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Abstract: Mosquito-borne dengue virus (DENV) and zika virus (ZIKV) infections constitute a global 

health emergency. Antivirals directly targeting the virus infectious cycle are still needed to prevent 

dengue hemorrhagic fever and congenital zika syndrome. In the present study, we demonstrated 

that Cranberry Pomace (CP) extract, a polyphenol-rich agrifood byproduct recovered following 

cranberry juice extraction, blocks DENV and ZIKV infection in human Huh7.5 and A549 cell lines, 

respectively, in non-cytotoxic concentrations. Our virological assays identified CP extract as a po-

tential inhibitor of virus entry into the host-cell by acting directly on viral particles, thus preventing 

their attachment to the cell surface. At effective antiviral doses, CP extract proved safe and tolerable 

in a zebrafish model. In conclusion, polyphenol-rich agrifood byproducts such as berry extracts are 

a promising source of safe and naturally derived nutraceutical antivirals that target medically im-

portant pathogens. 

Keywords: zika virus; dengue virus; phytocompound; antiviral activity; agri-food byproduct;  
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1. Introduction 

Mosquito-borne dengue virus (DENV) and zika virus (ZIKV) are enveloped RNA 

viruses belonging to the flavivirus genus of the Flaviviridae family [1,2] Flavivirus-associ-

ated diseases are a global health emergency [3] infecting at least 400 million people annu-

ally via the four serotypes of DENV (DENV-1 to DENV-4). Half a million are diagnosed 

with the life threatening illness severe dengue (or dengue hemorrhagic fever) [2]. The re-

cent emergence of highly pathogenic ZIKV strains in South America have been associated 

with unprecedented severe complications in humans grouped together under the um-

brella term Congenital Zika Syndrome (CZS) which includes microcephaly in newborns 

[4–8]. ZIKV can be detected in urine and semen for prolonged periods after infection [9–

12]. 

The flavivirus genome consists of a single-stranded positive-sense RNA of around 

10.7 kb that encodes a large polyprotein that is processed into three structural (C, prM 

and E) and seven nonstructural proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B and NS5) 

[13]. The non-structural proteins are involved in viral RNA replication, morphogenesis 

and evasion from host immunity. The early stage of virus entry into the host cells is me-

diated by the E protein [13]. Viral attachment to the host cell surface is mediated by the 
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interaction between the phosphatidylserine exposed on the surface of the viral envelope 

and the cellular receptor Axl, which belongs to a family of tyrosine kinase receptors. Fol-

lowing AXL-mediated attachment, the virus particle moves across until it encounters a 

pre-existing clathrin-coated pit. It is then internalized in late endosomes where low pH-

dependent membrane fusion between the viral envelope and host vesicles leads to viral 

genomic RNA release in the cytosol [14]. Viral RNA replication and assembly of viral par-

ticles occur in the environment of the ER membranes [15]. The newly synthesized imma-

ture particles are transported through the Golgi complex to the extracellular environment 

[15]. 

The development of efficient natural therapeutics against DENV and ZIKV infection 

has become a priority because of the risk of CZS, especially in regions infested by mos-

quito vectors of disease [8,16–18]. It has been reported that plant extracts rich in flavo-

noids, terpenoids, coumarins, polyphenols and even some essential oils may inhibit 

DENV and ZIKV infection [19–28]. Previous studies showed that epigallocatechin gallate 

(EGCG), delphinidin, isoquercitrin, resveratrol, geraniin and curcumin inhibit ZIKV and 

DENV infection at different stages of the viral cycle [20,23,29–33]. Antiviral activity also 

comes from the extracts of small, pulpy berries, a common food source [34–38]; therefore 

we evaluated whether a polyphenol-rich cranberry byproduct recovered after cranberry 

juice pressing could prevent ZIKV and DENV infection in vitro. 

