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Summary 

This paper describes a software system module for a travel trip planning solution and the research 

conducted into how machine learning can be applied to optimally generate trip deals. The solution is 

a unique one, since it requires no direct input from the user to generate the trip results and is solely 

driven by the created algorithm. It allows for its end users to save time and hassle of manually 

searching for flights between multiple destinations by offering attractive prepared trip offers. 

The research part of the work explores how machine learning can be applied in efficiently solving a 

variation of the Travelling Salesman Problem (TSP) in the context of air travel tourism. Large number 

of cities create too many trip route combinations to be efficiently evaluated in real time. The method 

proposed uses a feedforward neural network to narrow down the number of trip route combinations, 

while a more traditional algorithm based on dynamic programming is then able to select the best trip 

offers. It was shown that the method can be applied in practice to achieve almost real-time generation 

of best possible trip offers while evaluating a large amount of real-world flight data.  

 

 

 



 

Gadliauskas Grantas. Mašininio mokymosi algoritmų taikymas kelionių planavime. 

Magistro baigiamasis projektas / vadovas lekt. Andrius Kriščiūnas; Kauno technologijos 

universitetas, Informatikos fakultetas. 

Studijų kryptis ir sritis (studijų krypčių grupė): Programų sistemos. 

Reikšminiai žodžiai: keliaujančio pirklio uždavinys, skrydžių paieška, kombinatorinė optimizacija, 

neuroninis tinklas. 

Kaunas, 2022. 55 p. 

Santrauka 

Šiame darbe aprašomas programų sistemos modulis, skirtas kelionių platformos sistemai, bei tyrimas 

siekiantis išnaudoti mašininio mokymosi galimybes sudaryti patrauklius kelionių rinkinius. Kuriamas 

sprendimas unikalus tuo, jog kelionių planai potencialiems klientams, norintiems vienos kelionės 

metu aplankyti daugiau nei vieną šalį, būtų generuojamos ne rinkoje įprastu būdu, kai vartotojas 

pasirenka konkrečias kryptis, o pateikiamos pagal sukurto algoritmo rezultatus. Toks sprendimas 

leistų galutiniams vartotojams sutaupyti laiką, reikalingą tinkamų skrydžių tarp skirtingų vietovių 

suradimui, o kartu pateiktų visą aibę galimų kelionių rinkinių. 

Darbo tyrimo ir eksperimentų dalis siekia ištirti, kaip mašininis mokymasis gali būti panaudotas 

išspręsti keliaujančio pirklio uždavinį (angl. travelling salesman problem; TSP) oro kelionių 

kontekste. Dėl didelio kiekio miestų yra sunku efektyviai patikrinti visas kelių kombinacijas. 

Siūlomas metodas naudoja dirbtinį neuroninį tinklą susiaurinti kombinacijų aibę, kas leidžia 

dinaminiu programavimu grįstam algoritmui pasirinkti geriausius kelionių pasiūlymus. Tyrime 

parodoma, kad šis metodas gali būti pritaikomas praktikoje generuoti kelionių pasiūlymus realiu laiku 

įvertinant didelį kiekį tikrų skrydžių duomenų. 
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Introduction 

An influx of low-cost airlines in the recent years made a huge impact to the success of the travel 

industry, which was ultimately shaken by the global pandemic at the start of 2020. While many 

big-name market players took a huge hit, an exciting environment has opened for new 

innovative solutions which could help to replenish the state of the industry in the near future.  

This project aims to create a travel trip planning solution which leverages aggregated flight data 

and the latest advancements in the machine learning field. A trip may consist of visiting multiple 

travel locations spanning multiple countries. The solution is a unique one, since it requires no 

direct input from the user to generate the trip results and is solely driven by the created algorithm 

which analyses many travel trip related criteria. The solution allows for its end users to save 

time and hassle of manually searching for flights between multiple destinations by offering 

attractive prepared trip offers. 
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1. Analysis 

1.1. Problem Overview 

Consider a tourist who wants to visit several different cities in a specific date range in a round 

trip from his home city. The tourist might also have preferences to which cities one wants to 

visit or avoid. A list of N best possible trip offers then should be provided to the user, based on 

the real-world flight data. The quality of the trip is determined by its price, but additional 

metrics could be added. 

Since flight data updates very often and the number of possible date ranges is immensely huge 

it is not practical to pre-calculate all the offers. On the other hand, finding the best offers in 

real-time is inefficient due to the need to compute the best scored combination of flights for a 

large amount of possible trip routes. 

In the combinatorial optimization domain, the more simplified version of this problem is well 

known as the Travelling Salesman Problem (TSP) [1]. The applications of TSP and its variants 

are used globally for logistics, planning, astronomy, and manufacturing. The aim of TSP, given 

a context of a country, is to find the shortest possible route that visits each city once and returns 

to the origin city. Since 1976, when Nicos Christofides came up with an algorithm [2] that finds 

round trips no longer than 50% longer than the best round trip, no significant progress in 

effectiveness was made [3].  

More recent works on the topic include machine learning approaches such as one by Chaitanya 

K. et al. [4] which makes use of neural networks to perform TSP efficiently with hundreds of 

nodes. For our problem, however, the number of nodes (possible trip flights) will never be more 

than a few hundred, but the more important issue is the number of trip routes growing 

polynomially because of the number of different cities. 

1.2. Trip design optimization overview 

1.2.1. Tourist trip design problem 

The Tourist Trip Design Problem (TTDP) is a variant of TSP and refers to a route-planning 

problem for tourists interested in visiting multiple points of interest (POIs). TTDP 

implementations usually derive daily tourist tours, for example, ordered visits to POIs, which 

respect tourist constraints and POIs attributes. The algorithmic approaches for solving TTDP 

variants represents the most crowded field of research among them. [5] 

Two popular TTDP variants exist based on the amount of days the tourist has to stay: 

• single tour TTDP variants aim to find a single tour that maximizes the collected profit 

while respecting certain tourist constraints and POI attributes; 

• multiple tour TTDP variants aim to find multiple tours based upon the number of days 

the tourist’s visit will last. 

 

Single tour variants of the TTDP can be modeled using TSPP, a bicriteria generalization of 

TSP. Specifically, in TSPP a network is given in which nodes are associated with profits and 

links with travel costs, and the goal is to find a tour (which starts and ends at a specified node - 
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the depot) over a subset of nodes such that the collected profit is maximized while the travel 

cost is minimized. [5]  

 

TTDP variants with time windows (TW) considers visits to locations within a predefined time 

window (this allows modeling opening and closing hours of POIs, for example, flight times). 

