neurons [72] × × (d) low

CT-ESN [75] × × (pc) low

TA-ESN [75] × × (d) low

updated hidden state.

The authors of [72] take this one step further, by not setting a constant speed of the network, but

rather setting this value based on the most recent time gap, thereby adapting the speed according

to the incoming data. Equation 24 to update the hidden state is adapted to:

h<ti> = (1− αγ(ti)) h
<ti−1> + αγ(ti) h̃

<ti> (29)

with γ(ti) = ||x<ti> − x<Ti−1>||.

Continuous-Time ESN (Anantharaman et al. [74])

The authors of this paper demonstrate a Neural ODE where all layers of the defining neural

network are fixed at random, and only the linear readout is trained. This can be seen as a

continuous time counterpart of Echo State Networks.

However, here, the hidden state is still discretely updated when a new observation comes in.

Furthermore, stable empirical evaluation is missing. Overall, the paper leaves several questions

unanswered and can therefore not be considered to be a baseline approach.

TA-ESN (Lukoševičius & Uselis [71])

The approach here is overall very similar to the leaky integrator neurons approach from [72],

albeit they take the time gap ∆t directly:

h<ti> = (1− α∆t) h<ti−1> + α∆t h̃<ti> (30)

However, the main contribution here is the proposal of a time gap scaling function that serves

the purpose of not letting the term (1 − α∆t) < 0. The function is defined as: f(∆tn) =

1− e−∆tn .

3.4. Stochastic Methods

The methods in this section are repetitive. All of them serve to impute data prior to feeding it

into the network. Still, it was decided to dedicate a section to these approaches to give special
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consideration to stochastic approaches. They were briefly mentioned in Section 3.1.2.

The approach here is more or less the same in every proposed paper [43, 57, 58, 59] going back

decades. The authors of [43] from 1992 do note, interestingly, that the methods discussed in

their paper should have been pointed out in earlier decades, which, however, was not possible,

since the available computing power had just reached a level where such approaches had become

feasible.

Gaussian processes are used to interpolate time series data. The result of such a process is a

probability distribution over all possible interpolation functions from which data points can be

sampled at arbitrary intervals. Figure 18 shows the result of such an operation.

Figure 18. The result of a gaussian process for interpolation.

3.5. Neural Differential Equations

Neural ODEs were introduced in Section 2.3.3 as popularized by [1]. The potential of a

continuous hidden state for time series analysis is apparent and was already briefly mentioned in

the original paper [1]. Since then, many researchers went to work and extended or applied the

idea of Neural ODEs to sequence data processing in order to cope with irregularly sampled and

partially observed data. Some approaches already are quite sophisticated, however, conclusive

empirical evidence is still rare. Patrick Kidger can be seen as being the most influential author

in the field, aside from the original authors of the Neural ODE paper, as he generalized the

approach to a mathematical framework [2]. He therefore appears as an author in many of the

following works.

Latent ODEs (Chen et al. [1], Rubanova, Chen & Duvenaud [6])

This method is a sequence to sequence model implemented as a variational autoencoder. An

ODE-RNN is is used for encoding, with the special property that it runs backwards in time, while

a plain Neural ODE is used for decoding. The authors motivate this approach as opposed to using

the ODE-RNN directly as an autoregressive model, mainly by interpretability of the hidden state.

Furthermore, latent variable models are able to model uncertainty via the probability distribution

that is encoded. They also argue, that latent variable models perform better in domain where data

is sparsely sampled.
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The ODE-RNN (Fig. 19 left) is, architecture-wise, a normal RNN with any arbitrary cell

architecture. The only difference is that the hidden state in between observations evolves

according to a Neural ODE. This means that in the update equations of RNN cells, the previous

hidden state h<ti−1> has to be replaced by ODESolve(fθ, h
<ti−1>, ti−1, ti), the solution of an

ODE, given the initial condition h<ti−1>, computed in the interval (ti−1, ti) according to the

vector field parameterized by the neural network fθ. This introduces a completely new neural

network that has to learn the trajectories of the hidden states.

The final hidden state of the the ODE-RNN is then fed into yet another feed-forward neural

network that outputs two values specifying mean and variance of the latent state. This is used

as the approximate posterior at time ti. A sample from this latent state is then generated and

subsequently used as the initial condition for another Neural ODE which reconstructs the time

series starting at t0. This second reconstructing ODE is completely deterministic.

The authors showed that this approach is very powerful for interpolation and extrapolation, while

they did not provide conclusive empirical evidence that the hidden state as a representation for

classification tasks provides a leap with regard to other approaches.

Figure 19. Illustration of a latent ode. Figure from [6]

GRU-ODE-Bayes (De Brouwer et al. [69])

Already described in Section 3.2.

Neural Controlled Differential Equations (Kidger et al. [42], Kidger [2])

As described in this work’s introductory remarks, a perfect temporal model would have a

continuous hidden state, even upon new observations coming in. All approaches discussed until

now either have completely discrete hidden states (stay constant in between observations), or

partially continuous hidden states (continuous in between observations, but discretely updated

upon a new observation coming in). Discrete updates to continuously evolving hidden states are

necessary due to ODEs being completely determined by their initial condition and thereafter

evolve deterministically. Controlled Differential Equations (CDEs) are well understood in

mathematics and extend ODEs in such a way that the ODE can adapt its trajectory according to

a second function which may not be completely available at the beginning. Kidger et al. applied

the same idea that underlies Neural ODEs to CDEs in order to obtain Neural CDEs. This CDE
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can be thaught of as a ODE that is driven by a second function. In the context of Neural CDEs

this second function is proposed to be an interpolated version of the observations. The authors

note that this interpolation (for which they use cubic splines) is just a necessary means of feeding

the observations to the model, which requires a continuous representation of the input data, but

does not constitute a pruning of information that other interpolation methods often entail.