2. Materials and Methods 

2.1. Cells, Viruses and Reagents 

Human lung epithelial A549 cells (ATCC, CCL-185, Manassas, VA, USA), Vero E6 

cells (ATCC, ref. CRL-1586) and human-derived Huh-7.5 hepatoma cells (ATCC, PTA-

8561) were cultured in a minimum essential medium (MEM: Gibco/Invitrogen, Carlsbad, 

CA, USA) supplemented with 10 or 5% of heat-inactivated fetal bovine serum (FBS), 2 

mmol/L L-Glutamine, 1 mmol/L sodium pyruvate, 100 U/mL of penicillin, 0.1 mg/mL of 

streptomycin and 0.5 µg/mL of fungizone (PAN Biotech, Aidenbach, Germany) under a 

5% CO2 atmosphere at 37 °C. The clinical isolate PF-25013-18 of ZIKV (ZIKV-PF13) has 

been previously described [39] as has the recombinant molecular clone of ZIKV-MR766 

that expresses the autofluorescence reporter protein GFP (ZIKVGFP) [40]. The clinical iso-

lates of DENV-2 (strain UVE/DENV-2/2018/RE/47099, passage history P4) from Reunion 

Island in 2018 and DENV-4 (strain UVE/DENV-4/2012/GF/CNR_16008, passage history 

P3) from French Guyana in 2012 were provided as lyophilizates by the H2020 Project “Eu-

ropean Virus Archive goes global” (EVAg). Before DENV production, lyophilizates were 

resuspended in 200 μL of distilled water. All viruses were subsequently amplified in Vero 

E6 cells. DENV and ZIKV titration was carried out by plaque-forming assay on Vero cells 

as previously described and expressed in PFU/mL [22]. Epigallocatechin gallate (EGCG) 

was purchased from Sigma-Aldrich. Anti-pan flavivirus E monoclonal antibody 4G2-

Alexa Fluor 594 was purchased from RD Biotech (RD-Biotech, Besançon, France). A cul-

ture medium supplemented with 0.1% of dimethyl sulfoxide (DMSO) was used as a con-

trol. 

2.2. Extraction of Cranberry Pomace 

Frozen cranberries were kindly provided by the local company Fudo (Kaunas, Lith-

uania). The berries were thawed and the juice immediately pressed in a Philips HR1880/01 

juicer. The pomace was dried at 35 °C in a hot air dryer until a final moisture content of 

5.83%. The dry pomace was milled and extracted by supercritical carbon dioxide in a 10 

L extractor (Applied Separations, Allentown, PA, USA) to remove lipophilic substances 

[41]. Pressurized liquid extraction (PLE) of defatted pomace powder was mixed with dia-

tomaceous earth, placed in 50 mL extraction cells, which were fixed with cellulose filters 

at the top and bottom, and extracted with water in an accelerated solvent extraction ap-

paratus ASE350 (Dionex, Sunnyvale, CA, USA) at a constant 10.3 MPa pressure [41]. The 
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yield of the water extracts was 6.50%. Applied PLE parameters for water extraction were 

previously reported [42]. After extraction, the extract was freeze-dried. Cranberry pomace 

extracts were dissolved in DMSO (40 mg/mL) and kept at −20 °C in the dark until further 

investigation. 

2.3. Phytochemical Characterization of Cranberry Pomace Extracts 

The main phytochemicals in the extract were quantified using Waters ACQUITY ul-

tra performance liquid chromatography system (Waters Corp., Milford, MA, USA), 

equipped with hybrid Brucker Daltonics (Bremen, Germany) time-of-flight/quadrupole 

mass detector (UPLC-Q/TOF) and an Acquity BEH, C18 column (2.1 × 100 mm, particle 

size 1.7 μm) (Waters Corp., Dublin, Ireland). Detailed analytical data may be found else-

where [41]. 

