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Summary

This paper describes a software system module for a travel trip planning solution and the research
conducted into how machine learning can be applied to optimally generate trip deals. The solution is
a unique one, since it requires no direct input from the user to generate the trip results and is solely
driven by the created algorithm. It allows for its end users to save time and hassle of manually
searching for flights between multiple destinations by offering attractive prepared trip offers.

The research part of the work explores how machine learning can be applied in efficiently solving a
variation of the Travelling Salesman Problem (TSP) in the context of air travel tourism. Large number
of cities create too many trip route combinations to be efficiently evaluated in real time. The method
proposed uses a feedforward neural network to narrow down the number of trip route combinations,
while a more traditional algorithm based on dynamic programming is then able to select the best trip
offers. It was shown that the method can be applied in practice to achieve almost real-time generation
of best possible trip offers while evaluating a large amount of real-world flight data.
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Santrauka

Siame darbe aprasomas programy sistemos modulis, skirtas kelioniy platformos sistemai, bei tyrimas
siekiantis iSnaudoti masininio mokymosi galimybes sudaryti patrauklius kelioniy rinkinius. Kuriamas
sprendimas unikalus tuo, jog kelioniy planai potencialiems klientams, norintiems vienos kelionés
metu aplankyti daugiau nei vieng $alj, biity generuojamos ne rinkoje jprastu btdu, kai vartotojas
pasirenka konkrecias kryptis, o pateikiamos pagal sukurto algoritmo rezultatus. Toks sprendimas
leisty galutiniams vartotojams sutaupyti laika, reikalingg tinkamy skrydziy tarp skirtingy vietoviy
suradimui, o kartu pateikty visg aib¢ galimy kelioniy rinkiniy.

Darbo tyrimo ir eksperimenty dalis siekia iStirti, kaip masininis mokymasis gali bati panaudotas
iSspresti keliaujancio pirklio uzdavinj (angl. travelling salesman problem; TSP) oro kelioniy
kontekste. Dél didelio kiekio miesty yra sunku efektyviai patikrinti visas keliy kombinacijas.
Sitlomas metodas naudoja dirbtinj neuroninj tinkla susiaurinti kombinacijy aibe, kas leidzia
dinaminiu programavimu gristam algoritmui pasirinkti geriausius kelioniy pasitilymus. Tyrime
parodoma, kad §is metodas gali biiti pritaikomas praktikoje generuoti kelioniy pasiiilymus realiu laiku
ivertinant didelj kiekj tikry skrydziy duomeny.
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Introduction

An influx of low-cost airlines in the recent years made a huge impact to the success of the travel
industry, which was ultimately shaken by the global pandemic at the start of 2020. While many
big-name market players took a huge hit, an exciting environment has opened for new
innovative solutions which could help to replenish the state of the industry in the near future.

This project aims to create a travel trip planning solution which leverages aggregated flight data
and the latest advancements in the machine learning field. A trip may consist of visiting multiple
travel locations spanning multiple countries. The solution is a unique one, since it requires no
direct input from the user to generate the trip results and is solely driven by the created algorithm
which analyses many travel trip related criteria. The solution allows for its end users to save
time and hassle of manually searching for flights between multiple destinations by offering
attractive prepared trip offers.
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1. Analysis
1.1. Problem Overview

Consider a tourist who wants to visit several different cities in a specific date range in a round
trip from his home city. The tourist might also have preferences to which cities one wants to
visit or avoid. A list of N best possible trip offers then should be provided to the user, based on
the real-world flight data. The quality of the trip is determined by its price, but additional
metrics could be added.

Since flight data updates very often and the number of possible date ranges is immensely huge
it is not practical to pre-calculate all the offers. On the other hand, finding the best offers in
real-time is inefficient due to the need to compute the best scored combination of flights for a
large amount of possible trip routes.

In the combinatorial optimization domain, the more simplified version of this problem is well
known as the Travelling Salesman Problem (TSP) [1]. The applications of TSP and its variants
are used globally for logistics, planning, astronomy, and manufacturing. The aim of TSP, given
a context of a country, is to find the shortest possible route that visits each city once and returns
to the origin city. Since 1976, when Nicos Christofides came up with an algorithm [2] that finds
round trips no longer than 50% longer than the best round trip, no significant progress in
effectiveness was made [3].

More recent works on the topic include machine learning approaches such as one by Chaitanya
K. et al. [4] which makes use of neural networks to perform TSP efficiently with hundreds of
nodes. For our problem, however, the number of nodes (possible trip flights) will never be more
than a few hundred, but the more important issue is the number of trip routes growing
polynomially because of the number of different cities.

1.2. Trip design optimization overview
1.2.1. Tourist trip design problem

The Tourist Trip Design Problem (TTDP) is a variant of TSP and refers to a route-planning
problem for tourists interested in visiting multiple points of interest (POls). TTDP
implementations usually derive daily tourist tours, for example, ordered visits to POIs, which
respect tourist constraints and POIs attributes. The algorithmic approaches for solving TTDP
variants represents the most crowded field of research among them. [5]
Two popular TTDP variants exist based on the amount of days the tourist has to stay:
e single tour TTDP variants aim to find a single tour that maximizes the collected profit
while respecting certain tourist constraints and POI attributes;
e multiple tour TTDP variants aim to find multiple tours based upon the number of days
the tourist’s visit will last.

Single tour variants of the TTDP can be modeled using TSPP, a bicriteria generalization of

TSP. Specifically, in TSPP a network is given in which nodes are associated with profits and
links with travel costs, and the goal is to find a tour (which starts and ends at a specified node -
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the depot) over a subset of nodes such that the collected profit is maximized while the travel
cost is minimized. [5]

TTDP variants with time windows (TW) considers visits to locations within a predefined time
window (this allows modeling opening and closing hours of POls, for example, flight times).
The time-dependent (TD) variants consider time dependency in the estimation of time required
to move from one location to another. [5]

1.2.2. Orienteering problem with time windows

The Orienteering Problem with Time Windows (OPTW) can be seen as a model for the Tourist
Trip Design Problem (TTDP). [6]

In the OPTW, a collection of locations is given, each with a score that denotes its attractiveness.
The time needed for travelling from location i to j, is known for all locations. The goal of the
problem is to maximize the sum of the scores of the selected locations, keeping the total time
of the route between these locations under a given time budget or the total distance of the route
under a given distance budget. [7]. Time window constraint introduces a start time and an end
time for each location, indicating the time when these locations can be visited (Figure 1).