The time-dependent (TD) variants consider time dependency in the estimation of time required 

to move from one location to another. [5] 

1.2.2. Orienteering problem with time windows 

The Orienteering Problem with Time Windows (OPTW) can be seen as a model for the Tourist 

Trip Design Problem (TTDP). [6] 

In the OPTW, a collection of locations is given, each with a score that denotes its attractiveness. 

The time needed for travelling from location i to j, is known for all locations. The goal of the 

problem is to maximize the sum of the scores of the selected locations, keeping the total time 

of the route between these locations under a given time budget or the total distance of the route 

under a given distance budget. [7]. Time window constraint introduces a start time and an end 

time for each location, indicating the time when these locations can be visited (Figure 1). 

 

 

Figure 1. An example of a solution of the multi-objective time-dependent orienteering problem [8] 

In the OPTW it is assumed that a route’s starting location, its starting time and ending time, and 

scores of the points of interest are tourist dependent, while the coordinates of the points of 

interest, their opening and closing times, and duration of visit are not. [6] 
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1.2.3. Review 

Despite its tight relation with the TSP, our problem described in chapter 1.1 concerning 

commercial flights differs from the alternatives suggested above. The approaches consider that 

the cost between two cities (nodes) is always constant over time, although assumption is 

certainly not true for the case of commercial flights, as the tickets price depend not only on the 

date, but also on the direction of the route. Also, the approaches assume that the waiting period 

in each city is a static time period, which in our case is not convenient for the traveler. 

 

1.3. Artificial intelligence overview 

The field of artificial intelligence (AI) is currently on the rise, although it has been around for 

more than six decades. The difference between current decades and the previous decades, is 

that the AI research promise actually materializes when solving real-world problems. [9] The 

most notable of these problems include speech recognition, computer vision, bio-surveillance, 

robot or automation control and empirical science experiments [10]. 

Supervised learning is one of the most popular paradigms of machine learning, where the 

machine is given a dataset (for example, a set of data points), along with the right answers to a 

question corresponding to the data points (labels). The learning algorithm is provided with a 

huge set of data points with answers, for example, a labelled dataset. The algorithm has to learn 

the key characteristics within each data point in the dataset to determine the answer. So, next 

time a new data point is provided to the algorithm, based on the key characteristics, the 

algorithm should be able to predict the outcome/right answer. [9] 

1.3.1. Artificial neural networks 

Supervised learning falls mostly in two categories: solving of classification and regression 

problems. Depending on the category, regression analysis is performed: 

• Linear regression allows to predict value of a continuous variable to solve regression 

problems. It assumes that the relationship between the variables can be expressed as a 

linear function. 

• Logistic regression allows to predict whether or not a specific outcome would be 

achieved. It provides a 0 or 1 prediction, rather than a real value for a continuous 

variable. 

Neural networks are networks of interconnected artificial neurons. Their structure is heavily 

inspired by the brain’s neuron network. A neural network is generally used to create supervised 

machine learning models. It can be thought of as combining multiple regression models to make 

a more powerful model. 

The feedforward neural network was the first and simplest type of artificial neural network 

devised [11]. In this network, the information moves in only one direction—forward—from the 
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input nodes, through the hidden nodes (if any) and to the output nodes. There are no cycles or 

loops in the network. [12] 

Convolutional neural networks are used for some of the most interesting applications of 

machine learning, such as image recognition, handwriting reading, interpreting street signs, etc. 

Convolution is a technique which automates extraction and synthesis of significant features 

needed to identify the target classes. CNN is usually composed of multiple layers of convolution 

and pooling combination and then followed by a neural network. [9] 

1.3.2. Review 

Since artificial intelligence is a very promising field, the work described in this paper puts a big 

focus on finding a machine learning technique that would prove to be more efficient than the 

more traditional algorithms. Supervised learning techniques using artificial neural networks 

will be used in the research of this work, since to generate high quality trips, we want the ML 

model to be able to describe the quality of the trip (either through regression or classification). 

ML model can be trained using labeled data, which can be generated using a simpler brute force 

based algorithm when the speed of generation is not so important. 
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2. Software system 

2.1. Application 

2.1.1.1. Demand 

2.1.1.2. Project users and clients 

The main clients of the solution are travel platforms and agencies. Individual travel guides 

should the find the solution valuable as well. The final end users are all people who have an 

interest in travelling and tourism. 

2.1.1.3. User problems 

Tourists face a difficulty when trying to find a likeable trip. With traditional trip planning 

platforms, user must select and combine flights into a single trip manually, which usually is not 

optimal in terms of price and quality. 

2.1.1.4. Market research 

According to the latest World Travel & Tourism Council (WTTC) data [13], tourism industry 

accounts for 10.4% of the world’s GDP and is one of the largest economic sectors in the world. 

Tourism industry which in 2018 contributed to 8.8 trillion to the global economy [14] is viewed 

as one of the most growing industries. 

 

The biggest names in the industry are: 

• Kayak – metasearch engine for travel flights. Over 6 billion queries each year. Property 

of Booking Holdings, the world leader in online travel [15]. 

• TripAdvisor – travel shopping comparison and user review website. Number 1 in the 

Travel and Tourism category in the US, revenue of $1.62 billion worldwide and 490 

million monthly active users as of 2019 [16]. 

• Kiwi – flight search website. 100M average daily search queries, €1.3 turnover in 2019 

[17]. 

 

These companies offer common traditional trip planning solutions and thus could be viewed as 

potential clients rather than competitors. 

 

2.1.1.5. Information about the clients 

Travel platform and agencies seeking to please their own users with attractive trip suggestions. 

Travel guides and related businesses which do not have enough resources to create qualitative 

travel offers or want to focus mainly on client support. The clients will be able to access the 

service by purchasing an application programming interface (API) subscription of the created 

solution. 
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2.1.1.6. Product description 

The product can be described as an API service which gives its users an ability to query 

attractive travel trip suggestions. API service is sold through a monthly subscription model or 

by each successful trip purchase from the end users. 

Figure 2 describes how a potential client of the product, a travel agency platform, could leverage 

the API service to increase its conversions by providing attractive trip suggestions to its end 

users. 

 

Figure 2.  Example of a use case of the product 

 

 

 

2.1.2.  Quality 

Quality criteria of the project is described in Table 1. 

Table 1. Quality criteria 

No. Criteria Justification 

1 Trip relevance Time it takes for the algorithm to generate new trips based 

on the changed data is less than 24 hours.  

2 User satisfaction At least 70% of the users find generated travel trip plans 

unique and interesting. 
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2.1.3. Competition and alternatives  

Similar solutions to the product described in this document could not be found online, meaning 

that the product could be unique and transform the old-fashioned way of planning trips. Market 

leaders offering such a traditional way of purchasing trips require for the user to provide a lot 

of information to query for existing flights. Also, they lack the functionality of combining 

multiple flights into a single cohesive travel experience. 