2.4. Cell Viability Assay 

Mitochondrial activity was measured using the colorimetric assay tetrazolium salt 

MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) in A549 or Huh7.5 

cells. One hundred microliters of two-fold dilutions of cranberry pomace extract ranging 

from 25 to 2000 µg/mL were inoculated on A549 or Huh7.5 cells cultured in a 96-well 

plate. After 48 h of cell treatment, the supernatant was removed; the cells were washed 

twice with PBS; and then 120 µL of MTT solution was added. The plate was further incu-

bated for 2 h at 37 °C under 5% CO2 atmosphere. The supernatant was discarded and the 

formazan crystals were solubilized by adding 50 µL of DMSO (Sigma-Aldrich, Saint-

Quentin-Fallavier, France). Absorbance was measured at 570 nm with a reference wave-

length at 690 nm. The CC50 was determined using a nonlinear regression on the GraphPad 

Prism software (version 9.00, La Jolla, CA, USA). 

2.5. Flow Cytometry Assay 

Cells were trypsinated and fixed with 3.7% PFA in PBS for 20 min. A solution of 

Triton X-100 (0.15%) in PBS was used to permeabilize the cells after which they were 

stained by incubation with the mouse anti-pan flavivirus envelope E protein mAb 4G2-

conjugated to Alexa Fluor 488-labeled (RD-Biotech, Besançon, France) (1:1000 dilution) for 

1h at RT. The cells were then processed by flow cytometric analysis with Cytoflex (Beck-

man Coulter, Brea, CA, USA). The data were analyzed using CytExpert software (Brea, 

CA, USA). 

2.6. Virus Inactivation Assay 

The direct effect on ZIKV particles was evaluated by incubating ZIKVGFP-free parti-

cles (2 × 105 PFU) with CP extract for 2 h at 37 °C. As a control, ZIKVGFP particles were 

incubated with a culture medium. A 50-fold dilution with MEM containing 5% FBS was 

assessed to dilute the extract at a non-therapeutic concentration thereby preventing sig-

nificant interactions with cellular receptors. The final mixtures were inoculated on A549 

cells that had already been seeded in 24-well plates. The cells were collected, fixed and 

handle counted by cytometry assay 24 h post-incubation 

2.7. Virus Binding Assay 

Cells, pre-chilled at 4 °C, were incubated with ZIKVGFP at a multiplicity of infection 

(MOI) of 2 in the presence or absence of sample for 1 h on ice. The supernatant was then 

discarded and the cells were washed twice with PBS. A fresh medium was then added, 

and the cells were further incubated for 24 h at 37 °C before being subjected to flow cy-

tometry. 
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2.8. Plaque Forming Assay 

Vero cells were seeded in 24-well culture plates at a density of 7 × 104 cells per well 

and incubated at 37 °C for 24 h prior to infection [21]. Thirty microliters of 10-fold dilution 

of supernatants were inoculated on the Vero cells. Two hours post-infection, 0.2 mL of 

0.8% carboxymethylcellulose sodium salt solution (Sigma-Aldrich, Saint-Quentin-

Fallavier, France) prepared in MEM 5% FBS was added, and the plates were then incu-

bated for 4 (ZIKV) or 5 days (DENV) at 37 °C. To reveal the viral titer, the supernatant 

was discarded gently and the cells were washed twice with PBS, fixed with PFA 3.7% and 

dyed with a solution of 0.5% crystal violet (Sigma-Aldrich, Saint-Quentin-Fallavier, 

France). The plaques were counted and represented as plaque-forming unit per mL 

(PFU/mL). 

2.9. Immunofluorescence Assay 

Infected cells seeded on coverslips were fixed with 3.7% PFA for 10 min and perme-

abilized with Triton X-100 (0.15%) in PBS for 4 min. Adhered cells were then labeled for 

1h at RT with the mouse anti-pan flavivirus envelope E protein mAb 4G2 (1:1000 dilution), 

and the nucleus was stained with DAPI [21]. The glass coverslips were then deposed in-

verted in the mounting medium Vectashield (VectorLabs). A fluorescent signal was ob-

served using a Nikon Eclipse E2000-Umicroscope and images were taken using the Ha-

mamatsu ORCA-ER camera and NIS-Element AR (Nikon) imaging software. 