Starting time: 9:00
Finishing time: 16:50
Deadline: 17:00

scores: (5,1)
scores: (1,4) O
O scores: (3,4)
scores: (3,3)
13:50

source
9:00

12:30 destination

scores: (3,2)  scores: (4,2)

scores: (2,3)
O

scores: (2,4)

Figure 1. An example of a solution of the multi-objective time-dependent orienteering problem [8]

In the OPTW it is assumed that a route’s starting location, its starting time and ending time, and
scores of the points of interest are tourist dependent, while the coordinates of the points of
interest, their opening and closing times, and duration of visit are not. [6]
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1.2.3. Review

Despite its tight relation with the TSP, our problem described in chapter 1.1 concerning
commercial flights differs from the alternatives suggested above. The approaches consider that
the cost between two cities (nodes) is always constant over time, although assumption is
certainly not true for the case of commercial flights, as the tickets price depend not only on the
date, but also on the direction of the route. Also, the approaches assume that the waiting period
in each city is a static time period, which in our case is not convenient for the traveler.

1.3. Artificial intelligence overview

The field of artificial intelligence (Al) is currently on the rise, although it has been around for
more than six decades. The difference between current decades and the previous decades, is
that the Al research promise actually materializes when solving real-world problems. [9] The
most notable of these problems include speech recognition, computer vision, bio-surveillance,
robot or automation control and empirical science experiments [10].

Supervised learning is one of the most popular paradigms of machine learning, where the
machine is given a dataset (for example, a set of data points), along with the right answers to a
question corresponding to the data points (labels). The learning algorithm is provided with a
huge set of data points with answers, for example, a labelled dataset. The algorithm has to learn
the key characteristics within each data point in the dataset to determine the answer. So, next
time a new data point is provided to the algorithm, based on the key characteristics, the
algorithm should be able to predict the outcome/right answer. [9]

1.3.1. Artificial neural networks

Supervised learning falls mostly in two categories: solving of classification and regression
problems. Depending on the category, regression analysis is performed:

e Linear regression allows to predict value of a continuous variable to solve regression
problems. It assumes that the relationship between the variables can be expressed as a
linear function.

e Logistic regression allows to predict whether or not a specific outcome would be
achieved. It provides a 0 or 1 prediction, rather than a real value for a continuous
variable.

Neural networks are networks of interconnected artificial neurons. Their structure is heavily
inspired by the brain’s neuron network. A neural network is generally used to create supervised
machine learning models. It can be thought of as combining multiple regression models to make
a more powerful model.

The feedforward neural network was the first and simplest type of artificial neural network
devised [11]. In this network, the information moves in only one direction—forward—from the
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input nodes, through the hidden nodes (if any) and to the output nodes. There are no cycles or
loops in the network. [12]

Convolutional neural networks are used for some of the most interesting applications of
machine learning, such as image recognition, handwriting reading, interpreting street signs, etc.
Convolution is a technique which automates extraction and synthesis of significant features
needed to identify the target classes. CNN is usually composed of multiple layers of convolution
and pooling combination and then followed by a neural network. [9]

1.3.2. Review

Since artificial intelligence is a very promising field, the work described in this paper puts a big
focus on finding a machine learning technique that would prove to be more efficient than the
more traditional algorithms. Supervised learning techniques using artificial neural networks
will be used in the research of this work, since to generate high quality trips, we want the ML
model to be able to describe the quality of the trip (either through regression or classification).
ML model can be trained using labeled data, which can be generated using a simpler brute force
based algorithm when the speed of generation is not so important.
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2. Software system

2.1. Application

2.1.1.1. Demand

2.1.1.2. Project users and clients

The main clients of the solution are travel platforms and agencies. Individual travel guides
should the find the solution valuable as well. The final end users are all people who have an
interest in travelling and tourism.

2.1.1.3. User problems

Tourists face a difficulty when trying to find a likeable trip. With traditional trip planning
platforms, user must select and combine flights into a single trip manually, which usually is not
optimal in terms of price and quality.

2.1.1.4. Market research

According to the latest World Travel & Tourism Council (WTTC) data [13], tourism industry
accounts for 10.4% of the world’s GDP and is one of the largest economic sectors in the world.
Tourism industry which in 2018 contributed to 8.8 trillion to the global economy [14] is viewed
as one of the most growing industries.

The biggest names in the industry are:
e Kayak — metasearch engine for travel flights. Over 6 billion queries each year. Property
of Booking Holdings, the world leader in online travel [15].
e TripAdvisor — travel shopping comparison and user review website. Number 1 in the
Travel and Tourism category in the US, revenue of $1.62 billion worldwide and 490
million monthly active users as of 2019 [16].

e Kiwi — flight search website. 100M average daily search queries, €1.3 turnover in 2019
[17].

These companies offer common traditional trip planning solutions and thus could be viewed as
potential clients rather than competitors.

2.1.1.5. Information about the clients

Travel platform and agencies seeking to please their own users with attractive trip suggestions.
Travel guides and related businesses which do not have enough resources to create qualitative
travel offers or want to focus mainly on client support. The clients will be able to access the
service by purchasing an application programming interface (AP1) subscription of the created
solution.
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2.1.1.6. Product description

The product can be described as an API service which gives its users an ability to query
attractive travel trip suggestions. API service is sold through a monthly subscription model or
by each successful trip purchase from the end users.

Figure 2 describes how a potential client of the product, a travel agency platform, could leverage
the API service to increase its conversions by providing attractive trip suggestions to its end
users.

Trip preferences

“‘ API service
Trip plans

Y

I A
Travel agency platform

Trip plan suggestions

Commision

¥

\ =
._ ,v“'"- —'-.,‘_.

Tourists

Figure 2. Example of a use case of the product

2.1.2. Quality
Quality criteria of the project is described in Table 1.

Table 1. Quality criteria

No. | Criteria Justification

1 Trip relevance Time it takes for the algorithm to generate new trips based
on the changed data is less than 24 hours.

2 User satisfaction At least 70% of the users find generated travel trip plans
unique and interesting.
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2.1.3. Competition and alternatives

Similar solutions to the product described in this document could not be found online, meaning
that the product could be unique and transform the old-fashioned way of planning trips. Market
leaders offering such a traditional way of purchasing trips require for the user to provide a lot
of information to query for existing flights. Also, they lack the functionality of combining

multiple flights into a single cohesive travel experience.
2.2. Requirements
2.2.1. Partner or Collaborative Applications

¢ Flight data provider API

o Like.travel travel platform (location scoring and user preferences provider)

e Geospatial database

2.2.2. Off-the-Shelf Software

e Free and open source scientific and ML Python packages (such as NumPy, pandas,

TensorFlow, PyTorch)
e Kotlin programming language

2.2.3. The Scope of the Product

Scope of the project work done for the master‘s degree project is shaded by a red color below

in Figure 3.

l Data

Like.travel server

r&r —
Trip deal Trips—|
« e eaﬂ "7 s Frontend AP
. )
\

End user Like travel web client

—Flight data

a

»| Liketravel [ Flignidata

g FostgreSQL
database

Flight data importer

nd frajectories—

Background frip generation

1 Flight data and
Trips trajectories

Real-time trip generation
algorithm

Figure 3. Scope of the project work shaded in red

2.2.3.1. System Boundary

Trip:

algorithm

The use cases for the algorithm, the system user and the system admin are presented in Figure
4, Figure 5 and Figure 6. Algorithm use cases include the requirements and constraints that it

must take into account when generating the trips.
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O

Algorithm

System

Evaluate flight price

Evaluate location
; minimal and
alﬂClUde»f | maximal day to
stay count

/ zincludes . =

Generate trips from
flight data

L = - sincludes

-
! = e —
z;aluate trip length

constraint

\ includes
\

Evaluate location

optimal stay day
count

User use cases describe actions that the end user can do while browsing the system.