2.2. Requirements 

2.2.1. Partner or Collaborative Applications 

• Flight data provider API 

• Like.travel travel platform (location scoring and user preferences provider) 

• Geospatial database 

 

2.2.2. Off-the-Shelf Software 

• Free and open source scientific and ML Python packages (such as NumPy, pandas, 

TensorFlow, PyTorch) 

• Kotlin programming language 

2.2.3. The Scope of the Product 

Scope of the project work done for the master‘s degree project is shaded by a red color below 

in Figure 3.  

  

Figure 3. Scope of the project work shaded in red 

2.2.3.1. System Boundary 

The use cases for the algorithm, the system user and the system admin are presented in Figure 

4, Figure 5 and Figure 6. Algorithm use cases include the requirements and constraints that it 

must take into account when generating the trips. 
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Figure 4. Trip generation algorithm use case diagram 

 

User use cases describe actions that the end user can do while browsing the system. 
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Figure 5. User use case diagram 

 

Admin use cases describe the actions that the system administrator can do. 

 

 

Figure 6. Admin use case diagram 

2.2.3.2. Use Case Table 

Table 2 describes all the use cases and acceptability criteria for the algorithm, user and the 

admin user actors. 

Table 2. Use case table 

No. Actor Use case Description Acceptability 

criteria 
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1 Algorithm Generate trips The algorithm should generate 

qualitative trip deals from given 

flight data 

Algorithm can 

generate at least a 

single trip 

2 Algorithm Evaluate flight price Flights with cheaper prices should 

be prioritized 

Algorithm takes 

flight price into 

account 

3 Algorithm Evaluate location 

minimal and maximal 

day stay count 

The location day stays in generated 

trips should respect minimal and 

maximal day constraints 

Algorithm respects 

minimal and 

maximal day 

constraints for 

locations 

4 Algorithm Evaluate trip length 

constraint 

The algorithm should not generate 

trips longer than the selected trip 

length 

Algorithm respects 

trip length 

constraint 

5 Algorithm Evaluate location optimal 

(preferred) stay day 

count 

The algorithm should prioritize 

trips with location stays that match 

their optimal day count 

Algorithm respects 

optimal day 

constraints for 

locations 

6 User Filter trip offers User should be able to filter the trip 

offers by the starting city, starting 

month and the date range for how 

long the trip should last 

User is able to 

filter the trips 

7 User View trip offers User should be able to view the trip 

list. The list should show as many 

trip offers as there is, by 

implementing infinite scrolling 

technique 

User is able to 

view trip offers 

8 User View trip details User can select a particular trip 

from the trip list and view the trip 

information in detail. 

User is able to 

view trip details 

9 User Go to purchase trip User can be redirected to the flight 

provider page, where he can begin 

the checkout process for purchasing 

the flight tickets 

User can purchase 

the trip by being 

redirected to the 

flight provider 

page 

10 User Like trip offer User can like trip offer, which later 

could be used to revisit the trip 

offer 

User can like the 

trip offer 

11 User View city wishlist User can view the location wishlist 

showing his trip location 

preferences 

User can view city 

wishlist 

12 User Mark city as „to visit“ In the wishlist map, user can mark a 

location which he wants to visit. 

Trip offers with such locations will 

be prioritized in the trip list 

User can mark 

location which he 

wants to visit 

13 User Mark city as „visited“ In the wishlist map, user can mark a 

location which he has already 

visited. 

User can mark a 

location which he 

has already visited 

14 User Mark city as „to skip“ In the wishlist map, user can mark a 

location which he does not wish to 

visit. Trip offers with such 

User can mark 

location which he 

wants to skip 



23 

locations will be less prioritized in 

the trip list 

15 Admin View city details Admin can view the details for 

every city, such as image URL, 

assigned airports, 

min/max/preferred days to stay, 

amount of trips and others 

Admin can view 

the details for 

every city 

16 Admin Update city details Admin can update the city details 

for a particular city 

Admin can update 

the details for 

particular city 
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2.2.3.3. Business Data Model 

Entity relation diagram is presented in Figure 7. 

 

Figure 7. Business entity relation diagram 

 

2.2.4. Non-functional Requirements 

2.2.4.1. Look and Feel Requirements 

At least 70% of the users find generated travel trip plans unique and interesting. 

2.2.4.2. Performance Requirements 

The generated trips may lag behind the real-time flight data changes by no more than 24 hours. 

2.2.5. Risks 

The availability of flight data API is not guaranteed. The APIs may also restrict access to data, 

which could lead to less information for the algorithm to create quality trips. 
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2.3. Architecture 

2.3.1. Architectural Goals and Constraints 

Below are presented the goals and constraints of the architecture: 

• Architecture should be clear and concise for new team members to adapt to. 

• System should be easily scalable on demand. 

 

• System should be distributed on servers supporting JRE 11. 

 

• System backend services should not be accessible from public. 

 

2.3.2. Overview 

System packages related to trips are presented in Figure 8. The project scope does not include 

flight, cli, trip.planner packages. Not all files from other packages are included in the project 

scope.  

 

Figure 8. Package diagram 

2.3.3. Architecturally Significant Design Packages 

– Package “api” 

Package “api” is used to control communication between the client and the server. The server 

provides trip models for the client.  
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Figure 9. Package "api" 

– Package “shared” 

Package “shared” is used to hold common data models which are used in communication 

between the client and the server. 

 

Figure 10. Package "shared" 

– Package “frontend” 

Frontend package is used to present the trips to the end user. 
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Figure 11. Package "frontend" 

 

 

2.3.4. Deployment view 

Deployment diagram is presented in Figure 12. 

 

Figure 12. Deployment diagram 



28 

 

2.3.5. Data View 

The database model for the system is presented in Figure 13. 
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Figure 13. Database view 

2.3.6. User interface 

The user interface screenshots for desktop and mobile screens are presented in the figures 

below. The trip list views are presented in Figure 14 and Figure 15. The trip filter is visible in 

the desktop view, while it can be opened by clicking on a search icon in the header in the mobile 

view. 

 

 

Figure 14. Trip list view for desktop screens 

 

Figure 15. Trip list view for mobile screens 
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Trip detailed view screens are presented in Figure 16 and Figure 17. Trip purchase button and 

trip like button are present in the footer. 

 

 

Figure 16. Detailed trip view for desktop screens 

 

Figure 17. Detailed trip view for mobile screens 
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The wishlist map view screens are presented in Figure 18 and Figure 19. Select forms to select 

preferred destinations are available for access in both screens. 