2.10. Zebrafish Maintenance, Intraperitoneal Injection and Behavior Monitoring 

Adult wild-type zebrafish (Danio rerio; 1 year old, mixed sex) were kept in standard 

conditions of temperature (28 °C), photoperiod (14/10 h light/dark), and conductivity (400 

μS). The fish were supplied with commercial food from Planktovie (Gemma Micro ZF 

300) 3 times per day. For intraperitoneal extract administration, fish were anesthetized 

with 0.02% tricaine (MS-222; REF: A5040, Sigma-Aldrich) before being administered with 

either (5% MEM) or cranberry pomace extract (400 µg/g body weight). The fish were re-

turned immediately to the water and closely monitored for any obvious signs of stress 

(e.g., changes in locomotor behavior, feeding). One day after injection, the fish were ana-

lyzed for locomotion with ZebraCube equipment (Viewpoint). Individual control fish and 

treated fish were placed in separate tanks containing 800 mL of water within the 

ZebraCube. After a 5-min adaptation period, locomotion was monitored for 10 min to 

determine its state: inactivity (<4 mm/s), low activity (4–8 mm/s), or high activity (>8 

mm/s). A total of 7 control versus 7 treated-fish were closely analyzed at 1 dpi for the 

locomotor activity. In addition, fish survival was monitored until day 5. At the end of the 

experimental procedure, fish were sacrificed with an overdose of tricaine. 

2.11. Statistical Analysis 

A one-way ANOVA test was used to compare the different concentrations. Values 

were expressed as the mean ±SD of a minimum of three independent experiments. All 

statistical analyses were carried out using GraphPad Prism software (version 9.0; La Jolla, 

CA, USA). Significance levels are shown in the figure as follows: * p < 0.05; ** p < 0.01; *** 

p < 0.001, **** p < 0.0001, n.s. = not significant. 

3. Results 

3.1. Cranberry Pomace Extract Doses Did Not Exhibit Toxicity in Adult Zebrafish 

We recently characterized the phytochemical composition of an agrifood byproduct 

extract, cranberry pomace (CP), recovered after cranberry juice extraction [41]. In total, 8 

phytochemicals were identified, 3 of which were quantified using analytical standards 

[41]. Quinic acid was a major compound having a concentration of 869 ± 3 mg/100 g. The 

concentrations of anthocyanins peonidin-3-galactoside and peonidin-3-arabinoside were 

0.96 ± 0.02 and 0.86 ± 0.01 mg/100 g, respectively [41]. 
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Animal testing was used to predict the toxicity of CP extract. This is mounting evi-

dence that zebrafish is a relevant in vivo model to predict human toxicity in pharmaceuti-

cal development [43,44]. Indeed, a large genomic similarity with humans (>70%) as well 

as evolutionarily preserved physiological processes with mammals make the zebrafish a 

very interesting and popular model for toxicity studies [43,44]. Here, the potentially acute 

toxicity of CP extract was determined in adult zebrafish. For this purpose, we initially 

determined the maximum non-toxic concentration (MNTC) in vitro on human epithelial 

cell lines A549 using an MTT assay. Cells were treated with various concentrations of CP 

extract ranging from 25 to 2000 µg/mL (Figure 1). The results displayed a concentration-

dependent toxicity where the cytotoxic concentration to inhibit 50% of mitochondrial ac-

tivity (CC50) was found to be 865.1 µg/mL (Figure 1). The maximum non-toxic MNTC 

concentration (>90% viability) was determined to be 400 µg/mL (Figure 1). Therefore, this 

concentration was chosen to test the toxicity of the PC extract on adult zebrafish. 

  

Figure 1. Determination of the maximal non-toxic concentration (MNTC) of cranberry pomace ex-

tract on human A549 cell line. A549 cells were grown in the presence of various concentrations of 

CP extract (25 to 2000 µg/mL) for 48 h. The metabolic activity was assessed by MTT assay. Results 

presented are means ±SD of three independent experiments and are expressed as relative values to 

the vehicle control. 