Figure 4. Trip generation algorithm use case diagram
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System

" Filter trip offers

— — «edend» - M
o o qexterl.?» ~ View trip details gt Go to purchase trip
/ © \iew trip offers - e
! —
%f - .

— — ~ Like trip offer
User ~— -~ Mark city as "to Q—.L____p_),.-)
xexdends -
-

e ——

-

- . xzextends M i T
View city wishlis pEiET ME:'i‘sft'gjﬁs
wextends
X

—

—
-

- —
-~ Mark city as "to

Figure 5. User use case diagram

Admin use cases describe the actions that the system administrator can do.

System

e r:_‘—-—-—.___ —_ T gextends —_ T

il -,
Admin View city details —_— = Update city details

Figure 6. Admin use case diagram
2.2.3.2. Use Case Table

Table 2 describes all the use cases and acceptability criteria for the algorithm, user and the
admin user actors.

Table 2. Use case table

No. | Actor Use case Description Acceptability
criteria
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1 Algorithm Generate trips The algorithm should generate Algorithm can
qualitative trip deals from given generate at least a
flight data single trip

2 Algorithm Evaluate flight price Flights with cheaper prices should Algorithm takes
be prioritized flight price into

account

3 Algorithm Evaluate location The location day stays in generated | Algorithm respects

minimal and maximal trips should respect minimal and minimal and

day stay count maximal day constraints maximal day
constraints for
locations

4 Algorithm Evaluate trip length The algorithm should not generate Algorithm respects

constraint trips longer than the selected trip trip length
length constraint
5 Algorithm Evaluate location optimal | The algorithm should prioritize Algorithm respects
(preferred) stay day trips with location stays that match | optimal day
count their optimal day count constraints for
locations

6 User Filter trip offers User should be able to filter the trip | User is able to
offers by the starting city, starting filter the trips
month and the date range for how
long the trip should last

7 User View trip offers User should be able to view the trip | User is able to
list. The list should show as many view trip offers
trip offers as there is, by
implementing infinite scrolling
technique

8 User View trip details User can select a particular trip User is able to
from the trip list and view the trip view trip details
information in detail.

9 User Go to purchase trip User can be redirected to the flight | User can purchase
provider page, where he can begin | the trip by being
the checkout process for purchasing | redirected to the
the flight tickets flight provider

page

10 User Like trip offer User can like trip offer, which later | User can like the
could be used to revisit the trip trip offer
offer

11 User View city wishlist User can view the location wishlist | User can view city
showing his trip location wishlist
preferences

12 User Mark city as ,,to visit® In the wishlist map, user can mark a | User can mark
location which he wants to visit. location which he
Trip offers with such locations will | wants to visit
be prioritized in the trip list

13 User Mark city as ,,visited In the wishlist map, user can mark a | User can mark a
location which he has already location which he
visited. has already visited

14 User Mark city as ,,to skip* In the wishlist map, user can mark a | User can mark

location which he does not wish to
visit. Trip offers with such

location which he
wants to skip

22




locations will be less prioritized in
the trip list

15 Admin View city details Admin can view the details for Admin can view
every city, such as image URL, the details for
assigned airports, every city
min/max/preferred days to stay,
amount of trips and others

16 Admin Update city details Admin can update the city details Admin can update

for a particular city

the details for
particular city
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2.2.3.3. Business Data Model

Entity relation diagram is presented in Figure 7.
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-destinationid : UUID
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Figure 7. Business entity relation diagram

2.2.4. Non-functional Requirements

2.2.4.1. Look and Feel Requirements

At least 70% of the users find generated travel trip plans unique and interesting.

2.2.4.2. Performance Requirements

The generated trips may lag behind the real-time flight data changes by no more than 24 hours.
2.2.5. Risks

The availability of flight data API is not guaranteed. The APIs may also restrict access to data,
which could lead to less information for the algorithm to create quality trips.

24



2.3. Architecture
2.3.1. Architectural Goals and Constraints

Below are presented the goals and constraints of the architecture:
e Architecture should be clear and concise for new team members to adapt to.

e System should be easily scalable on demand.
e System should be distributed on servers supporting JRE 11.

e System backend services should not be accessible from public.

2.3.2. Overview

System packages related to trips are presented in Figure 8. The project scope does not include
flight, cli, trip.planner packages. Not all files from other packages are included in the project
scope.

| | |
repository api frontend
e — — — — E— — — —
T L) .,
/ S A 4
/ Y “ s
“ ) /
! \ i
! shared
_| J A_|
trip.planner flight
™ =
e s
" s
kS s

Figure 8. Package diagram
2.3.3. Architecturally Significant Design Packages
— Package “api”

Package “api” is used to control communication between the client and the server. The server
provides trip models for the client.
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provider

AggregatedTripProvider

operaons

+provide( fiter }

s

v

=

s
s
] .
controller ~
s

TripCoPtroller

Controller ()
Qperaions

+register( routing )

— Package “shared”

factory

ApiTripFactory

OpEeranons

+createMany( aggregatedTrips, aggregatedTripFlightRecords ) : ApiTrip™[”

Figure 9. Package "api"

Package “shared” is used to hold common data models which are used in communication

between the client and the server.

ApiTrip

o

ApiTripFlight -

aitnbuies
-id - UJuID
-score : Double
-price : BigDiecimal
~trajectoryld : LUID

-flights : List=ApiTripFlight=

— Package “frontend”

ainbuies
-id : UuiD
-departureAt : DateTime
-arrivalAt - DateTime
-price : BigDecimal
-departureAirportiata ; String
-departureCityMame : String
-departureCountrylso  String
-departureCountryMame : String
-arrivalAirportiata : String
-arrivalCityMame : String
-arrivalCitylmageUrl : String
-arrivalCityTimezone : String
-arrivalCountrylso ; String
-arrivalCountryMame : String
-arrivalCaountryFlaglmagelrl : String

Figure 10. Package "shared"

Frontend package is used to present the trips to the end user.
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2.3.4. Deployment view

Figure 11. Package "frontend"

Deployment diagram is presented in Figure 12.
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Web Load
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«artifacts |
Server module JAR
TCP
Cli server
PostgreSQL 11
zexecution environments database cluster
JRE 11 TCe
aattifacts [ aattifacts [

Cli module JAR

PostgreSaL 11

Figure 12. Deployment diagram
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2.3.5. Data View

The database model for the system is presented in Figure 13.
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Figure 13. Database view
2.3.6. User interface

The user interface screenshots for desktop and mobile screens are presented in the figures
below. The trip list views are presented in Figure 14 and Figure 15. The trip filter is visible in
the desktop view, while it can be opened by clicking on a search icon in the header in the mobile
view.