A Neural Controlled Differential Equation is the solution to the following Riemann-Stieltjes

integral, as defined in [2]:

h(t) = h(0) +

∫ t

0

fθ0(h(s))dx(s) (31)

where h(0) = fθ1(x(0)) the input data embedded via some neural network fθ1 : Rdx → Rdh ,

fθ0 : Rdh → Rdh×dx and x : R → Rdx the interpolated input data.

They show that this model can be seen as the continuous time limit of RNNs and that it can

naturally handle irregularly sampled and partially observed data by interpolating each channel

individually.

Figure 20 depicts on the left an approach where the hidden states are updated by discrete jumps

upon observing new data. Neural CDEs are shown on the right, where the observations are

embedded into continuous path space (by cubic spline interpolation for instance) which then

drives the Neural CDE’s continuous hidden state.

Figure 20. Illustration of Neural Controlled Differential Equations. Figure from [42]

Neural Rough Differential Equations (Morrill et al. [76])

This approach is an extension to Neural CDEs motivated by extremely long time series and their

long-term dependencies. Here, instead of one continuous interpolated function driving the ODE,

instead multiple data points are subsumed via their log-signature over short intervals which. It is

these summaries over intervals that is then used to drive the hidden state. The term used for this

approach stems from the mathematical background of rough path theory.

Neural Stochastic Differential Equations (Tzen & Raginsky [77], Li et al. [78], Hodgkinson

et al. [79], Kidger et al. [80], Kidger [2])

This type of Neural Differential Equation is yet another extension to Neural RDEs. Here,

brownian motion is introduced in addition to the input signal so that some statistical uncertainty
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Figure 21. Illustration of Neural Rough Differential Equations. Figure from [76]

Figure 22. Illustration of a standard Neural CDE (a) and the proposed Attentive Neural CDE. Figure

from [81]

can be represented. [2] notes that a hierarchy can be constructed of generalizations starting from

Neural ODEs, to Neural CDEs, to Neural RDEs and finally to Neural SDEs.

ODE-GRU-D (Habiba & Pearlmutter [70])

Already described in Section 3.2.

Attentive Neural Controlled Differential Equations (Jhin et al. [81])

This interesting paper proposes to use two separate Neural CDEs for modeling attention-inspired

behavior. One Neural CDE is driven by the input signal directly and produces a path that serves

as an attention mechanism, which is then in turn used to drive the second Neural CDE.

Neural Flows (Biloš et al. [82])

Here, the authors proposed the idea to directly model the hidden states trajectory by a neural

network, instead of having the neural network model the vector field which then requires several

calls to an ODE solver for a forward pass. In their approach, the solution trajectories are directly

approximated, yielding less computational costs and favorable performance in theory.

47



Table 4: Comparison of the presented methods that rely on NDEs. (pc) denotes a partially

continuous hidden state, (c) denotes a continuous hidden state.

Method
Different

Lenghts

Irregular

Sampling

Missing

Values

Partial

Observation

Informative

Missingness

Hidden

State
Costs

Latent ODEs [1, 6] × (pc) high

GRU-ODE-Bayes [69] × (pc) high

NCDEs [42, 2] (c) high

NRDEs [76] (c) high

NSDEs [77, 78, 79, 80, 2] (c) high

ODE-GRU-D [70] (pc) high

Att. NCDEs [81] (c) high

Neural Flows [82] × × (c) high

EXIT [83] (c) high

EXIT (Jhin et al. [83])

The authors of this paper were motivated by the issue they saw in having an interpolated input

data path used as the driving path for a Neural CDE. They approached this in a similar way as

[81], as they also propose to use two stacked Neural CDEs, where the first one would produce a

path that is then used to drive the second one. Here, however, the generated trajectory of the first

Neural CDE is directly applied to the second one, while in [81], the result is first multiplied by

the original interpolated input data, in order to get a path corrected for attention.

3.6. Summary

This section covered many different ways to approach universal time series processing. First,

simple methods were discussed that pre-process the data in such a way that a normal black-box

model meant for regular time series can be used. This was either done by imputing missing

values, or by appending more information, such as the elapsed time since the last observation,

to the data. Next, methods were discussed that alter parts of the cell architecture of various

RNN models. Of the simpler approaches, GRU-D [47] is widely seen as state of the art, while

newer and more complex models, such as the ODE-RNN, that use ODEs to evolve a hidden

state in between observations, are more powerful and more expressive. Afterwards, various ESN

based approaches were discussed. This area is still sparsely researched in terms of continuously

evolving hidden states. After looking briefly at stochastic methods, the chapter concluded by

discussing the newest state of the art approaches, namely Neural Differential Equations.
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4. Methods and Evaluation

The preceding chapter discussed different types of methods proposed in popular literature that

allow, to certain degrees, the processing of arbitrarily sampled sequential data. When assessing

these presented methods with regard to the notion of a “perfect model” (i.e., being modeled

around a continuous hidden state, see Fig. 2), only Neural Controlled Differential Equations

and extensions thereof (such as Neural Stochastic Differential Equations) comply to this notion.

They keep an internal hidden state, that is continuously influenced by incoming data and can

therefore also continuously be used for readouts.