 

 

Figure 18. Wishlist map view for desktop screens 

 

Figure 19. Wishlist map view for mobile screens 
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The administrator views for city detail managing are presented in Figure 20 and Figure 21. 

 

 

Figure 20. City edit desktop view screen 

 

Figure 21. City view mobile view screen 
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3. Research and experiments 

3.1. Problem description 

Each trip contains a set of cities T, |T| = N, with a particular order. A trip starts at the start city 

𝑡1 and the last city visited is denoted as 𝑡𝑛.  Every trip is a round trip and ends at the start city 

𝑡1. The ordered set T is referred to as a trajectory. 

For the experiments, we consider each of the trajectories to consist of 5 cities. Trajectories are 

generated based on the real-world flight routes which seldom change. Since there could be a 

total of 𝑁 ∙ (𝑁 − 1) ∙ (𝑁 − 2) ∙ (𝑁 − 3) ∙ (𝑁 − 4) trajectories, where N is the total number of 

cities, it would be impractical to consider all the possible combinations. Trajectory amount can 

be reduced by selecting only the most attractive trajectories – ones with the best trajectory round 

score and combined OpenStreetMap Place Importance Score (OSM PIS)1. Round score is 

calculated by dividing the total trajectory distance by the minimal possible distance connecting 

all the cities. Since only 5 cities make the trajectory, calculating the round score is trivial. The 

generation of trajectories happens in a background process and is not a part of the scope of this 

research. An example of a trajectory with its adjacent cities connected by a blue line is presented 

in Figure 22.  

 

Figure 22. Trajectory graph example 

Given the flight prices for a certain period for a certain trajectory, we want to find the best 

possible trip. The score of the trip equals to the sum of its flight ticket prices. A penalty is added 

to the trip score if the time spent in a city does not match its preferred number. The lower the 

score, the better the trip is considered. An example of a best trip in a trajectory is presented in  

Figure 23. The Y axis represents 6 routes to make a round trip between 6 cities. The X axis 

represents dates. The blue dots represent an existing flight for a route on a certain day. The 

number next to the blue dot represents the flight price. The best possible path of the trip is the 

example marked in red. In the example, it is assumed that the preferred amount of days to stay 

in each city is 5, and a penalty of 7 is added to the trip score per absolute day offset. 

 
1 https://lists.openstreetmap.org/pipermail/geocoding/2013-August/000916.html 

https://lists.openstreetmap.org/pipermail/geocoding/2013-August/000916.html
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Figure 23. Finding the best trip in a trajectory 

A tree search algorithm based on dynamic programming is used to find the actual best possible 

flight combination for a given trajectory. It works like a brute force tree search algorithm, but 

with optimizations. Instead of checking each possible flight combination, it stops traversing the 

flights if the flight for a given day was already traversed and had a better total flight price. 

In the research presented below, a few heuristic approaches using machine learning for finding 

the best trip in a trajectory are tested. Although DP guarantees to find the best possible trip, an 

approach using ML can be much faster.  

3.2. Environment 

The computing environment used for the research has the following parameters: 

• RAM memory: 32 GB 

• CPU: AMD Ryzen 7 3700X 8-Core Processor 3.60 GHz (1 CPU core used) 

• OS: Windows 10 64-bit architecture 

Python 3.9 programming language is used to program the software. PyTorch machine learning 

framework is used to create the neural network models. 

3.3. Trip classification using CNN 

This method uses convolutional neural networks to classify if a good trip can be found in a 

trajectory. For all trajectory chunks that are classified as containing a qualitative trip, a DP 

algorithm then can be run to find the exact flights for the best possible trip in that trajectory 

part. 

3.3.1. Method 

A heatmap image is generated for each trajectory. An example of a heatmap is presented in 

Figure 24. Each cell represents an existing flight for a route on a certain day. The shade of the 

cell depends on the price of the flight. If a flight does not exist for a certain day, the cell is 

marked as black. 
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Figure 24. Trajectory heatmap 

The flight prices are normalized for each individual trajectory using Euclidean normalization 

before generating the heatmap.  

For a more efficient way to pass the heatmap input to the CNN model, the heatmap is converted 

to grayscale with each cell having a value from 0 to 255. A heatmap example in Figure 24 

converted to grayscale is presented in Figure 25. 

 

 

Figure 25. Trajectory heatmap converted to grayscale 

A maximum possible trip length for this experiment was set to 25 days. The heatmap is then 

chunked into images of 25 pixels wide, with the chunk step being 5 days. For each heatmap 

chunk, the DP algorithm labels the target class for the CNN model training. There are two target 

classes – an input is a good trip candidate, or an input is not a good trip candidate. A trip score 

threshold value is set manually to a value of 80 to determine the class. Chunked images are 

presented in Figure 26. 

 

 

Figure 26. Trajectory heatmap chunks 

For all of the heatmap chunks that CNN classifies as possible trip candidates, DP algorithm is 

then run to find the exact flights. 
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Figure 27. Exact trip flights in a positively classified heatmap 

3.3.2. Experiment and results 

Neural network training hyperparameters are as follows: 

• Batch size: 32 

• Optimizer: Adagrad [18] 

• Loss function: Cross entropy 

• Learning rate: 0.015 

The model architecture is presented in Figure 28. 

 

Figure 28. CNN model architecture 

18120 total chunk images were used for the model training and 3712 images for accuracy 

testing. 50% of all images for the experiment were classified as containing a good trip, while 

the other ones as not containing.  

After 5 minutes of training, the model has achieved approximately 94% accuracy and could 

process 2000 images per second. 

3.4. Real-time trip generation using FNN 

The trip classification method was limited, since the machine learning model did not take into 

account most of the functional requirements – minimal, maximal day amounts to stay in 

particular cities as well as trip length constraints. Also, the speed of the model was not fast 

enough for real-time trip generation. A new method that fixes both of the before mentioned 

problems was tested. Also, instead of classification, it performs regression, meaning that the 

quality of the trip can be evaluated. 
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This method uses a heuristic solution that allows to efficiently find the best trip offers using a 

feedforward neural network combined with the dynamic programming algorithm. The 

feedforward neural network model can narrow down the number of trajectories to a smaller 

amount of potential best trip candidates, while the DP algorithm is then able to select the N best 

trips. 3 scenarios with different constraints on the trip offer are tested. 

A publication [19] based on this method was created and presented in a conference. 

3.4.1. Method 

The trajectories used for the experiment for the real-time trip generation method are made up 

from 100 selected European cities. 210000 trajectories were generated for the experiment. City 

selections are based on OSM PIS. Each city has a set of airports assigned to it, which is used to 

associate flight data with the city. The cities used are marked in Figure 29. 