LIKE.TRAVEL

Im fexible - imfexble - ‘UPDATE SEARCH RESULTS. —‘
- B

'rxff.llylhli“‘ v

vl S8 SRR T
LONDON ' TOURS |

United Kingdom France y Portugal

Arrive at STN at 6 PM local. 5 nights Arrivi 3GY AM | 6 night:
From VILN Back to VILNIUS
nday) Return lay)

Depart at February 2 Total nights Total price Starts in 35 d.

Feb 27 (Sun)

24 68€ Mar z;(wm)

United Kingdom

1
©TOURS

France

6 nights

Portugal

7 nights

Figure 15. Trip list view for mobile screens
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Trip detailed view screens are presented in Figure 16 and Figure 17. Trip purchase button and
trip like button are present in the footer.

Arrive in Geneva at 10 PM, Wednesday

FCO GVA

Stay for 7 nights.

-_—
& < Arrive in Barcelona at 8 PM, Wednesday
GVA BCN
Stay for 8 nights.
Arrive in Brussels at 8 AM, Thursday 4 ‘ ’

Stay for 7 nights.

Brussels iz not on|

Figure 16. Detailed trip view for desktop screens

Vilnius - London - Tours - Porto - Milan -

Vilnius

‘ Start from Vilnius at 5 PM, Sunday

4 Arrive in London at 6 PM, Sunday

fF

Wy

VNO STN

Stay for 5 nights.

The capital of England went through countless
phenomena in the history of the city that have
affected the whole of Europe: the English
Renaissance, the Industrial Revolution, the Gothic

Figure 17. Detailed trip view for mobile screens
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The wishlist map view screens are presented in Figure 18 and Figure 19. Select forms to select
preferred destinations are available for access in both screens.

LIKE.TRAVEL -«

v = Lithuania \/I I Paris
France

/ — X v Berli a ) LA d Kingd
— pain = celn SNJZZ  United Kingdom
- =] Germany ’/ﬁIN

Figure 18. Wishlist map view for desktop screens

LIKE.TRAVEL

Jl I Paris
France

v ‘\‘IZ United Kingdom
71 S

Leaflet | © OpenStreetMap

contributors & CART

Figure 19. Wishlist map view for mobile screens
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The administrator views for city detail managing are presented in Figure 20 and Figure 21.

0SMID
OSM ID

[r——
httpsi//like-travel.ams3.digi com/i ities/pexels-pixabay-460672.jpg

Image

Airports

LCYOAI;GWQ HRE NG SN sND
+ b sw+

N

eafiet | © OpenStresthtap contributors © CARTO

SAVE CHANGES

Figure 20. City edit desktop view screen
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EDIT

Figure 21. City view mobile view screen



3. Research and experiments
3.1. Problem description

Each trip contains a set of cities T, |T| = N, with a particular order. A trip starts at the start city
t; and the last city visited is denoted as t,,. Every trip is a round trip and ends at the start city
t1. The ordered set T is referred to as a trajectory.

For the experiments, we consider each of the trajectories to consist of 5 cities. Trajectories are
generated based on the real-world flight routes which seldom change. Since there could be a
total of N- (N —1) - (N — 2) - (N — 3) - (N — 4) trajectories, where N is the total number of
cities, it would be impractical to consider all the possible combinations. Trajectory amount can
be reduced by selecting only the most attractive trajectories — ones with the best trajectory round
score and combined OpenStreetMap Place Importance Score (OSM PIS)Y. Round score is
calculated by dividing the total trajectory distance by the minimal possible distance connecting
all the cities. Since only 5 cities make the trajectory, calculating the round score is trivial. The
generation of trajectories happens in a background process and is not a part of the scope of this
research. An example of a trajectory with its adjacent cities connected by a blue line is presented
in Figure 22.

S BERLIN-

LONDON: - S

Figure 22. Trajectory graph example

Given the flight prices for a certain period for a certain trajectory, we want to find the best
possible trip. The score of the trip equals to the sum of its flight ticket prices. A penalty is added
to the trip score if the time spent in a city does not match its preferred number. The lower the
score, the better the trip is considered. An example of a best trip in a trajectory is presented in
Figure 23. The Y axis represents 6 routes to make a round trip between 6 cities. The X axis
represents dates. The blue dots represent an existing flight for a route on a certain day. The
number next to the blue dot represents the flight price. The best possible path of the trip is the
example marked in red. In the example, it is assumed that the preferred amount of days to stay
in each city is 5, and a penalty of 7 is added to the trip score per absolute day offset.

1 https://lists.openstreetmap.org/pipermail/geocoding/2013-August/000916.html
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Figure 23. Finding the best trip in a trajectory

A tree search algorithm based on dynamic programming is used to find the actual best possible
flight combination for a given trajectory. It works like a brute force tree search algorithm, but
with optimizations. Instead of checking each possible flight combination, it stops traversing the
flights if the flight for a given day was already traversed and had a better total flight price.

In the research presented below, a few heuristic approaches using machine learning for finding
the best trip in a trajectory are tested. Although DP guarantees to find the best possible trip, an
approach using ML can be much faster.

3.2. Environment

The computing environment used for the research has the following parameters:
e RAM memory: 32 GB
e CPU: AMD Ryzen 7 3700X 8-Core Processor 3.60 GHz (1 CPU core used)
e OS: Windows 10 64-bit architecture

Python 3.9 programming language is used to program the software. PyTorch machine learning
framework is used to create the neural network models.

3.3. Trip classification using CNN

This method uses convolutional neural networks to classify if a good trip can be found in a
trajectory. For all trajectory chunks that are classified as containing a qualitative trip, a DP
algorithm then can be run to find the exact flights for the best possible trip in that trajectory
part.

3.3.1. Method

A heatmap image is generated for each trajectory. An example of a heatmap is presented in
Figure 24. Each cell represents an existing flight for a route on a certain day. The shade of the
cell depends on the price of the flight. If a flight does not exist for a certain day, the cell is
marked as black.
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Figure 24. Trajectory heatmap

The flight prices are normalized for each individual trajectory using Euclidean normalization
before generating the heatmap.