Consequently, to determine if this dose could be toxic in vivo, an intraperitoneal in-

jection of CP extract was performed in adult zebrafish using MNTC of 400 µg/g of body 

weight. The experiment was carried out for 5 days, and fish survival was monitored sev-

eral times a day throughout. We did not detect any sign of suffering, stress or abnormal 

locomotor or feeding behavior (Table 1). In addition, the results showed that from injec-

tion to day 5, CP extract-injected fish displayed 100% survival, similar to the vehicle con-

trol (Table 1). Thus, CP extract at concentration of 400 µg/g of body weight does not ex-

hibit obvious toxicity in vivo. 

Table 1. Survival of fish injected with cranberry pomace extract from 1 day to 5 days post injection 

(dpi). 

Number of Fish Alive 

 Number of 
Injected Fish 

1 dpi 2 dpi 3 dpi 4 dpi 5 dpi 
Survival Rate 

at 5 dpi (%) 

Vehicle control 15 15 15 15 15 15 100 

CP extract 18 18 18 18 18 18 100 
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3.2. Cranberry Pomace Extract Exerts Antiviral Activity Against the Epidemic ZIKV Strain 

To reinforce the fact that CP extract could be non-toxic in vivo, as the MNTC deter-

mined in vitro, we decided to analyze the behavior of control and CP-injected fish (Figure 

2). To this aim, we monitored the locomotion of fish one day after the injection, defining 

three different states of activity: inactivity (<4 mm/s), low activity (4–8 mm/s), or high ac-

tivity (>8 mm/s). The monitoring and analysis of fish locomotion did not show significant 

differences in these three states or in the total distance traveled (Figure 2a–d). The general 

pattern of locomotion was also highly similar between control and CP-injected fish  

(Figure 2e,f). Together, these data suggest the absence of any striking effects of the injec-

tion of CP extract considering toxicity and behavior. 

 

Figure 2. Cranberry pomace extract has no impact on finely tuned locomotor activity one day after 

injection. (a–c) Distance traveled in the “inactive” (<4 mm/s, (a)), low activity (4–8 mm/s, (b)), and 

high activity (>8 mm/s, c) states during the 10-min recording period. (d) Total distance traveled by 

the fish during the recording period. Note that no significant differences were observed between 

groups. (e,f) Examples of paths traveled by control and CP-injected fish. n = 7 fish/group; data rep-

resent means ± SEM. 

The ability of CP extract to inhibit ZIKV infection was evaluated in human epithelial 

A549 cells infected by the clinical isolate of the epidemic strain PF-25013-18 of ZIKV [39]. 

The CP extract showed no cytotoxicity in A549 cells at a concentration up to 400 µg/mL 

(Figure 1). A549 cells were infected for 24 h with ZIKV at a multiplicity of infection (MOI) 

of 2 in the presence of non-toxic concentrations in vivo (6.25–400 µg/mL) of CP extract 

(Figure 3). An immunofluorescence assay using anti-flavivirus E mAb 4G2, showed that 

the CP extract had a dose-dependent anti-ZIKV activity (Figure 3a). At 400 µg/mL, CP 

extracts completely protected the A549 cell monolayer from ZIKV infection (Figure 3a), 

and 100 µg/mL of CP extract was sufficient to reduce the number of ZIKV infected cells 

by more than 90% (Figure 3b). The concentration that inhibited 50% of ZIKV infection 

(IC50) was estimated to be 26.0 µg/mL using nonlinear regression after construction of a 
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concentration-activity sigmoid curve. (Figure 3b). Thus, the selectivity index (SI), which 

measures the benefit/risk ratio, was calculated as CC50/IC50 = 33.2. Viral growth was 

strongly inhibited in a dose-dependent way when non-toxic concentrations of CP extract 

were present. (Figure 3c). At MNTC, the CP extract had ability to suppress viral progeny 

production (Figure 3c). At a concentration of 100 µg/mL, the extract further reduced virus 

progeny production by up to 2 logs. (Figure 3c). 

Taken together, these data suggest that the CP extract is a potent antiviral against 

ZIKV at concentrations devoid of toxicity in vivo. 

