

Kaunas University of Technology

Faculty of Informatics

Machine Learning Algorithm Application in Trip Planning

Master’s Final Degree Project

Grantas Gadliauskas

Project author

Doc. Dr. Andrius Kriščiūnas

Supervisor

Kaunas, 2022

Kaunas University of Technology

Faculty of Informatics

Machine Learning Algorithm Application in Trip Planning

Master’s Final Degree Project

Software Engineering (6211BX011)

Grantas Gadliauskas

Project author

Doc. Dr. Andrius Kriščiūnas

Supervisor

Doc. Dr. Agnė Paulauskaitė-

Tarasevičienė

Reviewer

Kaunas, 2022

Kaunas University of Technology

Faculty of Informatics

Grantas Gadliauskas

Machine Learning Algorithm Application in Trip Planning

Declaration of Academic Integrity

I confirm the following:

1. I have prepared the final degree project independently and honestly without any violations of the

copyrights or other rights of others, following the provisions of the Law on Copyrights and Related

Rights of the Republic of Lithuania, the Regulations on the Management and Transfer of Intellectual

Property of Kaunas University of Technology (hereinafter – University) and the ethical requirements

stipulated by the Code of Academic Ethics of the University;

2. All the data and research results provided in the final degree project are correct and obtained

legally; none of the parts of this project are plagiarised from any printed or electronic sources; all the

quotations and references provided in the text of the final degree project are indicated in the list of

references;

3. I have not paid anyone any monetary funds for the final degree project or the parts thereof unless

required by the law;

4. I understand that in the case of any discovery of the fact of dishonesty or violation of any rights of

others, the academic penalties will be imposed on me under the procedure applied at the University;

I will be expelled from the University and my final degree project can be submitted to the Office of

the Ombudsperson for Academic Ethics and Procedures in the examination of a possible violation of

academic ethics.

Grantas Gadliauskas

Confirmed electronically

Kaunas University of Technology

Faculty of Informatics

Task of the Master's final degree project

Topic of the project Machine learning algorithm application in trip planning.

Requirements and

conditions (title can be

clarified, if needed)

Supervisor

 (position, name, surname, signature of the supervisor) (date)

Gadliauskas Grantas. Machine learning algorithm application in trip planning. Master's Final Degree

Project / supervisor lect. Andrius Kriščiūnas; Faculty of Informatics, Kaunas University of

Technology.

Study field and area (study field group): Software Engineering.

Keywords: travelling salesman problem, flight search, combinatorial optimization, neural network.

Kaunas, 2022. 55 p.

Summary

This paper describes a software system module for a travel trip planning solution and the research

conducted into how machine learning can be applied to optimally generate trip deals. The solution is

a unique one, since it requires no direct input from the user to generate the trip results and is solely

driven by the created algorithm. It allows for its end users to save time and hassle of manually

searching for flights between multiple destinations by offering attractive prepared trip offers.

The research part of the work explores how machine learning can be applied in efficiently solving a

variation of the Travelling Salesman Problem (TSP) in the context of air travel tourism. Large number

of cities create too many trip route combinations to be efficiently evaluated in real time. The method

proposed uses a feedforward neural network to narrow down the number of trip route combinations,

while a more traditional algorithm based on dynamic programming is then able to select the best trip

offers. It was shown that the method can be applied in practice to achieve almost real-time generation

of best possible trip offers while evaluating a large amount of real-world flight data.

Gadliauskas Grantas. Mašininio mokymosi algoritmų taikymas kelionių planavime.

Magistro baigiamasis projektas / vadovas lekt. Andrius Kriščiūnas; Kauno technologijos

universitetas, Informatikos fakultetas.

Studijų kryptis ir sritis (studijų krypčių grupė): Programų sistemos.

Reikšminiai žodžiai: keliaujančio pirklio uždavinys, skrydžių paieška, kombinatorinė optimizacija,

neuroninis tinklas.

Kaunas, 2022. 55 p.

Santrauka

Šiame darbe aprašomas programų sistemos modulis, skirtas kelionių platformos sistemai, bei tyrimas

siekiantis išnaudoti mašininio mokymosi galimybes sudaryti patrauklius kelionių rinkinius. Kuriamas

sprendimas unikalus tuo, jog kelionių planai potencialiems klientams, norintiems vienos kelionės

metu aplankyti daugiau nei vieną šalį, būtų generuojamos ne rinkoje įprastu būdu, kai vartotojas

pasirenka konkrečias kryptis, o pateikiamos pagal sukurto algoritmo rezultatus. Toks sprendimas

leistų galutiniams vartotojams sutaupyti laiką, reikalingą tinkamų skrydžių tarp skirtingų vietovių

suradimui, o kartu pateiktų visą aibę galimų kelionių rinkinių.

Darbo tyrimo ir eksperimentų dalis siekia ištirti, kaip mašininis mokymasis gali būti panaudotas

išspręsti keliaujančio pirklio uždavinį (angl. travelling salesman problem; TSP) oro kelionių

kontekste. Dėl didelio kiekio miestų yra sunku efektyviai patikrinti visas kelių kombinacijas.

Siūlomas metodas naudoja dirbtinį neuroninį tinklą susiaurinti kombinacijų aibę, kas leidžia

dinaminiu programavimu grįstam algoritmui pasirinkti geriausius kelionių pasiūlymus. Tyrime

parodoma, kad šis metodas gali būti pritaikomas praktikoje generuoti kelionių pasiūlymus realiu laiku

įvertinant didelį kiekį tikrų skrydžių duomenų.

7

Table of contents

List of figures .. 9

List of tables .. 10

List of abbreviations and terms .. 11

Introduction .. 12

1. Analysis ... 13

1.1. Problem Overview... 13

1.2. Trip design optimization overview ... 13

1.2.1. Tourist trip design problem .. 13

1.2.2. Orienteering problem with time windows .. 14

1.2.3. Review .. 15

1.3. Artificial intelligence overview ... 15

1.3.1. Artificial neural networks .. 15

1.3.2. Review .. 16

2. Software system .. 17

2.1. Application .. 17

2.1.2. Quality .. 18

2.1.3. Competition and alternatives .. 19

2.2. Requirements ... 19

2.2.1. Partner or Collaborative Applications .. 19

2.2.2. Off-the-Shelf Software ... 19

2.2.3. The Scope of the Product ... 19

2.2.4. Non-functional Requirements .. 24

2.2.5. Risks ... 24

2.3. Architecture ... 25

2.3.1. Architectural Goals and Constraints .. 25

2.3.2. Overview .. 25

2.3.3. Architecturally Significant Design Packages ... 25

2.3.4. Deployment view ... 27

2.3.5. Data View ... 28

2.3.6. User interface ... 30

3. Research and experiments ... 34

3.1. Problem description... 34

3.2. Environment .. 35

3.3. Trip classification using CNN ... 35

3.3.1. Method ... 35

3.3.2. Experiment and results ... 37

3.4. Real-time trip generation using FNN .. 37

3.4.1. Method ... 38

3.4.2. Experiment ... 40

3.4.3. Results .. 42

3.5. Conclusions ... 44

8

Conclusions ... 45

List of references .. 46

Appendices .. 48

Appendix 1. Article published in the Proceedings of the Conference "Lithuanian MSc

Research in Informatics and ICT" .. 48

Appendix 2. Certificate of participation in the Conference "Lithuanian MSc Research in

Informatics and ICT" .. 55

9

List of figures

Figure 1. An example of a solution of the multi-objective time-dependent orienteering problem