For a more efficient way to pass the heatmap input to the CNN model, the heatmap is converted
to grayscale with each cell having a value from 0 to 255. A heatmap example in Figure 24
converted to grayscale is presented in Figure 25.

T T TR T T Tl e TR TR T == = s

Figure 25. Trajectory heatmap converted to grayscale

A maximum possible trip length for this experiment was set to 25 days. The heatmap is then
chunked into images of 25 pixels wide, with the chunk step being 5 days. For each heatmap
chunk, the DP algorithm labels the target class for the CNN model training. There are two target
classes — an input is a good trip candidate, or an input is not a good trip candidate. A trip score
threshold value is set manually to a value of 80 to determine the class. Chunked images are
presented in Figure 26.
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Figure 26. Trajectory heatmap chunks

For all of the heatmap chunks that CNN classifies as possible trip candidates, DP algorithm is
then run to find the exact flights.
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Figure 27. Exact trip flights in a positively classified heatmap

3.3.2. Experiment and results
Neural network training hyperparameters are as follows:
e Batch size: 32
e Optimizer: Adagrad [18]
e Loss function: Cross entropy
e Learning rate: 0.015

The model architecture is presented in Figure 28.

B4@5x8 64@5x8 B4@5x4

Convolutional (1x4)
Normalization
Max-Pool (1x2)

Convolutional (1x4)  Normalization Max-Pool (1x2) Fully connected

Figure 28. CNN model architecture

18120 total chunk images were used for the model training and 3712 images for accuracy
testing. 50% of all images for the experiment were classified as containing a good trip, while
the other ones as not containing.
After 5 minutes of training, the model has achieved approximately 94% accuracy and could
process 2000 images per second.

3.4. Real-time trip generation using FNN

The trip classification method was limited, since the machine learning model did not take into
account most of the functional requirements — minimal, maximal day amounts to stay in
particular cities as well as trip length constraints. Also, the speed of the model was not fast
enough for real-time trip generation. A new method that fixes both of the before mentioned
problems was tested. Also, instead of classification, it performs regression, meaning that the
quality of the trip can be evaluated.
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This method uses a heuristic solution that allows to efficiently find the best trip offers using a
feedforward neural network combined with the dynamic programming algorithm. The
feedforward neural network model can narrow down the number of trajectories to a smaller
amount of potential best trip candidates, while the DP algorithm is then able to select the N best
trips. 3 scenarios with different constraints on the trip offer are tested.

A publication [19] based on this method was created and presented in a conference.
3.4.1. Method

The trajectories used for the experiment for the real-time trip generation method are made up
from 100 selected European cities. 210000 trajectories were generated for the experiment. City
selections are based on OSM PIS. Each city has a set of airports assigned to it, which is used to
associate flight data with the city. The cities used are marked in Figure 29.

Figure 29. Selected cities for real-time trip generation experiment

The method to find the best N trips given K possible trajectories and flight data is as follows:

1. Pass the flight prices of K trajectories of the given date range to the FNN model. Each
day can have at most a single flight for a given route between two cities.

2. Pass some amount M of best predicted trajectories and their flight prices to the DP
algorithm.

3. Use the best N trajectories returned by the DP algorithm and the flight data to build the
best N trip offers.

The sequence diagram for the method is presented in Figure 30.
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Figure 30. Real-time trip generation method using FNN

To determine if this method is viable in practice, we evaluate speed and accuracy metrics. Speed
is measured as the combined computing time of FNN prediction and DP algorithm. Accuracy
is determined by comparing the final output of N best trajectories to expected N best trajectories
and diving the sum of matching pairs by N. Accuracy is influenced by the number of total
trajectories passed to the FNN model and the number of best model predictions passed to the
DP algorithm.

3 trip generation scenarios are explored. They differ by the constraints applied to what can be
considered a viable trip.

e Scenario 1: No additional constraints.

e Scenario 2: Each city has a minimum, maximum and preferred number of days to spend
in that city. Trip generation must respect the minimum and maximum constraints and
apply a penalty if the time spent in a city does not match its preferred number. The
penalty adds a value of 5 to the trip score per absolute day offset.

e Scenario 3: Same as scenario 2, also, a total trip length constraint is added. The trip
length must be in one of the three intervals:
o 10-13days
o 14-20days
o 21-24days

The scenarios are visualized in Figure 31, where the X axis represents the flights, and the Y
axis represents the days. The red cells mark the days in which it is impossible to take the flight
to match the given constraints. The green cells represent the possible days to take flights if trip
is starting from the earliest day (03-28). Yellow cells represent other possible days if trip were
to start from another day. With each scenario, the amount of possible flight combinations is
reduced. In the Figure 31 example, the min. and max. number of days to stay in every city are
3 and 7 respectively and the total trip length should span from 14 to 20 days. In the experiment,
for all scenarios we constrain the maximum trip length to 24 days.
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Figure 31. Testing scenarios
3.4.2. Experiment
Common neural network training hyperparameters for each scenario are as follows:
e Batch size: 128
e Optimizer: Adam [20]
e Loss function: Mean absolute error (MAE)

e Learning rate: Reducing learning rate on plateau by a factor of 0.5 on 3 consecutive
epochs without improvement.

e Epochs: Until does not improve for 10 epochs or until 60.

The departure dates for all the flight data in the experiment span between 2021-03-28 and 2021-
05-15. Flight data from 2021-03-28 to 2021-04-20 is used for training, while data from 2021-
04-21 to 2021-05-15 is used for validation. For scenario 1, flight prices of 24 days for each of
the 5 trajectory cities are passed to the model as an input, for a total input length of 120. If the
flight data for a particular day is missing, it is passed to the model as a value of -1. For scenario
2, the number of min., max. and preferred days for each city is added to the input, which
increases the input length to 135. For scenario 3, numbers for min. and max. trip length are
added, for an input length of 137. The target trip scores for the model training were built using
the DP algorithm. If not a single trip can be built for a trajectory under certain constraints, the
target is set to a value of 1000. The model outputs a single value — a trip score. 210000 inputs
were used to train model for scenarios 1 and 2, while scenario 3 trained with three times number
of inputs (630000) due to three distinct intervals used for total trip length.
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Neural network validation accuracy during training for each scenario is presented in figures
Figure 32, Figure 33 and Figure 34. The used notation to describe the model architectures in
the figure legends is as follows: I x H * N x O, where | is the number of inputs for the input
layer, H is the number of inputs for each hidden layer, N is the number of hidden layers and O
is the number of outputs (1 output describing the trip score). The best model architecture is
highlighted with a yellow marker. In general, to obtain the optimal validation accuracy, the
models had to become more complex as the trip constraints increased. Model for scenario 2
tends to overfit the most and the model state after 4™ epoch is used for its metric check.
Techniques such as dropout [21] and dataset scaling were tested but failed to improve the model
accuracy.
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Figure 32. Scenario 1 validation accuracy
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Figure 33. Scenario 2 model validation accuracy
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Figure 34. Scenario 3 model validation accuracy

The DP algorithm for this method only iterates through the dates which match the constraints
of the min. and max. days to stay in a certain flight city and ignores days which do not match
the total trip length constraint (such days are marked red in Figure 31).

