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Santrauka 

 

Kompiuterinės regos (angl. computer vision) algoritmai aktyviai tobulinami ir pasiekė aukščiausią 

piką per pastarąjį dešimtmetį. Didėjant apmokytų modelių perkėlimo į produkcinę aplinką poreikiui, 

dirbtinio intelekto sistemų architektams tampa svarbu paruošti modelio paleidimo aplinką taip, kad 

išgautų efektyviausią modelio veikimą. 

Šiame darbe apžvelgiami vaizdų klasifikavimo metodai, architektūros, modelių pateikimo 

produkcinėje aplinkoje procesas ir programinė įranga. Taipogi, pateikiama lyginamoji specifikacija 

ir eksperimentų, atliktų naudojant „EfficientNet“ ir „MobileNet“ šeimos modelius, rezultatai, siekiant 

palyginti kelias programinės įrangos, skirtos modelių paleidimui į produkcinę aplinka, platformas: 

„TensorFlow Serving“, „TorchServe“ ir „Triton Inference Server“. Papildomai apžvelgiama modelio 

kvantavimo įtaka resursų išnaudojimui bei modelio veikimo laikui.  

Rezultate, „Triton Inference Server“ platforma parodė 16 kartų greitesnį modelio veikimą, lyginant 

su „TorchServe“. Papildomai apžvengtos valandinės debesijos paslaugų kainos lyginant modelių 

veikimą naudojant „TensorFlow Serving“ ir „TorchServe“. Galiausiai, pateikiamos rekomendacijos 

dėl efektyvaus vaizdų klasifikavimo modelio veikimo produkcinėje aplinkoje.
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Summary 

Computer vision algorithms have been actively developed, with the highest peak during the last 

decade. With the increasing need for a phase of transferring pre-trained models to the production 

environment, it becomes important for architects of artificial intelligence systems to assess the 

inference environment for reaching the most effective model performance.  

In this paper, we review image classification task, architectures, model serving process, and 

deployment software. Furthermore, we present benchmark specification and experiments results 

performed using EfficientNet and MobileNet family models with the purpose of comparing three 

model serving software: TensorFlow Serving, TorchServe, and Triton Inference Server. Additionally, 

model quantization impact on experiments inference time was reviewed.  

As a result, Triton Inference Server showed 16 times faster performance compared to TorchServe. 

Additionally, cloud instances' hourly costs were reviewed when comparing TensorFlow Serving and 

Triton Inference Server model's performance. Lastly, recommendations for efficient image 

classification model inference in production were provided.  



6 

 

Table of Content 

 
List of Tables ................................................................................................................................. 8 

List of Figures ............................................................................................................................... 9 

List of Abbreviations and Terms ................................................................................................ 11 

Introduction ................................................................................................................................ 13 

1. Literature Review.................................................................................................................. 14 

1.1. The Concept of Deep Learning ............................................................................................. 14 

1.2. Applications of Deep Learning ............................................................................................. 15 

1.3. Model Serving ...................................................................................................................... 16 

1.4. Model Benchmarking ........................................................................................................... 17 

1.5. Model Serving Software ....................................................................................................... 19 

1.6. Serving Software Benchmark ............................................................................................... 23 

1.7. Models Compression for Inference Optimization .................................................................. 24 

1.8. The Need for Research ......................................................................................................... 26 

2. Methods and Concepts Used in Research............................................................................. 27 

2.1. Computer Vision .................................................................................................................. 28 

2.2. Convolutional Neural Network ............................................................................................. 28 

2.3. Image Classification ............................................................................................................. 29 

2.3.1. EfficientNet ....................................................................................................................... 30 

2.3.2. MobileNet ......................................................................................................................... 33 

2.4. Quantization ......................................................................................................................... 36 

2.5. Serving Models for Experiment ............................................................................................ 37 

2.5.1. Docker .............................................................................................................................. 38 

2.5.2. NVIDIA Triton Inference Server ....................................................................................... 38 

2.5.2.1. Model Deployment ........................................................................................................ 39 

2.5.2.2. Model Inference ............................................................................................................ 41 

2.5.3. TensorFlow Serving .......................................................................................................... 41 

2.5.3.1. Model Deployment ........................................................................................................ 42 

2.5.3.2. Model Inference ............................................................................................................ 42 

2.5.4. TorchServe ........................................................................................................................ 43 

2.5.4.1. Model Deployment ........................................................................................................ 43 

2.5.4.2. Model Inference ............................................................................................................ 44 

3. Research Results ................................................................................................................... 46 

3.1. Experiment Setup ................................................................................................................. 46 

3.2. Inference and Benchmarking System .................................................................................... 46 

3.2.1. Software ............................................................................................................................ 47 

3.2.2. Disk Capacity .................................................................................................................... 47 

3.2.3. Operating System .............................................................................................................. 47 

3.2.4. Benchmarking Tools ......................................................................................................... 47 

3.3. Benchmarking Scenarios ...................................................................................................... 48 

3.4. Dataset ................................................................................................................................. 49 

3.5. Results of Serving Software Benchmarking .......................................................................... 51 

3.5.1. Model Warmup Impact on Inference Time and Resources Allocation ................................ 51 



7 

 

3.5.2. Input Data Impact on Inference Time and Resources Allocation ........................................ 52 

3.5.3. Model Quantization Impact on Inference Time and Resources Utilization ......................... 55 

3.6. Benchmarking and Results Overview ................................................................................... 58 

Summary and Conclusion........................................................................................................... 59 

List of References ........................................................................................................................ 60 

Appendices .................................................................................................................................. 65 

1 Appendix. NVIDIA Triton Inference Server Infrastructure ................................................... 65 

2 Appendix. NVIDIA Drivers Installation Guidelines.............................................................. 66 

3 Appendix. NVIDIA Container Toolkit Installation ............................................................... 67 

4 Appendix. Successful Model serving with Triton Inference Server Console Output .............. 68 

5 Appendix. Successful Model serving with TensorFlow Serving Console Output .................. 69 

6 Appendix. TorchServe Architecture ..................................................................................... 70 

7 Appendix. TorchServe Model Handler ................................................................................. 71 

8 Appendix. Successful Model serving with TorchServe Console Output ................................ 72 

9 Appendix. 1st Scenario Experiments Results Graphs ............................................................ 73 

10 Appendix. 2nd Scenario Experiments Results Graphs ........................................................... 75 

11 Appendix. 3rd Scenario Experiments Results Graphs ........................................................... 76 

12 Appendix. 4th Scenario Experiments Results Graphs ........................................................... 77 

13 Appendix. 2nd-3rd Scenarios Experiments Results Graphs for 600px Images ....................... 78 

 

  



8 

 

List of Tables 

Table 1. Coverage of MLOps tasks in various ML model serving tools (2021 data) ...................... 22 

Table 2. Model compression and acceleration approaches summary ............................................. 26 

Table 3. Pre-trained deep learning models chosen for the experiment ........................................... 37 

Table 4. Benchmarking scenarios per multiple serving platforms, models, and input data types .... 49 

Table 5. Statistics of images dataset used for benchmarking ......................................................... 50 

Table 6. Inference durations per 10 runs of experiments (scenario 1) with three serving platforms 

(green color stands for the fastest performance, red color – the most time consuming ) ................. 51 

Table 7. Inference duration statistics per experiments (scenario 2-4) and serving platforms (green 

color stands for quickest performance, red color – the most time consuming ) ............................... 53 

Table 8. GPU utilization (%) during experiments (scenario 2) performed with each serving software 

(green color stands for lowest usage, red color – highest usage ) ................................................... 54 

Table 9. CPU utilization (%) during experiments (scenario 2) performed with each serving software 

(green color stands for lowest usage, red color – highest usage ) ................................................... 54 

Table 10. A two-sample Student’s t-test results of hypothesis that the resulting mean GPU usage of 

the Triton Inference Server and TorchServe were equal ................................................................ 55 

Table 11. Experiment having the greatest inference duration difference per 1000 observations 

between three serving platforms .................................................................................................... 55 

Table 12. A two-sample Student’s t-test for quantized and not quantized MobileNetV3-large model 

inference duration when models served on TorchServe ................................................................. 57 

Table 13. A two-sample Student’s t-test for quantized and not quantized MobileNetV3-large model 

inference duration when models served on Triton Inference Server ............................................... 57 

 

 

 



9 

 

List of Figures 

Figure 1. A three-layer artificial neural network [7] ...................................................................... 14 

Figure 2. Biological neuron (left) and its mathematical model (right) [7] ...................................... 14 

Figure 3. High-level ML infrastructure workflow ......................................................................... 16 

Figure 4. Machine learning models diversity for image classification ........................................... 18 

Figure 5. The diversity of options at every level of the stack ........................................................ 18 

Figure 6. The tail latency of four serving systems for image classification task performed on GPU 

device ........................................................................................................................................... 23 

Figure 7. GPU utilization with four serving software under different workloads [23] ................... 24 

Figure 8. Cold start latency of different models with two serving software ................................... 24 

Figure 9. Compressed model metrics (pruning and quantization) [35] .......................................... 25 

Figure 10. Neural network pruning [36] ....................................................................................... 25 

Figure 11. Knowledge distillation [36] ......................................................................................... 26 

Figure 12. Human visual cortex system ........................................................................................ 28 

Figure 13. The LeNet architecture ................................................................................................ 29 

Figure 14. Features extraction examples in the image classification process ................................. 29 

Figure 15. Scaling of the efficientNet architecture model [42] ...................................................... 31 

Figure 16. Model size versus accuracy comparison [42] ............................................................... 31 

Figure 17. Scaling Up EfficientNet-B0 with Different Methods ................................................... 32 

Figure 18. EfficientNet Performance Results on ImageNet  [42]. .................................................. 33 

Figure 19. Depthwise separable convolution: a depthwise convolution followed by a pointwise 

convolution ................................................................................................................................... 34 

Figure 20. Standard convolution layer versus depthwise convolution with Deptwise and Pointwise 

layers ............................................................................................................................................ 35 

Figure 21. Figure shows ImageNet accuracy and parameters number trade off for the 16 models made 

with different width multiplier values α ∈{1, 0.75, 0.5, 0.25} as well as resolutions {224, 192, 160, 

128} .............................................................................................................................................. 35 

Figure 22. MobileNet V3 architecture .......................................................................................... 36 

Figure 23. Performance of MobileNet models with different multipliers and resolutions .............. 36 

Figure 24. Binary quantization ..................................................................................................... 36 

Figure 25. Comparison of quantization-aware training and post-training quantization .................. 37 

Figure 26. Docker architecture, enhanced with Nvidia GPU components ..................................... 38 

Figure 27. Code defining how to get TorchScript model file ......................................................... 39 

Figure 28. Successful Triton inference server health API response ............................................... 40 

Figure 29. Console output of the model inference API response when served via Triton............... 41 

Figure 30. TensorFlow model repository ...................................................................................... 42 

Figure 31. Docker Container and its Model Repository ................................................................ 42 

Figure 32. Code sample for image conversion to instances for model API served with TensorFlow 

Serving ......................................................................................................................................... 43 

Figure 33. TensorFlow inference API input data sample ............................................................... 43 

Figure 34. Code sample for model served via Tensorflow Serving inference ................................ 43 

Figure 35. Console output of model inference API response when served via TorchServe ............ 45 

Figure 36. Three serving software infrastructures under test ......................................................... 46 

Figure 37. Model serving and benchmarking environment ........................................................... 46 



10 

 

Figure 38. Wandb monitoring dashboards .................................................................................... 48 

Figure 39. Images samples from the dataset used for benchmarking ............................................. 50 

Figure 40. Distribution of dataset images dimensions (px) used for benchmarking ....................... 50 

Figure 41. Inference time without model warmup per serving software ........................................ 51 

Figure 42. Inference time after model warmed up per serving software ........................................ 52 

Figure 43. Scenario #2: GPU (left) and CPU (right) utilization during the experiment .................. 54 

Figure 44. MobileNetV3-large model versus it's quantized variant, both served with TorchServe . 56 

Figure 45. MobileNetV3-large model versus quantized same model, both served with Triton 

Inference Server ............................................................................................................................ 56 

Figure 46. Nvidia Triton Inference Server Architecture [51] ......................................................... 65 

Figure 47. nvidia-smi command console output ............................................................................ 67 

Figure 48. Successful Triton deployment console output .............................................................. 68 

Figure 49. Successful TensorFlow deployment console output ..................................................... 69 

Figure 50. TorchServe architecture ............................................................................................... 70 

Figure 51. my_handler.py file used for model archive generation ................................................. 71 

Figure 52. Successful TorchServe deployment console output ...................................................... 72 

Figure 53. Scenario No. 1 EfficientNet-B7 model experiment (224x224px images) results .......... 73 

Figure 54. Scenario No. 1 MobileNetV3-large and MobileNetV3-large quantized models experiment 

results ........................................................................................................................................... 73 

Figure 55. Scenario No. 1 EfficientNet-B7 model experiment (600x600px images) results .......... 74 

Figure 56. Scenario No. 2 experiment results ............................................................................... 75 

Figure 57. Scenario No. 3 experiment results ............................................................................... 76 

Figure 58. Scenario No. 4 experiment results ............................................................................... 77 

Figure 59. Scenario No. 2-3 experiment results for EfficientNet-B7, with 600 x 600 px dimensions 

images .......................................................................................................................................... 78 

 



11 

 

List of Abbreviations and Terms 

Abbreviations: 

CNN - Convolutional Neural Network; 

CPU - Central Processing Unit; 

EF - EfficientNet-B7 (abbreviationused in experiments images); 

GPU - Graphics Processing Unit; 

IDE - Integrated Development Environment; 

ML – Machine Learning; 

MN – MobileNetV3-large (abbreviation used in experiments images); 

MN_Q – Quantized MobileNetV3-large; 

NN - Neural Network; 

OS – Operating System; 

RAM - Random-Access Memory. 