 

Figure 3. Cranberry pomace extract exhibits dose-dependent antiviral effect against the epidemic 

strain of ZIKV. A549 cells were challenged with the epidemic strain of ZIKV (PF-25013-18) at an MI 

of 2 and simultaneously treated with various non-cytotoxic concentrations of CP extract (0–400 

µg/mL). (a) Immunofluorescence analysis of viral protein expression in A549-ZIKV-PF13-infected 

cells. The ZIKV E (red) and nuclei (blue) were visualized by fluorescence microscopy. Images are 

representative of three independent experiments. (b) Quantification of the number of cells positive 

for the viral protein E expression in A549-ZIKV-infected cells by immunofluorescence. (c) ZIKV 

growth was assessed by a plaque formation assay. Results from a representative experiment (n = 3 

repeats) are shown. Data are means ± SD of three separate experiments. One-way ANOVA and 

Dunnett’s test were used for statistical analysis (** p < 0.01; *** p < 0.001; **** p < 0.0001; n.s. = not 

significant). 
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3.3. Cranberry Pomace Extract Inhibits ZIKV Binding to the Host Cell 

To investigate the viral target of the CP extract, a ZIKV mutant expressing the auto-

fluorescence reporter protein GFP (ZIKVGFP) was used [40]. The expression level of GFP re-

lated to the efficacy of ZIKV infection in the host cell. The antiviral effect of the CP extract 

was first validated against ZIKVGFP when a 90% reduction of GFP-positive A549 cells was 

observed at 100 µg/mL (Figure S1). A time-of-drug addition assay was carried out to iden-

tify which stage of the ZIKV infection cycle can be affected by the CP extract (Figure 4a). 

The number of GFP-expressing cells was lower by 90% compared with the control when 

100 µg/mL of the extract was added during the whole experiment. (Figure 4b). Similar 

results were obtained when the extract was added concomitantly with virus input to cover 

the entry step and yielded a 90% reduction in GFP-positive cells (Figure 4b). However, no 

antiviral activity was observed when the CP extract was added after 2 h of viral challenge 

(Figure 4b). These results showed that the CP extract effect was mediated by inhibition of 

the early stage of the ZIKV infectious cycle. Indeed, the inhibition of viral infection was 

not correlated with the replication step but rather with the inability of ZIKV to initiate an 

infectious cycle in the host cell in the presence of the CP extract. 

 

Figure 4. Cranberry pomace extract inhibits the attachment of ZIKV to the surface of A549 cells. (a) 

Schematic illustration of drug addition time assays applied to describe the antiviral activity of CP 

extract (100 µg/mL). A549 cells were infected and treated with CP extract or vehicle throughout 

infection (Throughout), simultaneously with virus entry (Entry), after virus challenge (Replication) 

with appropriate time-wash steps and incubation periods. (b) Flow cytometric analysis of infected 

cells under the different experimental conditions shown in (a). (c) Schematic illustration of the bind-

ing assay. Pre-chilled ZIKVGFP was mixed with CP extract (100 µg/mL) and left to bind to the A549 

cell monolayer at 4 °C for 1 h, then moved to 37 °C. EGCG (100 µM) was used as a positive control. 

(d) Flow cytometric analysis of cells infected with ZIKVGFP-A549 in the binding assay shown in (c). 

The results are means ±SD of three independent experiments and are expressed as relative values 

to vehicle infected cells. One-way ANOVA and Dunnett’s test were used for statistical analysis (**** 

p < 0.0001; n.s. = not significant). 
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We then evaluated the capacity of the CP extract to interfere with ZIKV attachment 

to the host cell surface (Figure 4c). For this, a binding assay was carried out at 4 °C to allow 

virus attachment but not internalization (Figure 4c). Briefly, pre-chilled ZIKVGFP was 

mixed with the extract (100 µg/mL) and left to bind to the A549 cell monolayer at 4 °C for 

1 h then moved to 37 °C (Figure 4c). Epigallocatechin gallate (EGCG) at 100 µM, a poly-

phenol from green tea known to block ZIKV attachment [22,29], was used as a positive 

control. Our data showed that the percentage of A549-infected cells was significantly re-

duced in the presence of the CP extract as well as EGCG (Figure 4d). This reduction in 

infected cells compared to control suggested that the inability of ZIKV to initiate an infec-

tious cycle in the presence of the extract was associated with the failure of virus attach-

ment. Taken together, these results showed that the CP extract prevented ZIKV entry into 

the host cell by inhibiting the viral binding step. 