When work on the present thesis started, the concepts of Neural Differential Equations have just

been proposed and have quite quickly popularized due to their unique properties. It was only later

after having started to work on this thesis, that Neural Controlled Differential Equations have

been proposed and were established as the state of the art approach for time series processing

with irregular sampling, partial observations and missing data. For these reasons, the focus of

this work shifted after having started to work on it.

The first section of this chapter is therefore a pre-focus-shift matter, that was then abolished. It

was decided to nevertheless include the partial results in this thesis as to resemble the work that

went into it, as well as to draw conclusions from the empirical experiments.

Section two then presents the main contribution of this thesis. The Neural CDE approach was

extended and combined with the field of Echo State Networks to create a novel continuous

time ESN that is invariant to the sampling and observational rate of the data which it processes.

Different experiments on toy and real world datasets have been conducted to evaluate the

proposed method. The results are presented in this section.

4.1. TA-ESN

Echo State Networks have long been established as a viable alternative to fully trained Recurrent

Neural Networks. They are especially powerful on smaller datasets whose characteristics can

be quite easily extracted from a random expansion of the observed data space, which is the

underlying principle of such reservoir computing approaches. Just as with standard RNNs,

problems arise when the incoming data is not sampled in regular intervals, or only partially

observed.

The overall fundamental challenges when dealing with such real world sequence datasets was

outlined in Section 1.2. Let us iterate over each issue one by one, looking at them from the

perspective of RNNs and especially ESNs.

Datasets containing sequences of varying lengths is unproblematic for any recurrent network

based approach. Since a hidden state is iteratively computed over each timestep, one can stop

at any timestep for different sequences in the dataset to train with, which enables this notion to

be present in the data. Furthermore, while parallelization is desirable for efficient computing

times, this is only possible across sequences, but not across timesteps, rendering the lengths of
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the sequences indifferent in terms of parallelization potentials.

As stated multiple times before, basic recurrent network approaches are based on the assumption

that incoming data is evenly spaced in time. Section 4 presents different methods for how an

RNN cell can be modified, such that the hidden state follows certain trajectories in between

observations, which renders it possible to handle incoming data with differing temporal intervals.

The rules governing these hidden state trajectories have to either bemanually engineered based on

the data domain the model is applied to, or have to be learnt from the data. The latter case, while

more universal and therefore more powerful, introduces additional learnable parameters into the

model, making training less efficient. Furthermore, all these approaches rely on a discrete jump

of the hidden state upon a new observation coming in. A readout of the hidden state right before

it is updated by new data is therefore completely reliant and determined by the preceding hidden

state, even though the new data might carry information of the state of the system even from

before that observation was made. Instead, the new incoming data should therefore continuously

influence the hidden state in both temporal directions. Neural Controlled Differential Equations

pose a solution to this issue – as discussed before – and will be looked at in much greater detail

in Section 4.2.

While RNNs can handle irregular sampling reasonably well by introducing an evolving hidden

state when no data is observed, the same idea is unfortunately not applicable to ESNs. Since the

hidden state of an ESN is updated solely by a matrix multiplication between a fixed and randomly

generated recurrent weight matrix on the one hand and the observed data on the other hand, an

evolving hidden state would not be conditioned on any data and therefore evolve completely at

random, discarding most of the information that has just been fed to the network by the observed

data. For these reasons, continuously evolving hidden states have not been proposed for ESNs in

literature and are unlikely to emerge in the future.

Since ESNs themselves are discretizations of an ODE, the step size taken when a new observation

comes in can be chosen depending on the time gap between the current and lastly observed data.

This is precisely what TA-ESNs were designed for [71]. They condition their step size in the

hidden space on the length of the time gap prior to the current observation. This of course is a

very crude way to traversing the hidden space, still taking zero steps in between observations.

A solution to this problem are continuous time ESNs which take smaller steps through a latent

space and condition every step on ensuing and preceding observations. They are presented later

in Section 4.2. To summarize, irregular sampling can be handled by TA-ESNs, although with

limitations.

Partially observing data is another one of the fundamental challenges in terms of sequence

processing. This poses a major challenge on all recurrent network approaches, as hidden state

updates depend on every incoming dimension (reiterate that neurons work by taking a weighted

sum across dimensions and then applying a non-linear function to the resulting sum). There is

no way to architecturally condition state updates only on single dimensions. If this would be

done, the resulting model would be unable to represent dependencies across dimensions and

instead would be as powerful as having multiple models that take only single dimensions as their

input. This issue is usually approached by one of two methods. The data is either imputed prior
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Figure 23. An RNN or ESN unrolled in time.

to feeding it to the model, or an observational mask is concatenated to the data. Again, Neural

CDEs pose a natural way of handling this, which will only be discussed later. Data imputation

works for any kind of model, on RNNs as well as ESNs, is however unfavorable as it modifies

the data and assumes knowledge about the missing spots. It furthermore removes the possibility

to draw conclusions from the notion of informative missingness. Observational masks on the

other hand are only manageable by RNNs. The reason is that the model has to make a distinction

between observed data and the meta information contained in the observational mask. In a

standard RNN, this distinction can be learnt, while in an ESN the information contained in the

observational mask is lost in the latent space and mixed with the actual observed data. It is very

difficult to impossible for the readout to be able to extract this kind of information.

The last challenge of dealing with sequential data that is discussed here is the notion of

informative missingness. Much the same arguments apply here as with partial observations.