 

Terms:  

Artificial intelligence - system's capability to interpret external data and use it for learning with the 

purpose to retrieve the knowledge and execute defined objectives based on it; 

Benchmarking – comparison of performance metrics; 

Convolutional Neural Network – in deep learning, it is a class of neural networks with the purpose 

to analyze visual data based on human visual cortex operation principles ; 

Deep Learning – a type of machine learning based on neural networks ; 

Docker – is an operating system-level virtualization platform based on containerization principles; 

Inference – a phase of the model lifecycle in the production environment when the model makes 

predictions based on live data and produces results; 

Machine Learning – artificial intelligence method having the purpose to identify patterns in input 

data and learn based on it to make human-like decisions; 

Model Serving – a process of deploying a model to production with the purpose to make an AI 

solution available for incorporating it with client applications; 

Model Warmup – model adjustment with the purpose to reach its optimal performance state, usually 

performed by making a sample inference request to "warm-up" the model  before launching it for 

production use; 
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Neural Network – a set of computer algorithms inspired by biological neural networks; 

TensorFlow Serving – TensorFlow software for machine learning model serving, designed for 

production environments; 

TorchServe – PyTorch software for machine learning model serving, designed for production 

environments; 

Triton Inference Server – NVIDIA software for serving machine learning models, designed for 

production environments; 

Quantization – model compression method, reducing model size with a slight impact on model 

accuracy. 
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Introduction 

Relevance of the topic. Computer vision is one of the main areas of artificial intelligence, actively 

developing with the highest peak of activity over the past decade. The task of image recognition is 

very important since the possibility of automatic image recognition by a computer brings many new 

opportunities in the development of science and technology. Well-known examples include object 

recognition, photographs, and video footage analysis, having high demand in the medical field, 

quality control of manufactured products without human intervention, automatic transport control, 

and many others. This kind of machine learning has been highly developed in recent years due to a 

significant increase in the computing power and the widespread use of graphics cards for computing, 

which allows you to train neural networks of much greater depth and complex structure than before, 

which, in turn, show significantly better results compared to other algorithms, especially if research 

field is related to image recognition. This area of neural networks is called deep learning. 

To survive in a highly competitive business environment, today's business must be flexible, agile, 

and adaptive.  As deep learning applications become more popular, there is an increasing need for a 

phase of transferring pre-trained models to the production environment. There are several 

technologies that make this step easier, and perhaps the best-known solution today is TensorFlow 

Serving. However, when it comes to decisions regarding choosing the most suitable model serving 

platform, there are many things to consider while matching technology to infrastructure, technical 

stack, model complexity, use cases, performance requirements, or the need of additional features for 

functionality scaling in the future.  

Research problem. With the advent of more and more technologies for serving to production stage, 

it becomes important for architects of artificial intelligence systems to compare them in terms of 

various aspects, such as speed, CPU and GPU resource utilization, ease of configuration, and 

additional benefits.  

Research subject. Deep learning models’ serving platforms. 

Research goal. Recommendations for efficient image classification inference at scale. 

Research tasks. The following objectives have been set to achieve the research goal: 

1. Research literature on the application of deep learning, its relevance, and its impact in multiple 

industries. 

2. Review the model serving process, platforms, and related research. 

3. Choose and describe novel architectures used for image classification. 

4. Perform benchmarking by serving pre-trained models to the production environment via different 

platforms and compare the results. 

5. Compact models through quantization and perform additional benchmarking. 

6. Provide general recommendations or guidelines for selecting the right technology for efficient 

image classification deep learning model serving. 

Work structure. The first part of the work analyzes literature reviewing deep learning, its relevance, 

model serving process, and technologies. The second part presents computer vision tasks, model 

architectures, inference system challenges, and model deployment software specifics. The third part 

presents deployment software benchmarking scenarios, data used for model inference, and collected 

results. 
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1. Literature Review 

1.1. The Concept of Deep Learning 

Deep learning is a well-known and widely discussed method for building data-driven decision-

making algorithms, better known as a type of artificial intelligence and machine learning. Its core 

concept was derived from the structure of biological neurons existing in the human brain. Its purpose 

is to analyze data and make predictions based on it helping the human to identify objects he sees and 

make decisions in everyday situations.  

Large and deep artificial neural networks are major components of deep learning. The input layer of 

it takes signal vectors and then one or several hidden layers process the outputs of the previous layer 

[1,2] (see Figure 1). "One of the main differences from traditional machine learning methods is that 

deep learning automatically learns how to represent data using multiple layers of abstraction" [5]. 

 

Figure 1. A three-layer artificial neural network [7] 

The initial concept of a neural network can be traced back to 1943, when two scientists, 

neurophysiologist Warren McCulloch and mathematician Walter Pitts,  wrote a paper in which they 

described how biological neurons might work. To describe it, they modeled a simple neural network 

using electrical circuits [3]. Later, multiple researchers were working on different neural network 

simulation approaches (in both - computational and mathematical sciences), however all of them 

faced a struggle with the neural networks being relatively slow. 

Due to the limitation of processors, neural networks took weeks to learn, so the next chapter in history 

was creating digital, analog, and optical chips to help optimize the application of neural networks [3]. 

However, neurons in the human brain actually do not act as a digital signal and is more similar to 

analog one - there is no distinct state like 1 or 0 to describe true or false, on the contrary, analog 

signals vary between 0 and 1 values acquiring intermediate values. Therefore, this part of our biology 

was covered in deep learning research (see Figure 2). 

 

Figure 2. Biological neuron (left) and its mathematical model (right) [7] 
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1.2. Applications of Deep Learning 

Today, as we have more data and much more powerful computers, the capabilities of large and deep 

neural networks have increased. "The main feature of the methods based on machine learning is 

extracting the characteristics from within a large number of data without human involvement" [4]. 

Due to this fact, deep neural network-based solutions have become dominant in solving loads of 

problems, even in various fields such as the IoT industry, agriculture, and so on. Deep learning found 

a way to impact almost every sector of business in its own way and researchers are still trying to 

unravel its full potential [6]. 

Healthcare is known as a sector having a wide range of deep learning use cases such as computer-

aided disease detection, genome analysis, the discovery of medicines, medical imaging, etc. Most 

solutions are built for healthcare professionals to improve time-consuming processes, automate 

measurements, and identify anomalies in images or other medical records [7]. For example, MRI 

image analysis helps to see tumors or other unusual changes in human body tissues and predict a 

patient's condition/disease based on the medical imaging and diagnosis of previous patients [8].  

Another example is the discovery of new drugs based on the exploration of plant features or 

reprogramming of decease cells. The creation of the SARS-CoV-2 vaccine was also based on deep 

learning models such as Generative Adversarial Networks to create data-oriented molecules [9]. Its 

approaches have also revolutionized the field of cancer vaccinology through the improved prediction 

of neoantigens and their HLA binding affinity [10]. As we see, deep learning is reshaping the health 

care industry by delivering new possibilities to improve people's lives. 

Deep learning is used in entertainment industries, such as movie making, computer games, social 

media, and others. Amazon, Netflix, and Vevo use a recommender system to provide a personalized 

experience to their viewers using their show/movie preferences, time of access, history, etc. [11]. 

Instead of forcing the user to dig for the information, deep learning starts doing that for the user. 

Transitioning to virtual worlds, they arise from augmented reality applications (e.g., Pokémon Go), 

video conferencing, and games, which brought us various degrees of digital transformation [12]. In 

addition, the term "Metaverse" was brought about by Mark Zuckerberg with the idea of building a 

new kind of virtual world connecting people in personal and business life. Users would be able to 

participate in events that occur in virtual environments enriched with sounds and objects built by deep 

learning algorithms [13].  

Sounds generation is another large part of the industry that blends right into previously discussed use 

cases. Sound recognition technologies can be used to train deep learning models to produce music 

compositions by learning patterns and generating new sounds. Google's Wavenet and Baidu's Deep 

Speech software can train a machine to learn the patterns and statistics that are unique to music and 

generate a completely new composition [11]. Furthermore, Oxford and Google scientists created a 

neural network called LipNet that could read people's lips with 93% success [14]. This can be used 

to add a soundtrack to silent movies or allow surveillance equipment to pull the context from people's 

conversations happening far away if the camera can catch the lips' movements. 

Another great example of deep learning use cases is the Wimbledon championship administration's 

initiative to cooperate with IBM and use the IBM Watson platform to analyze player emotions and 

expressions through hundreds of hours of footage. "The system allowed Wimbledon to produce 
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highlights packages for fans to relive or catch up on matches much more quickly than traditional 

manual techniques" [15].  

Deep learning is widely used in robotics to make robots perform human-like tasks. Machines are built 

to understand the world around them, and they are trained to make better and safer decisions without 

supervision. Replacing humans with robots in the right place and timing would increase safety, for 

example, when nuclear reactors have melted down after a tsunami in Japan - using robotics for 

environmental clean-up would be the wiser solution rather than sending human beings into a 

radioactive environment. Deep learning boosts robots with life experiences, for example, robots by 

Boston Dynamics react to people pushing them around, get up when they fall, can unload a 

dishwasher, and do other tasks as well [16]. 

The extensive deployment of deep learning architecture has pervade the global business landscape. 

In the present time, advanced technologies are making a breakthrough that impacts human daily life. 

The use cases provided in this chapter should not limit our imagination, as deep learning became an 

extremely active area of research. Despite the complexity of this field, we will try to overview a 

couple of major deep learning tasks used in computer vision. 

1.3. Model Serving 

The rise of deep learning has been driven forward by the uncontrolled amount of model training 

material, the use of accelerators such as graphic processing units, and the advancement of ML models. 

Training deep learning models became time-consuming, especially when using an enormous amount 

of visual input. For this reason, it requires both - specialized hardware and software to run models on 

production effectively.  

To understand the ML infrastructure, we can segment the whole workflow into three rough parts: data 

preparation, model building, and production deployment (see Figure 3). Once a model has been 

developed, trained, and validated - it needs to be prepared for inference. 

 

Figure 3. High-level ML infrastructure workflow 

The model serving step allows the model to be exposed as an API via HTTP or gRPC, allowing it to 

integrate into client applications and perform model inference in a production environment. Model 

serving is a composite process that requires a set of analytical, engineering, and machine learning 

infrastructure skills [17]. Tasks such as model conversion, preparation of deployment configuration 

files and setting up of the serving environment are needed. Furthermore, serving is not a one-time 

task, as the model requires also a continuous learning process to be set up [18]. 

Existing deep learning frameworks have weak performance for online serving: "many models suffer 

from long serving latency and high cost, preventing their deployment to production" [19]. "Latency 

and efficiency are the two most important metrics for serving. Interactive services often require 

responses to be returned within a few or tens of milliseconds because delayed responses could degrade 

Data Preparation 

Process and augment data for 
use by models 

Model Building 

Build the model based on 
business goals 

Production 

Integrate model predictions 
into the business 
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user satisfaction and affect revenue" [19]. One of the examples might be a self-driving car which must 

be able to detect and respond within milliseconds in order to avoid an accident. Another example 

related to efficiency can be a battery operated drone whose main purpose is to follow a target on the 

ground, it must be energy efficient to maximize flight time [20]. These optimization and performance 

requirements must be taken into account when preparing the model for use in production, and one of 

the major decisions to make is selecting a serving platform based on the company and customers' 

needs. 

1.4. Model Benchmarking 

Faced with this growing demand for deep learning inference deployment, many companies and 

startups are engaging to develop customized inference hardware, software, and optimization tools 

[21]. Consequently, the countless combinations of hardware and software make accessing future 

system performance and cost quite challenging [22]. The spectrum of machine learning tasks, models, 

methods, training, external data, packages, optimization libraries, neural network architectures,  and 

serving platforms makes the evaluation of inference performance nearly impossible to predict [22].  

When performing an inference benchmark, Zhang emphasizes a couple of key aspects [23]: 

1. Model complexity and execution features impact deep learning system performance, which 

makes it important to perform benchmarking using the same models. Figure 4 shows how 

accuracy and computational complexity differ between different models that perform the same 

task, image classification. 

2. There are “four evaluation scenarios reflecting production use cases: single-stream, multi-

stream, server, and offline solutions” [23]. Performance may vary significantly under these 

scenarios.  

3. Benchmarking must have defined model-quality targets. Quality and performance are 

inseparable from each other, however, sometimes companies sacrifice model quality to reduce 

cost or latency. 

4. The need for benchmarking should be identified to define rules of software and hardware 

capabilities. Some companies need to include semantic-level benchmarks to compare a variety 

of languages and libraries, others need to test inference performance dependency from 

hardware. 

5. Strict rules must be applied to change the model: whether the model will be benchmarked as 

is or should it be allowed to enrich the model and demonstrate different performance and 

quality targets [23].  
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Figure 4. Machine learning models diversity for image classification 

With an increasing number of deep learning model applications, more and more researchers 

investigate multiple platforms for inference serving. Even when we look at the image classification 

task, there may be the need to recognize a pedestrian‘s identity from video footage or process the 

photo uploaded via smartphone. Both of these tasks may have different quality requirements, real-

time data processing demand, and even operations performed by the model might be framework-

specific – all of it adds complexity and requires corresponding features from model serving platforms. 

Figure 5 shows a variety of tools combinations across layers that make benchmarking inference 

systems complex. 

 

Figure 5. The diversity of options at every level of the stack 
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Working with big data adds extra concerns about infrastructure as production-ready systems have a 

high demand for technical resources [24]. When we look at deep learning systems, data partly replaces 

the code, as a learning algorithm automatically identifies the patterns and learns from them. Such 

machine learning systems usually are distributed across multiple machines and rely on various 

pipelines implemented in different languages, glued up from several libraries or packages. While 

analyzing software engineering challenges of deep learning, Arpteg described that the most important 

component for good model performance in production is hardware, as GPUs provide from 40 to 100 

times speedup in comparison with CPUs. Furthermore, over the past couple of years, the performance 

of the models has improved significantly as new GPUs are released one or more times a year. On the 

other hand, maintaining a system in production with new hardware require special techniques and 

knowledge. Many problems may be avoided if the model runs on cloud-based solutions. Zhang adds 

that current serving platforms lack configurability and leave implementation details to development 

teams, taking them days or weeks to make inference benchmarks [23]. 

1.5. Model Serving Software 

Once a model is ready, it should be served for use in production. There are a few patterns to achieve 

at this point [25]: 

– Embedded model: this approach states that our model is built and packaged as a part of 

business consuming application. From this point, we treat "application artifact and version as 

being a combination of the application code and the chosen model" [25]; 

– Model deployed as a service: this approach means the model is  deployed independently as 

a microservice and may be used separately from consuming applications. It means we can 

also integrate this model into multiple consumer applications without changing model logic. 

However, such an approach may add latency at inference time; 

– The model published as a data: in this approach, model is also deployed independently, 

however, the consuming application will ingest it as data runtime. This approach is mostly 

used in streaming scenarios where the application provides a constant flow of data/events [25]. 

