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Abstract: The role of precursor characteristics and mixture composition design of alkali-activated
materials (AAM) has been intensively researched with different types of alumino-silicate sources.
Two illite-based precursors were prepared and investigated—(i) raw illite clay (IC) treated in a
laboratory at 700, 750, and 800 ◦C and (ii) a red brick waste coming from the brick production plant.
The fineness of precursors was determined and compared. The precursors were activated with 6 M
and 7 M NaOH alkali solutions. Silica gel addition was considered in the composition of AAM.
The XRD results indicate the transformation of both precursor types under alkali activation. The
efflorescence salts were analyzed on the samples with silica gel addition. Calcined IC precursor
allowed us to obtain AAM with a strength from 11 to 16 MPa with an increasing strength gain during
curing. The red brick waste precursor showed a compressive strength from 14 to 28 MPa. A high
early strength was obtained with no further strength increase. The hydrosodalite and zeolite crystals
were detected in the structure of AAM based on the red brick waste precursor. The results indicate
different characteristics of AAM based on similar source precursors, showing the important role of
the proper treatment of precursors before alkali activation.

Keywords: geopolymers; illite clay; fineness; silica gel; strength; XRD; microstructure

1. Introduction

Kaolinite is one of the main alumosilicate sources for alkali-activated material (AAM)
development. Under temperature treatments between 600 and 900 ◦C, an amorphous
structure of aluminum and silicon oxides is formed. The use of natural mineral earth
components (particularly metakaolin) is now largely out of the question. Alternative and
sustainable precursors have already been researched. The use of by-products as secondary
materials such as fly ash and slags to form AAM has been widely researched while other
alumosilicate sources are still pursued [1,2]. The main clays used in the preparation of AAM
are 1:1 layer lattice alumosilicates, while the limited availability or lack of raw materials is
bringing interest into 2:1 clay minerals, e.g., pyrophyllite, illite-smectite clays, etc. [3]. After
heat treatment at 700 to 900 ◦C, clays rich in kaolinite are more reactive to alkali activation
than clays dominated by smectite or illite [4]. These other clay minerals are commonly
available around the world and may exhibit certain reactivity after heat activation. [5].
Alkali activation with a potassium and sodium hydroxide of 2:1 layer illite clay (IC) has
been studied before, but thermal treatment was performed after raw clay activation with
6 M NaOH alkali activation. Afterward, thermal treatment between 600 and 900 ◦C led
to the production of ceramic samples with a strength from 6 to 24 MPa [3]. Previous
research has tested thermally treated IC between 550 and 950 ◦C and it was determined that
the highest release of aluminate was reached at 750 ◦C [5]. In addition, montmorillonite
and illite are both 2:1 clay minerals, however, their alkali activation behavior is very
different and montmorillonite-rich soils proved to be more promising [6]. Si/Al ratios
from 2.81 to 3.85 may lead to AAM with a strength of 7 to 26 MPa [7]. Since the presence
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of 2:1 clay minerals brings a high Si/Al ratio (>2), this brings limitations to the use of
waterglass addition in the alkaline activator solution [5,8]. There are also reports where
alkali solution with sodium silicate addition proved to result in low chemical stability
of the AAM [9]. Dietel et al. concluded that the specific surface area of heat-treated IC
is even more important than the amount of dissolved Si and Al, and Si/Al ratio in the
geopolymerization [10]. Vasić et al. lately activated a mixture of calcined IC clay and red
brick mixture with 10 M KOH and sodium silicate solution, which resulted in AAM with a
strength up to 13.7 MPa [11]. Kaolinitic-illitic raw clay previously was activated with 4 to
14 M NaOH solution which resulted in a conclusion that the increase in curing temperature
and NaOH concentration had a synergistic effect [12]. Good results were obtained by
illite-smectite-rich clay activated with NaOH solution at 75 ◦C, which formed geopolymers
with a strength of around 30 MPa [13]. This brings a promising perspective for IC use as
an AAM precursor. The waste type precursor from IC would be more beneficial than heat
treatment of raw clay at an elevated temperature.