A meta information about the data can be concatenated to the network input where a standard

RNN can learn to extract the required information. To an ESN on the other hand, this additional

information is indistinguishable from the the actual observed data and therefore hard to utilize

efficiently.

As outlined in the preceding paragraphs, much of the capabilities that RNNs can learn are almost

impossible to achieve for ESNs with reasonable costs. The following experiments reaffirm the

hypotheses made by applying TA-ESNs on different tasks and data. They show, that TA-ESNs

are incapable of extracting meta informational structures from the latent dimensions without

further manual architectural feature engineering.

All experiments were carried out using TA-ESNs as proposed by [71]. They have been extended

to the domain of partial observations in addition to irregular sampling.

4.1.1. Extrapolation

Recurrent Neural Networks, including ESNs, can serve as great autoregressivemodels, by feeding

the predicted next observation back into the network to create a generative autoregressive model.

This works fine while the timesteps taken in between observations are constant, it however falls
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Figure 24. Some results from simple autoregressive approaches conditioned on irregularly sampled data.

Orange dots denote the irregular data that the model was conditioned on, green is the generated

trajectory, and grey is the ground truth.

apart as soon as the timesteps become irregular. Figure 23 shows any type of RNN schematic

unrolled in time. Notice that during generative mode, the prediction ŷi at time ti is fed as input

back into the network at time ti+1. However, the prediction ŷi is made without knowledge

about the following time gap ∆ti. This time gap however is crucial since the data evolves with

time. Notice further that during conditioning, the predictions are also made without knowledge

about the ensuing time gap. When the intervals are constant, the network can do autoregressive

generative inference since the predictions are invariant to the time gaps, as they never change.

Therefore the network can implicitly assume constant timesteps and make accurate predictions.

This crucial bit of information however is unavailable to the network when the intervals are

variable.

Experiment

Figure 24 shows some outcomes of a TA-ESN applied to a simple extrapolation task, conditioned

on irregularly sampled data. Notice that the model picks up the trajectory and produces a smooth

path after the conditioning phase. This is due to the time intervals being constant after

conditioning. However, due to the conditioning on irregular intervals, the readout right after

the conditioning is slightly off, as the hidden state fails in accurately representing where the

trajectory is currently at. This leads to small jumps and the failure of picking up the true

amplitude and frequency of the since curve.

This experiment was conducted on a small dataset of randomly generated sine curves which were

randomly shifted horizontally. Training and conditioning have been made on irregularly sampled

data points.

4.1.2. Classification

A classification task on sequence data is different to a generative task in that no output from the

model is fed back into the model. Furthermore, it is usually only the final hidden state that is

obtained after traversing through the sequence that is utilized for the actual classification task.

Therefore, TA-ESN models should be very capable of encoding irregularly sampled datasets into

such a reasonable format, that a linear readout can be trained for the classification task. This

is again normal ESN behavior, with the additional capability that the data may be irregularly

sampled.
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Figure 25. A sample of the toy dataset containing of clockwise (upper row) and anti-clockwise (bottom

row) spirals. The lightness of the dots depicts the progress of time.

Experiment

To illustrate and test these capabilities, a simple binary classification task was carried out on a

two dimensional toy dataset. The dataset contains 256 spirals, half of them going clockwise and

half of them going anti-clockwise (see Fig. 25 for example spirals). Each spiral was generated by

sampling 100 datapoints randomly and in potential irregular intervals. Random gaussian noise

was added to each sampling point. A simple TA-ESN (spectral radius of 1.25, leaking rate of 0.3,

256 hidden units) was then trained on half the dataset and tested on the other half.

Table 6 shows the results on different dataset configurations. The 100 data points were either

regularly sampled (denoted by a ×in the first column), or randomly subsampled from 1000 or

10000 (denoted by 10 and 100n in the first column, respectively) regularly spaced points. As

long as the dataset is fully observed, even widely irregular data can be handled fairly well by

the network (see first three rows). However, as soon as partial observation is introduced into the

dataset, the model becomes weak. In further experiment runs, a random number of datapoints

was discarded in individual dimensions, leading to partial observation. Since TA-ESNs have no

way of representing missing data, a 0 was passed in those spots. In this case, some points may

only have one dimension observed, while the other is 0. Now RNNs may struggle with this setup

as well, which is why they are usually passed an observational mask of the data as well. The

network can then learn which input is now a real observation and which is not. However, in

the case of ESNs, as already stated, this information is dispensed into the reservoir and becomes

hardly distinguishable from actual data. The results of the experiments where an observational

mask was passed to the TA-ESN underscore this hypothesis. The accuracy is close to a random

guess classifier when little datapoints were observed and the observational mask was passed to

the network.
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Table 5: Results of applying a TA-ESN on the classification task of the spirals. “10n” in the

first column indicates that the samples were subsampled from 10 times the amount of regularly

spaced points. The values in the second column denote the fraction of observations that are kept.

Irregular Sampling Partial Observation Observational Mask Accuracy

× × × 1.000

10n × × 0.961

100n × × 0.959

× 0.9 × 0.911

10n 0.9 × 0.923

10n 0.9 0.834

× 0.5 × 0.754

10n 0.5 × 0.671

10n 0.5 0.589

× 0.2 × 0.620

10n 0.2 × 0.580

10n 0.2 0.537
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4.1.3. Encoder

This is a brief comment only. During experimentation, it have tried to replace the ODE-RNN

encoder of a Latent ODE [6] with a TA-ESN. The architecture is as follows. The irregularly

sampled dataset is passed to the TA-ESN which encodes the sequences into a state of its

reservoir. This reservoir state is then passed into a small MLP to create the latent space of the

variational autoencoder. This latent space is subsequently sampled from and passed into an ODE

that aims to reconstruct the original series. It is thereby possible to perform both interpolation

and extrapolation on the encoded series.