To examine whether the CP extract may affect ZIKV infectivity, a virus inactivation 

assay was conducted (Figure 5a). For this purpose, a 2 × 105 PFU dose of ZIKVGFP was 

incubated with 100 µg/mL CP extract for 2 h at 37 °C and subsequently diluted 50 times 

before infection of A549 cells (Figure 5a). EGCG (100 µM), known for its virucidal activity 

[22,29], was used as a positive control (Figure 5a). By FACS analysis, we observed that the 

CP extract and EGCG reduced the number of GFP-positive A549 cells by at least 95% com-

pared to mock-treated infected cells (Figure 5b). Taken together, the findings suggest that 

the CP extract has a virucidal effect on ZIKV, thereby blocking viral entry into the host 

cell. 

 

Figure 5. Cranberry pomace extract prevents virus entry by acting directly on ZIKV particles. (a) 

Schematic illustration of ZIKV inactivation assay performed to characterize the virucidal activity of 

the CP extract. ZIKVGFP was untreated (vehicle) or treated with the CP extract (100 µg/mL) for 2 h 

at 37 °C and subsequently diluted 50 times before infection of A549 cells. EGCG (100 µM) was used 

as a positive control. (b) Flow cytometric analysis under the experimental inactivation conditions 

shown in (a). The results are means ±SD of three independently performed experiments and are 

expressed as relative values to untreated infected cells. One-way ANOVA and Dunnett’s test were 

used for statistical analysis (**** p < 0.0001; n.s. = not significant). 

3.4. Cranberry Pomace Extract Acts on Dengue Virus 

We then examined whether the CP extract exerted antiviral activity against DENV, 

another medically relevant flavivirus, so we investigated its antiviral potential against 

DENV-2 and DENV-4. Given that human hepatoma Huh7.5 cells support DENV replica-

tion, Huh7.5 cells were first assessed for their sensitivity to the extract using a MTT assay. 

As shown in Figure 6a, the Huh7.5 cell line had an estimated CC50 of 656.1 µg/mL. DENV-

infected Huh7.5 cells were treated with different non-toxic concentrations (up to 200 

µg/mL) of the CP extract over 48 h. Cells infected by DENV-2 and DENV-4 were detected 

by a FACS assay using anti-E mAb 4G2. There was a similar dose-dependent reduction of 

DENV-infected Huh7.5 cells in the presence of the CP extract regardless of the DENV 

serotype tested (Figure 6b). The estimated IC50 of DENV-2 and DENV-4 are 54.2 and 40.3 
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µg/mL, respectively. These results showed that the CP extract exerted an antiviral effect 

against different serotypes of DENV as already observed with ZIKV. 

 

Figure 6. Cranberry pomace extract exhibits antiviral effect against two DENV serotypes. (a) Mito-

chondrial activity of Huh7.5 cells incubated with different concentrations of CP extract. Cells were 

grown in the presence of increasing concentrations of CP extract (25 to 2000 µg/mL) for 48 h. The 

mitochondrial activity of the cells was assessed by MTT assay. (b) Huh7.5 cells were infected for 48 

h with DENV-2 or DENV-4 (MI 0.5) in the presence of various non-cytotoxic concentrations of CP 

extract (6.25–200 µg/mL). Flow cytometric analysis was performed using the anti-flavivirus E mAb 

4G2. Data represent means ±SD of three independent experiments. 