3.4.3. Results

Accuracy and speed results are presented in tables Table 3 and Table 4. Accuracy match results
were averaged over 50 test runs. In the accuracy result table, cells marked in red, yellow, and
green represent respectively the worst, the second best and the best scenario for the testing
parameters of the rightmost 3 columns. Columns “Total predictions made”, “Top N predictions
to search in” and “Required top N matches” denote respectively how many inputs were passed
to the FNN model, how many of the best results then were passed to the DP algorithm, and how
many final trip offers do we want to output. The cell values in bold mark the values for which
at least 80% of the required top N matches do match, which is considered a good result.

It is possible to infer from the accuracy results that the more constrained the trip generation
scenario is, the more accurate the final matches tend to be. Since the mean absolute error of the
FNN model validation accuracy was lower for the more constrained models, this might not
seem reasonable. However, it may be explained by the greater value of the standard deviation
of more constrained scenario model target array (trip scores) compared to less constrained
scenario targets. The final matches tend to be less accurate the more trajectory inputs are passed
to the FNN model and the fewer top predictions are ran through the DP algorithm.

The speed results show that the performance of the FNN is extremely quick running faster than
half of a second for 50000 trajectory inputs in 1%t and 2" scenario and in 1.7 seconds in 3
scenario, which uses a more complex neural network architecture. The DP algorithm time
decreases as the amount of trip constraints increases.

Table 3. Real-time trip generation accuracy results
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Actual matches Required top N | Top N predictions | Total predictions
1 Scen. 2 Scen. 3 Scen. matches to search in made

5,48 6,72 8,72 10 50 2000

10,86 12,20 16,22 20 50 2000

23,04 23,84 31,78 50 50 2000

6,76 8,26 9,50 10 100 2000

13,92 15,38 18,42 20 100 2000

32,42 34,18 41,74 50 100 2000

8,96 9,82 9,82 10 250 2000

18,16 19,26 19,46 20 250 2000

43,62 44,76 47,58 50 250 2000

9,84 9,98 9,84 10 500 2000

19,70 19,94 19,56 20 500 2000

48,58 48,90 48,82 50 500 2000

3,60 3,92 6,08 10 50 10000

6,26 6,50 11,00 20 50 10000

11,32 12,32 21,28 50 50 10000

5,16 6,32 8,12 10 100 10000

9,22 11,06 15,34 20 100 10000

19,56 22,62 32,82 50 100 10000

7,00 8,02 9,32 10 250 10000

13,14 14,92 18,40 20 250 10000

29,28 34,88 43,92 50 250 10000

8,12 9,24 9,76 10 500 10000

15,46 17,44 19,44 20 500 10000

35,74 41,90 48,04 50 500 10000

3,48 1,24 3,92 10 50 50000

4,46 2,06 6,74 20 50 50000

5,80 4,24 12,12 50 50 50000

4,86 2,24 5,50 10 100 50000

6,70 3,44 9,94 20 100 50000

10,14 7,80 19,50 50 100 50000

6,60 6,12 8,34 10 250 50000

10,04 10,98 15,10 20 250 50000

17,10 21,58 31,74 50 250 50000

7,98 8,44 9,44 10 500 50000

12,70 15,54 17,50 20 500 50000

24,18 33,50 40,68 50 500 50000

Table 4. Real-time trip generation speed results
. . Scenario 1 Scenario 2 Scenario 3
Trajectories - - - : - -

FNN time DP time FNN time DP time FNN time DP time
50 | 0:00:00:001 0:00:00:022 0:00:00:001 0:00:00:017 0:00:00:002 0:00:00:013
100 | 0:00:00:001 0:00:00:045 0:00:00:001 0:00:00:035 0:00:00:004 0:00:00:023
250 | 0:00:00:001 0:00:00:109 0:00:00:003 0:00:00:093 0:00:00:009 0:00:00:065
500 | 0:00:00:002 0:00:00:227 0:00:00:004 0:00:00:183 0:00:00:018 0:00:00:123
2000 | 0:00:00:008 0:00:00:881 0:00:00:016 0:00:00:653 0:00:00:070 0:00:00:470
10000 | 0:00:00:041 0:00:04:351 0:00:00:080 0:00:03:141 0:00:00:338 0:00:02:305
50000 | 0:00:00:191 0:00:21:987 0:00:00:423 0:00:15:972 0:00:01.706 0:00:11:449
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The summarized differences between experiment scenarios are presented in Table 5. The most
complex experiment scenario produces the most complex neural network model, which is the
most accurate to infer through FNN, but slower. The DP speed is slower the less constraints

there are on the trip generation.

Table 5. Result comparisons between experiment scenarios

Experiment Scenario Neural FNN accuracy | FNN speed DP speed
scenario no. constraints network
complexity
1 Least Least complex Least accurate Fastest Slowest
constraints
2 Average Average Average Average Average
3 Most Most complex Most accurate Slowest Fastest
constraints

3.5. Conclusions

The results for the 3" scenario in the real-time trip generation using FNN show that for cities
which contain as much as 50000 trajectories, it is possible to generate as much as 50 trip offers
in which at least 80% of them match the best possible offers in under 2 seconds. This shows
that the real-time trip generation algorithm can be applied in practice.
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Conclusions

1. Conducted literature analysis showed that although there is a lot of research being done in
analyzing TSP and its modifications, the solutions are not applicable to our problem, since most
of them do not consider the directional nature of commercial flights and the waiting period in
each city.

2. The designed frontend API and the graphical user interface fully enable the functional
requirements of the system.

3. Conducted research shows that the real-time trip generation algorithm can be applied in
practice and be integrated into the trip planning software system. The 3" scenario in the real-
time trip generation using FNN experiment satisfies the functional on non-functional
requirements for the algorithm. Also, the results show that for cities which contain as much as
50000 trajectories, it is possible to generate as much as 50 trip offers in which at least 80% of
them match the best possible offers in under 2 seconds.

4. Speed evaluation of the neural network models during the experiments proved that more
complex models take significantly more amount of time to be inferred.

5. The quality of the project meets the requirements raised by the client and the client is happy
with the outcome.
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Appendices

Appendix 1. Article published in the Proceedings of the Conference "'Lithuanian MSc
Research in Informatics and ICT"

Machine learning algorithm application in trip planning

.....