Silica gel is a type of waste coming from the fertilizer production industry with limited
application. To produce 1 t of AlF3, around 0.5 t of silica gel is obtained [14]. Silica gel is
characterized by high amorphous phase content, mainly containing around 70% SiO2 and
a smaller amount of Al2O3. High fluoride impurity content is characteristic of silica gel—it
can be around 20% of the content forming aluminum fluoride hydrate (AlF3·3.5H2O), thus
it partially reduces the content of free Al2O3 needed for the production of AAM. High
fluorine content makes the use of silica gel use problematic and pyrolysis is one of the ways
to remove AlF3 from the material [15]. The addition of silica gel has been used to prepare
geopolymers in the range from 2 to 40%, while only up to 10% was the border where the
mechanical performance of AAM was reduced drastically [14,16].

This research investigates the alkali activation efficiency of red brick waste resulting
from the brick production process as a precursor for the production of AAM. For the first
time, the fineness factor of red brick waste powder was investigated and compared to
natural raw IC treated at 700 and 800 ◦C in a laboratory.

2. Materials and Methods
2.1. Raw Materials

A total of two clay treatment approaches were used to prepare precursors for the
production of AAM samples. First, carbonate-free illite clay (IC) from the Liepa deposit
in Latvia was prepared by thermal treatment. After the collection of clay samples from a
clay deposit, samples were placed in a drying chamber at 105 ◦C until a constant mass was
obtained. Dry clay was milled by collision milling using a semi-industrial disintegrator
which is described in the previous paper [17]. At this stage, the differential thermal analysis
/ thermogravimetric analysis (DTA/TG) was performed. The raw IC powder was then heat-
treated at 700, 750, and 800 ◦C for 4 h at a maximum temperature at a rate of 5 ◦C/min. For
milled IC, the laser particle size distribution and X-ray diffraction (XRD) were determined.
The other precursor originated from a brick production plant. Red brick waste was collected
from the local brick production plant that is placed near the IC quarry (JSC Lode, Latvia).
During the production, the bricks there are burned at a temperature between 900 and
950 ◦C. Then defective products are crushed and coarsely ground to brick sand at the
factory. Red brick waste was ground similar to the raw IC. An additional grinding (3x more
grinding energy applied) was done for red brick waste to reduce its particle size.

In the AAM composition, silica gel waste from a fertilizer manufacturing factory was
included as a high silica additive. Silica gel was not additionally treated and was used with
its naturally high moisture content (between 80 and 100 wt.%). The weight of the silica gel
in the mixture composition was calculated according to its moisture content.

Commercially available sodium hydroxide flakes with 99% purity (Tianye Chemicals
Ltd., Xinjiang, China) were used to prepare an alkali activation solution.

The chemical composition of raw IC, red brick waste, and silica gel are given in
Table 1. Results show that red clay has 14.5% of Al2O3, and 70.3% of SiO2, which also
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corresponds to previous investigations and is an indication that an extra silica source from
alkali activation solution is not needed [14,18]. A high amount of Fe2O3 is characteristic of
ferric aluminosilicate clay deposits, which also gives an orange to red-brown color. Clay
from the Lode deposit is characterized by a relatively high K2O content (4.0%) and MgO
(1.1%) was also recorded. The red brick waste chemical composition indicates similar
composition as for raw clay. According to XRF analysis, silica gel contains a high content of
SiO2 (72.2%) and Al2O3 (5.68%). Such values give promising indications for using silica gel
as a raw material in the composition of AAM. Minor values of CaO and Fe2O3 were also
detected. From the production process at the plant, silica gel contains F impurities at 21%.

Table 1. Elemental composition of silica gel, raw IC, and red brick waste from Lode detected by XRF,
mass, %.