The simplest approach of embedding the model is supported by most serving tools, however, other 

patterns require custom specifics. For example, in implementing the "model as service" pattern, 

multiple cloud providers suggest separate tools and SDKs "to wrap your model for deployment into 

their MLaaS (Machine Learning as a Service) platforms, such as Azure Machine Learning, AWS 

Sagemaker" [25]. Also, the same pattern can be solved with the open-source tool -  Kubeflow, 

however, it tries to solve more impediments that the model serving, which may add complexity. In 

general, model serving tools can be divided into these types [26] : 

– Internally built executable (PKL File/Java) - containerized and non-containerized; 

– Cloud ML provider - Amazon SageMaker, Azure ML; 

– Batch or Streams oriented software (both, cloud and on-premise) - Algorithmia, Databricks, 

Paperspace; 

– Open source - TensorFlow Serving, Kubeflow, Seldon, Anyscale, etc. 

However, there are many considerations when deciding what software to choose for model serving, 

as there are a large number of different tools performing similar tasks (see Table 1). For example, 

when an organization's data security requirements are very strict - the easiest way to go would be 
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using solutions with integrated security-specific features or building your own proprietary solutions. 

Some providers like Algorithmia, Seldon, TensorFlow, or Kubeflow may be an option. Another 

example to consider may be whether a team will manage the solution for model serving by themselves 

or not. If an organization has a low IT stack, then managed cloud solutions, such as Google ML, 

Azure ML, and Amazon SageMaker, would be a better choice, on the other hand, solutions like 

Kubeflow, TensorFlow Serving, Nvidia Triton, Anyscale would work for more technical 

organizations [26]. Also, we should not forget performance requirements, as each of these serving 

solutions interacts differently with the technical stack and models themselves, which may cause either 

better or worse performance when a model is running in the production environment.  

On the other hand, most of these serving platforms are just one part of the whole software provider's 

tools ecosystem. When looking at such companies as TensorFlow, Nvidia, or Amazon – we know 

they are building more software than only serving platforms. There is a whole family of applications 

supporting the machine learning process starting from the very beginning (data preparation, model 

creation, training, etc) till the very end (model deployment, inference, monitoring, etc). Sometimes it 

is worth taking into account the usage of other tools to optimize models' performance before or during 

model inference as such capabilities are taken into account by these giant companies. For example, 

TensorFlow Serving software itself is very limited, it provides model versioning and serving features, 

allows easily update model weights in production, etc., however, multiple TensorFlow tools can be 

integrated with TensorFlow Serving and help to optimize inference or ease the deployment. There is 

TensorFlow Core which may help to manage data pipelines, prepare input data for inference, and 

postprocess inference output to the desired structure. Also, TensorFlow Lite  dedicated to small scale, 

mostly mobile applications models optimization, has its use cases when needed. On the other hand, 

Nvidia Triton provides a client, which manages all features, needed to start using deployed model in 

production right away. Unlike TensorFlow Serving, Triton requires input and output processing, as 

well as model inference configuration, to be provided during model deployment. It also comes with 

easy batching configuration and other perks. Most companies try to build an ML system that allows 

multiple teams (analysts, engineers, DevOps) to cooperate on ML projects. All these tools come with 

some pros and cons, but based on business problems and the company's technical stack, some 

disadvantages for one company may become an advantage to another one. 

To address all the above-mentioned issues and processes, a lot of MLOps tools are created to support 

the whole ML lifecycle in production.  The table below refers to the most common tools used to 

manage the MLOps process [27]. The challenge here was to make sure  that  relevant factors would 

be considered when making a decision on which tool to use, as all tools have tens or hundreds of 

features, we decided to group them into the following categories: 

1. Data and pipeline versioning:  version control for datasets, features, and their transformations 

represents a snapshot of the input data including changes in structure and sampling [25,27]; 

2. Model and experiment versioning: usually separate teams work on building model and 

application, they use different tools and follow different workflows, for that reason it becomes 

hard to automate the whole process in production. There are more artefacts to be managed 

beyond the code, and versioning them is not straightforward [25]. Due to this reason, 

model/experiment versioning becomes a crucial task to maintain production model stability; 
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3. Model deployment: It allows transforming a model to service and accessing it using REST 

API mostly via HTTP, but there are also alternatives such as gRPC (which is used in 

Tensorflow Serving, Nvidia Triton, etc) or GraphQA [28]; 

4. Metrics and monitoring: tracking deployed models' ongoing performance. The metrics 

modules contain a series of model, performance, and implementation evaluation metrics that 

can later be accessed via separate REST APIs or pushed to monitoring tools for further 

analysis. Metrics are highly important for production models as they allow us to identify their 

flaws and make an improvement based on them [28]; 

5. Batches and/or streams support: identifying whether the tool supports real-time or batch 

predictions. 

6. Integrity with other ML tools:  usually ML project architecture consists of multiple ML tools, 

however, not all of them work with each other; 

7. Coverage of libraries:     integrating the serving tool  into existing/new solutions or adding 

additional features may require the support of external ML/client frameworks; 

8. On-premise vs cloud:  identifying whether a tool can be run on the client's  servers or it's 

mandatory to use  cloud infrastructure which may cost additional  expenses; 

9. Product support: Github ratings and contributions allow us to evaluate how well the stack is 

maintained and should we rely on open-source or commercial software. 
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Table 1. Coverage of MLOps tasks in various ML model serving tools (2021 data) 

Software Data and 

Pipelines 

Versioning 

Model and 

Experiment 

versioning 

Deploy-

ment 

Metrics and 

Monitoring 

Batches / 

Streams 

Coverage of libraries On-

premise vs 

Cloud 

Product Support  

GitHub 

Stars 

Contri- 

butors 

Amazon 
SageMaker 

✗ ✓ ✓ CloudWatch ✓ Scikit-learn; Conda; Pip; MXNet; Spark; Chainer; 
TensorFlow; PyTorch; R; 

cloud 7100  520 

Triton ✗ ✓ ✓ Prometheus ✓ TensorFlow; PyTorch; ONNX; TensorRT on-premise  2333 61 

TensorFlow 
Serving 

✗  ✓ ✓ Prometheus ✓ XGBoost;  PyTorch; Keras; TensorFlow Core;  on-premise  5100 178 

Torchserve ✗ ✓ ✓ Prometheus , Grafana ✓ PyTorch; Keras; Scikit-learn; Jupyter; MLflow, JMeter, 
Apache Bench, ORT, IPEX, TensorRT, FasterTransformer 

on-premise 2600 87 

DeepDetect ✓ ✓ ✓ ✗ ✓ XGBoost; Jupyter;  TensorRT; Ncnn; Libtorch; TensorFlow; 
T-SNE; Dlib; Caffe; Caffe2; Java; C#; 

on-premise  2200 23 

Weights & 
Biases 

✓ ✓ ✓ WandB ✓ Scikit-learn; Jupyter; XGBoost; LightGBM; TensorFlow; 
Keras; PyTorch 

cloud 3081  72  

Kubeflow ✗ ✓ ✓ Kubeflow Pipelines ✓ Scikit-learn; Jupyter; XGBoost; TensorFlow; PyTorch; 
MXNet; Chainer 

cloud 10400 229 

MLflow ✗ ✓ ✓ MLflow Tracking ✓ Scikit-learn; Conda; R; Java; Sagemaker; Spark; XGBoost; 
LightGBM; TensorFlow; Keras; PyTorch; ONNX 

on-premise  9700 308 

Azure 
Machine 
Learning 

✓ ✓ ✓ Azure Machine 
Learning 

✓ Onnx; Scikit-Learn; MLflow; MXNet, Keras, XGBoost, 
TensorFlow; Chainer; PyTorch; Jupyter; R; Dask; 

cloud 2400  52  

Polyaxon ✗ ✓ ✓ Polyaxon ✓ Scikit-learn; TensorFlow; Keras; Caffe; PyTorch; MXNet; on-premise 
/ cloud  

2900 83 

H2O MLOps ✗ ✗ ✓ H2O MLOps ✗  R; Java; Spark; XGBoost; LightGBM; TensorFlow; PyTorch cloud 5400 143 

Algorithmia ✓ ✓ ✓ Datadog, Arize, 
Arthur, Telegraf, 
InfluxDB, New Relic 

✓ AllenNLP; Caffe; Chainer; Dlib; Gensim; H2O.ai; Keras; 
MXNet; NLTK; ONNX; PyTorch; Scikit-Learn; 
TensorFlow; XGBoost; 

cloud 195 22 

Seldon ✗ ✗ ✓ Prometheus ✓ Scikit-learn; R; Java; Spark; TensorFlow on-premise 2400 115 

Hydrosphere ✗ ✗ ✓ Hydrosphere ✗ Scikit-learn; R; Java; TensorFlow; Keras; PyTorch on-premise 223 18 

Paddle 
Serving 

✗ ✓ ✓ Prometheus ✓ Caffe; TensorFlow; ONNX; PyTorch; Intel MKLDNN; 
Nvidia TensorRT; C++; Python; Java language SDK; 

on-premise 
/ cloud 

618 33 
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1.6. Serving Software Benchmark 

Deep learning solutions are highly desirable in the current business world and it seems that a huge 

amount of research should be performed regarding which software is better to use for solving specific 

business problems. Indeed, most of the research covers model preparation part and serving tools' 

adaptability to existing ML tools, and only a small part of the research compares serving software 

with each other. 

Automatic benchmarking tools such as MLPerf, InferBench, or AI Benchmark were created during 

the last decade with the idea to evaluate the whole chain of processes inside of deep learning inference 

serving system [22,23,29]. These tools focus on defining inference elements and measure hardware, 

software, and pipelines to evaluate such metrics as: 

– latency and throughput: measures resource (GPU/CPU/TPU) utilization during serving and 

inference, as well as its impact on online and offline services; 

– cost: includes serving environment financial costs like cloud cost per provider, energy 

measures, and CO2 emission; 

– memory and computation: capacity of the serving tools to manage resources, its impact on 

model performance; 

– tail latency: serving platforms effective mitigation of tail latency and its impact on model 

performance; 

– resource usage: evaluates how effective is served model design; 

– advanced features: allows identifying resource utilization in case if serving tool provides 

effective functions such as dynamic batching. 

 

Nvidia Triton Inference Server, TensorFlow Serving, FastAPI ONNX Server, and FastAPI 

TorchScript Server software benchmarking was performed by Zhang H. and other researchers [23]. 

They used InferBench tool to analyze serving infrastructures and compared serving tools for the same 

image classification task using GPU acceleration [23]. As we see from the results in the image below 

(Figure 6), NVIDIA Triton Inference Server performs the best, and this is no surprise as it contains a 

lot of GPU optimization techniques.  

 

 

Figure 6. The tail latency of four serving systems for image classification task performed on GPU device 
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Subsequently, the resource use by these four software was investigated as a "resource utilization 

pattern often leads to better resource allocations" [23], the results are shown in Figure 7. 
 

 

Figure 7. GPU utilization with four serving software under different workloads [23] 

The final Zhang's test was performed only with two software – TensorFlow Serving and NVIDIA 

Triton Inference Server. The researchers identified that Triton has a longer starting time in the case 

of the "cold start" test scenario, rather than TensorFlow Serving (see Figure 8). "Even for a small 

image classification model, it needs more than 10 seconds to prepare" [23]. According to the 

experiment, a long start time may challenge machine resource provisioning. 
 

 

Figure 8. Cold start latency of different models with two serving software 

Some researchers concentrated on benchmarking models optimization techniques or efficient 

training, others were benchmarking inference hardware [29,30]. However, serving platform 

overviews are mostly performed by technology companies or machine learning specialists and they 

are shared as articles in blogs or company pages.  

 

1.7. Model Compression for Inference Optimization 

Deep neural networks have achieved high success in many industries, although their computational 

and memory costs cause problems for resource-constrained environments [31,32,33]. Low memory 

restrictions, as well as strict latency requirements, obstruct model deployment, and there is a common 

thought that performing model optimization to meet existing device setup may require sacrificing 

accuracy. However, today's technologies are highly advanced, and there are lots of proposals on how 

to accelerate inference, including offloading a part of computations to a cloud server, designing 
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efficient architectures, compressing pre-trained models, or designing hardware with prebuilt 

functionalities allowing to reduce memory latency.  

Researchers point out different approaches to obtain small networks. These methods include 

shrinking, compressing, or factorizing pre-trained models. Compressing a pre-trained model is used 

with the purpose "to reduce its storage and memory footprint as well as computational requirements" 

[31]. This research topic has been promising as it allows one to decrease the model size without 

compromising accuracy.  

 

Figure 9. Compressed model metrics (pruning and quantization) [35] 

 Many research concentrates on designing efficient neural network model architecture (in terms of 

depth-wise convolution applied for EfficientNet models, or low-rank factorization, residual model 

types, etc). New methods such as Neural Architecture Search or  Automated ML enrich classic 

architectures. The aim of these methods is "to find in an automated way the right NN architecture, 

under given constraints of model size, depth, and/or width" [33]. 

One more approach emphasized in many experiments is pruning. "In pruning, neurons with small 

saliency (sensitivity) are removed, resulting in a sparse computational graph" [33], meaning, 

redundant and non-informative weights of pre-trained deep neural network model are pruned [32]. In 

early work, network pruning proved to be a valid way to reduce network complexity and over-fitting 

[34]. 

 

Figure 10. Neural network pruning [36] 

Model quantization can be applied for all model deployments, especially it might be critical for 

mobile model deployment, because of its size which may exceed Android or iOS applications limits 

[37]. According to the PyTorch documentation, model quantization before deployment can reduce 

the inference speed by up to 2-4 times [37]. That is, a full-precision neural network is converted into 
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a low-bit width integer version by using quantization. However, some of these compression methods 

have not been proven for various types of architecture [38]. 

The knowledge distillation method is also widely used to transfer knowledge from one model to 

another. "The idea has been recently adopted as knowledge distillation (KD) to compress deep and 

wide networks into shallower ones, where the compressed model mimicked the function learned by 

the complex model" [32]. This approach allows to forward knowledge, gained by the large model to 

teach small one the class distributions output using softmax. 

 

Figure 11. Knowledge distillation [36] 

Another compression method is low-rank factorization using matrix decomposition for the estimation 

of informative parameters. This method is highly recommended use for in the training phase as it 

might reduce training time. According to research, a low-rank approximation can help to achieve 2 

times more speed for a single convolutional layer with only 1% smaller classification accuracy [32]. 

Table 2. Model compression and acceleration approaches summary 

 
 

1.8. The Need for Research 

In the first chapter, we introduced the typical workflow of building deep learning services, and their 

application in practice, and reviewed a variety of model serving software. The diversity of inference 

applications, models, machine learning frameworks, data sets,  libraries and packages, platforms, and 
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hardware is numerous, which complicates the observability of the inference system and reproducible 

benchmarking [22]. Figure 5, depicts a narrow range of available combinations, however, the truth is 

– building an inference system for a production environment requires knowledge in various fields to 

assess each component‘s impact on inference. Also, model architectures are constantly optimized and 

tools – upgraded, which challenges each machine learning tool to support integration with each other.  