Kaunas University of Technology, Faculty of Informatics, K. Donelaicio St. 73, 44249 Kaunas, Lithuania

grantas.gadliauskas@Xktu.edu, andrius.krisciunas@ktu.It

Abstract. This article explores how machine learning can be applied in efficiently solving a
variation of the Travelling Salesman Problem (TSP) in the context of air travel tourism. Large
number of cities create too many trip route combinations to be efficiently evaluated in real
time. The method proposed uses a feedforward neural network to narrow down the number
of trip route combinations, while a more traditional algorithm based on dynamic programming
is then able to select the best trip offers. It was shown that the method could be applied in
practice to achieve almost real-time generation of best possible trip offers while evaluating a
large amount of real-world flight data.

Keywords: travelling salesman problem, flight search, combinatorial optimization, neural
network.

e Introduction

Consider a tourist who wants to visit several different cities in a specific date range in a round
trip from his home city. The tourist might also have preferences to which cities one wants to
visit or avoid. A list of N best possible trip offers then should be provided to the user, based on
the real-world flight data. The quality of the trip is determined by its price, but additional
metrics could be added.

Since flight data updates very often and the number of possible date ranges is immensely
huge it is not practical to pre-calculate all the offers. On the other hand, finding the best offers
in real-time is inefficient due to the need to compute the best scored combination of flights for
a large amount of possible trip routes.

In the combinatorial optimization domain, the more simplified version of this problem is
well known as the Travelling Salesman Problem (TSP) [1]. More recent works on the topic also
include machine learning approaches such as one by Chaitanya K. et al. [4] which makes use of
neural networks to perform TSP efficiently with hundreds of nodes. For our problem, however,
the number of nodes (possible trip flights) will never be more than a few hundred, but the more
important issue is the number of trip routes growing exponentially because of the number of
different cities.

This article proposes a heuristic solution that allows to efficiently find the best trip offers
using a feedforward neural network combined with a tree search algorithm based on dynamic
programming (hereinafter DP). The feedforward neural network (hereinafter FNN) model can
narrow down the total number of possible trip route combinations to a smaller amount of
potential best trip candidates, while the algorithm based on dynamic programming is then able
to select the N best trips. 3 scenarios with different constraints on the trip offer are tested.
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e Method

Each trip contains a set of cities T, /T/ = N, with a particular order. A trip starts at the start city
t; and the last city visited is denoted as t,,. Every trip is a round trip and ends at the start city
t;. The ordered set T is referred to as a trajectory.

The trajectories used in our experiment are made up from 100 selected European cities.
City selections are based on OpenStreetMap Place Importance Score (OSM PIS). Each city has a
set of airports assigned to it, which is used to associate flight data with the city. The cities used
are marked in Figure.

Each of the trajectories consist of 5 cities. Trajectories are generated based on the real-
world flight routes which seldom change. Since there could be a total of 100-99-98-97 -
96 trajectories, it would be impractical to consider all the possible combinations. Trajectory
amount can be reduced by selecting only the most attractive trajectories - ones with the best
trajectory round score and combined OSM PIS. Round score is calculated by dividing the total
trajectory distance by the minimal possible distance connecting all the cities. Since only 5 cities
make the trajectory, calculating the round score is trivial. 210000 trajectories were generated
for our experiment. An example of a trajectory with its adjacent cities connected by a blue line
is presented in Figure.

Vi S
\\\ BER
,,,,,,,,,, \\\
® LONDON ‘\\\
o g e o
_ m\\\
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Figure 1. Selected cities Figure 2. Trajectory graph example

The score of the trip equals to the sum of its flight ticket prices. The lower the score, the
better the trip is considered.
Our method to find the best N trips given M possible trajectories and flight data is as
follows:
1. Pass the flight prices of M trajectories of the given date range to the FNN model. Each
day can have at most a single flight for a given route between two cities.

2. Pass some amount of best predicted trajectories and their flight prices to the DP
algorithm.

3. Use the best N trajectories returned by the DP algorithm and the flight data to build
the best N trip offers.

To determine if our method is viable in practice, we evaluate speed and accuracy metrics.
Speed is measured as the combined computing time of FNN prediction and DP algorithm.
Accuracy is determined by comparing the final output of N best trajectories to expected N best
trajectories and diving the sum of matching pairs by N. Accuracy is influenced by the number
of total trajectories passed to the FNN model and the number of best model predictions passed
to the DP algorithm.

3 trip generation scenarios are explored in this research. They differ by the constraints
applied to what can be considered a viable trip.

e Scenario 1: No additional constraints.
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e Scenario 2: Each city has a minimum, maximum and preferred number of days to
spend in that city. Trip generation must respect the minimum and maximum
constraints and apply a penalty if the time spent in a city does not match its
preferred number. The penalty subtracts a value of 5 from the trip score per absolute
day offset.

e Scenario 3: Same as scenario 2, also, a total trip length constraint is added. The trip
length must be in one of the three intervals:

O

O

O

10 - 13 days
14 - 20 days
21 - 24 days

The scenarios are visualized in Figure 31, where the X axis represents the flights, and the
Y axis represents the days. The red cells mark the days in which it is impossible to take the
flight to match the given constraints. The green cells represent the possible days to take flights
if trip is starting from the earliest day (03-28). Yellow cells represent other possible days if trip
were to start from another day. With each scenario, the amount of possible flight combinations
is reduced. In the Figure 31 example, the min. and max. number of days to stay in every city
are 3 and 7 respectively and the total trip length should span from 14 to 20 days. In our
experiment, for all scenarios we constrain the maximum trip length to 24 days.

03-28
03-28
03-30
03-31
04-01
04-02
04-03
04-04
04-05
04-06
04-07
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04-17
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04-19
04-20

Flight 1 Flight 2 Flight 3 Flight 4 Flight 5

Flight 1 Flight 2 Flight 3 Flight 4 Flight 5
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Scenario 1

e Experiment

Figure 3. Testing scenarios

Scenario 2

Scenario 3

The computing environment used for this research has the following parameters:
e RAM memory: 32 GB

e CPU: AMD Ryzen 7 3700X 8-Core Processor 3.60 GHz (1 CPU core used)

e 0S: Windows 10 64-bit architecture

Python 3.9 programming language is used to program the software. PyTorch machine

learning framework is used to create the neural network model.

Common neural network training hyperparameters for each scenario are as follows:
e Batch size: 128
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e Optimizer: Adam [19]
e Loss function: Mean absolute error (MAE)

e Learning rate: Reducing learning rate on plateau by a factor of 0.5 on 3 consecutive
epochs without improvement.

e Epochs: Until does not improve for 10 epochs or until 60.