[8] ... 14

Figure 2. Example of a use case of the product .. 18

Figure 3. Scope of the project work shaded in red ... 19

Figure 4. Trip generation algorithm use case diagram ... 20

Figure 5. User use case diagram ... 21

Figure 6. Admin use case diagram ... 21

Figure 7. Business entity relation diagram ... 24

Figure 8. Package diagram ... 25

Figure 9. Package "api" .. 26

Figure 10. Package "shared" .. 26

Figure 11. Package "frontend" ... 27

Figure 12. Deployment diagram ... 27

Figure 13. Database view ... 30

Figure 14. Trip list view for desktop screens ... 30

Figure 15. Trip list view for mobile screens .. 30

Figure 16. Detailed trip view for desktop screens .. 31

Figure 17. Detailed trip view for mobile screens ... 31

Figure 18. Wishlist map view for desktop screens ... 32

Figure 19. Wishlist map view for mobile screens .. 32

Figure 20. City edit desktop view screen ... 33

Figure 21. City view mobile view screen ... 33

Figure 22. Trajectory graph example ... 34

Figure 23. Finding the best trip in a trajectory ... 35

Figure 24. Trajectory heatmap ... 36

Figure 25. Trajectory heatmap converted to grayscale .. 36

Figure 26. Trajectory heatmap chunks ... 36

Figure 27. Exact trip flights in a positively classified heatmap ... 37

Figure 28. CNN model architecture ... 37

Figure 29. Selected cities for real-time trip generation experiment ... 38

Figure 30. Real-time trip generation method using FNN ... 39

Figure 31. Testing scenarios ... 40

Figure 32. Scenario 1 validation accuracy ... 41

Figure 33. Scenario 2 model validation accuracy .. 41

Figure 34. Scenario 3 model validation accuracy .. 42

10

List of tables

Table 1. Quality criteria ... 18

Table 2. Use case table ... 21

Table 3. Real-time trip generation accuracy results ... 42

Table 4. Real-time trip generation speed results .. 43

Table 5. Result comparisons between experiment scenarios ... 44

11

List of abbreviations and terms

Abbreviations:

ML – machine learning;

TSP – travelling salesman problem;

DP – dynamic programming;

FNN – feed-forward neural network;

CNN – convolutional neural network;

OSM PIS – OpenStreetMap place importance score;

MAE – mean absolute error.

Terms:

Artificial neural network (neural network) - computational model that consists of several

processing elements that receive inputs and deliver outputs, inspired by the biological neural

networks that constitute animal brains.

Heuristic - any approach to problem solving or self-discovery that employs a practical method

that is not guaranteed to be optimal, perfect, or rational, but is nevertheless sufficient for

reaching an immediate, short-term goal or approximation.

12

Introduction

An influx of low-cost airlines in the recent years made a huge impact to the success of the travel

industry, which was ultimately shaken by the global pandemic at the start of 2020. While many

big-name market players took a huge hit, an exciting environment has opened for new

innovative solutions which could help to replenish the state of the industry in the near future.

This project aims to create a travel trip planning solution which leverages aggregated flight data

and the latest advancements in the machine learning field. A trip may consist of visiting multiple

travel locations spanning multiple countries. The solution is a unique one, since it requires no

direct input from the user to generate the trip results and is solely driven by the created algorithm

which analyses many travel trip related criteria. The solution allows for its end users to save

time and hassle of manually searching for flights between multiple destinations by offering

attractive prepared trip offers.

13

1. Analysis

1.1. Problem Overview

Consider a tourist who wants to visit several different cities in a specific date range in a round

trip from his home city. The tourist might also have preferences to which cities one wants to

visit or avoid. A list of N best possible trip offers then should be provided to the user, based on

the real-world flight data. The quality of the trip is determined by its price, but additional

metrics could be added.

Since flight data updates very often and the number of possible date ranges is immensely huge

it is not practical to pre-calculate all the offers. On the other hand, finding the best offers in

real-time is inefficient due to the need to compute the best scored combination of flights for a

large amount of possible trip routes.

In the combinatorial optimization domain, the more simplified version of this problem is well

known as the Travelling Salesman Problem (TSP) [1]. The applications of TSP and its variants

are used globally for logistics, planning, astronomy, and manufacturing. The aim of TSP, given

a context of a country, is to find the shortest possible route that visits each city once and returns

to the origin city. Since 1976, when Nicos Christofides came up with an algorithm [2] that finds

round trips no longer than 50% longer than the best round trip, no significant progress in

effectiveness was made [3].

More recent works on the topic include machine learning approaches such as one by Chaitanya

K. et al. [4] which makes use of neural networks to perform TSP efficiently with hundreds of

nodes. For our problem, however, the number of nodes (possible trip flights) will never be more

than a few hundred, but the more important issue is the number of trip routes growing

polynomially because of the number of different cities.

1.2. Trip design optimization overview

1.2.1. Tourist trip design problem

The Tourist Trip Design Problem (TTDP) is a variant of TSP and refers to a route-planning

problem for tourists interested in visiting multiple points of interest (POIs). TTDP

implementations usually derive daily tourist tours, for example, ordered visits to POIs, which

respect tourist constraints and POIs attributes. The algorithmic approaches for solving TTDP

variants represents the most crowded field of research among them. [5]

Two popular TTDP variants exist based on the amount of days the tourist has to stay:

• single tour TTDP variants aim to find a single tour that maximizes the collected profit

while respecting certain tourist constraints and POI attributes;

• multiple tour TTDP variants aim to find multiple tours based upon the number of days

the tourist’s visit will last.

Single tour variants of the TTDP can be modeled using TSPP, a bicriteria generalization of

TSP. Specifically, in TSPP a network is given in which nodes are associated with profits and

links with travel costs, and the goal is to find a tour (which starts and ends at a specified node -

14

the depot) over a subset of nodes such that the collected profit is maximized while the travel

cost is minimized. [5]

TTDP variants with time windows (TW) considers visits to locations within a predefined time

window (this allows modeling opening and closing hours of POIs, for example, flight times).

The time-dependent (TD) variants consider time dependency in the estimation of time required

to move from one location to another. [5]

1.2.2. Orienteering problem with time windows

The Orienteering Problem with Time Windows (OPTW) can be seen as a model for the Tourist

Trip Design Problem (TTDP). [6]

In the OPTW, a collection of locations is given, each with a score that denotes its attractiveness.

The time needed for travelling from location i to j, is known for all locations. The goal of the

problem is to maximize the sum of the scores of the selected locations, keeping the total time

of the route between these locations under a given time budget or the total distance of the route

under a given distance budget. [7]. Time window constraint introduces a start time and an end

time for each location, indicating the time when these locations can be visited (Figure 1).

Figure 1. An example of a solution of the multi-objective time-dependent orienteering problem [8]

In the OPTW it is assumed that a route’s starting location, its starting time and ending time, and

scores of the points of interest are tourist dependent, while the coordinates of the points of

interest, their opening and closing times, and duration of visit are not. [6]

15

1.2.3. Review

Despite its tight relation with the TSP, our problem described in chapter 1.1 concerning

commercial flights differs from the alternatives suggested above. The approaches consider that

the cost between two cities (nodes) is always constant over time, although assumption is

certainly not true for the case of commercial flights, as the tickets price depend not only on the

date, but also on the direction of the route. Also, the approaches assume that the waiting period

in each city is a static time period, which in our case is not convenient for the traveler.

1.3. Artificial intelligence overview

The field of artificial intelligence (AI) is currently on the rise, although it has been around for

more than six decades. The difference between current decades and the previous decades, is

that the AI research promise actually materializes when solving real-world problems. [9] The

most notable of these problems include speech recognition, computer vision, bio-surveillance,

robot or automation control and empirical science experiments [10].