 

Figure 29. Selected cities for real-time trip generation experiment 

 

The method to find the best N trips given K possible trajectories and flight data is as follows: 

1. Pass the flight prices of K trajectories of the given date range to the FNN model. Each 

day can have at most a single flight for a given route between two cities. 

2. Pass some amount M of best predicted trajectories and their flight prices to the DP 

algorithm. 

3. Use the best N trajectories returned by the DP algorithm and the flight data to build the 

best N trip offers. 

The sequence diagram for the method is presented in Figure 30. 
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Figure 30. Real-time trip generation method using FNN 

To determine if this method is viable in practice, we evaluate speed and accuracy metrics. Speed 

is measured as the combined computing time of FNN prediction and DP algorithm. Accuracy 

is determined by comparing the final output of N best trajectories to expected N best trajectories 

and diving the sum of matching pairs by N. Accuracy is influenced by the number of total 

trajectories passed to the FNN model and the number of best model predictions passed to the 

DP algorithm. 

3 trip generation scenarios are explored. They differ by the constraints applied to what can be 

considered a viable trip. 

• Scenario 1: No additional constraints. 

• Scenario 2: Each city has a minimum, maximum and preferred number of days to spend 

in that city. Trip generation must respect the minimum and maximum constraints and 

apply a penalty if the time spent in a city does not match its preferred number. The 

penalty adds a value of 5 to the trip score per absolute day offset. 

• Scenario 3: Same as scenario 2, also, a total trip length constraint is added. The trip 

length must be in one of the three intervals: 

o 10 – 13 days 

o 14 – 20 days 

o 21 – 24 days 

The scenarios are visualized in Figure 31, where the X axis represents the flights, and the Y 

axis represents the days. The red cells mark the days in which it is impossible to take the flight 

to match the given constraints. The green cells represent the possible days to take flights if trip 

is starting from the earliest day (03-28). Yellow cells represent other possible days if trip were 

to start from another day. With each scenario, the amount of possible flight combinations is 

reduced. In the Figure 31 example, the min. and max. number of days to stay in every city are 

3 and 7 respectively and the total trip length should span from 14 to 20 days. In the experiment, 

for all scenarios we constrain the maximum trip length to 24 days. 
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Figure 31. Testing scenarios 

3.4.2. Experiment 

Common neural network training hyperparameters for each scenario are as follows: 

• Batch size: 128 

• Optimizer: Adam [20] 

• Loss function: Mean absolute error (MAE) 

• Learning rate: Reducing learning rate on plateau by a factor of 0.5 on 3 consecutive 

epochs without improvement. 

• Epochs: Until does not improve for 10 epochs or until 60. 

The departure dates for all the flight data in the experiment span between 2021-03-28 and 2021-

05-15. Flight data from 2021-03-28 to 2021-04-20 is used for training, while data from 2021-

04-21 to 2021-05-15 is used for validation. For scenario 1, flight prices of 24 days for each of 

the 5 trajectory cities are passed to the model as an input, for a total input length of 120. If the 

flight data for a particular day is missing, it is passed to the model as a value of -1. For scenario 

2, the number of min., max. and preferred days for each city is added to the input, which 

increases the input length to 135. For scenario 3, numbers for min. and max. trip length are 

added, for an input length of 137. The target trip scores for the model training were built using 

the DP algorithm. If not a single trip can be built for a trajectory under certain constraints, the 

target is set to a value of 1000. The model outputs a single value – a trip score. 210000 inputs 

were used to train model for scenarios 1 and 2, while scenario 3 trained with three times number 

of inputs (630000) due to three distinct intervals used for total trip length. 
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Neural network validation accuracy during training for each scenario is presented in figures 

Figure 32, Figure 33 and Figure 34. The used notation to describe the model architectures in 

the figure legends is as follows: 𝐼 𝑥 𝐻 ∗ 𝑁 𝑥 𝑂, where I is the number of inputs for the input 

layer, H is the number of inputs for each hidden layer, N is the number of hidden layers and O 

is the number of outputs (1 output describing the trip score). The best model architecture is 

highlighted with a yellow marker. In general, to obtain the optimal validation accuracy, the 

models had to become more complex as the trip constraints increased. Model for scenario 2 

tends to overfit the most and the model state after 4th epoch is used for its metric check. 

Techniques such as dropout [21] and dataset scaling were tested but failed to improve the model 

accuracy. 

Figure 32. Scenario 1 validation accuracy 

 

Figure 33. Scenario 2 model validation accuracy 
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Figure 34. Scenario 3 model validation accuracy 

The DP algorithm for this method only iterates through the dates which match the constraints 

of the min. and max. days to stay in a certain flight city and ignores days which do not match 

the total trip length constraint (such days are marked red in Figure 31). 

3.4.3. Results 

Accuracy and speed results are presented in tables Table 3 and Table 4. Accuracy match results 

were averaged over 50 test runs. In the accuracy result table, cells marked in red, yellow, and 

green represent respectively the worst, the second best and the best scenario for the testing 

parameters of the rightmost 3 columns. Columns “Total predictions made”, “Top N predictions 

to search in” and “Required top N matches” denote respectively how many inputs were passed 

to the FNN model, how many of the best results then were passed to the DP algorithm, and how 

many final trip offers do we want to output. The cell values in bold mark the values for which 

at least 80% of the required top N matches do match, which is considered a good result. 

It is possible to infer from the accuracy results that the more constrained the trip generation 

scenario is, the more accurate the final matches tend to be. Since the mean absolute error of the 

FNN model validation accuracy was lower for the more constrained models, this might not 

seem reasonable. However, it may be explained by the greater value of the standard deviation 

of more constrained scenario model target array (trip scores) compared to less constrained 

scenario targets. The final matches tend to be less accurate the more trajectory inputs are passed 

to the FNN model and the fewer top predictions are ran through the DP algorithm. 

The speed results show that the performance of the FNN is extremely quick running faster than 

half of a second for 50000 trajectory inputs in 1st and 2nd scenario and in 1.7 seconds in 3rd 

scenario, which uses a more complex neural network architecture. The DP algorithm time 

decreases as the amount of trip constraints increases. 

 

Table 3. Real-time trip generation accuracy results 
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Actual matches Required top N 

matches 

Top N predictions 

to search in 

Total predictions 

made 1 Scen. 2 Scen. 3 Scen. 