The original version utilizes an ODE-RNN which is a type of fully trained Recurrent Neural

Network with its hidden state evolving according to another learnt Neural ODE. During

experimentation, I was unable to reconstruct sequences to a satisfying degree using a TA-ESN

as the encoder part of the model. While all the information necessary to recreate the series is in

fact encoded in its reservoir, it is really hard to extract this information from this random state

even for a small trained MLP. This shows that a classification task can indeed be carried out on

relatively cheaply generated reservoirs, while the information necessary to recreate the entire

sequence is difficult to extract from the random reservoir.

4.1.4. Summary

This section discussed various aspects about Echo State Networks and their shortcomings.

Different experiments were carried out. It was empirically evaluated that ESNs can be utilized

for classification tasks, even on irregularly sampled data, as long as the data is fully observed.

The random reservoir encoding of information has mixed the input data, thereby also making

no distinction between actual observations and meta data, such as observational masks. It is

therefore almost impossible to create a version of ESNs that can handle partial observations in

a natural way. Furthermore, it was shown why ESNs cannot properly extrapolate sequences in

an autoregressive manner when they have been trained or conditioned on irregularly sampled

data.

4.2. CDE-ESN

Now to the main contribution of this thesis. While working on the present thesis over the past

two years, a new method for handling sequential data has been established as the new state

of the art approach. It is naturally able to handle every challenge that was discussed in the

introductory remarks and in the preceding section. Neural Controlled Differential Equations can

deal with sequences of different lengths, that are partially observed and contain information in

the missingness of data itself. Kidger [2] describes Neural CDEs as continuous time RNNs. They

are powerful tools on arbitrarily sampled time series with only one drawback. Neural CDEs are,

as most sophisticated deep learning approaches, computationally expensive and slow. On the

other hand, ESNs are not as powerful, yet computationally cheap and very fast. The drawbacks

of ESNs in terms of universal time series processing were outlined in the preceding section. For

these reasons, the focus will shift now to constructing a methodology that takes the best of both

worlds.
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Figure 26. Illustration of a neural CDE.

Let us reiterate how and why Neural Controlled Differential Equations work in detail. The central

equation governing a Neural CDE according to [2] is as follows. The function h : [0, T ] → Rdh

solves the controlled differential equation driven by x, if the following equations are satisfied:

h(0) = fθin(x
<t0>), h(t) = h(0) +

∫ t

0

fθr(h(s)) dx(s) for t ∈ (0, T ] (32)

where T > 0 is the temporal length of the sequence, dx, dh ∈ R are input and hidden

dimensionality, respectively, x : [0, T ] → Rdx is a continuous bounded function, and

fθin : Rdx → Rdh and fθr : Rdh → Rdh×dx are neural networks. Let further fθo : Rdh → Rdy be

another neural network with the desired output dimensionality dy. All this together describes the

entirety of what Neural Controlled Differential Equations are.

Figure 27 depicts the (very) abstract computation graph that underlies any Neural CDE. In order

to compute one forwards pass, the input data is passed through fθin , which usually expands

the dimensionality into the hidden space. Then, starting at this value, the latent state evolves

according to the differential equation above, whose vector field is in turn parameterized by fθr .

Hence, the CDE is solved (or approximated) in the interval [0, T ], with its initial condition being

h(0) = fθin(x
<t0>). The final evolved hidden state h(T ) is then in turn passed through the

function fθo to obtain the output prediction (in case of a sequence to sequence task, multiple

intermediate values h(t) are used instead).

The decisive difference to Neural ODEs is the fact that the hidden state trajectory is not

determined entirely by its initial condition. Instead, the continuous function x : [0, T ] → Rdx

is said to control the differential equation and hence the hidden state trajectory. The expression

’
∫ t

0
fθr(h(s))dx(s)’ is known as a Rieman-Stieltjes integral, with ’fθr(h(s))dx(s)’ being a

matrix-vector multiplication [2].

The only piece of the puzzle that is missing is how to obtain the continuous path x that controls the
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Figure 27. Illustration of the computation graph of a neural CDE.

CDE. Kidger proposes to use any form of interpolation on the discrete input data, and specifically

suggests to use cubic hermetic spline interpolation. It must be stressed here, that this interpolation

is not a pre-processing step on the data to impute missing values and thereby discarding relevant

information. Instead, this interpolation is necessary for the hidden state to be continuously driven

by the observed data. It is this interpolation scheme that allows the processing of arbitrarily

sampled and partially observed data since every input channel will be interpolated to create a

continuous driving path for the CDE [2].

To round thing up, it is suggested to concatenate the timestep, as well as an observational mask

to the input data and feed this concatenated data to fθin . The neural network can then in turn

learn what information is relevant, which information is now fed into the network at all, and at

which rate new data is coming in. This allows the model to represent the notion of informative

missingness as well. The former bit of concatenating the timestamp to the observed data is

especially important, since CDEs posses a reparameterization invariance [2], which means that

the CDE is indifferent to the speed at the controlling path data arrives. It is therefore a necessity

to include the timestamps as a channel into the input data.