Supervised learning is one of the most popular paradigms of machine learning, where the

machine is given a dataset (for example, a set of data points), along with the right answers to a

question corresponding to the data points (labels). The learning algorithm is provided with a

huge set of data points with answers, for example, a labelled dataset. The algorithm has to learn

the key characteristics within each data point in the dataset to determine the answer. So, next

time a new data point is provided to the algorithm, based on the key characteristics, the

algorithm should be able to predict the outcome/right answer. [9]

1.3.1. Artificial neural networks

Supervised learning falls mostly in two categories: solving of classification and regression

problems. Depending on the category, regression analysis is performed:

• Linear regression allows to predict value of a continuous variable to solve regression

problems. It assumes that the relationship between the variables can be expressed as a

linear function.

• Logistic regression allows to predict whether or not a specific outcome would be

achieved. It provides a 0 or 1 prediction, rather than a real value for a continuous

variable.

Neural networks are networks of interconnected artificial neurons. Their structure is heavily

inspired by the brain’s neuron network. A neural network is generally used to create supervised

machine learning models. It can be thought of as combining multiple regression models to make

a more powerful model.

The feedforward neural network was the first and simplest type of artificial neural network

devised [11]. In this network, the information moves in only one direction—forward—from the

16

input nodes, through the hidden nodes (if any) and to the output nodes. There are no cycles or

loops in the network. [12]

Convolutional neural networks are used for some of the most interesting applications of

machine learning, such as image recognition, handwriting reading, interpreting street signs, etc.

Convolution is a technique which automates extraction and synthesis of significant features

needed to identify the target classes. CNN is usually composed of multiple layers of convolution

and pooling combination and then followed by a neural network. [9]

1.3.2. Review

Since artificial intelligence is a very promising field, the work described in this paper puts a big

focus on finding a machine learning technique that would prove to be more efficient than the

more traditional algorithms. Supervised learning techniques using artificial neural networks

will be used in the research of this work, since to generate high quality trips, we want the ML

model to be able to describe the quality of the trip (either through regression or classification).

ML model can be trained using labeled data, which can be generated using a simpler brute force

based algorithm when the speed of generation is not so important.

17

2. Software system

2.1. Application

2.1.1.1. Demand

2.1.1.2. Project users and clients

The main clients of the solution are travel platforms and agencies. Individual travel guides

should the find the solution valuable as well. The final end users are all people who have an

interest in travelling and tourism.

2.1.1.3. User problems

Tourists face a difficulty when trying to find a likeable trip. With traditional trip planning

platforms, user must select and combine flights into a single trip manually, which usually is not

optimal in terms of price and quality.

2.1.1.4. Market research

According to the latest World Travel & Tourism Council (WTTC) data [13], tourism industry

accounts for 10.4% of the world’s GDP and is one of the largest economic sectors in the world.

Tourism industry which in 2018 contributed to 8.8 trillion to the global economy [14] is viewed

as one of the most growing industries.

The biggest names in the industry are:

• Kayak – metasearch engine for travel flights. Over 6 billion queries each year. Property

of Booking Holdings, the world leader in online travel [15].

• TripAdvisor – travel shopping comparison and user review website. Number 1 in the

Travel and Tourism category in the US, revenue of $1.62 billion worldwide and 490

million monthly active users as of 2019 [16].

• Kiwi – flight search website. 100M average daily search queries, €1.3 turnover in 2019

[17].

These companies offer common traditional trip planning solutions and thus could be viewed as

potential clients rather than competitors.

2.1.1.5. Information about the clients

Travel platform and agencies seeking to please their own users with attractive trip suggestions.

Travel guides and related businesses which do not have enough resources to create qualitative

travel offers or want to focus mainly on client support. The clients will be able to access the

service by purchasing an application programming interface (API) subscription of the created

solution.

18

2.1.1.6. Product description

The product can be described as an API service which gives its users an ability to query

attractive travel trip suggestions. API service is sold through a monthly subscription model or

by each successful trip purchase from the end users.

Figure 2 describes how a potential client of the product, a travel agency platform, could leverage

the API service to increase its conversions by providing attractive trip suggestions to its end

users.

Figure 2. Example of a use case of the product

2.1.2. Quality

Quality criteria of the project is described in Table 1.

Table 1. Quality criteria

No. Criteria Justification

1 Trip relevance Time it takes for the algorithm to generate new trips based

on the changed data is less than 24 hours.

2 User satisfaction At least 70% of the users find generated travel trip plans

unique and interesting.

19

2.1.3. Competition and alternatives

Similar solutions to the product described in this document could not be found online, meaning

that the product could be unique and transform the old-fashioned way of planning trips. Market

leaders offering such a traditional way of purchasing trips require for the user to provide a lot

of information to query for existing flights. Also, they lack the functionality of combining

multiple flights into a single cohesive travel experience.

2.2. Requirements

2.2.1. Partner or Collaborative Applications

• Flight data provider API

• Like.travel travel platform (location scoring and user preferences provider)

• Geospatial database

2.2.2. Off-the-Shelf Software

• Free and open source scientific and ML Python packages (such as NumPy, pandas,

TensorFlow, PyTorch)

• Kotlin programming language

2.2.3. The Scope of the Product

Scope of the project work done for the master‘s degree project is shaded by a red color below

in Figure 3.

Figure 3. Scope of the project work shaded in red

2.2.3.1. System Boundary

The use cases for the algorithm, the system user and the system admin are presented in Figure

4, Figure 5 and Figure 6. Algorithm use cases include the requirements and constraints that it

must take into account when generating the trips.

20

Figure 4. Trip generation algorithm use case diagram

User use cases describe actions that the end user can do while browsing the system.

21

Figure 5. User use case diagram

Admin use cases describe the actions that the system administrator can do.

Figure 6. Admin use case diagram

2.2.3.2. Use Case Table

Table 2 describes all the use cases and acceptability criteria for the algorithm, user and the

admin user actors.

Table 2. Use case table

No. Actor Use case Description Acceptability

criteria

22

1 Algorithm Generate trips The algorithm should generate

qualitative trip deals from given

flight data

Algorithm can

generate at least a

single trip

2 Algorithm Evaluate flight price Flights with cheaper prices should

be prioritized

Algorithm takes

flight price into

account

3 Algorithm Evaluate location

minimal and maximal

day stay count

The location day stays in generated

trips should respect minimal and

maximal day constraints

Algorithm respects

minimal and

maximal day

constraints for

locations

4 Algorithm Evaluate trip length

constraint

The algorithm should not generate

trips longer than the selected trip

length

Algorithm respects

trip length

constraint

5 Algorithm Evaluate location optimal

(preferred) stay day

count

The algorithm should prioritize

trips with location stays that match

their optimal day count

Algorithm respects

optimal day

constraints for

locations

6 User Filter trip offers User should be able to filter the trip

offers by the starting city, starting

month and the date range for how

long the trip should last

User is able to

filter the trips

7 User View trip offers User should be able to view the trip

list. The list should show as many

trip offers as there is, by

implementing infinite scrolling

technique

User is able to

view trip offers

8 User View trip details User can select a particular trip

from the trip list and view the trip

information in detail.

User is able to

view trip details

9 User Go to purchase trip User can be redirected to the flight

provider page, where he can begin

the checkout process for purchasing

the flight tickets

User can purchase

the trip by being

redirected to the

flight provider

page

10 User Like trip offer User can like trip offer, which later

could be used to revisit the trip

offer

User can like the

trip offer

11 User View city wishlist User can view the location wishlist

showing his trip location

preferences

User can view city

wishlist

12 User Mark city as „to visit“ In the wishlist map, user can mark a

location which he wants to visit.