Due to hundreds of available ML tools and even more combinations of them – benchmarking of deep 

learning model serving software has not been thoroughly investigated by the current studies [23,17]. 

Subsequently, there is a growing need for computer vision solutions responding to a nearly insensible 

amount of time – humanoid robotics, smart devices, automatization solutions, and medical devices 

needs to consume images fetched from the environment and be able to interact with them in a way 

human does, or perform high scale analysis and provide feedback.  

Serving software is just one of the components used to utilize deep learning models for image analysis 

at scale. However, choosing the right software may lead to building a core for effective models 

inference system infrastructure.  

Research goal. Recommendations for efficient image classification inference at scale. 

Research tasks. The following objectives have been established to achieve the research goal: 

1. Research literature on the application of deep learning, its relevance, and its impact in multiple 

industries. 

2. Review the model serving process, platforms, and related research. 

3. Choose and describe novel architectures used for image classification. 

4. Perform benchmarking by serving pre-trained models to the production environment via different 

platforms and compare the results. 

5. Compact models through quantization and perform additional benchmarking. 

6. Provide general recommendations or guidelines for selecting the right technology for efficient 

image classification deep learning model serving. 
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2. Methods and Concepts Used in Research 

In this paper, the focus is to provide recommendations on efficient computer vision model serving 

production environments. The following part of the thesis provides a review of methods and 

architectures that help to fulfill the project and describes concepts and technical guidelines for the 

research project. This chapter will cover computer vision methodologies, models, and their 

optimization options, as well as tools for machine learning model serving. 

2.1. Computer Vision 

A field of artificial intelligence that trains computers to interpret and understand the visual world is 

called computer vision [39]. It uses images fetched from cameras or videos and applies deep learning 

models for acquiring, processing, and analyzing digital images so that machines could identify and 

classify objects - and then respond accordingly. Computer vision requires a lot of data to perform 

with high precision. One of the essential technologies used for image recognition - is a convolutional 

neural network (CNN) which helps a deep learning model to break the image down into pixels relating 

it to given labels and helps the machine identify what it is seeing. When it comes to computer vision, 

the key problems to solve are image segmentation and classification.  

2.2. Convolutional Neural Network 

Convolutional neural networks are a type of artificial neural network where the connection between 

neurons is based on the biological human visual cortex system (figure 3). The primary visual cortex 

is responsible for taking visual input from the retina and detecting edges. The secondary visual cortex 

receives the edge components from the primary cortex and extracts regular properties such as spatial 

frequency and color. The visual area (marked as V4) handles much more complicated object attributes 

than the others. Visual features flow processed all together into the final logical unit, inferior temporal 

gyrus (IT), which is passed for object recognition [2].  

We may see the relation between V1 and V4 - it is a special type of convolutional neural network 

with a relation between non-adjacent layers: Residual Net which supports some input of one layer to 

be passed to the component two layers later. Residual learning was presented to ease CNN training 

that is much deeper than those used previously. Layers are reformulated as learning residual functions 

concerning the layer inputs, instead of learning unreferenced functions. Such networks are easier to 

optimize and achieve better accuracy (He et al., 2016).  

 

Figure 12. Human visual cortex system 

Convolution in math is called an operation between two matrices. "The convolutional layer has a 

fixed small matrix defined, also called kernel or filter. As the kernel slides, or convolving across the 
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matrix representation of the input image, it computes the element-wise multiplication of the values in 

the kernel matrix and the original image values" [3] (Figure 13). Kernels can be used for processing 

images for such purposes as edge detection, image sharpening, or many others, quite quickly and 

efficiently. 

 

Figure 13. The LeNet architecture 

 

2.3. Image Classification 

Image classification is one of the fundamental tasks in computer vision responsible for "categorizing 

and assigning labels to groups of pixels or vectors within an image dependent on particular rules" 

[40]. It can accurately predict that a given picture belongs to a certain class.  

Image classification works in a way where the computer analyzes the digital image at the pixel level 

considering it as an array of matrices and automatically groups pixels into specified categories, better 

known as classes. The characteristics extraction process is the most important step in image 

classification, as the machine cannot interpret images the way a human does. Due to this reason, 

image preprocessing step contains enhancement of some image features which may help identify 

unique properties applied for a specific class. During preprocessing stage input data is converted in 

different ways to extract more information about the image. For example, gray scaling allows the 

computer to assign pixel value based on how dark it is or using Gaussian smoothing to blur an image 

reducing the noise, lastly, histogram equalization is used to increase image contrast and analyze 

intensity histogram to find the patterns (Figure 14). 

 

 

Figure 14. Features extraction examples in the image classification process 

Supervised classification methods use predefined data samples to train the classifier. Manual data 

labeling for good and bad sample interpretation is known as image annotation and it requires a human 

being to choose the category where the sample image should be allocated. In the case of supervised 

classification, the accuracy of the model depends a lot on the amount of training data [40]. 

Unsupervised classification is fully automated and does not require training data to be passed to teach 

the model. It means the algorithm is written in a way that it will analyze and cluster unlabeled datasets 

by discovering hidden patterns by itself, without human interaction.  A simple example from everyday 
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life can be related to our mobile devices where Android OS applies face recognition to classify images 

and afterward builds catalogs for reviewing photos per each photographed person. The algorithm can 

learn from data stored in a gallery, recognize facial differences among all people, and cluster photos 

based on it.  

According to Boesch, the co-founder of Visio.ai software for computer vision, pattern recognition, 

and image clustering are the most common image classification methods, and two popular algorithms 

used for it are K-mean and ISODATA. K-means is an unsupervised classification algorithm that aims 

to partition objects into k clusters based on their features [41]. K-means clustering tries to minimize 

squared Euclidean distances between observations and the centroid of a cluster to which it belongs. 

This is one of the simplest unsupervised algorithms. On the other hand, ISODATA also uses 

Euclidean distance as the similarity measure, but instead of having a predefined number of clusters - 

its algorithm includes iterative methods allowing a different number of clusters. Data scientist Taru 

Jain also confirms the popularity of K-means classification algorithm, however, there are lots of other 

supervised machine learning algorithms used for classification and they have their pros and cons 

depending on the circumstances. Jain made an experiment to compare five algorithms such as Support 

Vector Machines, Decision Trees, K-means, Artificial Neural Networks, and Convolutional Neural 

Networks, as a result - the model using CNN gave better results than the rest of the models. The 

challenging part of using convolutional neural networks in practice is usually designing the model 

architecture so as to achieve the best results [40,41]. 

2.3.1. EfficientNet 

EfficientNet is a family of models introduced by Google AI, and the idea of it is to scale up 

convolutional neural networks in a way the model would be more efficient, without losing the state 

of art results. Lately, this model became highly popular and is used as a backbone in a lot of machine 

learning projects.  

EfficientNet scaling is made through multiple network dimensions, as well as using higher resolution 

input for model training [42]. However, these are basic model scaling methods and Google decided 

to make it one step further by proposing „ a novel model scaling method that uses a simple yet highly 

effective compound coefficient to scale up CNNs in a more structured manner“ [42]. Their research 

was based on scaling each dimension by setting fixed scaling coefficients, and introducing extended 

usage of AutoML. Below we can see an image provided by Google comparing multiple scaling 

methods and it shows conventional scaling methods (b-d) covering scaling per one dimension, as well 

as compound scaling (e) where all dimensions are scaled uniformly. The latter is a visualization of 

the EfficientNet scaling methodology. 
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Figure 15. Scaling of the efficientNet architecture model [42] 

EfficientNet model architecture has a common structure with other networks and it consists of the 

input layer, rescaling, normalization, zero padding, Conv2D, batch normalization, and activation. 

Each of these components has its sub-components which quantity increases when we move from 

EfficientNetB0 to EfficientNetB7 models. The scaling level, as well as the number of parameters, 

increases with each version in this model family and we can see how each of them impacts the 

accuracy (see Figure 16). 

 

Figure 16. Model size versus accuracy comparison [42] 

Theoretics such as Raghu, Lu, and Komodakis already proved the impact of dimension scaling 

efficiency for the model, however, Google AI team was the first one who quantified "the relationship 

among all three dimensions of network width, depth, and resolution" [42]. Scaling depth is one of the 

most common methods applied for convolutional neural networks as the deeper network is – the more 

complex features model can capture [1]. Scaling the network width is used more often for small 

models [43]. Higher resolutions are commonly used in convolutional neural networks as it improves 

accuracy due to better recognizable features. On the other hand, if we would describe convolutional 
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layer (i) as a function Yi = Fi(Xi), here Yi would correspond to output tensor, Fi – operator, and Xi - 

input tensor having a shape (Hi – height, Wi - width, Ci – channel dimensions). Based on that we can 

define convolutional network (N) consisting of multiple layers:  N = Fk ⊙ F2 ⊙ F1(X1) = ⊙ j=1...k Fj 

(X1). „In practice, ConvNet layers are often partitioned into multiple stages and all layers in each 

stage share the same architecture: for example, ResNet (He et al., 2016) has five stages, and all layers 

in each stage have the same convolutional type except the first layer performs down-sampling“ [42]. 

In addition, Tan and others define a convolutional network as such formula: 

𝑁 = ⊙
𝑖=1...𝑠

𝐹𝑖
𝐿𝑖 (𝑋〈𝐻𝑖 ,𝑊𝑖 ,𝐶𝑖〉). 

 

The formula indicates that Fi is repeated Li times in stage i, and values inside of parenthesis define 

the shape of the input tensor of layer i. The next formula illustrates how "spatial dimension is 

gradually shrunk but the channel dimension is expanded over layers, for example, from initial input 

shape 〈224, 224, 3〉 to final output shape 〈7, 7, 512〉" [42]: 

max
𝑑,𝑤,𝑟

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝑁(𝑑, 𝑤, 𝑟))

𝑠. 𝑡. 𝑁(𝑑, 𝑤, 𝑟) =  ⊙
𝑖=1...𝑠

𝐹̂𝑖
𝑑 ∙ 𝐿̂𝑖 (𝑋〈𝑟∙𝐻̂𝑖 ,𝑟∙𝑊̂𝑖 ,𝑤∙𝐶𝑖〉) 

 

Such an approach helps to expand the network length (Li), width (Ci), and/or resolution (Hi, Wi) 

without changing the model architecture predefined in the baseline model. Model scaling's main goal 

is to solve the optimization problem by increasing model accuracy. The best way to visualize the 

effectiveness of Google AI team‘s compound scaling method would be a chart, showing us model 

accuracy when scaling each dimension separately versus all together (see Figure 17). 

 

Figure 17. Scaling Up EfficientNet-B0 with Different Methods 

The below image shows a comparison of EfficientNet models efficiency starting from the 

EfficientNet-B0 baseline model till EfficientNet-B7, using different compound coefficients.  



33 

 

 

Figure 18. EfficientNet Performance Results on ImageNet  [42]. 

 

2.3.2. MobileNet 

MobileNet is built from lightweight deep neural networks and is most commonly used in mobile or 

embedded vision applications. Small, efficient models were analyzed by much research before 

[45,46], according to Google software engineer Andrew G. Howard, "MobileNets primarily focus on 

optimizing for latency but also yield small networks" [44], however, most previous research papers 

cover only minimization of the model itself. The heritage of MobileNet models comes from Inception 

models being characterized by computation reduction in the first layers. Later, Xception networks 

were introduced with the scaled-up depthwise separable filters. Finally, a similar fate was foreseen to 

such models as it happened to EfficientNet – the Google AI team started working on scaling small 

models to optimize latency and the MobileNet family models were born. 

MobileNet models can be applied to various computer vision tasks: object detection, fine-grain 

classification, face recognition, etc. This model family layers are built on depthwise separable filters 

formed of factorized convolutions where standard convolution is factorized into depthwise and 

pointwise convolutions (see Figure 19). Deptwise convolution is spatial channel-wise convolution 

DK x DK (if there would be 5 channels, then we would have 5DK x 5DK). Its main difference from 

standard convolution is a separation of filtering and combining tasks into two separate layers. Point-

wise convolution applies 1x1 convolution to combine depthwise convolution output dimension. 
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Figure 19. Depthwise separable convolution: a depthwise convolution followed by a pointwise convolution 

"The standard convolutional layer is parameterized by convolution kernel K of size DK ×DK ×M×N 

where DK is the spatial dimension of the kernel assumed to be square and M is a number of input 

channels and N is the number of output channels as defined previously" [43]. If we were to look at 

standard convolution, then the output feature map padding is calculated as: 

𝐺𝑘,𝑙,𝑛  =  ∑ 𝐾𝑖,𝑗,𝑚,𝑛 ∙  𝐹𝑘+𝑖−1,𝑙+𝑗−1,𝑚

𝑖,𝑗,𝑚

 

Afterward, the standard convolution computation cost is: 

D𝐾  ·  D𝐾  ·  M ·  N ·  D𝐹  ·  D𝐹 

where DF stands for feature map size.  

On the other hand, as pointwise and depthwise convolutions make depthwise separable convolutions, 

it is worth mentioning the use of batchnorm and ReLU nonlinearities used in both layers. Deptwise 

convolution having a single filter per input channel can be described as: 

𝐺̂𝑘,𝑙,𝑚  =  ∑ 𝐾̂𝑖,𝑗,𝑚 ∙  𝐹𝑘+𝑖−1,𝑙+𝑗−1,𝑚

𝑖,𝑗

 

where 𝐾̂ stands for depthwise convolution kernel, DK × DK × M – the size of the kernel,  𝐺̂ – filtered 

output feature map. The cost of the depth-wise convolution computation is: 

D𝐾  ·  D𝐾  ·  M ·  D𝐹  ·  D𝐹  

As the combination of depthwise and pointwise convolution is called depthwise separable 

convolution, its cost would be calculated as: 

D𝐾  ·  D𝐾  ·  M ·  D𝐹  ·  D𝐹 + M ·  N ·  D𝐹  ·  D𝐹 

"MobileNet uses 3 × 3 depthwise separable convolutions which uses between 8 to 9 times less 

computation than standard convolutions at only a small reduction in accuracy" [43]. In summarizing, 

MobileNet models architecture is built from depthwise separable convolutions, except for the first 

layer which is full convolution (see Figure 20).  
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Figure 20. Standard convolution layer versus depthwise convolution with Deptwise and Pointwise layers 

Despite MobileNet already being a small-size model, there was more place for optimization, and 

width multipliers were introduced to these models to make them even smaller and quicker. Howards 

and others emphasize - „the role of the width multiplier α is to thin a network uniformly at each layer“ 

[43]. Based on this, computational cost increases by multiplying input (M) and output (N) channels 

having width multiplier (α). The second hyperparameter used in MobileNet is the resolution 

multiplier (ρ) whose purpose is to reduce the computational cost of the network. It is applied to the 

input layer and follows through every further step. Practically, the application of resolution multiplier 

means setting up resolution for input to 224, 192, 160, or 128, and values stand for ρ ∈ (0, 1]. When 

ρ < 1, the calculations of the MobileNet model are reduced: 

D𝐾  ·  D𝐾  ·  αM ·  ρD𝐹  ·  ρD𝐹 + αM ·  αN ·  ρD𝐹  ·  ρD𝐹 

 

Figure 21. Figure shows ImageNet accuracy and parameters number trade off for the 16 models made with 

different width multiplier values α ∈{1, 0.75, 0.5, 0.25} as well as resolutions {224, 192, 160, 128} 

MobileNet has two more versions released, and both are highly customized. MobileNetV2 

incorporates the ideas of the previous version, on the other hand, it introduces a couple of new features 

such as linear bottlenecks between layers and shortcut connections between these bottlenecks. The 

latter encodes intermediate model inputs and outputs, while the layers inside of the bottleneck make 

the transformation from lower-level concepts, such as pixels, to higher-level – image categories. 