The similarities between Neural Controlled Differential Equations and Recurrent Neural

Networks are striking, and indeed, Neural CDEs can be seen as the continuous time limit of

RNNs. Some initial data from the start of the series is expanded into the hidden state of the

network by some non-linear transformation. Upon new data coming in, this hidden state is then

updated depending on the current value of the hidden state, as well as the new data coming in at

that timestep. At the end of the sequence, the final value of the hidden state is traversed through

another non-linear transformation to read out some desired information. When discretizing

Equation 32 according to Euler discretization of differential equations, we obtain:

h(ti +∆t) = h(ti) + k fθr(h(ti))
dx

dt
(ti) = h(ti) + k fθ(h, x, ti) (33)

which indeed is a discretized update operation that governs an Recurrent Neural Network.

Since Echo State Networks are just a type of Recurrent Neural Networks, why can they not also

be seen as a discretization of a Neural CDE? Indeed they can. The function fθr may as well

be excluded from learning and instead be sampled from a random distribution over non-linear

functions that parameterize the vector field of the CDE. The same property as for normal discrete

ESNs shall be applicable here as well. First and foremost this concerns the echo state property,

which ensures, when obliged by the network, that the hidden state does gradually forget about

information that was fed to it a longer time ago. Since any ODE in the end will be solved by a

numerical solver that discretizes the vector space and traverses it in discrete steps, the same rules
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can be applied to the continuous-time counterparts of ESNs.

Let a CDE-ESN be the continuous-time version of an Echo State Network, defined via a Neural

Controlled Differential Equation with the following deviations:

• fθin : Rdx → Rdh , x<ti> → Win x
<ti>

with Win ∈ Rdh×dx randomly sampled from a normal distribution, just as the usual input

matrix used for ESNs.

• fθr : Rdh → Rdh×dx , h→


Wrec,1 h

...

Wrec,dx h


whereWrec =


Wrec,1

...

Wrec,dx


∈ R(dx dh)×dh

with each Wrec,j sampled from the normal distribution and pre-specified spectral radius.

This corresponds to having dx recurrent weight matrices in the discrete case of standard

Echo State Networks.

• The readout function fθo is left untouched and can be chosen to either be a simple linear

readout or a small feed-forward neural network. The parameters of this function are the

only values that are being optimized during training.

BothWin andWrec are randomly generated, and then kept fixed. Wrec is the determining factor

for the vector field of the CDE and therefore the hidden state trajectory.

This formulation gives a continuous-time Echo State Network with a continuous hidden state in

its continuous reservoir. This hidden state can be continuously utilized for readouts.

Notice, that unlike as argued in the preceding section, the hidden state here does not evolve

completely at random in between observations, as it is conditioned on the continuous interpolation

of the input data. It is therefore continuously influenced by that data and does also continuously

encode the observed data in its reservoir.

When compared to standard ESNs, this formulation entails decisive advantages. As mentioned

before, a continuous hidden state means that it can be continuously, at any arbitrary time, be read

out from. Furthermore, the interpolation scheme required by Neural CDEs allows for natural

support of irregularly sampled and partially observed data.

Notice also, that for standard, fully trained Neural CDEs, the computation graph (Fig. 27) has to

be fully traversed back during backpropagation in order to create all gradients. This is especially

costly to do through the ODESolve method, which consists of many computations corresponding

to each step through the vector field. Using the adjoint method, this can be enhanced to a certain

degree [2, 1]. However, in the proposed CDE-ESN, only the readout is trained, which means that

the costly backpropagation through the ODE solver is omitted. This renders this approach faster

then fully trained Neural CDEs on at least an order of magnitude. This of course follows from

much the same advantages that ESNs have over RNNs.
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(a) Clockwise (b) Anticlockwise

Figure 28. Samples from the hidden state trajectories through the latent space (the continuous reservoir)

in the CDE-ESN. Sampled from a clockwise (a) and an anti-clockwise spiral (b). These were constructed

by an ODE solver

There are, however, also drawbacks in this approach. With regard to fully trained Neural CDEs,

CDE-ESNs are a lot less expressive. It requires a huge reservoir to encode all the information

needed for complex tasks, whereas standard Neural CDEs can just learn certain dependencies. It

is furthermore difficult, to extract separate pieces from information from the reservoir. This

is important in the context of informative missingness. As already stated, Neural CDEs are

usually used by concatenating the timestamps and observational masks to the input data, and then

feeding everything to the network together. However, while fully trained networks can learn to

distinguish the different types of information, ESN based approaches treat every input channel

in the same way. This leads to the information about observational frequency and timestamps

to be lost in the reservoir due to it being “mixed” with the other pieces of information. It is

then really difficult for a readout to extract the relevant bits of information again, such that

informational missingness can be represented. This is confirmed empirically by the experiments

conducted.

To summarize, the proposed CDE-ESN is a novel approach for continuous-time Echo State

Networks. In comparison with TA-ESNs [71], CDE-ESNs are additionally capable of handling

partial observations naturally, which TA-ESNs are incapable of doing. At the same time however,

it is very difficult, if not impossible, for CDE-ESNs to be able to utilize the notion of informative

missingness, as observational masks are rather hurtful than beneficial for such networks.

The posed hypotheses will now be empirically evaluated.

Experiment – Synthetic Dataset

First, the proposedmethod will be evaluated on a synthetic dataset of spirals, as depicted in Figure

25. Each spiral is represented by a two dimensional time series of length 100. Random gaussian

noise was added to each individual trajectory. The train and test datasets contain 128 sequences

each, half of which are clockwise spirals, the other half anti-clockwise spirals, respectively. A

binary classifier was built based on that. Table 6 shows the results. Each method was trained 10
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times with newly generated datasets each time.