Trip offers with such locations will

be prioritized in the trip list

User can mark

location which he

wants to visit

13 User Mark city as „visited“ In the wishlist map, user can mark a

location which he has already

visited.

User can mark a

location which he

has already visited

14 User Mark city as „to skip“ In the wishlist map, user can mark a

location which he does not wish to

visit. Trip offers with such

User can mark

location which he

wants to skip

23

locations will be less prioritized in

the trip list

15 Admin View city details Admin can view the details for

every city, such as image URL,

assigned airports,

min/max/preferred days to stay,

amount of trips and others

Admin can view

the details for

every city

16 Admin Update city details Admin can update the city details

for a particular city

Admin can update

the details for

particular city

24

2.2.3.3. Business Data Model

Entity relation diagram is presented in Figure 7.

Figure 7. Business entity relation diagram

2.2.4. Non-functional Requirements

2.2.4.1. Look and Feel Requirements

At least 70% of the users find generated travel trip plans unique and interesting.

2.2.4.2. Performance Requirements

The generated trips may lag behind the real-time flight data changes by no more than 24 hours.

2.2.5. Risks

The availability of flight data API is not guaranteed. The APIs may also restrict access to data,

which could lead to less information for the algorithm to create quality trips.

25

2.3. Architecture

2.3.1. Architectural Goals and Constraints

Below are presented the goals and constraints of the architecture:

• Architecture should be clear and concise for new team members to adapt to.

• System should be easily scalable on demand.

• System should be distributed on servers supporting JRE 11.

• System backend services should not be accessible from public.

2.3.2. Overview

System packages related to trips are presented in Figure 8. The project scope does not include

flight, cli, trip.planner packages. Not all files from other packages are included in the project

scope.

Figure 8. Package diagram

2.3.3. Architecturally Significant Design Packages

– Package “api”

Package “api” is used to control communication between the client and the server. The server

provides trip models for the client.

26

Figure 9. Package "api"

– Package “shared”

Package “shared” is used to hold common data models which are used in communication

between the client and the server.

Figure 10. Package "shared"

– Package “frontend”

Frontend package is used to present the trips to the end user.

27

Figure 11. Package "frontend"

2.3.4. Deployment view

Deployment diagram is presented in Figure 12.

Figure 12. Deployment diagram

28

2.3.5. Data View

The database model for the system is presented in Figure 13.

29

30

Figure 13. Database view

2.3.6. User interface

The user interface screenshots for desktop and mobile screens are presented in the figures

below. The trip list views are presented in Figure 14 and Figure 15. The trip filter is visible in

the desktop view, while it can be opened by clicking on a search icon in the header in the mobile

view.

Figure 14. Trip list view for desktop screens

Figure 15. Trip list view for mobile screens

31

Trip detailed view screens are presented in Figure 16 and Figure 17. Trip purchase button and

trip like button are present in the footer.

Figure 16. Detailed trip view for desktop screens

Figure 17. Detailed trip view for mobile screens

32

The wishlist map view screens are presented in Figure 18 and Figure 19. Select forms to select

preferred destinations are available for access in both screens.

Figure 18. Wishlist map view for desktop screens

Figure 19. Wishlist map view for mobile screens

33

The administrator views for city detail managing are presented in Figure 20 and Figure 21.

Figure 20. City edit desktop view screen

Figure 21. City view mobile view screen

34

3. Research and experiments

3.1. Problem description

Each trip contains a set of cities T, |T| = N, with a particular order. A trip starts at the start city

𝑡1 and the last city visited is denoted as 𝑡𝑛. Every trip is a round trip and ends at the start city

𝑡1. The ordered set T is referred to as a trajectory.

For the experiments, we consider each of the trajectories to consist of 5 cities. Trajectories are

generated based on the real-world flight routes which seldom change. Since there could be a

total of 𝑁 ∙ (𝑁 − 1) ∙ (𝑁 − 2) ∙ (𝑁 − 3) ∙ (𝑁 − 4) trajectories, where N is the total number of

cities, it would be impractical to consider all the possible combinations. Trajectory amount can

be reduced by selecting only the most attractive trajectories – ones with the best trajectory round

score and combined OpenStreetMap Place Importance Score (OSM PIS)1. Round score is

calculated by dividing the total trajectory distance by the minimal possible distance connecting

all the cities. Since only 5 cities make the trajectory, calculating the round score is trivial. The

generation of trajectories happens in a background process and is not a part of the scope of this

research. An example of a trajectory with its adjacent cities connected by a blue line is presented

in Figure 22.

Figure 22. Trajectory graph example

Given the flight prices for a certain period for a certain trajectory, we want to find the best

possible trip. The score of the trip equals to the sum of its flight ticket prices. A penalty is added

to the trip score if the time spent in a city does not match its preferred number. The lower the

score, the better the trip is considered. An example of a best trip in a trajectory is presented in

Figure 23. The Y axis represents 6 routes to make a round trip between 6 cities. The X axis

represents dates. The blue dots represent an existing flight for a route on a certain day. The

number next to the blue dot represents the flight price. The best possible path of the trip is the

example marked in red. In the example, it is assumed that the preferred amount of days to stay

in each city is 5, and a penalty of 7 is added to the trip score per absolute day offset.

1 https://lists.openstreetmap.org/pipermail/geocoding/2013-August/000916.html

https://lists.openstreetmap.org/pipermail/geocoding/2013-August/000916.html

35

Figure 23. Finding the best trip in a trajectory

A tree search algorithm based on dynamic programming is used to find the actual best possible

flight combination for a given trajectory. It works like a brute force tree search algorithm, but

with optimizations. Instead of checking each possible flight combination, it stops traversing the

flights if the flight for a given day was already traversed and had a better total flight price.

In the research presented below, a few heuristic approaches using machine learning for finding

the best trip in a trajectory are tested. Although DP guarantees to find the best possible trip, an

approach using ML can be much faster.

3.2. Environment

The computing environment used for the research has the following parameters:

• RAM memory: 32 GB

• CPU: AMD Ryzen 7 3700X 8-Core Processor 3.60 GHz (1 CPU core used)

• OS: Windows 10 64-bit architecture

Python 3.9 programming language is used to program the software. PyTorch machine learning

framework is used to create the neural network models.

3.3. Trip classification using CNN

This method uses convolutional neural networks to classify if a good trip can be found in a

trajectory. For all trajectory chunks that are classified as containing a qualitative trip, a DP

algorithm then can be run to find the exact flights for the best possible trip in that trajectory

part.

3.3.1. Method

A heatmap image is generated for each trajectory. An example of a heatmap is presented in

Figure 24. Each cell represents an existing flight for a route on a certain day. The shade of the

cell depends on the price of the flight. If a flight does not exist for a certain day, the cell is

marked as black.

36

Figure 24. Trajectory heatmap

The flight prices are normalized for each individual trajectory using Euclidean normalization

before generating the heatmap.

For a more efficient way to pass the heatmap input to the CNN model, the heatmap is converted

to grayscale with each cell having a value from 0 to 255. A heatmap example in Figure 24

converted to grayscale is presented in Figure 25.

Figure 25. Trajectory heatmap converted to grayscale

A maximum possible trip length for this experiment was set to 25 days. The heatmap is then

chunked into images of 25 pixels wide, with the chunk step being 5 days. For each heatmap

chunk, the DP algorithm labels the target class for the CNN model training. There are two target

classes – an input is a good trip candidate, or an input is not a good trip candidate. A trip score

threshold value is set manually to a value of 80 to determine the class. Chunked images are

presented in Figure 26.

Figure 26. Trajectory heatmap chunks

For all of the heatmap chunks that CNN classifies as possible trip candidates, DP algorithm is

then run to find the exact flights.