Finally, shortcut provides residual connection enabling quicker training and a higher accuracy rate 

[46]. 

The third version of MobileNet was enriched with network architecture search providing hardware 

awareness to the model, as well as layers upgrade with modified swish nonlinearities. Compared to 

the V2 version model, the 1x1 convolution layer was moved past the final average pooling to reduce 
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latency and preserve all the features. „The outcome of this design choice is that the computation of 

the features becomes nearly free in terms of computation and latency“ [44]. In addition, the number 

of filters was reduced and hard swish nonlinearity was introduced in this layer. According to research, 

it reduced latency by 2 milliseconds. 

 

Figure 22. MobileNet V3 architecture 

Lastly, MobileNet is defined as MobileNetV3-Large and MobileNetV3-Small models, which target 

high and low resource use cases. This is the result of the network architecture search application 

helping to optimize performance based on hardware awareness. Figure 23 visualizes performance 

among multiple MobileNet models with different parameters, and as we see – MobileNetV3-Large 

accuracy is the highest one. This model will be used in further research for the model deployment 

platforms' benchmark.  

 

Figure 23. Performance of MobileNet models with different multipliers and resolutions 

 

2.4. Quantization 

In deep neural networks, weights are stored as 32-bit floating-point numbers. Quantization allows for 

reducing weights to 16, 8, 4, or even 1-bit, which allows to build the small-size model.  

 

Figure 24. Binary quantization 
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The huge benefit of quantization is that it can be applied both during model training and when the 

model is already pre-trained. Quantization-aware training is treated to be as most efficient, however, 

this paper covers benchmarks using already pre-trained models. Torchvision library provides 

quantized models version, however, neither of them were the ones, prepared for other benchmark 

scenarios (using EfficientNet-B7 and MobileNetV3-large models). Due to this reason, Torchvision 

proposes a solution for pre-trained model quantization, which was used in this research to quantize 

the MobileNetV3-large model.  

 

 

Figure 25. Comparison of quantization-aware training and post-training quantization 

 

2.5. Serving Models for Experiment 

As noted above, one of our goals was to experiment with deploying computer vision models using 

three different serving platforms and benchmark inference. The experiment uses TensorFlow Serving, 

Torchserve, and Nvidia Triton serving platforms, as well as pre-trained models for EfficientNet-B7 

and MobileNetV3-Large architectures. As each deployment platform has its requirements for model 

preparation – PyTorch and TensorFlow frameworks models were used for serving (see Table 3).  

Table 3. Pre-trained deep learning models chosen for the experiment 

 EfficientNet-B7 

 

EfficientNet-B7 MobileNetV3-

Large 

MobileNetV3-

Large 

Quantized 

MobileNetV3-Large 

Task            Classification  Classification  Classification Classification Classification 

Training Data Imagenet Imagenet Imagenet Imagenet Imagenet 

Model 

Framework 

TensorFlow 
Serving 

PyTorch                         TensorFlow Serving PyTorch                         PyTorch                         

Parameters      66M                         66M                         5.4M 5.4M 5.4M 

Top 1 

ImageNet 

Accuracy 

84.4 % 84.4 % 75.2 % 75.2 % 74.1 % 

Resolution, px optimal 600 x 
600, any 

optimal 600 x 
600, any 

224x224 224x224 224x224 

Size            235.01 MB 234 MB  

 

19.63 MB 

 

22.1 MB 

 

7.82 MB 

 

Depth           813 layers 813 layers 28 layers 28 layers 28 layers 

Source https://tfhub.dev/
TensorFlow/effici
entnet/b7/classific
ation/1 

https://github.co
m/d-
li14/mobilenetv3.
pytorch 

 

https://tfhub.dev/go
ogle/imagenet/mobil
enet_v3_large_100_
224/classification/5 

https://download.pyt
orch.org/models/mo
bilenet_v3_large-
8738ca79.pth 

Quantized model 
using guidelines: 
https://pytorch.org/tut
orials/recipes/quantiz
ation.html 

https://tfhub.dev/tensorflow/efficientnet/b7/classification/1
https://tfhub.dev/tensorflow/efficientnet/b7/classification/1
https://tfhub.dev/tensorflow/efficientnet/b7/classification/1
https://tfhub.dev/tensorflow/efficientnet/b7/classification/1
https://github.com/d-li14/mobilenetv3.pytorch
https://github.com/d-li14/mobilenetv3.pytorch
https://github.com/d-li14/mobilenetv3.pytorch
https://github.com/d-li14/mobilenetv3.pytorch
https://tfhub.dev/google/imagenet/mobilenet_v3_large_100_224/classification/5
https://tfhub.dev/google/imagenet/mobilenet_v3_large_100_224/classification/5
https://tfhub.dev/google/imagenet/mobilenet_v3_large_100_224/classification/5
https://tfhub.dev/google/imagenet/mobilenet_v3_large_100_224/classification/5
https://download.pytorch.org/models/mobilenet_v3_large-8738ca79.pth
https://download.pytorch.org/models/mobilenet_v3_large-8738ca79.pth
https://download.pytorch.org/models/mobilenet_v3_large-8738ca79.pth
https://download.pytorch.org/models/mobilenet_v3_large-8738ca79.pth
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2.5.1. Docker  

Docker is an open-source containerization platform and virtualization technology that eases 

development and allows us to deploy and manage applications by using containers. Container refers 

to a lightweight, stand-alone, standardized executable component that combines the source code of 

the application with the operating system (OS) libraries and all the dependencies necessary to run the 

containerized application in any environment (see Figure 26).  

Most ML model deployment platforms provide the possibility to set up the deployment and inference 

environment inside of docker container, and for that, a Docker image is provided per each serving 

platform. A Docker image is like a template that contains all the instructions for creating a container 

that can run on the Docker platform. It provides all packages and environment configurations needed 

for the application to run successfully on any machine. 

 

Figure 26. Docker architecture, enhanced with Nvidia GPU components 

Setting up Docker on Ubuntu OS requires a small amount of effort. Docker container setup guidelines 

can be found on the official website, https://docs.docker.com/engine/install/ubuntu/. For this 

experiment, we ensured all required packages for docker installation are up to date, and then run the 

Docker installation command: 

 

The ability to deploy models using different platforms to separate containers was the biggest 

advantage of using docker, as other virtualization tools would require additional effort to set up guest 

OS and it would be one more step where environmental discrepancies may appear due to human error. 

In the scope of this experiment – each model was deployed using a different kind of serving platform 

on separate containers. 

 

2.5.2. NVIDIA Triton Inference Server 

Nvidia Triton inference server is an open-source ML model serving software that helps to standardize 

model deployment in production. It provides both, GPU and CPU-based infrastructure, and supports 

sudo apt-get update \  

sudo apt-get install docker-ce docker-ce-cli containerd.io docker-compose-plugin 

https://docs.docker.com/engine/install/ubuntu/
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multiple frameworks such as Nvidia TensorRT, PyTorch, ONNX, TensorFlow, and more (Appendix 

1). The software also offers easily configurable batching and streaming inputs maximizing 

throughput, as well as optimal model configuration. Triton Server can be easily integrated into most 

desired products in today’s IT world, such as Amazon/Azure/Google Cloud solutions, Kubernetes 

engines and machine learning tools. 

The easiest way to install Triton is to use the pre-built Docker image provided in Nvidia`s official 

catalog. However, Triton Server installation has such pre-requisites set [47-49]: 

1. Docker should be already installed. 

2. NVIDIA drivers must be installed (Appendix 2).  

3. The Nvidia Container Toolkit (Appendix 3) must be set up for GPU usage during inference.  

Triton installation itself is easy because of the official Docker image stored online: 

 

Here we see the xx.yy variable, which defines the Triton version to serve. In this experiment, the 

21.02 version was used as it was the newest Triton package at the time of the experiment. 

2.5.2.1. Model Deployment 

The first step in working with Triton is to prepare a model repository, a file-system-based repository 

of the models that Triton makes available for inferencing. It consists of a model file and a model 

configuration file. It is highly important to set the correct model repository layout and naming as it 

differs based on a model framework. The experiment was based on deploying the PyTorch model, 

however, Triton supports only models, converted to TorchScript model format. 

The TorchScript model file can be fetched to be compiled as executable using trace() function (see 

Figure 27). At this step it is important to define that model and input should support CUDA tensor 

types, otherwise, deployment using GPU will fail due to model incompatibility with deployment 

environment. By default, model tensors supports CPU, unless it was set differently during model 

training.  

 

Figure 27. Code defining how to get TorchScript model file 

A traced model can be used for Triton deployment, but the first model repository should be set. Here 

is the minimal repository structure, which was also used for the experiment: 

 

docker pull nvcr.io/nvidia/tritonserver:<xx.yy>-py3 

  <model-repository-path>/ 
    <model-name>/ 
      config.pbtxt 
      1/ 
        model.pt 
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One of the main Triton requirements for a model repository is to have a model name set to "model.pt". 

Also, the config.pbtxt file is mandatory for TorchScript models as Triton cannot identify the default 

model configuration from these models. On the other hand, if the Tensorflow model is used – 

config.pbtxt file is not needed because Triton is capable to set the default configuration for these 

models. 

 

When the model repository is ready – model deployment can be performed. Triton is deploying all 

models which are stored to the model repository at once which enables access to models through the 

same docker container. As the experiment requirement is to benchmark each model one by one – the 

model repository consisted of only one model when the deployment was performed. The following 

command is used to run Triton with the uploaded model: 

 

The --gpus flag defines GPUs which have to be used for this model serving – we had only one GPU 

in this experiment, however, in case more GPUs are supported by the machine, it is allowed to define 

what GPUs to use (e.g. –gpus='device=1,2'). One more thing important to mention is that --strict-

model-config=true should be set as we have config.pbtxt file defined in the model repository and 

TorchScript model deployment will fail if this flag will be set to false (as mentioned before, Triton is 

not capable to define TorchScript model configuration by itself). 

Successful model deployment can be identified by console output displayed in Appendix 4. It displays 

the list of served models, their version, and status, as well as serving variables and three IPs with 

ports to access Triton services. In case of model failure – Triton rolls back all changes, the docker 

container is not created and the error log provides a detailed failure reason description. 

Triton allows users to verify that it is running correctly by requesting the health API, which returns 

inference server status: 

 

When the response provides 200 HTTP code – it means the service is available and running (see 

Figure 28). 

 

Figure 28. Successful Triton inference server health API response 

nvidia-docker run --gpus all --rm -p8000:8000 -p8001:8001 -p8002:8002 \ 

-v/home/renata/ktu/nvidia/model_repository:/models nvcr.io/nvidia/tritonserver:21.02-py3 \ 

tritonserver --model-repository=/models --strict-model-config=true 

curl -v localhost:8000/v2/health/ready 
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2.5.2.2. Model Inference 

The model inference part is a bit more complex as there is no information provided in the official 

documentation or on communities platforms about how to access model prediction API. After 

extensive research, a decision was made to use the Triton client prepared for Python applications. 

The Triton client provides data preprocessing, batching, inference, and postprocessing capabilities. 

Below, the provided command triggers model's inference:  

 

The console output for successful classification is predicted, class: 

 

Figure 29. Console output of the model inference API response when served via Triton 

It should be mentioned that the experiment started with deploying the Tensorflow framework model, 

however, inference failed due to model framework incompatibility with the Cuda version as the 

Tensorflow GPU module supports the highest CUDA 10 (CUDA 11.6 was used in the experiment). 

Such incompatibilities cause unexpected system responses which are hard to grasp and might be 

complicated to solve, as decreasing CUDA version requires reinstalling of drivers and the latter - has 

a dependency on the operating system. This means that if we would already have a couple of models 

deployed on the server, the introduction of the new model may require a change to the previously set-

up inference system change. 

Official documentation [46-50]: 

1. Triton client for model inference in Python application - https://github.com/triton-inference-

server/client/blob/main/src/python/examples/image_client.py 

2. Guidelines for integrating Triton client - https://github.com/triton-inference-server/client  

2.5.3. TensorFlow Serving 

TensorFlow Serving is one more serving system designed for ML models deployment to the 

production environment. Its is mostly supports TensorFlow framework models, however, there is also 

the possibility to extend it with the support of other framework models. TensorFlow Serving software, 

when isolated from other TensorFlow family applications, performs only serving functionality and it 

does not have the option to define batching process, input pre-processing, or post-processing as all 

these features are available on other TensorFlow packages.  

TensorFlow's main requirement is to have Docker installed. Afterward, additional actions are needed 

only when deployment is planned to be performed using GPU resources. For this, NVIDIA drivers 

need to be up-to-date, and NVIDIA docker needs to be set up. The installation guidelines are the same 

as in Appendix 2.  

TensorFlow Serving is easy to set up as it requires only pulling Docker image: 

 

python3 image_client.py -i grpc -u 0.0.0.0:8001 -m efficientnetB7 -s INCEPTION dog.jpg 

docker pull tensorflow/serving:latest-gpu 

https://github.com/triton-inference-server/client/blob/main/src/python/examples/image_client.py
https://github.com/triton-inference-server/client/blob/main/src/python/examples/image_client.py
https://github.com/triton-inference-server/client
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2.5.3.1. Model Deployment 

Model deployment is performed one by one via TensorFlow Serving, meaning, each model is 

deployed on a separate container. As pretrained models used for the experiment were downloaded 

from TensorFlow, their repository structure was already matching default TensorFlow Serving 

requirements: 

 

Figure 30. TensorFlow model repository 

The model deployment command consists of the GPU settings, defining the REST API port which 

will be opened for the prediction API (in case of this example it is 8505 port), model source path 

defined together with the model target folder which is created inside the container during deployment 

(see Figure 31): 

 

This command also creates a default configuration file. Successful model deployment console output 

is provided in appendixes (Appendix 5). 