In addition to the two baseline approaches, different variations of CDE-ESNs have been tested.

The following methods have been applied:

• TA-ESN : The Time Adaptive Echo State Network [71]. First baseline approach.

• Neural CDE: Neural Controlled Differential Equation [2]. Second baseline.

• CDE-ESN : The proposed method of this thesis (novel). A logistic regression classifier was

trained as the readout.

• CDE-ESN’: A CDE-ESN, but with a small MLP trained as the readout.

• CDE-ESN*: A CDE-ESN, but an additional channel containing the timestamps was

concatenated to the input.

• CDE-ESN**: A CDE-ESN, but both timestamps and observational mask were

concatenated to the input as additional channels.

The experiments were then carried out on three differently sampled datasets:

1. Regularly Sampled

The 100 spiral datapoints are evenly spaced in time.

2. Irregularly Sampled

The 100 spiral datapoints were randomly subsampled from a set of 10000 evenly spaced

timestamps.

3. Partially Observed

The 100 spiral datapoints were randomly subsampled from a set of 10000 evenly spaced

timestamps, and then 50% of the datapoints were removed. This led to some datapoints

only having observations in either its x or y dimension.

The results confirm the hypotheses from before. CDE-ESNs are robust and very quick models,

requiring only little trainable parameters, as long as the reservoir can do a good job of linearly

separating the different classes. The plain CDE-ESN with just 32 parameters to train for its

readout performed well across all scenarios. The only model that performed better was the fully

trained Neural CDE, as expected. This however comes at a much higher computational cost, as

the training time is higher on several order of magnitudes.

Furthermore, it is also evident that CDE-ESNs outperform TA-ESNs when data is only partially

observed. The TA-ESNwas given the observational mask in addition to the raw input data (where

missing values were replaced by a 0), but it still performed only slightly better than a random

guesser. Even a significant increase in its hidden units could not improve the performance. It

is expected that the hidden state has to be made so large for the performance to improve, that

the computational cost would then be even higher as compared to a fully trained network. This

tradeoff is therefore most probably a loose-loose.

Lastly, feeding more meta information to an CDE-ESN does not help, but rather hurts its

performance. This of course is undesirable in situations, where missing data carries a lot of

information on itself, where CDE-ESNs are therefore not recommended to be applied to.

60



Table 6: Results of applying a TA-ESN on the classification task of the spirals. “10n” in the

first column indicates that the samples were subsampled from 10 times the amount of regularly

spaced points. The values in the second column denote the fraction of observations that are kept.

Accuracy Training Time [s] #Parameters

Regularly Sampled

TA-ESN 1.0± 0.000 0.063± 0.021 128

CDE-ESN 1.0± 0.000 0.001± 0.000 32

CDE-ESN* 1.0± 0.000 15.396± 0.812 1057

NCDE 1.0± 0.000 48.654± 5.963 3297

Irregularly Sampled

TA-ESN 0.948± 0.074 0.062± 0.021 128

CDE-ESN 1.0± 0.000 0.001± 0.000 32

CDE-ESN’ 1.0± 0.000 18.637± 0.394 1057

NCDE 1.0± 0.000 84.197± 6.077 4289

Partially Observed

TA-ESN 0.577± 0.056 0.073± 0.041 128

TA-ESN 0.571± 0.052 0.330± 0.055 1024

CDE-ESN 0.980± 0.020 0.006± 0.000 32

CDE-ESN 0.997± 0.005 0.006± 0.000 64

CDE-ESN* 0.818± 0.053 0.002± 0.000 32

CDE-ESN* 0.951± 0.054 0.005± 0.000 256

CDE-ESN** 0.570± 0.047 0.003± 0.000 32

CDE-ESN** 0.638± 0.072 0.007± 0.000 256

CDE-ESN** 0.836± 0.027 0.017± 0.002 1024

CDE-ESN’ 0.912± 0.087 11.243± 0.184 1057

NCDE 1.0± 0.000 148.822± 13.444 6364

Experiment – Gesture Dataset

This experiment was conducted on a real world univariate gesture dataset3 [84]. It consists of

sensor data of eight different gestures. Here, 2388 samples were used for training, and 1194 for

testing. The same methodology as in [71] was applied by randomly subsampling 10% of the

sequences irregularly. The CDE-ESN model was trained using logistic regression and a hidden

state size of 4096. The results are compared to other approaches in Table 7.

3The UWaveGestureAll dataset is available here: https://timeseriesclassification.com
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The results show that the model produces state of the art performance on a real world, irregularly

sampled large size dataset. It also again shows its computational speed.

Table 7: Results on the UWaveGestureAll dataset. Results as reported in [71].

Accuracy Training Time [s] #Parameters

LSTM 0.794± 0.016 1.445× 102 41 608

LSTMT 0.882± 0.009 1.500× 102 42 008

GRU-F 0.855 4.840× 102 50 952

GRU-D 0.860 6.810× 102

GRU-HD 0.860 6.900× 102

GP-GRU 0.948 8.365× 104

IPred-GRU 0.935 1.463× 103 51 721

TAGRU 0.876± 0.012 2.410× 102 31 408

GRU 0.773± 0.009 1.579× 102 31 408

GRUT 0.861± 0.007 1.733× 102 31 708

ESNT 0.567± 0.265 1.101× 101 4016

TAESN 0.921± 0.006 1.277× 101 4016

CDE-ESN4 0.871± 0.026 3.610× 101 4096

Experiment – Physionet

Finally, some experiments have also been conducted on data from the MIMIC database [85],

which contains highly irregularly sampled and partially observedmedical data from intensive care

patients recorded over the period of their ICU stay. Extensive experiments have been conducted

on the Physionet Challenge 2012 dataset, where several thousand ICU stays had to be labeled with

in-hospital mortality. Now since this task probably requires a model very sensitive to the notion

of informativemissingness, the proposed CDE-ESN performed poor across all experiment setups.