37

Figure 27. Exact trip flights in a positively classified heatmap

3.3.2. Experiment and results

Neural network training hyperparameters are as follows:

• Batch size: 32

• Optimizer: Adagrad [18]

• Loss function: Cross entropy

• Learning rate: 0.015

The model architecture is presented in Figure 28.

Figure 28. CNN model architecture

18120 total chunk images were used for the model training and 3712 images for accuracy

testing. 50% of all images for the experiment were classified as containing a good trip, while

the other ones as not containing.

After 5 minutes of training, the model has achieved approximately 94% accuracy and could

process 2000 images per second.

3.4. Real-time trip generation using FNN

The trip classification method was limited, since the machine learning model did not take into

account most of the functional requirements – minimal, maximal day amounts to stay in

particular cities as well as trip length constraints. Also, the speed of the model was not fast

enough for real-time trip generation. A new method that fixes both of the before mentioned

problems was tested. Also, instead of classification, it performs regression, meaning that the

quality of the trip can be evaluated.

38

This method uses a heuristic solution that allows to efficiently find the best trip offers using a

feedforward neural network combined with the dynamic programming algorithm. The

feedforward neural network model can narrow down the number of trajectories to a smaller

amount of potential best trip candidates, while the DP algorithm is then able to select the N best

trips. 3 scenarios with different constraints on the trip offer are tested.

A publication [19] based on this method was created and presented in a conference.

3.4.1. Method

The trajectories used for the experiment for the real-time trip generation method are made up

from 100 selected European cities. 210000 trajectories were generated for the experiment. City

selections are based on OSM PIS. Each city has a set of airports assigned to it, which is used to

associate flight data with the city. The cities used are marked in Figure 29.

Figure 29. Selected cities for real-time trip generation experiment

The method to find the best N trips given K possible trajectories and flight data is as follows:

1. Pass the flight prices of K trajectories of the given date range to the FNN model. Each

day can have at most a single flight for a given route between two cities.

2. Pass some amount M of best predicted trajectories and their flight prices to the DP

algorithm.

3. Use the best N trajectories returned by the DP algorithm and the flight data to build the

best N trip offers.

The sequence diagram for the method is presented in Figure 30.

39

Figure 30. Real-time trip generation method using FNN

To determine if this method is viable in practice, we evaluate speed and accuracy metrics. Speed

is measured as the combined computing time of FNN prediction and DP algorithm. Accuracy

is determined by comparing the final output of N best trajectories to expected N best trajectories

and diving the sum of matching pairs by N. Accuracy is influenced by the number of total

trajectories passed to the FNN model and the number of best model predictions passed to the

DP algorithm.

3 trip generation scenarios are explored. They differ by the constraints applied to what can be

considered a viable trip.

• Scenario 1: No additional constraints.

• Scenario 2: Each city has a minimum, maximum and preferred number of days to spend

in that city. Trip generation must respect the minimum and maximum constraints and

apply a penalty if the time spent in a city does not match its preferred number. The

penalty adds a value of 5 to the trip score per absolute day offset.

• Scenario 3: Same as scenario 2, also, a total trip length constraint is added. The trip

length must be in one of the three intervals:

o 10 – 13 days

o 14 – 20 days

o 21 – 24 days

The scenarios are visualized in Figure 31, where the X axis represents the flights, and the Y

axis represents the days. The red cells mark the days in which it is impossible to take the flight

to match the given constraints. The green cells represent the possible days to take flights if trip

is starting from the earliest day (03-28). Yellow cells represent other possible days if trip were

to start from another day. With each scenario, the amount of possible flight combinations is

reduced. In the Figure 31 example, the min. and max. number of days to stay in every city are

3 and 7 respectively and the total trip length should span from 14 to 20 days. In the experiment,

for all scenarios we constrain the maximum trip length to 24 days.

40

Figure 31. Testing scenarios

3.4.2. Experiment

Common neural network training hyperparameters for each scenario are as follows:

• Batch size: 128

• Optimizer: Adam [20]

• Loss function: Mean absolute error (MAE)

• Learning rate: Reducing learning rate on plateau by a factor of 0.5 on 3 consecutive

epochs without improvement.

• Epochs: Until does not improve for 10 epochs or until 60.

The departure dates for all the flight data in the experiment span between 2021-03-28 and 2021-

05-15. Flight data from 2021-03-28 to 2021-04-20 is used for training, while data from 2021-

04-21 to 2021-05-15 is used for validation. For scenario 1, flight prices of 24 days for each of

the 5 trajectory cities are passed to the model as an input, for a total input length of 120. If the

flight data for a particular day is missing, it is passed to the model as a value of -1. For scenario

2, the number of min., max. and preferred days for each city is added to the input, which

increases the input length to 135. For scenario 3, numbers for min. and max. trip length are

added, for an input length of 137. The target trip scores for the model training were built using

the DP algorithm. If not a single trip can be built for a trajectory under certain constraints, the

target is set to a value of 1000. The model outputs a single value – a trip score. 210000 inputs

were used to train model for scenarios 1 and 2, while scenario 3 trained with three times number

of inputs (630000) due to three distinct intervals used for total trip length.

41

Neural network validation accuracy during training for each scenario is presented in figures

Figure 32, Figure 33 and Figure 34. The used notation to describe the model architectures in

the figure legends is as follows: 𝐼 𝑥 𝐻 ∗ 𝑁 𝑥 𝑂, where I is the number of inputs for the input

layer, H is the number of inputs for each hidden layer, N is the number of hidden layers and O

is the number of outputs (1 output describing the trip score). The best model architecture is

highlighted with a yellow marker. In general, to obtain the optimal validation accuracy, the

models had to become more complex as the trip constraints increased. Model for scenario 2

tends to overfit the most and the model state after 4th epoch is used for its metric check.

Techniques such as dropout [21] and dataset scaling were tested but failed to improve the model

accuracy.

Figure 32. Scenario 1 validation accuracy

Figure 33. Scenario 2 model validation accuracy

30

35

40

45

50

1 6 11 16 21 26

M
A

E

Epoch

135x300*5x1

135x300*2x1

135x135*1x1

135x135*2x1

135x135*4x1

30

35

40

45

50

1 6 11 16 21 26 31 36

M
A

E

Epoch

120x300*5x1

120x120*2x1

120x120*1x1

120x300*2x1

120x120*4x1

42

Figure 34. Scenario 3 model validation accuracy

The DP algorithm for this method only iterates through the dates which match the constraints

of the min. and max. days to stay in a certain flight city and ignores days which do not match

the total trip length constraint (such days are marked red in Figure 31).

3.4.3. Results

Accuracy and speed results are presented in tables Table 3 and Table 4. Accuracy match results

were averaged over 50 test runs. In the accuracy result table, cells marked in red, yellow, and

green represent respectively the worst, the second best and the best scenario for the testing

parameters of the rightmost 3 columns. Columns “Total predictions made”, “Top N predictions

to search in” and “Required top N matches” denote respectively how many inputs were passed

to the FNN model, how many of the best results then were passed to the DP algorithm, and how

many final trip offers do we want to output. The cell values in bold mark the values for which

at least 80% of the required top N matches do match, which is considered a good result.

It is possible to infer from the accuracy results that the more constrained the trip generation

scenario is, the more accurate the final matches tend to be. Since the mean absolute error of the

FNN model validation accuracy was lower for the more constrained models, this might not

seem reasonable. However, it may be explained by the greater value of the standard deviation

of more constrained scenario model target array (trip scores) compared to less constrained

scenario targets. The final matches tend to be less accurate the more trajectory inputs are passed

to the FNN model and the fewer top predictions are ran through the DP algorithm.