5,48 6,72 8,72 10 50 2000 

10,86 12,20 16,22 20 50 2000 

23,04 23,84 31,78 50 50 2000 

6,76 8,26 9,50 10 100 2000 

13,92 15,38 18,42 20 100 2000 

32,42 34,18 41,74 50 100 2000 

8,96 9,82 9,82 10 250 2000 

18,16 19,26 19,46 20 250 2000 

43,62 44,76 47,58 50 250 2000 

9,84 9,98 9,84 10 500 2000 

19,70 19,94 19,56 20 500 2000 

48,58 48,90 48,82 50 500 2000 

3,60 3,92 6,08 10 50 10000 

6,26 6,50 11,00 20 50 10000 

11,32 12,32 21,28 50 50 10000 

5,16 6,32 8,12 10 100 10000 

9,22 11,06 15,34 20 100 10000 

19,56 22,62 32,82 50 100 10000 

7,00 8,02 9,32 10 250 10000 

13,14 14,92 18,40 20 250 10000 

29,28 34,88 43,92 50 250 10000 

8,12 9,24 9,76 10 500 10000 

15,46 17,44 19,44 20 500 10000 

35,74 41,90 48,04 50 500 10000 

3,48 1,24 3,92 10 50 50000 

4,46 2,06 6,74 20 50 50000 

5,80 4,24 12,12 50 50 50000 

4,86 2,24 5,50 10 100 50000 

6,70 3,44 9,94 20 100 50000 

10,14 7,80 19,50 50 100 50000 

6,60 6,12 8,34 10 250 50000 

10,04 10,98 15,10 20 250 50000 

17,10 21,58 31,74 50 250 50000 

7,98 8,44 9,44 10 500 50000 

12,70 15,54 17,50 20 500 50000 

24,18 33,50 40,68 50 500 50000 

 

Table 4. Real-time trip generation speed results 

Trajectories 
Scenario 1 Scenario 2 Scenario 3 

FNN time DP time FNN time DP time FNN time DP time 

50 0:00:00:001 0:00:00:022 0:00:00:001 0:00:00:017 0:00:00:002 0:00:00:013 

100 0:00:00:001 0:00:00:045 0:00:00:001 0:00:00:035 0:00:00:004 0:00:00:023 

250 0:00:00:001 0:00:00:109 0:00:00:003 0:00:00:093 0:00:00:009 0:00:00:065 

500 0:00:00:002 0:00:00:227 0:00:00:004 0:00:00:183 0:00:00:018 0:00:00:123 

2000 0:00:00:008 0:00:00:881 0:00:00:016 0:00:00:653 0:00:00:070 0:00:00:470 

10000 0:00:00:041 0:00:04:351 0:00:00:080 0:00:03:141 0:00:00:338 0:00:02:305 

50000 0:00:00:191 0:00:21:987 0:00:00:423 0:00:15:972 0:00:01.706 0:00:11:449 
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The summarized differences between experiment scenarios are presented in Table 5.  The most 

complex experiment scenario produces the most complex neural network model, which is the 

most accurate to infer through FNN, but slower. The DP speed is slower the less constraints 

there are on the trip generation. 

Table 5. Result comparisons between experiment scenarios 

Experiment 

scenario no. 
Scenario 

constraints 
Neural 

network 

complexity 

FNN accuracy FNN speed DP speed 

1 Least 

constraints 
Least complex Least accurate Fastest Slowest 

2 Average Average Average Average Average 

3 Most 

constraints 
Most complex Most accurate Slowest Fastest 

 

3.5. Conclusions 

The results for the 3rd scenario in the real-time trip generation using FNN show that for cities 

which contain as much as 50000 trajectories, it is possible to generate as much as 50 trip offers 

in which at least 80% of them match the best possible offers in under 2 seconds. This shows 

that the real-time trip generation algorithm can be applied in practice. 
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Conclusions 

1. Conducted literature analysis showed that although there is a lot of research being done in 

analyzing TSP and its modifications, the solutions are not applicable to our problem, since most 

of them do not consider the directional nature of commercial flights and the waiting period in 

each city. 

2. The designed frontend API and the graphical user interface fully enable the functional 

requirements of the system. 

3. Conducted research shows that the real-time trip generation algorithm can be applied in 

practice and be integrated into the trip planning software system. The 3rd scenario in the real-

time trip generation using FNN experiment satisfies the functional on non-functional 

requirements for the algorithm. Also, the results show that for cities which contain as much as 

50000 trajectories, it is possible to generate as much as 50 trip offers in which at least 80% of 

them match the best possible offers in under 2 seconds. 

4. Speed evaluation of the neural network models during the experiments proved that more 

complex models take significantly more amount of time to be inferred. 

 

5. The quality of the project meets the requirements raised by the client and the client is happy 

with the outcome. 

 



46 

List of references 

 

 [1]  R. M. Karp, "Reducibility among combinatorial problems," Complexity of 

computer computations, pp. 85-103, 1972.  

 [2]  N. Christofides, "Worst-case analysis of a new heuristic for the travelling 

salesman problem," 1976.  

 [3]  E. Klarreich, "Computer Scientists Break Traveling Salesperson Record," Quanta 

Magazine, 2020.  

 [4]  C. K. Joshi, Q. Cappart, L.-M. Rousseau and T. Laurent, "Learning the Travelling 

Salesperson Problem Requires Rethinking Generalization," 2020.  

 [5]  D. Gavalas, C. Konstantopoulos, K. Mastakas and G. Pantziou, "A survey on 

algorithmic approaches for solving tourist trip design problems," Springer 

Science, 2014.  

 [6]  R. Gama and H. L. Fernandes, "A reinforcement learning approach to the 

orienteering problem with time windows," 2020.  

 [7]  W. Souffriau, P. Vansteenwegen, J. Vertommen and G. Vanden, "A personalized 

tourist trip design algorithm for mobile tourist guides," Applied Artificial 

Intelligence, 2008.  

 [8]  Y. Mei, F. D. Salim and X. Li, "Efficient Meta-heuristics for the Multi-Objective 

Time-Dependent Orienteering Problem," European Journal of Operational 

Research, 2016.  

 [9]  A. R. S. C. Gopinath Rebala, An Introduction to Machine Learning, Springer, 

2019.  

 [10]  R. N. B. Kajaree Das, "A Survey on Machine Learning: Concept, Algorithms and 

Applications," International Journal of Innovative Research in Computer and 

Communication Engineering, 2017.  

 [11]  J. Schmidhuber, "Deep Learning in Neural Networks: An Overview," Neural 

Networks, vol. 61, pp. 85-117, 2015.  

 [12]  A. Zell, " Simulation Neuronaler Netze [Simulation of Neural Networks]," no. 1, 

p. 73, 1994.  

 [13]  L. Loss, "Tourism review," 2019. 

 [14]  V. Karantzavelou, "Travel & Tourism in 2018 contributed $8.8 trillion to the 

global economy," 2019. 

 [15]  Kayak, "About". 

 [16]  N. Galov, "Where is TripAdvisor Going? 39+ Signpost Statistics," 2019. 