 

Figure 31. Docker Container and its Model Repository 

2.5.3.2. Model Inference 

TensorFlow Serving makes the model available via the REST API. Classification models were used 

in this experiment, meaning, API should return a prediction of class based on the input image. 

TensorFlow REST API endpoint for classification model's predictions is 

http://localhost:{port}/v1/models/{model_name}:predict and POST method should be used for 

passing input data. Based on the above-provided example - the endpoint is 

http://localhost:8505/v1/models/efficientnetB7:predict. However, TensorFlow does not provide 

images preprocessing and postprocessing steps together with a model serving and it needs to be 

implemented separately; due to this reason, API expects image instances to be sent as a request body. 

Image preprocessing was implemented in the Python client application. A sample of image 

conversion to instances is provided in the image below. This part of the experiment was challenging 

as TensorFlow does not provide guidelines on generating input data; however, there are many 

examples with request structure. Practitioners state that input preprocessing and post-processing 

  <model-repository-path>/ 
    <model-name>/ 
       1/ 
 assets/ 
 variables/ 
 saved_model.pb 

nvidia-docker run --gpus all -p 8505:8501 \ 
--mount type=bind,source=/home/renata/ktu/tensorflow/serving/tmp/efficientnetB7, \ 
target=/models/efficientnetB7 \ 
-e MODEL_NAME=efficientnetB7 -t tensorflow/serving:latest-gpu & 

http://localhost:%7bport%7d/v1/models/%7bmodel_name%7d:predict
http://localhost:8505/v1/models/efficientnetB7:predict
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options provided by TensorFlow slow down model inference in production, due to this reason – most 

specialists use TensorRT or other frameworks' proposed solutions [52]. 

 

Figure 32. Code sample for image conversion to instances for model API served with TensorFlow Serving 

 

Figure 33. TensorFlow inference API input data sample 

Finally, converted input needs to be passed towards API: 

 

Figure 34. Code sample for model served via Tensorflow Serving inference 

Response of API is also not processed as post-processing was not implemented in this experiment. 

 

2.5.4. TorchServe 

TorchServe serving tool mostly concentrates on PyTorch models deployment. It wraps the model in 

a set of REST APIs later available to be integrated into client applications. TorchServe itself provides 

not only inference but monitoring APIs as well, which endpoints are exposed for Graphana, 

Prometheus type of logs. It also shows memory usage and utilization (similarly to Nvidia-smi 

described in several chapters above). However, this experiment did not cover the usage of these 

additional features. The high-level architecture of the TorchServe software is provided in the annexes 

(Appendix 6). 

TorchServe requires Docker, NVIDIA drivers, and NVIDIA Container Toolkit to be set up before 

serving models on Ubuntu OS using GPUs.  Installation guidelines are described in Appendices 2-3. 

TorchServe installation takes only pulling TorchServe Docker image for GPU: 

 

2.5.4.1. Model Deployment 

TorchServe needs a model file and a code file in handler format to read/load/serve the model. Handler 

files can be created using template/example files available on the GitHub repository. TorchServe 

deployment requires a model archive (*.mar format) to be served.  

First of all, the TorchScript model file should be passed to torch-model-archive. If the model is in 

PyTorch file format (*.pth), it should be converted to TorchScipt format. 

docker pull nvcr.io/pytorch/torchserve:0.3.0-gpu 
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Next, the model handler file should be generated. TorchServe has inbuilt handlers with custom 

inference logics described inside. These handlers support four tasks: 

1. Image classification 

2. Objects detection 

3. Text classification 

4. Image segmentation 

As the experiment contains an image classification task, meaning, we need to adapt the 

image_classifier handler, which can be used for models trained on the ImageNet dataset. Handler 

defines RGB images as an input and provides a batch of top 5 predictions after inference.   

Handlers samples (and even more) can be fetched by pulling the TorchServe Docker image: 

 

Then, in a repository /serve/examples/image_classification couple of models and handlers samples 

are provided. However, provided examples did not satisfy the need as they had custom sample' models 

related modifications. Due to this reason basic model handler (myHandler.py and my_handler.py) 

was used from the Zuppichini F. S. GitHub repository [51]. The only adjustment performed to the 

original files was defining that model inference should use GPU by adding cuda() function to the 

my_handler.py file (Appendix 7). Model deployment fails when TorschServe GPU Docker image is 

used if cuda() is not added to inference – that was one of the challenges encountered during the 

experiment. 

After the model handler and checkpoint file (*.pt) were prepared, the model archive needed to be 

generated and its file was stored in the model-store directory: 

 

Finally, model deployment is performed by running the docker run command in the terminal: 

 

The console output for successful deployment will return the model inference endpoint and inference 

logs (Appendix 8). 

2.5.4.2. Model Inference 

TorchServe makes model inference available via REST API, as well as management and metrics 

APIs. Classification models were used in this experiment, meaning, API should return a prediction 

of class based on the input image. TorchServe REST API endpoint for classification model 

predictions is http://127.0.0.1:{port}/predictions/{model_name} and POST method should be used 

for passing input data. Based on the model deployment example provided above, the endpoint is 

git clone https://github.com/pytorch/serve.git 

torch-model-archiver --model-name efficientnetb7_cuda \ 
--version 1.0 \ 
--serialized-file efficientnetb7_cuda.pt \ 
--extra-files ./index_to_name.json,./MyHandler.py \ 
--handler my_handler.py  \ 
--export-path model-store -f 

nvidia-docker run --gpus all -e LRU_CACHE_CAPACITY=1 --rm -it \ 
-p 3012:8080 -p 3013:8081 -p 3014:8082 \ 
-v $(pwd)/model-store:/home/model-server/model-store pytorch/torchserve:latest-gpu \ 
torchserve --start --model-store model-store \ 
--models efficientnetb7=efficientnetb7_cuda.mar 

http://127.0.0.1:%7bport%7d/predictions/%7bmodel_name%7d
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http://127.0.0.1:3012/predictions/efficientnetb7 . As the model handler was provided with a model 

archive, this API provides input images preprocessing and postprocessing steps together with model 

serving. It means API expects raw image files to be passed and returns the predicted class in response: 

 

Console output provides a class for a given image: 

 

Figure 35. Console output of model inference API response when served via TorchServe 

It was difficult to test inference as the first test of this experiment was performed when the model 

archive was generated using the original my_handler.py file. Also, the TorchScript model file was 

generated using standard TorchServe recommendations, meaning, the model was set to run on the 

CPU. Due to this reason, when such a model was deployed via TorchServe  - it created as many 

workers as the count of CPUs is (meaning – 12 workers). Each inference request then runs on a 

different worker, and when all 12 would be busy – the 13th request would be assigned to the 1st worker. 

The problem is that each worker allocates  ~ 600MB of RAM per inference request, and memory is 

not released from the worker until new requests do not come into the same worker. However, during 

this experiment,  after 10 requests – all 10 workers were busy, about 7GB of RAM was reserved (in 

addition, system processes, Docker container and PyCharm project used about 8GB), which caused 

the crash of the machine due to RAM shortage. 

The resolution would be that even if GPU docker image and nvidia-docker have been defined in the 

deployment request – it does not mean that the inference will run on GPU. The model itself had to be 

adapted to run on GPU and updating TorchScript model file generation with cuda() function, as well 

as model handler file update, helped to proceed with the inference of models, deployed using 

TorchServe. 

 

curl -X POST http://127.0.0.1:3012/predictions/efficientnetb7 \ 
-T ~/ktu/benchmark_data/224_size_same_image/016.jpg 
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3. Research Results 

3.1. Experiment Setup 

As shown in Figure 36, three serving infrastructures were investigated in this experiment. TensorFlow 

Serving is the default serving environment for TensorFlow SavedModel format models, as well as 

the TorchScript serving format, which is the default for TorchServe software. On the other hand, 

Triton Inference Server supports many frameworks, from which, the default would be TensorRT 

serving format, but in this experiment, TorchScript format was used. 

 

Figure 36. Three serving software infrastructures under test 

3.2. Inference and Benchmarking System 

The next step of this project was to set up an environment supporting all tools required for deploying 

computer vision models through TensorFlow Serving, Torchserve, and Nvidia Triton serving tools 

(installation and deployment guidelines are provided in the next chapter). These platforms were 

selected because they are open source, have extensive documentation, wide development 

communities, docker support, and are at the top of the most popular open-source tools for model 

deployment to production. The image below represents the final model serving and benchmarking 

environment used in this experiment (Figure 37). The whole inference and benchmarking 

environment was structured in a way to provide the same conditions for model serving via each 

deployment platform. All installations were performed before serving any model and each docker 

container was dropped before starting a new model serving. 

 

Figure 37. Model serving and benchmarking environment 
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3.2.1. Software 

Data preprocessing, inference client, and benchmark code were written using Python language inside 

the PyCharm integrated development environment (IDE). Torchserve client files were pulled from 

the official GitHub repository (https://github.com/pytorch/serve/blob/master/docs/server.md). 

Models deployment was performed using Docker (more details provided in the next chapters).  

3.2.2. Disk Capacity 

Choosing the right hardware setup allowed us to perform a benchmark of model inference. It is widely 

accepted to use a graphics processing unit (GPU) for deep learning model training and inference if 

the model‘s inference speed is a bottleneck. However, central processing unit (CPU) usage is more 

attractive to most companies due to cost-saving. In addition, GPU usage is much less efficient in 

terms of heat dissipation and electricity usage. For performance optimization reasons, Nvidia 

GeForce RTX GPU was used for model inference in this experiment. CPU usage was minimal during 

the inference benchmark and did not exceed 43%, however, the experiment was conducted in a system 

having AMD Ryzen 5 5600x 6-core processor × 12 CPUs.  

Along with processing units, disk capacity and random access memory (RAM) should be considered. 

As the experiment required multiple inferences, benchmarking scenarios to be performed that 

included image data stored on a disk, as well as each serving platform, brings docker images coupled 

with client packages required for running model inference. The machine having 15.5 GB RAM was 

used for an experiment, and it is not recommended to use lower-end models. RAM allocation during 

inference was a challenging part of the experiment as TorhServe automatically sets the number of 

workers equal to the number of CPUs and when inference is started – the first 10 workers consume 

all RAM. It is important to define whether computation needs to be performed on GPU or CPU during 

model deployment, and adapt the number of workers to RAM. 

3.2.3. Operating System 

Ubuntu 20.04 (64-bit) operating system was installed as NV164 family graphic cards and is stated, 

to have a performance issue on non-Linux systems. Another reason for choosing Linux based OS was 

the ease of setting up a Docker containerization platform for simulating deployment to production 

using the computer as a local server, especially when most of the documentation provided in setting 

up deployment platforms on Docker is Linux-based. OS type and version were changed multiple 

times during the experiment due to the above-mentioned reasons as well as drivers and libraries 

incompatibility with model serving tools (Nvidia Triton required CUDA 11.6 optimization library 

set-up, which is compatible only with Ubuntu 18.04 and 20.04).  

3.2.4. Benchmarking Tools 

Inference benchmarking required inference and performance indicators to be collected during 

multiple benchmark scenarios for further analysis of deployment platforms. Python package time was 

used for capturing inference duration, records were stored to *.csv files for later analysis and also - 

passed towards Wandb tool. Wandb is short for Weights & Biases machine learning tool which may 
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perform models training, optimization, deployment, and monitoring functions. It has a wide range of 

great features to use during any kind of ML experiments, however, only the monitoring part was used 

in this research. The Weights & Biases tool was selected because of its ability to track hardware-

related indicators such as CPU and GPU utilization, memory usage, etc., during inference (see Figure 

38). Also, its ease of configuration and usage was fascinating -  it was the easiest step of the whole 

experiment. Wandb requires an account to be created online (https://wandb.ai/) and the first page will 

already display quick-setup guidelines. More information about the tool and its usage can be found 

in Wandb's online documentation (https://docs.wandb.ai/) .  

 

Figure 38. Wandb monitoring dashboards 

3.3. Benchmarking Scenarios 

The benchmark was only performed to provide an objective means of model performance when 

served in different serving software. The experiment consists of collecting inference latency and 

resource utilization measures, when the model is deployed in TensorFlow Serving, NVIDIA Triton, 

or TorchServe serving software, and performs identical computer vision tasks. The experiment 

includes image pre-processing and inference as most tools cannot exclude input preprocessing from 

the inference. 

Several experiments scenarios were raised: 

1. Model inference without a warmup, primarily resized the same image was passed for 1000 

times;  

2. Model inference after warmup, primarily resized the same image was passed for 1000 times; 

3. Model inference after warmup, a collection of primarily resized 1000 different images were 

passed to the model; 

4. Model inference after warmup; a collection of 1000 different various sizes images were passed 

to served model; 

https://wandb.ai/
https://docs.wandb.ai/
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The idea behind these benchmarking scenarios was to identify how serving platforms' performance 

differs based on the served model and input data size and image content variety. Due to this reason, 

two image classification models were chosen, where both accept input data size 224 x 224 px. 

Furthermore, EfficientNet-B7 accepts any size images, only with the recommendation to resize them 

to 600 x 600 px before passing to the model, due to performance optimization.  

In addition, the MobileNetV3-large model was quantized and its inference was tested on TorchServe 

and Triton Inference Server environments. TensorFlow Serving was outscoped, as it does not support 

quantized models – TensorFlow Lite Serving platform is dedicated for quantized models deployment, 

and as it is a separate serving platform, it was outscoped from the experiments.  

Finally, the below table summarizes performed experiments. There were 4 scenarios performed on 3 

different platforms. The models and input data dimensions used for the experiments are described in 

Table 4. 41 experiments were performed in total. 

Table 4. Benchmarking scenarios per multiple serving platforms, models, and input data types 

Scenarios TensorFlow Serving TorchServe Triton 

1 The same images with fixed 

dimensions passed to the model 

without warm-up 
EfficientNet-B7 (224x224px); 

EfficientNet-B7 (600x600px); 

MobileNetV3-large 

(224x224px). 

EfficientNet-B7 (224x224px); 

EfficientNet-B7 (600x600px); 

MobileNetV3-large (224x224px); 

Quantized MobileNetV3-large 

(224x224px). 