The speed results show that the performance of the FNN is extremely quick running faster than

half of a second for 50000 trajectory inputs in 1st and 2nd scenario and in 1.7 seconds in 3rd

scenario, which uses a more complex neural network architecture. The DP algorithm time

decreases as the amount of trip constraints increases.

Table 3. Real-time trip generation accuracy results

35

40

45

50

55

60

1 6 11 16 21 26 31 36 41 46

M
A

E

Epoch

137x90*2x1

137x137*2x1

137x200*2x1

137x300*1x1

137x300*3x1

137x300*5x1

43

Actual matches Required top N

matches

Top N predictions

to search in

Total predictions

made 1 Scen. 2 Scen. 3 Scen.

5,48 6,72 8,72 10 50 2000

10,86 12,20 16,22 20 50 2000

23,04 23,84 31,78 50 50 2000

6,76 8,26 9,50 10 100 2000

13,92 15,38 18,42 20 100 2000

32,42 34,18 41,74 50 100 2000

8,96 9,82 9,82 10 250 2000

18,16 19,26 19,46 20 250 2000

43,62 44,76 47,58 50 250 2000

9,84 9,98 9,84 10 500 2000

19,70 19,94 19,56 20 500 2000

48,58 48,90 48,82 50 500 2000

3,60 3,92 6,08 10 50 10000

6,26 6,50 11,00 20 50 10000

11,32 12,32 21,28 50 50 10000

5,16 6,32 8,12 10 100 10000

9,22 11,06 15,34 20 100 10000

19,56 22,62 32,82 50 100 10000

7,00 8,02 9,32 10 250 10000

13,14 14,92 18,40 20 250 10000

29,28 34,88 43,92 50 250 10000

8,12 9,24 9,76 10 500 10000

15,46 17,44 19,44 20 500 10000

35,74 41,90 48,04 50 500 10000

3,48 1,24 3,92 10 50 50000

4,46 2,06 6,74 20 50 50000

5,80 4,24 12,12 50 50 50000

4,86 2,24 5,50 10 100 50000

6,70 3,44 9,94 20 100 50000

10,14 7,80 19,50 50 100 50000

6,60 6,12 8,34 10 250 50000

10,04 10,98 15,10 20 250 50000

17,10 21,58 31,74 50 250 50000

7,98 8,44 9,44 10 500 50000

12,70 15,54 17,50 20 500 50000

24,18 33,50 40,68 50 500 50000

Table 4. Real-time trip generation speed results

Trajectories
Scenario 1 Scenario 2 Scenario 3

FNN time DP time FNN time DP time FNN time DP time

50 0:00:00:001 0:00:00:022 0:00:00:001 0:00:00:017 0:00:00:002 0:00:00:013

100 0:00:00:001 0:00:00:045 0:00:00:001 0:00:00:035 0:00:00:004 0:00:00:023

250 0:00:00:001 0:00:00:109 0:00:00:003 0:00:00:093 0:00:00:009 0:00:00:065

500 0:00:00:002 0:00:00:227 0:00:00:004 0:00:00:183 0:00:00:018 0:00:00:123

2000 0:00:00:008 0:00:00:881 0:00:00:016 0:00:00:653 0:00:00:070 0:00:00:470

10000 0:00:00:041 0:00:04:351 0:00:00:080 0:00:03:141 0:00:00:338 0:00:02:305

50000 0:00:00:191 0:00:21:987 0:00:00:423 0:00:15:972 0:00:01.706 0:00:11:449

44

The summarized differences between experiment scenarios are presented in Table 5. The most

complex experiment scenario produces the most complex neural network model, which is the

most accurate to infer through FNN, but slower. The DP speed is slower the less constraints

there are on the trip generation.

Table 5. Result comparisons between experiment scenarios

Experiment

scenario no.
Scenario

constraints
Neural

network

complexity

FNN accuracy FNN speed DP speed

1 Least

constraints
Least complex Least accurate Fastest Slowest

2 Average Average Average Average Average

3 Most

constraints
Most complex Most accurate Slowest Fastest

3.5. Conclusions

The results for the 3rd scenario in the real-time trip generation using FNN show that for cities

which contain as much as 50000 trajectories, it is possible to generate as much as 50 trip offers

in which at least 80% of them match the best possible offers in under 2 seconds. This shows

that the real-time trip generation algorithm can be applied in practice.

45

Conclusions

1. Conducted literature analysis showed that although there is a lot of research being done in

analyzing TSP and its modifications, the solutions are not applicable to our problem, since most

of them do not consider the directional nature of commercial flights and the waiting period in

each city.

2. The designed frontend API and the graphical user interface fully enable the functional

requirements of the system.

3. Conducted research shows that the real-time trip generation algorithm can be applied in

practice and be integrated into the trip planning software system. The 3rd scenario in the real-

time trip generation using FNN experiment satisfies the functional on non-functional

requirements for the algorithm. Also, the results show that for cities which contain as much as

50000 trajectories, it is possible to generate as much as 50 trip offers in which at least 80% of

them match the best possible offers in under 2 seconds.

4. Speed evaluation of the neural network models during the experiments proved that more

complex models take significantly more amount of time to be inferred.

5. The quality of the project meets the requirements raised by the client and the client is happy

with the outcome.

46

List of references

 [1] R. M. Karp, "Reducibility among combinatorial problems," Complexity of

computer computations, pp. 85-103, 1972.

 [2] N. Christofides, "Worst-case analysis of a new heuristic for the travelling

salesman problem," 1976.

 [3] E. Klarreich, "Computer Scientists Break Traveling Salesperson Record," Quanta

Magazine, 2020.

 [4] C. K. Joshi, Q. Cappart, L.-M. Rousseau and T. Laurent, "Learning the Travelling

Salesperson Problem Requires Rethinking Generalization," 2020.

 [5] D. Gavalas, C. Konstantopoulos, K. Mastakas and G. Pantziou, "A survey on

algorithmic approaches for solving tourist trip design problems," Springer

Science, 2014.

 [6] R. Gama and H. L. Fernandes, "A reinforcement learning approach to the

orienteering problem with time windows," 2020.

 [7] W. Souffriau, P. Vansteenwegen, J. Vertommen and G. Vanden, "A personalized

tourist trip design algorithm for mobile tourist guides," Applied Artificial

Intelligence, 2008.

 [8] Y. Mei, F. D. Salim and X. Li, "Efficient Meta-heuristics for the Multi-Objective

Time-Dependent Orienteering Problem," European Journal of Operational

Research, 2016.

 [9] A. R. S. C. Gopinath Rebala, An Introduction to Machine Learning, Springer,

2019.

 [10] R. N. B. Kajaree Das, "A Survey on Machine Learning: Concept, Algorithms and

Applications," International Journal of Innovative Research in Computer and

Communication Engineering, 2017.

 [11] J. Schmidhuber, "Deep Learning in Neural Networks: An Overview," Neural

Networks, vol. 61, pp. 85-117, 2015.

 [12] A. Zell, " Simulation Neuronaler Netze [Simulation of Neural Networks]," no. 1,

p. 73, 1994.

 [13] L. Loss, "Tourism review," 2019.

 [14] V. Karantzavelou, "Travel & Tourism in 2018 contributed $8.8 trillion to the

global economy," 2019.

 [15] Kayak, "About".

 [16] N. Galov, "Where is TripAdvisor Going? 39+ Signpost Statistics," 2019.

47

 [17] Kiwi, "Company Info".

 [18] E. H. Y. S. John Duchi, "Adaptive Subgradient Methods for Online Learning and

Stochastic Optimization," Journal of Machine Learning Research 12, pp. 2121-

2159, 2011.