47 

 [17]  Kiwi, "Company Info". 

 [18]  E. H. Y. S. John Duchi, "Adaptive Subgradient Methods for Online Learning and 

Stochastic Optimization," Journal of Machine Learning Research 12, pp. 2121-

2159, 2011.  

 [19]  A. K. Grantas Gadliauskas, "Machine learning algorithm application in trip 

planning," Vilnius University Open Series, pp. 25-34, 2022.  

 [20]  D. P. Kingma and J. Ba, "Adam: A Method for Stochastic Optimization," 2014.  

 [21]  N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever and R. Salakhutdinov, 

"Dropout: a simple way to prevent neural networks from overfitting," The journal 

of machine learning research, 2014.  

 

 



48 

Appendices 

Appendix 1. Article published in the Proceedings of the Conference "Lithuanian MSc 

Research in Informatics and ICT" 

 

Machine learning algorithm application in trip planning 

Grantas Gadliauskas, Andrius Kriščiūnas 

Kaunas University of Technology, Faculty of Informatics, K. Donelaičio St. 73, 44249 Kaunas, Lithuania 

grantas.gadliauskas@ktu.edu, andrius.krisciunas@ktu.lt  

Abstract. This article explores how machine learning can be applied in efficiently solving a 
variation of the Travelling Salesman Problem (TSP) in the context of air travel tourism. Large 
number of cities create too many trip route combinations to be efficiently evaluated in real 
time. The method proposed uses a feedforward neural network to narrow down the number 
of trip route combinations, while a more traditional algorithm based on dynamic programming 
is then able to select the best trip offers. It was shown that the method could be applied in 
practice to achieve almost real-time generation of best possible trip offers while evaluating a 
large amount of real-world flight data.   

Keywords: travelling salesman problem, flight search, combinatorial optimization, neural 
network. 

• Introduction 

Consider a tourist who wants to visit several different cities in a specific date range in a round 
trip from his home city. The tourist might also have preferences to which cities one wants to 
visit or avoid. A list of N best possible trip offers then should be provided to the user, based on 
the real-world flight data. The quality of the trip is determined by its price, but additional 
metrics could be added. 

Since flight data updates very often and the number of possible date ranges is immensely 
huge it is not practical to pre-calculate all the offers. On the other hand, finding the best offers 
in real-time is inefficient due to the need to compute the best scored combination of flights for 
a large amount of possible trip routes. 

In the combinatorial optimization domain, the more simplified version of this problem is 
well known as the Travelling Salesman Problem (TSP) [1]. More recent works on the topic also 
include machine learning approaches such as one by Chaitanya K. et al. [4] which makes use of 
neural networks to perform TSP efficiently with hundreds of nodes. For our problem, however, 
the number of nodes (possible trip flights) will never be more than a few hundred, but the more 
important issue is the number of trip routes growing exponentially because of the number of 
different cities. 

This article proposes a heuristic solution that allows to efficiently find the best trip offers 
using a feedforward neural network combined with a tree search algorithm based on dynamic 
programming (hereinafter DP). The feedforward neural network (hereinafter FNN) model can 
narrow down the total number of possible trip route combinations to a smaller amount of 
potential best trip candidates, while the algorithm based on dynamic programming is then able 
to select the N best trips. 3 scenarios with different constraints on the trip offer are tested. 

mailto:grantas.gadliauskas@ktu.edu
mailto:andrius.krisciunas@ktu.lt
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• Method 

Each trip contains a set of cities T, |T| = N, with a particular order. A trip starts at the start city 
𝑡1 and the last city visited is denoted as 𝑡𝑛.  Every trip is a round trip and ends at the start city 
𝑡1. The ordered set T is referred to as a trajectory.  

The trajectories used in our experiment are made up from 100 selected European cities. 
City selections are based on OpenStreetMap Place Importance Score (OSM PIS). Each city has a 
set of airports assigned to it, which is used to associate flight data with the city. The cities used 
are marked in Figure. 

Each of the trajectories consist of 5 cities. Trajectories are generated based on the real-
world flight routes which seldom change. Since there could be a total of 100 ∙ 99 ∙ 98 ∙ 97 ∙
96 trajectories, it would be impractical to consider all the possible combinations. Trajectory 
amount can be reduced by selecting only the most attractive trajectories – ones with the best 
trajectory round score and combined OSM PIS. Round score is calculated by dividing the total 
trajectory distance by the minimal possible distance connecting all the cities. Since only 5 cities 
make the trajectory, calculating the round score is trivial. 210000 trajectories were generated 
for our experiment. An example of a trajectory with its adjacent cities connected by a blue line 
is presented in Figure. 

 

 

Figure 1. Selected cities 

 

Figure 2. Trajectory graph example 

The score of the trip equals to the sum of its flight ticket prices. The lower the score, the 
better the trip is considered.  

Our method to find the best N trips given M possible trajectories and flight data is as 
follows: 

1. Pass the flight prices of M trajectories of the given date range to the FNN model. Each 
day can have at most a single flight for a given route between two cities. 

2. Pass some amount of best predicted trajectories and their flight prices to the DP 
algorithm. 

3. Use the best N trajectories returned by the DP algorithm and the flight data to build 
the best N trip offers. 

To determine if our method is viable in practice, we evaluate speed and accuracy metrics. 
Speed is measured as the combined computing time of FNN prediction and DP algorithm. 
Accuracy is determined by comparing the final output of N best trajectories to expected N best 
trajectories and diving the sum of matching pairs by N. Accuracy is influenced by the number 
of total trajectories passed to the FNN model and the number of best model predictions passed 
to the DP algorithm. 

3 trip generation scenarios are explored in this research. They differ by the constraints 
applied to what can be considered a viable trip. 

• Scenario 1: No additional constraints. 
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• Scenario 2: Each city has a minimum, maximum and preferred number of days to 
spend in that city. Trip generation must respect the minimum and maximum 
constraints and apply a penalty if the time spent in a city does not match its 
preferred number. The penalty subtracts a value of 5 from the trip score per absolute 
day offset. 

• Scenario 3: Same as scenario 2, also, a total trip length constraint is added. The trip 
length must be in one of the three intervals: 

o 10 – 13 days 

o 14 – 20 days 

o 21 – 24 days 

The scenarios are visualized in Figure 31, where the X axis represents the flights, and the 
Y axis represents the days. The red cells mark the days in which it is impossible to take the 
flight to match the given constraints. The green cells represent the possible days to take flights 
if trip is starting from the earliest day (03-28). Yellow cells represent other possible days if trip 
were to start from another day. With each scenario, the amount of possible flight combinations 
is reduced. In the Figure 31 example, the min. and max. number of days to stay in every city 
are 3 and 7 respectively and the total trip length should span from 14 to 20 days. In our 
experiment, for all scenarios we constrain the maximum trip length to 24 days. 
 