2 The same images with fixed 

dimensions passed to the model after 

warm-up 

3 Different images with fixed 

dimensions were passed to the model 

after the warm-up. 

4 Different images with various 

dimensions resized during inference 

were passed to the model after 

warming up. 

EfficientNet-B7 (input data 

resized to 224x224px during 

inference); 

MobileNetV3-large (input data 
resized to 224x224px during 

inference). 

EfficientNet-B7 (input data resized to 

224x224px during inference); 

MobileNetV3-large (input data resized 

to 224x224px during inference); 

Quantized MobileNetV3-large 

(224x224px). 

 

Upcoming chapters may have only scenario numbers defined in the results tables. 

 

3.4. Dataset 

The dataset contains images collected from multiple data sources to create as many diverse dataset as 

possible. Initially, collection of 10 000 images was collected, however, due to long inference duration 

and hardware limitations, dataset was minimized to 1000 images. Images sources: 

– Collection of personal images (food, nature, animals, cars, people); 

– Stanford dogs dataset  - contains multiple breeds of dogs [68]; 

– Crawford cats dataset  - contains multiple breeds of cats [69] ; 

– The food dataset from DataVision – contains various food pictures [70]. 

 

One thousand images were selected randomly and static collection and all experiments were 

performed using the same dataset. Images were duplicated per three directories, where one of them 

contained images with original sizes, the second one – 224 x 224 px resized images, and third one – 
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600 x 600 px resized images. The below image shows couple of sample images from the dataset (see 

Figure 39). 

 

Figure 39. Images samples from the dataset used for benchmarking 

The below table shows images dataset statistics based on dimensions (Table 5), as well as their 

distribution is displayed in a plot below (Figure 40). Largest image used for benchmark is 3648 x 

5472 px , smallest – 45 x 50 px. 

 

Table 5. Statistics of images dataset used for benchmarking 

Image Dimension Median Q1 Q3 Min Max 

Height 375 276 500 45 4160 

Width 420 306 500 50 5472 

 

Figure 40. Distribution of dataset images dimensions (px) used for benchmarking 
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3.5. Results of Serving Software Benchmarking 

3.5.1. Model Warmup Impact on Inference Time and Resources Allocation 

Warming up the model is a common practice as it impacts inference at the moment of its initialization 

as well as a couple of first inference iterations. Based on the 1st benchmarking scenario (Table 4) 

experiments, it was visible model takes up to 3-8 requests to reach its optimal state, due to this reason 

1-10 iterations were analyzed per each experiment. Figure 41 shows all performed experiment results 

without warming up the model first. The legend names are constructed from model name shortening 

(EF - EfficientNet-B7; MN – MobileNetV3-large; MN_Q – Quantized MobileNetV3-large), a 

number of scenario (Table 4), and serving platform names. In addition, one color represents one 

serving platform. 

 

Figure 41. Inference time without model warmup per serving software 

The table below (Table 6) visualizes the main statistics for each experiment. Triton Inference Server 

took the most of the time warming up the model, which caused the longest experiment duration, 

however, the median shows that this serving tool inference duration after warmup was the shortest 

one. Model quantization seems to have an impact longer model warming up time for Triton Inference 

Server (more than twice longer) with a slightly similar effect on the TorchServe serving platform. On 

the other hand, TensorFlow Serving total inference duration per 10 image iteration showed the 

shortest time when inference was performed with smaller images of 224px dimensions, rather than 

with 600px. 

Table 6. Inference durations per 10 runs of experiments (scenario 1) with three serving platforms (green 

color stands for the fastest performance, red color – the most time consuming ) 

Architecture EfficientNet-B7 

(224 x 224 px) 

EfficientNet B7 

(600 x 600 px) 

MobileNetV3 large Quantized 

MobileNetV3 

large 

Serving 

software 

Tensor-

Flow 

Torch-

Serve 
Triton 

Tensor-

Flow 

Torch-

Serve 
Triton 

Tensor-

Flow 

Torch-

Serve 
Triton 

Torch-

Serve 
Triton 

Max 3.88 4.31 5.4 3.39 4.30 5.56 1.6 0.94 1.61 0.95 3.33 

3rd quartile 0.15 0.42 0.03 0.48 0.21 0.03 0.12 0.24 0.01 0.26 0.02 

Median 0.05 0.21 0.02 0.45 0.20 0.02 0.03 0.19 0.01 0.2 0.01 
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1st quartile 0.05 0.21 0.02 0.44 0.20 0.02 0.03 0.19 0.01 0.19 0.01 

Average 0.09 0.21 0.03 0.47 0.21 0.03 0.07 0.19 0.01 0.19 0.01 

Inference 

time (10 

iterations) 

4.63 6.9 7.65 7.35 6.42 7.13 2.16 2.89 2.61 2.94 4.41 

 

In addition, Appendix 9 shows GPU and CPU utilization during experiments. GPU usage (~43-45% 

with EfficientNet-B7 and ~16% with MobileNetV3-large) is highest when the model runs on Triton 

Inference Server, however, it is the most stable, compared with TorchServe and TensorFlow Serving. 

The first and third figures in this appendix show that GPU takes the most of the time accessing 

memory during the first couple of iterations when the model served with TensorFlow Serving, rather 

than other serving platforms. Knowing that Nvidia Triton Inference Server has lots of optimizations 

related to GPU usage – it is visible from the graphs, compared with other serving tools. 

The second scenario (Table 4) was performed already after the model was warmed up and as Figure 

42 shows – the first 10 inference iterations do not have such a huge difference from the rest of the 

inference times. We can also see, that models running on Triton Inference Server perform quicker 

than the ones which run on TorchServe or TensorFlow Serving. On the other hand, TensorFlow 

Serving performs better than TorchServe, when input images are 224px sizes (EF_2_Tensorflow vs 

EF_2_TorchServe) rather than 600px (EF_6_Tensorflow vs EF_6_TorchServe). 

 

Figure 42. Inference time after model warmed up per serving software 

 

3.5.2. Input Data Impact on Inference Time and Resources Allocation 

This chapter covers scenarios 2-4 (Table 4), where the main conditions were changing input data 

bypassing the same or different kinds of images, as well as image sizes. Experiments results covering 

inference duration analysis are provided in Table 7 .  

Scenario number 2 covers model inference when the already resized same image is passed to the 

served model.  As we see in a table, the results of model performance when 224px images are passed 

are the same in perspective of serving platforms: models deployed with Triton Inference Server 

performs classification task quicker than the ones, deployed using TorchServe or TensorFlow 

Serving. The inference results of TorchServe models are more than 10 times worse than those of 
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Triton. On the other hand, when we look at inference performed with 600px dimensions images – 

TorchServe performed better than TensorFlow Serving.  

Similar results were obtained when performing experiments with the third scenario, where a 

collection of various, already resized images was passed to the model. Lastly, the fourth scenario 

covered cases when various sizes of images were passed to the model, and image resizing was 

performed during the image preprocessing step. Triton Inference Server still handles such tasks the 

quickest, however, TensorFlow Serving showed twice worse results than TorchServe. 

Table 7. Inference duration statistics per experiments (scenario 2-4) and serving platforms (green color 

stands for quickest performance, red color – the most time consuming ) 

Architecture EfficientNet-B7 

(224 x 224 px) 
EfficientNet B7 

(600 x 600 px) 

MobileNetV3 large Quantized 

MobileNetV3 large 

Serving 

software 

Tensor-

Flow 

Torch-

Serve 
Triton 

Tensor-

Flow 

Torch-

Serve 
Triton 

Tensor-

Flow  

Torch-

Serve  
Triton 

Torch-

Serve 
 

Triton 

2
n

d
 s

ce
n

a
ri

o
  

3rd quartile 0.14 0.20 0.02 0.56 0.21 0.03 0.13 0.19 0.01 0.19 0.01 

Median 0.05 0.20 0.02 0.44 0.20 0.02 0.03 0.19 0.01 0.19 0.01 

1st quartile 0.05 0.20 0.02 0.34 0.20 0.02 0.03 0.18 0.01 0.18 0.01 

Average 0.09 0.20 0.02 0.45 0.20 0.03 0.07 0.19 0.01 0.19 0.01 

Experiment 
time 

80.28 167.49 22.87 400.37 204.21 26.29 64.12 156.34 12.57 157.25 11.51 

3
r
d

 s
ce

n
a
ri

o
 

3rd quartile 0.15 0.20 0.02 0.57 0.21 0.03 0.13 0.19 0.01 0.19 0.01 

Median 0.05 0.20 0.02 0.45 0.20 0.02 0.03 0.19 0.01 0.19 0.01 

1st quartile 0.05 0.20 0.02 0.35 0.20 0.02 0.03 0.18 0.01 0.18 0.01 

Average 0.09 0.20 0.02 0.46 0.20 0.03 0.07 0.19 0.01 0.19 0.01 

Experiment 
time 

87.42 202.43 23.13 409.35 203.73 25.40 67.01 185.42 11.44 186.29 10.44 

4
th

 s
ce

n
a
ri

o
 

3rd quartile 0.48 0.21 0.03 - - - 0.13 0.19 0.01 0.19 0.01 

Median 0.45 0.21 0.02 - - - 0.03 0.19 0.01 0.19 0.01 

1st quartile 0.44 0.21 0.02 - - - 0.03 0.18 0.01 0.18 0.01 

Average 0.46 0.21 0.02 - - - 0.07 0.19 0.01 0.19 0.01 

Experiment 
time 

405.04 212.69 27.26 - - - 65.72 185.31 12.20 186.12 11.62 

 

While performing all experiments – GPU and CPU measurements were taken. When the model was 

deployed using GPU there is usually an expectation to have maximum GPU utilization as most of the 

computations are performed there. During experiments, GPU utilization reached a maximum of 86%  

and CPU utilization jumped to 77% when the model was deployed via TensorFlow Serving and the 

fourth scenario was used in the experiment (passing various sizes of images) (Appendix 12). 

However, all the rest experiments kept quite similar GPU and CPU usage measurements (see 

Appendix 10-11), similar to the ones provided in figure 43. A sample of GPU and CPU usage is 

provided in  Tables 8 and 9, where the median shows Triton having the biggest resource usage, 

compared to other serving platforms. TorchServe resource needs are the smallest for classification 

model inference. 
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Figure 43. Scenario #2: GPU (left) and CPU (right) utilization during the experiment 

 Table 8. GPU utilization (%) during experiments (scenario 2) performed with each serving software (green 

color stands for lowest usage, red color – highest usage ) 

Architecture EfficientNet-B7 

(224 x 224 px) 
EfficientNet-B7 

(600 x 600 px) 

MobileNetV3-large Quantized 

MobileNetV3-large 

Serving 

software 

Tensor-

Flow 

Torch-

Serve 
Triton 

Tensor-

Flow 

Torch-

Serve 
Triton 

Tensor-

Flow 

Torch-

Serve 
Triton 

Torch-

Serve 
Triton 

Min 18 9 11 7 7 11 4 4 3 4 3 

Max 49 56 52 46 40 52 45 19 21 12 18 

Median 26 12 49 15 12 44 6.5 5 17 5 14 

Average 28.52 12.62 45.3 17.3 12.21 42.35 11.11 5.48 16.38 5.09 14.1 

 

Table 9. CPU utilization (%) during experiments (scenario 2) performed with each serving software (green 

color stands for lowest usage, red color – highest usage ) 

Architecture EfficientNet-B7 

(224 x 224 px) 
EfficientNet-B7 

(600 x 600 px) 

MobileNetV3-large Quantized 

MobileNetV3-large 

Serving 

software 

Tensor-

Flow 

Torch-

Serve 
Triton 

Tensor-

Flow 

Torch-

Serve 
Triton 

Tensor-

Flow 

Torch-

Serve 
Triton 

Torch-

Serve 
Triton 

Min 8.9 6.4 13 7.7 6.5 13.7 5.5 6.2 9 5.8 8 

Max 60.4 20.9 20.6 43.2 17.9 30.1 24.4 17.5 20.6 18.4 19.1 

Median 10.50 7.20 14.10 9.00 7.50 16.90 10.75 7.10 16 7.10 15 

Average 12.73 7.74 14.89 9.69 7.74 18.25 12.45 7.27 14.89 7.32 13.11 

 

 

The experiment showed that Triton Inference Server and TorchServe had the greatest differences in 

instance resource usage. Due to this reason, these two platforms were chosen for further analysis 

based on 2nd scenario data. A two-sample Student’s t-test assuming unequal variances was performed 

to test the hypothesis that the resulting mean GPU usage of the Triton Inference Server and 

TorchServe were equal. 
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Table 10. A two-sample Student’s t-test results of hypothesis that the resulting mean GPU usage of the 

Triton Inference Server and TorchServe were equal 

 t-test for Equality of Means Triton Inference Server TorchServe 

Mean 42.34615385 12.21078431 

Variance 64.95538462 10.74845455 

Observations 26 204 

Hypothesized Mean Difference 0 

 

df 26 

 

t Stat 18.86790282 

 

P(T<=t) one-tail 5.38632*10-17 

 

t Critical one-tail 1.70561792 

 

P(T<=t) two-tail 1.07726*10-16 

 

t Critical two-tail 2.055529439   

 

The mean usage of GPU observed for Triton (M = 42.3 %, SD = 8.05, N = 26) was significantly 

higher than that observed for TorchServe (M = 12.21%, SD = 3.27, N =204), t(26) = 18.87, p=0.000. 

In addition, a GPU pricing comparison was performed to understand the serving tool's advantages 

and disadvantages when using cloud resources. As cloud instance prices are provided per hour,  data 

of the experiment having the biggest inference duration difference was taken (Table 11). We can see 

the Triton Inference Server model to perform ~ 16.11 times quicker than the TensorFlow Serving 

model. Meaning, that if we would have 24 hours of video footage with 24 frames per second rate (2 

073 600 images/frames in total) and we would like to analyze each frame by passing it to the model 

– it would take ~ 235.79 hours to process data for the model served on TensorFlow Serving and ~ 

14.63 hours, if it is served on Triton Inference Server. 

Table 11. Experiment having the greatest inference duration difference per 1000 observations between three 

serving platforms 

Scenario TensorFlow TorchServe Triton 

Experiment time for 3rd scenario (1000 same size random images) 409.35 203.73 25.40 

 

In case cloud services provider suggests the least expensive plan for GPU-oriented instance dedicated 

to running ML algorithms on Nvidia RTX technology, the price would be 1.25 Eur per hour 

(lambdalabs.com pricing). Based on that, 24 hours of video footage processing when served on 

TensorFlow Serving would cost ~ 294.74 Eur, and on Triton Inference Server - ~ 18.29 Eur. 