It was still decided to mention this experience, as it reaffirms the hypothesis that CDE-ESNs are

incapable of being deployed to tasks with high meta informational values, such as informative

missingness.
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5. Discussion

The core of this thesis was the investigation of sequence data processing methods, focussing on

the universal case of irregularly sampled and partially observed time series data. The implications

of this include awareness about the notion of informative missingness, which denotes the fact that

the very missingness of some data might on its own carry informational value with it.

Literature on the afore-mentioned issues is widely available, however most of the proposed

approaches are highly over-engineered manual architectural adaptations to existing methods. The

first contribution of this work was therefore a thorough, yet not comprehensive, analysis of the

most popular methods proposed in literature with regard to processing sequential data that might

be irregularly sampled, partially observed, have missing data, be of different lengths or include

the notion of informative missingness.

For this purpose, a taxonomy was created, which the methods discussed were sorted by. The

list started with basic methods, such as imputation, interpolation and other data pre-processing

techniques. Such approaches however usually discard a lot of information and are therefore

unfavorable. They do, however, allow the adoption of arbitrary models, as the data is

pre-processed to be regularly sampled and fully observed. The second type of approaches

was deemed to be adaptations to some RNN cell architecture. Either the current timesteps are

accepted as additional input and subsequently and adequately processed within the cell, or the

hidden state’s trajectory in between observations was altered. Those methods took one step

closer towards the goal of having a universal model with a continuous hidden state. Afterwards,

some ESN based methods were discussed, with none of them having a continuous hidden state

across observations. Gaussian estimators were briefly discussed next. The taxonomy closed

with an overview over ODE based methods, which became popular only a few years ago and

have since taken the field by storm. Especially Neural Controlled Differential Equations were

given special consideration, as they have established themselves as the de facto state of the art

approach for universal time series processing.

The recently proposed TA-ESN approach was ensuingly analyzed and empirically evaluated.

TA-ESNs are great for irregularly sampled, yet fully observed time series. They inherit the

common advantages and drawbacks of ESNs, such as their computational efficiency, but also

the relative limit in expressivity. On the other hand, Neural CDEs provide a means to process

any irregularly sampled and partially observed dataset in a continuous fashion. This powerful

state of the art approach has only one drawback, its computational cost required to train and run

it. For these reasons, the main contribution of the present thesis is the proposal of CDE-ESNs,

a novel method of creating a continuous reservoir based on the ideas of Neural CDEs, with the

computational advantages of ESNs, essentially taking the best of both worlds.

CDE-ESNs are computationally cheap, while allowing to handle irregularly sampled and partially

observed data in a natural fashion. Their only limitation is the incapability of processing meta

data as additional input. Therefore, data whose observational frequency itself carries a lot of

relevant information, cannot be processed by utilizing CDE-ESNs to a satisfactory degree. In

such cases, fully trained Neural CDEs are recommended instead.
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The theoretical properties of CDE-ESNs were subsequently empirically confirmed. CDE-ESNs

can be seen as continuous-time Echo State Networks for universal sequence processing, with the

exception of meta data processing. However, it may be argued that this is as best as ESNs can do,

as meta data processing requires the logical separation of data from meta data, which has to be

learnt by a model. Since neither the input weights, nor the recurrent weights of ESNs are learnt,

the information from both the actual data and the meta data is dispersed into the reservoir, from

which it can only be extracted again with enormous costs. The costs necessary to achieve this

are probably higher compared to training a standard Neural CDE on the same task in the first

place.

To conclude, CDE-ESNs can be used whenever the processing of a dataset does not require

knowledge about meta data. Future work might include examining different ways of creating

the non-linear continuous reservoir, as well as applying the approach on a bigger scale for further

empirical evaluation.
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6. Conclusions

1. Most methods found in literature for universal time series processing are highly

over-engineered and/or domain specific.

2. The current deep learning state of the art approach is Neural Controlled Differential Equations

[2], which are able to process both irregularly sampled and partially observed sequences. They

can also take informative missingness into consideration. However, this method also poses a high

computational cost.

3. In this thesis, CDE-ESNs have been proposed as a novel method to create continuous time

Echo State Networks. This is done by randomly setting the weights of the function governing the

slope field of a Neural CDE, and then only training the readout.

4. There is a hierarchy between different ESN approaches. Vanilla ESNs cannot handle irregular

sampling, nor partial observations. TA-ESNs [71] are able to process irregularly sampled time

series, yet cannot process partial observations. CDE-ESNs (from this thesis) can process both

irregularly sampled and partially observed time series data.

5. The only shortcoming that CDE-ESNs have is that they cannot represent the notion of

informative missingness at reasonable costs. However, this may not even be possible at all in

Echo State Networks (see Discussion).

6. Compared to ESNs, CDE-ESNs add the capability of handling partial observations, plus the

continuous hidden state. Compared to Neural CDEs, CDE-ESN are less expressive, yet faster by

several order of magnitudes. Overall, CDE-ESNs can be applied to problems where meta data

knowledge is not required.
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