 [19] A. K. Grantas Gadliauskas, "Machine learning algorithm application in trip

planning," Vilnius University Open Series, pp. 25-34, 2022.

 [20] D. P. Kingma and J. Ba, "Adam: A Method for Stochastic Optimization," 2014.

 [21] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever and R. Salakhutdinov,

"Dropout: a simple way to prevent neural networks from overfitting," The journal

of machine learning research, 2014.

48

Appendices

Appendix 1. Article published in the Proceedings of the Conference "Lithuanian MSc

Research in Informatics and ICT"

Machine learning algorithm application in trip planning

Grantas Gadliauskas, Andrius Kriščiūnas

Kaunas University of Technology, Faculty of Informatics, K. Donelaičio St. 73, 44249 Kaunas, Lithuania

grantas.gadliauskas@ktu.edu, andrius.krisciunas@ktu.lt

Abstract. This article explores how machine learning can be applied in efficiently solving a
variation of the Travelling Salesman Problem (TSP) in the context of air travel tourism. Large
number of cities create too many trip route combinations to be efficiently evaluated in real
time. The method proposed uses a feedforward neural network to narrow down the number
of trip route combinations, while a more traditional algorithm based on dynamic programming
is then able to select the best trip offers. It was shown that the method could be applied in
practice to achieve almost real-time generation of best possible trip offers while evaluating a
large amount of real-world flight data.

Keywords: travelling salesman problem, flight search, combinatorial optimization, neural
network.

• Introduction

Consider a tourist who wants to visit several different cities in a specific date range in a round
trip from his home city. The tourist might also have preferences to which cities one wants to
visit or avoid. A list of N best possible trip offers then should be provided to the user, based on
the real-world flight data. The quality of the trip is determined by its price, but additional
metrics could be added.

Since flight data updates very often and the number of possible date ranges is immensely
huge it is not practical to pre-calculate all the offers. On the other hand, finding the best offers
in real-time is inefficient due to the need to compute the best scored combination of flights for
a large amount of possible trip routes.

In the combinatorial optimization domain, the more simplified version of this problem is
well known as the Travelling Salesman Problem (TSP) [1]. More recent works on the topic also
include machine learning approaches such as one by Chaitanya K. et al. [4] which makes use of
neural networks to perform TSP efficiently with hundreds of nodes. For our problem, however,
the number of nodes (possible trip flights) will never be more than a few hundred, but the more
important issue is the number of trip routes growing exponentially because of the number of
different cities.

This article proposes a heuristic solution that allows to efficiently find the best trip offers
using a feedforward neural network combined with a tree search algorithm based on dynamic
programming (hereinafter DP). The feedforward neural network (hereinafter FNN) model can
narrow down the total number of possible trip route combinations to a smaller amount of
potential best trip candidates, while the algorithm based on dynamic programming is then able
to select the N best trips. 3 scenarios with different constraints on the trip offer are tested.

mailto:grantas.gadliauskas@ktu.edu
mailto:andrius.krisciunas@ktu.lt

49

• Method

Each trip contains a set of cities T, |T| = N, with a particular order. A trip starts at the start city
𝑡1 and the last city visited is denoted as 𝑡𝑛. Every trip is a round trip and ends at the start city
𝑡1. The ordered set T is referred to as a trajectory.

The trajectories used in our experiment are made up from 100 selected European cities.
City selections are based on OpenStreetMap Place Importance Score (OSM PIS). Each city has a
set of airports assigned to it, which is used to associate flight data with the city. The cities used
are marked in Figure.

Each of the trajectories consist of 5 cities. Trajectories are generated based on the real-
world flight routes which seldom change. Since there could be a total of 100 ∙ 99 ∙ 98 ∙ 97 ∙
96 trajectories, it would be impractical to consider all the possible combinations. Trajectory
amount can be reduced by selecting only the most attractive trajectories – ones with the best
trajectory round score and combined OSM PIS. Round score is calculated by dividing the total
trajectory distance by the minimal possible distance connecting all the cities. Since only 5 cities
make the trajectory, calculating the round score is trivial. 210000 trajectories were generated
for our experiment. An example of a trajectory with its adjacent cities connected by a blue line
is presented in Figure.

Figure 1. Selected cities

Figure 2. Trajectory graph example

The score of the trip equals to the sum of its flight ticket prices. The lower the score, the
better the trip is considered.

Our method to find the best N trips given M possible trajectories and flight data is as
follows:

1. Pass the flight prices of M trajectories of the given date range to the FNN model. Each
day can have at most a single flight for a given route between two cities.

2. Pass some amount of best predicted trajectories and their flight prices to the DP
algorithm.

3. Use the best N trajectories returned by the DP algorithm and the flight data to build
the best N trip offers.

To determine if our method is viable in practice, we evaluate speed and accuracy metrics.
Speed is measured as the combined computing time of FNN prediction and DP algorithm.
Accuracy is determined by comparing the final output of N best trajectories to expected N best
trajectories and diving the sum of matching pairs by N. Accuracy is influenced by the number
of total trajectories passed to the FNN model and the number of best model predictions passed
to the DP algorithm.

3 trip generation scenarios are explored in this research. They differ by the constraints
applied to what can be considered a viable trip.

• Scenario 1: No additional constraints.

50

• Scenario 2: Each city has a minimum, maximum and preferred number of days to
spend in that city. Trip generation must respect the minimum and maximum
constraints and apply a penalty if the time spent in a city does not match its
preferred number. The penalty subtracts a value of 5 from the trip score per absolute
day offset.

• Scenario 3: Same as scenario 2, also, a total trip length constraint is added. The trip
length must be in one of the three intervals:

o 10 – 13 days

o 14 – 20 days

o 21 – 24 days

The scenarios are visualized in Figure 31, where the X axis represents the flights, and the
Y axis represents the days. The red cells mark the days in which it is impossible to take the
flight to match the given constraints. The green cells represent the possible days to take flights
if trip is starting from the earliest day (03-28). Yellow cells represent other possible days if trip
were to start from another day. With each scenario, the amount of possible flight combinations
is reduced. In the Figure 31 example, the min. and max. number of days to stay in every city
are 3 and 7 respectively and the total trip length should span from 14 to 20 days. In our
experiment, for all scenarios we constrain the maximum trip length to 24 days.

Figure 3. Testing scenarios

• Experiment

The computing environment used for this research has the following parameters:
• RAM memory: 32 GB

• CPU: AMD Ryzen 7 3700X 8-Core Processor 3.60 GHz (1 CPU core used)

• OS: Windows 10 64-bit architecture

Python 3.9 programming language is used to program the software. PyTorch machine
learning framework is used to create the neural network model.

Common neural network training hyperparameters for each scenario are as follows:
• Batch size: 128

51

• Optimizer: Adam [19]

• Loss function: Mean absolute error (MAE)

• Learning rate: Reducing learning rate on plateau by a factor of 0.5 on 3 consecutive
epochs without improvement.

• Epochs: Until does not improve for 10 epochs or until 60.

The departure dates for all the flight data in the experiment span between 2021-03-28 and
2021-05-15. Flight data from 2021-03-28 to 2021-04-20 is used for training, while data from
2021-04-21 to 2021-05-15 is used for validation. For scenario 1, flight prices of 24 days for
each of the 5 trajectory cities are passed to the model as an input, for a total input length of
120. If the flight data for a particular day is missing, it is passed to the model as a value of -1.
For scenario 2, the number of min., max. and preferred days for each city is added to the input,
which increases the input length to 135. For scenario 3, numbers for min. and max. trip length
are added, for an input length of 137. The target trip scores for the model training were built
using the DP algorithm. If not a single trip can be built for a trajectory under certain constraints,
the target is set to a value of 1000. The model outputs a single value – a trip score. 210000
inputs were used to train model for scenarios 1 and 2, while scenario 3 trained with three times
number of inputs (630000) due to three distinct intervals used for total trip length.