The departure dates for all the flight data in the experiment span between 2021-03-28 and
2021-05-15. Flight data from 2021-03-28 to 2021-04-20 is used for training, while data from
2021-04-21 to 2021-05-15 is used for validation. For scenario 1, flight prices of 24 days for
each of the 5 trajectory cities are passed to the model as an input, for a total input length of
120. If the flight data for a particular day is missing, it is passed to the model as a value of -1.
For scenario 2, the number of min., max. and preferred days for each city is added to the input,
which increases the input length to 135. For scenario 3, numbers for min. and max. trip length
are added, for an input length of 137. The target trip scores for the model training were built
using the DP algorithm. If not a single trip can be built for a trajectory under certain constraints,
the target is set to a value of 1000. The model outputs a single value - a trip score. 210000
inputs were used to train model for scenarios 1 and 2, while scenario 3 trained with three times
number of inputs (630000) due to three distinct intervals used for total trip length.

Neural network validation accuracy during training for each scenario is presented in
figures Figure 32, Figure 33 and Figure 34. The used notation to describe the model
architectures in the figure legends is as follows: I x H * N x O, where [ is the number of inputs
for the input layer, H is the number of inputs for each hidden layer, N is the number of hidden
layers and O is the number of outputs (1 output describing the trip score). The best model
architecture is highlighted with a yellow marker. In general, to obtain the optimal validation
accuracy, the models had to become more complex as the trip constraints increased. Model for
scenario 2 tends to overfit the most and the model state after 4t epoch is used for its metric
check. Techniques such as dropout [20] and dataset scaling were tested but failed to improve
the model accuracy.

50

45
—120x300*5x1

[S4)

; 40 120x120%*2x1
120x120*1x1

35
120x300*2x1
30 —— 120x120*4x1

1 6 11 16 21 26 31 36
Epoch

Figure 4. Scenario 1 validation accuracy
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Figure 5. Scenario 2 model validation accuracy
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Figure 6. Scenario 3 model validation accuracy

The dynamic programming algorithm is used to find the actual best possible flight
combination for a given trajectory. It works like a brute force tree search algorithm, but with
optimizations. Instead of checking each possible flight combination, it stops traversing the
flights if the flight for a given day was already traversed and had a better total flight price. It
also only iterates through the dates which match the constraints of the min. and max. days to
stay in a certain flight city and ignores days which do not match the total trip length constraint
(such days are marked red in Figure 31).

e Results

The final accuracy and speed results are presented in tables Table 3 and Table 4. Accuracy
match results were averaged over 50 test runs. In the accuracy result table, cells marked in red,
yellow, and green represent respectively the worst, the second best and the best scenario for
the testing parameters of the rightmost 3 columns. Columns “Total predictions made”, “Top N
predictions to search in” and “Required top N matches” denote respectively how many inputs
were passed to the FNN model, how many of the best results then were passed to the DP
algorithm, and how many final trip offers do we want to output. The cell values in bold mark
the values for which at least 80% of the required top N matches do match, which is considered
a good result.

It is possible to infer from the accuracy results that the more constrained the trip
generation scenario is, the more accurate the final matches tend to be. Since the mean absolute
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error of the FNN model validation accuracy was lower for the more constrained models, this
might not seem reasonable. However, it may be explained by the greater value of the standard
deviation of more constrained scenario model target array (trip scores) compared to less
constrained scenario targets. The final matches tend to be less accurate the more trajectory
inputs are passed to the FNN model and the fewer top predictions are ran through the DP
algorithm.

The speed results show that the performance of the FNN is extremely quick running faster
than half of a second for 50000 trajectory inputs in 1st and 2nd scenario and in 1.7 seconds in
3rd scenario, which uses a more complex neural network architecture. The DP algorithm time
decreases as the amount of trip constraints increases.

e Conclusions

In this article it was investigated if combining the speed of feedforward neural networks and
the accuracy of traditional search algorithms can be used to quickly generate attractive trip
offers using real world flight data. The results show that for cities which contain as much as
50000 trajectories, it is possible to generate as much as 50 trip offers in which at least 80% of
them match the best possible offers in under 2 seconds under the constraints of this
experiment. This shows that the method can be applied in practice, and it will be strongly
considered to be integrated into a newly developing trip planning software system.
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Table 1. Accuracy results

Actual matches Required Top N Total
1 2 3 topN predictions to predictions

Scen. Scen. Scen. matches search in made
5,48 6,72 8,72 10 50 2000
10,86 12,20 16,22 20 50 2000
23,04 23,84 31,78 50 50 2000
6,76 8,26 9,50 10 100 2000
13,92 15,38 18,42 20 100 2000
32,42 34,18 41,74 50 100 2000
8,96 9,82 9,82 10 250 2000
18,16 19,26 19,46 20 250 2000
43,62 44,76 47,58 50 250 2000
9,84 9,98 9,84 10 500 2000
19,70 19,94 19,56 20 500 2000
48,58 48,90 48,82 50 500 2000
3,60 3,92 6,08 10 50 10000
6,26 6,50 11,00 20 50 10000
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11,32 12,32 21,28 50 50 10000

5,16 6,32 8,12 10 100 10000

9,22 11,06 15,34 20 100 10000

19,56 22,62 32,82 50 100 10000

7,00 8,02 9,32 10 250 10000

13,14 14,92 18,40 20 250 10000

29,28 34,88 43,92 50 250 10000

8,12 9,24 9,76 10 500 10000

15,46 17,44 19,44 20 500 10000

35,74 41,90 48,04 50 500 10000

3,48 1,24 3,92 10 50 50000

4,46 2,06 6,74 20 50 50000

5,80 4,24 12,12 50 50 50000

4,86 2,24 5,50 10 100 50000

6,70 3,44 9,94 20 100 50000

10,14 7,80 19,50 50 100 50000

6,60 6,12 8,34 10 250 50000

10,04 10,98 15,10 20 250 50000

17,10 21,58 31,74 50 250 50000

7,98 8,44 9,44 10 500 50000

12,70 15,54 17,50 20 500 50000

24,18 33,50 40,68 50 500 50000

Table 2. Speed results
] ] Scenario 1 Scenario 2 Scenario 3
Trajectories - - - - -
FNN time DP time FNN time DP time FNN time DP time

50 0:00:00:001 0:00:00:022 0:00:00:001 0:00:00:017 0:00:00:002 0:00:00:013
100 0:00:00:001 0:00:00:045 0:00:00:001 0:00:00:035 0:00:00:004 0:00:00:023
250 0:00:00:001 0:00:00:109 0:00:00:003 0:00:00:093 0:00:00:009 0:00:00:065
500 0:00:00:002 0:00:00:227 0:00:00:004 0:00:00:183 0:00:00:018 0:00:00:123
2000 0:00:00:008 0:00:00:881 0:00:00:016 0:00:00:653 0:00:00:070 0:00:00:470
10000 0:00:00:041 0:00:04:351 0:00:00:080 0:00:03:141 0:00:00:338 0:00:02:305
50000 0:00:00:191 0:00:21:987 0:00:00:423 0:00:15:972 0:00:01.706 0:00:11:449
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