 

3.5.3. Model Quantization Impact on Inference Time and Resources Utilization 

As quantization adds lightness to the model, it is expected to have inference time and resource 

utilization reduced. MobileNetV3-large model quantization effect was investigated only on Triton 

Inference Server and TorchServe serving software. When we look at scenarios 2 and 3 for standard 

and quantized model inference, we see a contrast between both serving platforms. Figure 44 shows 

these models' inference when running on TorchServe and we can see, that the most efficient inference 

is with the standard MobileNetV3-large model and the quantized model has a slight delay. 
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Figure 44. MobileNetV3-large model versus it's quantized variant, both served with TorchServe 

On the other hand, Figure 45 shows both experiments with quantized models performing quicker 

rather than regular model inference.  

 

Figure 45. MobileNetV3-large model versus quantized same model, both served with Triton Inference 

Server 

A two-sample Student’s t-test was performed assuming equal variances to test the hypothesis that the 

resulting mean inference duration of the quantized and not quantized MobileNetV3-large model was 

equal when served on TorchServe (Table 12), as well as Triton Inference Server (Table 13). 
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Table 12. A two-sample Student’s t-test for quantized and not quantized MobileNetV3-large model 

inference duration when models served on TorchServe 

  t-test for Equality of Means Quantized MobileNetV3-large  MobileNetV3-large  

Mean 0.186330925 0.18527195 

Variance 4.62236*10-06 4.41266*10-06 

Observations 1000 1000 

Pooled Variance 4.51751*10-06  

Hypothesized Mean Difference 0 

 

df 1998 

 

t Stat 11.14091739 

 

P(T<=t) one-tail 2.60435*10-28 

 

t Critical one-tail 1.645617012 

 

P(T<=t) two-tail 5.20869*10-28 

 

t Critical two-tail 1.96115261   

 

The mean inference duration observed for quantized model served with TorchServe (M = 0.19 %,   

SD = 0.002, N = 1000) was significantly higher than that observed for not quantized model                   

(M = 0.19 %, SD = 0.002, N =1000), t(1998) = 11.14, p=0.000. 

Table 13. A two-sample Student’s t-test for quantized and not quantized MobileNetV3-large model 

inference duration when models served on Triton Inference Server 

  t-test for Equality of Means Quantized MobileNetV3-large  MobileNetV3-large  

Mean 0.011613925 0.01271 

Variance 0.000187079 0.000244 

Observations 1000 1000 

Pooled Variance 0.000215334 

 

Hypothesized Mean Difference 0 

 

df 1998 

 

t Stat -1.670474009 

 

P(T<=t) one-tail 0.047491121 

 

t Critical one-tail 1.64561663 

 

P(T<=t) two-tail 0.094982241 

 

t Critical two-tail 1.961152015   

 

The mean inference duration observed for quantized model served with Triton Inference Server         

(M = 0.01 %, SD = 0.014, N = 1000) was not significantly higher than that observed for not quantized 

model (M = 0.01 %, SD = 0.016, N =1000), t(1998) = -1.67, p=0.095. 
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3.6. Benchmarking and Results Overview 

From the very beginning, selecting software for inference benchmarking as well as its installation 

was complex for some serving platforms.  TensorFlow Serving software has the easiest installation 

process for model inference, lots of documentation and samples are provided online. On the other 

hand, TensorFlow does not have a single tool covering all the inference steps such as data pre-

processing and post-processing, and quantized models deployment, which makes it hard to identify 

what kind of TensorFlow software or additional packages are needed to have fluent inference flow. 

Triton Inference Server has a set of installation preconditions, which takes a lot of time to install and 

requires a specific set of hardware and software to run on the machine to install all drivers and toolkits. 

This software and packages installation is time-consuming, however, it provides full disclosure of 

Triton Inference Server properties, GPU optimization settings, and what affects the inference time of 

deployed models. 

Furthermore, TorchServe, as well as Triton Inference Server requires the model to be converted to a 

specified format before deployment. There is a lack of online information on this topic and it may 

reduce model efficiency if performed improperly due to the configuration file required for model 

conversion. On the other hand, both Triton Inference Server and TorchServe come with the client, 

which needs to be integrated into the application to perform model inference. The client includes data 

pre-processing, batching, inference optimization, and post-processing steps. Both TorchServe and 

Triton Inference Server have incomplete documentation on error handling when a deployment fails 

due to the model's incompatibility with deployment parameters. 

Warming up the classification model deployed on Triton Inference Server takes more time than 

TensorFlow Serving or TorchServe, however, these platforms provide longer inference time 

compared to Triton. Meaning, that Triton Inference Server is better adapted for image classification 

model serving on GPU rather than TorchServe and TensorFlow Serving. On the other hand, 

TensorFlow Serving is more efficient when inference is performed with smaller dimensions images 

rather than TorchServe. The latter showed better results than TensorFlow Serving when model 

inference was performed with larger images. 

Analysis showed Triton's high GPU utilization compared with the other two platforms. The results of 

the T-test showed that the usage of GPU observed for Triton was significantly higher than that 

observed for TorchServe. In addition, cloud instances pricing showed the model will perform twenty-

four-hour video footage analysis per ~ 294.74 Eur when served with TensorFlow Serving, and ~ 18.29 

Eur when served with Triton Inference Server. 

When comparing inference time for a quantized classification model, the initial look was for a higher 

effect on inference time when deployment is performed using Nvidia Triton Inference Server, rather 

than TorchServe. However, the t-test rejected our hypothesis and confirmed the irrelevance of 

inference time difference between quantized and not quantized models for Triton.  
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Summary and Conclusion 

1. The study conducted revealed that most researchers emphasized image recognition to have the 

highest social impact in the field of medicine, as it shapes the future of disease prevention methods 

in the form of anomaly detection from medical imaging, or virus research and vaccination. 

Correspondingly, researchers in the entertainment and robotics fields show a high interest in deep 

learning technology concerning the digging of information for the user and the provision of user-

oriented content or automating time-consuming human-like tasks with the help of robots.  

2. Many researchers point out the complexity of model serving caused by the variety of hardware, 

software, and optimization libraries dedicated to this task, and the lack of their compatibility. For 

this reason, cloud solutions are highly in demand by providing end-to-end model serving process 

management. Today, TensorFlow Serving, Triton Inference Server, and TorchServe are highly 

popular open-source software for model serving on-premises. Analysis and experiment resulted 

in a conclusion about TensorFlow as being the easiest software in the scope of the installation 

process, however, Triton Inference Server and TorchServe were more convenient to use for 

inference due to additional features included in these software clients. 

3. The research covered analysis of EfficientNet and MobileNet architectures widely used as the 

basis for most image classification-related research. Both architectures have several versions, 

each of which includes an additional optimization layer. MobileNet models accept fixed-size 

input images and are designed for mobile devices. On the other hand, EfficientNet accepts various 

dimensions of input images which adds flexibility for future research. 

4. The experiments carried out showed Triton Inference Server to be up to 16 times more efficient 

in terms of inference duration for image classification models compared to other software. On the 

other hand, it consumed up to 75% more GPU resources during inference compared to the other 

two software. Experiments also revealed that models deployed with TensorFlow Serving and 

TorchServe inference time have a significant dependency on input image sizes.  In addition, 

models served with both software warm up faster than those served with Triton. The cost of cloud 

instances for the classification of 24 hour footage frames would cost ~ 294.74 Eur when the model 

was served with TensorFlow Serving, and ~ 18.29 Eur when served with Triton. 

5. Student's t-test identified the mean runtime of MobileNet model being not significantly higher 

compared with its quantized variant for Triton Inference Server (p-value=0.095), whereas mean 

runtimes were significantly different for TorchServe (p-value=0.000). 

6. General recommendations or guidelines for selecting serving software for efficient image 

classification in production: 

– Triton Inference Server running on GPU is recommended to use for reducing image 

classification model inference time; 

– The model warmup is recommended to perform with all serving platforms to add efficiency 

for a couple of first requests and reduce total inference time; 

– In case if disk capacity is an issue, TrochServe software is recommended for inference, as 

experiments showed that it utilizes GPU and CPU resources the least; however, it prolongs 

inference time, compared to Triton Inference Server. 

– When considering TensorFlow Serving and TorchServe software for model serving, it is 

recommended to consider input image dimensions that will be used in a defined business 

scenario,  as TensorFlow Serving is more efficient when serving smaller dimension images, 

and TorchServe – larger ones. 
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Appendices 

1 Appendix. NVIDIA Triton Inference Server Infrastructure 

 

Figure 46. Nvidia Triton Inference Server Architecture [51] 
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2 Appendix. NVIDIA Drivers Installation Guidelines 

"The NVIDIA driver requires that the kernel headers and development packages for the running 

version of the kernel be installed at the time of the driver installation, as well whenever the driver is 

rebuilt" (Nvidia Data Center Documentation, 2022). The following commands should be run in 

terminal: 

 

Next, we have to ensure CUDA network repository having the priority over the canonical repository: 

 

 

 
Above step of accessing CUDA repository may fail if incorrect OS version is installed as CUDA 

supports only Ubuntu 18.04 and Ubuntu 20.04 OS versions. This issue appeared during the 

experiment and new OS version needed to be installed, serving and benchmarking environment 

preparation actions repeated. 

CUDA repository GPG key needs to be installed: 

 
Setting up CUDA network repository: 

 
Finally, update APT repository and install drivers: 

 

Post-installation steps are required to setup CUDA for Linux OS environments as automatic 

environment setup was moved only in Debian flow. The following actions needs to be manually 

performed if drivers installation was performed on Ubuntu OS: 

 

 

There is also additional requirements to the NVIDIA POWER9 CUDA driver due to new features to 

function properly. This steps is also not handled  by cuda-driver installation process. For fixing it, we 

have to trigger automatic NVIDIA Persistance Daemon start for POWER9 module. 

 
 

Official documentation can be found here: https://docs.nvidia.com/datacenter/tesla/tesla-installation-

notes/index.html#ubuntu-lts   

sudo apt-get install linux-headers-$(uname -r) 

distribution=$(. /etc/os-release;echo $ID$VERSION_ID | sed -e 's/\.//g') 

wget https://developer.download.nvidia.com/compute/cuda/repos/$distribution/x86_64/cuda-
$distribution.pin 

sudo mv cuda-$distribution.pin /etc/apt/preferences.d/cuda-repository-pin-600 

sudo apt-key adv --fetch-keys 
https://developer.download.nvidia.com/compute/cuda/repos/$distribution/x86_64/7fa2af80.pub 

echo "deb http://developer.download.nvidia.com/compute/cuda/repos/$distribution/x86_64 /" | 
sudo tee /etc/apt/sources.list.d/cuda.list 

sudo apt-get update \ 
sudo apt-get -y install cuda-drivers 

export PATH=/usr/local/cuda-11.6/bin${PATH:+:${PATH}} 

export LD_LIBRARY_PATH=/usr/local/cuda-11.6/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}} 

sudo systemctl enable nvidia-persistenced 

https://docs.nvidia.com/datacenter/tesla/tesla-installation-notes/index.html#ubuntu-lts
https://docs.nvidia.com/datacenter/tesla/tesla-installation-notes/index.html#ubuntu-lts
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3 Appendix. NVIDIA Container Toolkit Installation 

NVIDIA Container Toolkit is available only to Ubuntu 16.04, 18.04, and 20.04 versions. This toolkit 

provides possibility to build and run GPU accelerated Docker containers by providing a simple CLI 

utility to automatically configure Linux containers leveraging NVIDIA hardware.   

First of all, we setup the package repository and GPG key: 

 
Next, nvidia-docker2 package and its dependencies needs to be isntalled: 

 
Docker daemon needs to be restarted to complete the isntallation: 

 
A working setup can be tested by running base CUDA container: 

 
Above command will return in console information about NVIDIA GPU and drivers: 

 

Figure 47. nvidia-smi command console output 

Official documentation can be found on NVIDIA Data Center website : 

https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html#installing-on-

ubuntu-and-debian 

  

distribution=$(. /etc/os-release;echo $ID$VERSION_ID) \ 
      && curl -fsSL https://nvidia.github.io/libnvidia-container/gpgkey | \ 
      sudo gpg --dearmor -o /usr/share/keyrings/nvidia-container-toolkit-keyring.gpg \ 
      && curl -s -L \  
      https://nvidia.github.io/libnvidia-container/$distribution/libnvidia-container.list | \ 
      sed 's#deb https://#deb [signed-by=/usr/share/keyrings/nvidia-container-toolkit-
keyring.gpg] https://#g' | \ 
      sudo tee /etc/apt/sources.list.d/nvidia-container-toolkit.list 

sudo apt-get install -y nvidia-docker2 

sudo systemctl restart docker 

sudo docker run --rm --gpus all nvidia/cuda:11.0-base nvidia-smi 

https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html#installing-on-ubuntu-and-debian
https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html#installing-on-ubuntu-and-debian
https://nvidia.github.io/libnvidia-container/gpgkey
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4 Appendix. Successful Model serving with Triton Inference Server Console Output 

 

Figure 48. Successful Triton deployment console output 
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5 Appendix. Successful Model serving with TensorFlow Serving Console Output 

 

Figure 49. Successful TensorFlow deployment console output 
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6 Appendix. TorchServe Architecture 

 

Figure 50. TorchServe architecture 
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7 Appendix. TorchServe Model Handler 

 

Figure 51. my_handler.py file used for model archive generation 
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8 Appendix. Successful Model serving with TorchServe Console Output 

 

Figure 52. Successful TorchServe deployment console output 
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9 Appendix. 1st Scenario Experiments Results Graphs 

 

 

Figure 53. Scenario No. 1 EfficientNet-B7 model experiment (224x224px images) results 

 

 

 

Figure 54. Scenario No. 1 MobileNetV3-large and MobileNetV3-large quantized models experiment results 
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Figure 55. Scenario No. 1 EfficientNet-B7 model experiment (600x600px images) results 
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10 Appendix. 2nd Scenario Experiments Results Graphs  

 

 

 

 

Figure 56. Scenario No. 2 experiment results 
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11 Appendix. 3rd Scenario Experiments Results Graphs  

 

 

 

 

Figure 57. Scenario No. 3 experiment results 
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12 Appendix. 4th Scenario Experiments Results Graphs  

 

 

Figure 58. Scenario No. 4 experiment results 
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13 Appendix. 2nd-3rd Scenarios Experiments Results Graphs for 600px Images 

 

 

 Figure 59. Scenario No. 2-3 experiment results for EfficientNet-B7, with 600 x 600 px dimensions images 

 