Neural network validation accuracy during training for each scenario is presented in
figures Figure 32, Figure 33 and Figure 34. The used notation to describe the model
architectures in the figure legends is as follows: 𝐼 𝑥 𝐻 ∗ 𝑁 𝑥 𝑂, where I is the number of inputs
for the input layer, H is the number of inputs for each hidden layer, N is the number of hidden
layers and O is the number of outputs (1 output describing the trip score). The best model
architecture is highlighted with a yellow marker. In general, to obtain the optimal validation
accuracy, the models had to become more complex as the trip constraints increased. Model for
scenario 2 tends to overfit the most and the model state after 4th epoch is used for its metric
check. Techniques such as dropout [20] and dataset scaling were tested but failed to improve
the model accuracy.

Figure 4. Scenario 1 validation accuracy

30

35

40

45

50

1 6 11 16 21 26 31 36

M
A

E

Epoch

120x300*5x1

120x120*2x1

120x120*1x1

120x300*2x1

120x120*4x1

52

Figure 5. Scenario 2 model validation accuracy

Figure 6. Scenario 3 model validation accuracy

The dynamic programming algorithm is used to find the actual best possible flight
combination for a given trajectory. It works like a brute force tree search algorithm, but with
optimizations. Instead of checking each possible flight combination, it stops traversing the
flights if the flight for a given day was already traversed and had a better total flight price. It
also only iterates through the dates which match the constraints of the min. and max. days to
stay in a certain flight city and ignores days which do not match the total trip length constraint
(such days are marked red in Figure 31).

• Results

The final accuracy and speed results are presented in tables Table 3 and Table 4. Accuracy
match results were averaged over 50 test runs. In the accuracy result table, cells marked in red,
yellow, and green represent respectively the worst, the second best and the best scenario for
the testing parameters of the rightmost 3 columns. Columns “Total predictions made”, “Top N
predictions to search in” and “Required top N matches” denote respectively how many inputs
were passed to the FNN model, how many of the best results then were passed to the DP
algorithm, and how many final trip offers do we want to output. The cell values in bold mark
the values for which at least 80% of the required top N matches do match, which is considered
a good result.

It is possible to infer from the accuracy results that the more constrained the trip
generation scenario is, the more accurate the final matches tend to be. Since the mean absolute

30

35

40

45

50

1 6 11 16 21 26

M
A

E

Epoch

135x300*5x1

135x300*2x1

135x135*1x1

135x135*2x1

135x135*4x1

35

40

45

50

55

60

1 6 11 16 21 26 31 36 41 46

M
A

E

Epoch

137x90*2x1

137x137*2x1

137x200*2x1

137x300*1x1

137x300*3x1

137x300*5x1

53

error of the FNN model validation accuracy was lower for the more constrained models, this
might not seem reasonable. However, it may be explained by the greater value of the standard
deviation of more constrained scenario model target array (trip scores) compared to less
constrained scenario targets. The final matches tend to be less accurate the more trajectory
inputs are passed to the FNN model and the fewer top predictions are ran through the DP
algorithm.

The speed results show that the performance of the FNN is extremely quick running faster
than half of a second for 50000 trajectory inputs in 1st and 2nd scenario and in 1.7 seconds in
3rd scenario, which uses a more complex neural network architecture. The DP algorithm time
decreases as the amount of trip constraints increases.

• Conclusions

In this article it was investigated if combining the speed of feedforward neural networks and
the accuracy of traditional search algorithms can be used to quickly generate attractive trip
offers using real world flight data. The results show that for cities which contain as much as
50000 trajectories, it is possible to generate as much as 50 trip offers in which at least 80% of
them match the best possible offers in under 2 seconds under the constraints of this
experiment. This shows that the method can be applied in practice, and it will be strongly
considered to be integrated into a newly developing trip planning software system.

References

Table 1. Accuracy results

Actual matches Required
top N

matches

Top N
predictions to

search in

Total
predictions

made
1

Scen.
2

Scen.
3

Scen.

5,48 6,72 8,72 10 50 2000

10,86 12,20 16,22 20 50 2000

23,04 23,84 31,78 50 50 2000

6,76 8,26 9,50 10 100 2000

13,92 15,38 18,42 20 100 2000

32,42 34,18 41,74 50 100 2000

8,96 9,82 9,82 10 250 2000

18,16 19,26 19,46 20 250 2000

43,62 44,76 47,58 50 250 2000

9,84 9,98 9,84 10 500 2000

19,70 19,94 19,56 20 500 2000

48,58 48,90 48,82 50 500 2000

3,60 3,92 6,08 10 50 10000

6,26 6,50 11,00 20 50 10000

[1] R. M. Karp, „Reducibility among combinatorial problems,“ Complexity of computer

computations, pp. 85-103, 1972.

[2] C. K. Joshi, Q. Cappart, L.-M. Rousseau, T. Laurent, „Learning the Travelling Salesperson

Problem Requires Rethinking Generalization,“ 2020.

[3] D. P. Kingma, J. Ba, „Adam: A Method for Stochastic Optimization,“ 2014.

[4] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov, „Dropout: a

simple way to prevent neural networks from overfitting,“ The journal of machine

learning research, 2014.

54

11,32 12,32 21,28 50 50 10000

5,16 6,32 8,12 10 100 10000

9,22 11,06 15,34 20 100 10000

19,56 22,62 32,82 50 100 10000

7,00 8,02 9,32 10 250 10000

13,14 14,92 18,40 20 250 10000

29,28 34,88 43,92 50 250 10000

8,12 9,24 9,76 10 500 10000

15,46 17,44 19,44 20 500 10000

35,74 41,90 48,04 50 500 10000

3,48 1,24 3,92 10 50 50000

4,46 2,06 6,74 20 50 50000

5,80 4,24 12,12 50 50 50000

4,86 2,24 5,50 10 100 50000

6,70 3,44 9,94 20 100 50000

10,14 7,80 19,50 50 100 50000

6,60 6,12 8,34 10 250 50000

10,04 10,98 15,10 20 250 50000

17,10 21,58 31,74 50 250 50000

7,98 8,44 9,44 10 500 50000

12,70 15,54 17,50 20 500 50000

24,18 33,50 40,68 50 500 50000

Table 2. Speed results

Trajectories
Scenario 1 Scenario 2 Scenario 3

FNN time DP time FNN time DP time FNN time DP time

50 0:00:00:001 0:00:00:022 0:00:00:001 0:00:00:017 0:00:00:002 0:00:00:013

100 0:00:00:001 0:00:00:045 0:00:00:001 0:00:00:035 0:00:00:004 0:00:00:023

250 0:00:00:001 0:00:00:109 0:00:00:003 0:00:00:093 0:00:00:009 0:00:00:065

500 0:00:00:002 0:00:00:227 0:00:00:004 0:00:00:183 0:00:00:018 0:00:00:123

2000 0:00:00:008 0:00:00:881 0:00:00:016 0:00:00:653 0:00:00:070 0:00:00:470

10000 0:00:00:041 0:00:04:351 0:00:00:080 0:00:03:141 0:00:00:338 0:00:02:305

50000 0:00:00:191 0:00:21:987 0:00:00:423 0:00:15:972 0:00:01.706 0:00:11:449

55

Appendix 2. Certificate of participation in the Conference "Lithuanian MSc Research in

Informatics and ICT"