 

Figure 3. Testing scenarios 

• Experiment 

The computing environment used for this research has the following parameters: 
• RAM memory: 32 GB 

• CPU: AMD Ryzen 7 3700X 8-Core Processor 3.60 GHz (1 CPU core used) 

• OS: Windows 10 64-bit architecture 

Python 3.9 programming language is used to program the software. PyTorch machine 
learning framework is used to create the neural network model. 

Common neural network training hyperparameters for each scenario are as follows: 
• Batch size: 128 
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• Optimizer: Adam [19] 

• Loss function: Mean absolute error (MAE) 

• Learning rate: Reducing learning rate on plateau by a factor of 0.5 on 3 consecutive 
epochs without improvement. 

• Epochs: Until does not improve for 10 epochs or until 60. 

The departure dates for all the flight data in the experiment span between 2021-03-28 and 
2021-05-15. Flight data from 2021-03-28 to 2021-04-20 is used for training, while data from 
2021-04-21 to 2021-05-15 is used for validation. For scenario 1, flight prices of 24 days for 
each of the 5 trajectory cities are passed to the model as an input, for a total input length of 
120. If the flight data for a particular day is missing, it is passed to the model as a value of -1. 
For scenario 2, the number of min., max. and preferred days for each city is added to the input, 
which increases the input length to 135. For scenario 3, numbers for min. and max. trip length 
are added, for an input length of 137. The target trip scores for the model training were built 
using the DP algorithm. If not a single trip can be built for a trajectory under certain constraints, 
the target is set to a value of 1000. The model outputs a single value – a trip score. 210000 
inputs were used to train model for scenarios 1 and 2, while scenario 3 trained with three times 
number of inputs (630000) due to three distinct intervals used for total trip length. 

Neural network validation accuracy during training for each scenario is presented in 
figures Figure 32, Figure 33 and Figure 34. The used notation to describe the model 
architectures in the figure legends is as follows: 𝐼 𝑥 𝐻 ∗ 𝑁 𝑥 𝑂, where I is the number of inputs 
for the input layer, H is the number of inputs for each hidden layer, N is the number of hidden 
layers and O is the number of outputs (1 output describing the trip score). The best model 
architecture is highlighted with a yellow marker. In general, to obtain the optimal validation 
accuracy, the models had to become more complex as the trip constraints increased. Model for 
scenario 2 tends to overfit the most and the model state after 4th epoch is used for its metric 
check. Techniques such as dropout [20] and dataset scaling were tested but failed to improve 
the model accuracy. 

 

Figure 4. Scenario 1 validation accuracy 
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Figure 5. Scenario 2 model validation accuracy 

 

Figure 6. Scenario 3 model validation accuracy 

The dynamic programming algorithm is used to find the actual best possible flight 
combination for a given trajectory. It works like a brute force tree search algorithm, but with 
optimizations. Instead of checking each possible flight combination, it stops traversing the 
flights if the flight for a given day was already traversed and had a better total flight price. It 
also only iterates through the dates which match the constraints of the min. and max. days to 
stay in a certain flight city and ignores days which do not match the total trip length constraint 
(such days are marked red in Figure 31). 

• Results 

The final accuracy and speed results are presented in tables Table 3 and Table 4. Accuracy 
match results were averaged over 50 test runs. In the accuracy result table, cells marked in red, 
yellow, and green represent respectively the worst, the second best and the best scenario for 
the testing parameters of the rightmost 3 columns. Columns “Total predictions made”, “Top N 
predictions to search in” and “Required top N matches” denote respectively how many inputs 
were passed to the FNN model, how many of the best results then were passed to the DP 
algorithm, and how many final trip offers do we want to output. The cell values in bold mark 
the values for which at least 80% of the required top N matches do match, which is considered 
a good result. 

It is possible to infer from the accuracy results that the more constrained the trip 
generation scenario is, the more accurate the final matches tend to be. Since the mean absolute 
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error of the FNN model validation accuracy was lower for the more constrained models, this 
might not seem reasonable. However, it may be explained by the greater value of the standard 
deviation of more constrained scenario model target array (trip scores) compared to less 
constrained scenario targets. The final matches tend to be less accurate the more trajectory 
inputs are passed to the FNN model and the fewer top predictions are ran through the DP 
algorithm. 

The speed results show that the performance of the FNN is extremely quick running faster 
than half of a second for 50000 trajectory inputs in 1st and 2nd scenario and in 1.7 seconds in 
3rd scenario, which uses a more complex neural network architecture. The DP algorithm time 
decreases as the amount of trip constraints increases. 

• Conclusions 

In this article it was investigated if combining the speed of feedforward neural networks and 
the accuracy of traditional search algorithms can be used to quickly generate attractive trip 
offers using real world flight data. The results show that for cities which contain as much as 
50000 trajectories, it is possible to generate as much as 50 trip offers in which at least 80% of 
them match the best possible offers in under 2 seconds under the constraints of this 
experiment. This shows that the method can be applied in practice, and it will be strongly 
considered to be integrated into a newly developing trip planning software system. 
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8,12 9,24 9,76 10 500 10000 
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35,74 41,90 48,04 50 500 10000 

3,48 1,24 3,92 10 50 50000 

4,46 2,06 6,74 20 50 50000 

5,80 4,24 12,12 50 50 50000 

4,86 2,24 5,50 10 100 50000 

6,70 3,44 9,94 20 100 50000 

10,14 7,80 19,50 50 100 50000 

6,60 6,12 8,34 10 250 50000 
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Table 2. Speed results 

Trajectories 
Scenario 1 Scenario 2 Scenario 3 

FNN time DP time FNN time DP time FNN time DP time 

50 0:00:00:001 0:00:00:022 0:00:00:001 0:00:00:017 0:00:00:002 0:00:00:013 

100 0:00:00:001 0:00:00:045 0:00:00:001 0:00:00:035 0:00:00:004 0:00:00:023 

250 0:00:00:001 0:00:00:109 0:00:00:003 0:00:00:093 0:00:00:009 0:00:00:065 

500 0:00:00:002 0:00:00:227 0:00:00:004 0:00:00:183 0:00:00:018 0:00:00:123 

2000 0:00:00:008 0:00:00:881 0:00:00:016 0:00:00:653 0:00:00:070 0:00:00:470 

10000 0:00:00:041 0:00:04:351 0:00:00:080 0:00:03:141 0:00:00:338 0:00:02:305 

50000 0:00:00:191 0:00:21:987 0:00:00:423 0:00:15:972 0:00:01.706 0:00:11:449 
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