4. Concluding Remarks 

The use of plant byproducts as antiviral nutraceuticals represents a cost-effective and 

environmentally friendly approach [20,26,45]. Due to their abundance in food products 

and their potential beneficial pharmacological and nutritional effects, polyphenols are of 

considerable interest as a drug and dietary supplement. In this study, we aimed to valor-

ize a polyphenol-rich agrifood byproduct, cranberry pomace extract [41], for its nutraceu-

tical antiviral potential against emerging arboviruses such as dengue and zika. Antivirals 

are described as virostatic or virucidal if they inactivate or destroy viral particles, respec-

tively, resulting in a loss of infectivity [20]. This mechanism of action has been described 

for various natural compounds such as EGCG, delphinidin, curcumin, geraniin and ber-

berine against ZIKV and DENV [22,23,31,46,47]. Numerous studies have highlighted the 

capacity of medicinal plants extracts to neutralize ZIKV or DENV infectivity [19,21–

25,30,31,48,49]. Here, using a panel of virological assays, we demonstrated that cranberry 

pomace extract, as well as EGCG, is capable of neutralizing the infectivity of the Asian 

epidemic strain of ZIKV in zebrafish at non-toxic doses. We also demonstrated that the 

CP extract prevents the infection of human cells by two clinical isolates of dengue, sero-

types 2 and 4. A time-of-drug addition assay and binding and inactivation assays suggest 

that inhibition of ZIKV was related to the inability of viral particles to interact with cellular 

receptors. The phytochemical composition of the CP extract was characterized recently 

using UPLC-QTOF-MS highlighting the presence of quinic acid as the major compound 

[41]. Quinic acid derivatives have already been shown to be active against DENV [50], 

where the study conducted by Zanello et al. Ref. [50] demonstrated that the amides of 

quinic acid derivatives inhibit the replication step of dengue virus in Huh7.5 cells while 

not exhibiting a direct effect on the viral particles. However, our virological assays 

showed that the CP extract did not act at the replication step; rather, it acted directly on 

the viral particles to prevent their attachment to the host cell surface. Based on this mech-

anism of action, it seems reasonable to conclude that quinic acid was not involved in the 

antiviral effect of CP extract. The phytochemical composition of the CP extract also re-

vealed the presence of quercetin hexoside and anthocyanins such as peonidin-3-
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galactoside and peonidin-arabinoside [41]. We recently showed that a quercetin-hexoside 

molecule (isoquercetrin) prevented the internalization of ZIKV in A549 cells. The involve-

ment of quercetin-hexoside, present in the CP extract, in inhibiting viral entry remains to 

be investigated once the virucidal compounds are separated and isolated. On the other 

hand, it has been demonstrated that an anthocyanin named delphinidin exerts a virucidal 

effect against various flaviviruses among which are ZIKV and DENV. It would be inter-

esting to verify that the anthocyanins detected in the CP extract, such as peonidin-3-ga-

lactoside and peonidin-arabinoside, are potentially involved in the virucidal effect of the 

CP extract. 

The virucidal and virostatic effects of polyphenols such as EGCG and anthocyanin 

as delphinidin remain to be better understood. EGCG causes a loss of viral particle integ-

rity, which limits interactions with membrane receptors at the surface of the host cell [22]. 

Delphinidin targets cell surface proteins involved in the viral attachment process prevent-

ing virus attachment [51]. In this way, molecular docking studies demonstrated a flavo-

noid binding pocket on the surface of the viral envelope protein E [52]. Although further 

studies are needed, it seems reasonable to assume a similar mechanism of action for the 

active compounds in the CP extract. Thus, it would be very interesting to identify the 

active phytochemical compounds that act as antiviral agents or if there is a synergistic 

effect of several compounds that provides antiviral activity. 

In conclusion, we demonstrated for the first time that cranberry pomace extract exerts 

an antiviral effect against ZIKV and DENV at a concentration that had no effect on 

zebrafish, a well-recognized small animal model ideal for drug toxicity assessment [43,44]. 

Therefore, our study raises the opportunity to use the agrifood byproduct derived from 

berry extract as a potential source of safe and effective antivirals against medically im-

portant mosquito-borne viruses. 

Supplementary Materials: The following supporting information can be downloaded at: 
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