Compound Silica Gel Raw IC Red Brick Waste

Al2O3 5.7 14.5 14.5
SiO2 72.2 70.3 68.4
CaO 0.4 0.3 0.6
TiO2 - 0.9 1.3
Na2O - 0.1 -
K2O - 4.0 5.7
MgO - 1.1 1.1
Fe2O3 0.7 5.4 6.6

F 21 - -
Others - 1.4 0.4

LOI, 1000 ◦C - 2.0 -
Total 100 100 100

The particle size distribution of precursors is given in Figure 1. The results indicate
that the fineness of freshly ground raw clay gradually decreased after the heat treatment
temperature increased from 700 to 800 ◦C (IC700 ◦C, IC750 ◦C, IC800 ◦C). Raw IC was
associated with d10 of 1.29 µm, d50 of 5.50 µm, and d90 of 36.53 µm. Treating red IC at 800 ◦C
particle size increased d10 to 1.44 µm, d50 to 8.26 µm, and d90 to 108.21 µm, respectively.
Ground red brick waste with similar grinding parameters as for thermally treated raw IC
(red brick waste 1x) showed a much coarser particle size distribution. The particle size of
such ground red brick waste was d10 of 4.66 µm, d50 of 52.65 µm, and d90 of 202.20 µm. To
reduce red brick waste particle size, additional grinding (three times more energy) was
applied with the same grinding parameters (red brick waste 3x). An additional grinding
of red brick waste reduced its particle size: d10 to 2.07 µm, d50 to 24.64 µm, and d90 to
74.19 µm. The density of raw IC was 2.76 g/cm3, while thermal treatment reduced this
value from 2.69 to 2.74 g/cm3. The thermal treatment of raw IC reduced specific surface
area. The specific surface area of raw ground IC was 4155 cm2/g, and the thermal treatment
reduced this value from 3925 to 3475 cm2/g. A higher temperature was associated with
a lower specific surface area (IC800 ◦C). For ground red brick waste, the specific surface
area was 1448 cm2/g and with additional grinding, it increased to 2515 cm2/g. The specific
surface area of silica gel was 716 cm2/g and its particle size distribution was accordingly
d10 11.71 µm, d50 66.39 µm, and d90 146.12 µm.

According to DTA/TG analysis of IC, the total mass change during the analysis was
−3.8% (Figure 2). The first mass change peak is associated with free water desorption
between 35 and 214 ◦C and the mass change there was −0.67%. An additional −1.97% mass
change was detected between 411 and 546 ◦C. This is associated with the dehydroxylation
of IC which is in a similar interval as previously detected for kaolin clay [5]. The obtained
value was significantly lower if compared to the dihydroxylation value for kaolin clay
which according to the literature is about 8.5% [19,20]. This could be an indicator that
relatively less reactive phases are present in calcined IC. Between 573.4 and 580.9 ◦C the
mass change was −0.14% which is an indication of the allotropic transformation of quartz
which also corresponds with the data from the XRD and literature [21].
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Figure 1. Particle size distribution of AAM precursors.
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Figure 2. DTA/TG of raw IC.

The mineral crystalline phase transformation of raw IC during the heat treatment
between 700 and 800 ◦C (IC700 ◦C, IC750 ◦C, IC800 ◦C) and red brick waste through the
XRD characterization is given in Figure 3. The main minerals detected in IC were quartz
SiO2 (77-1060), illite (26-911), and kaolinite (83-971). Heat-treated IC had lost its kaolinite
peak. The illite crystalline phase was not detected for red brick waste precursor. The
silica gel contained crystalline aluminum fluoride hydrate and an amorphous region was
identified between 20 and 30◦, as reported in the previous paper [16].
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2.2. Mixture Compositions

Two series of AAMs were prepared using calcined IC (700 and 800 ◦C) and ground red
brick waste (Br1x and Br3x) at two milling regimes as precursors (Tables 2 and 3). The first
composition series were prepared with heat-treated IC (700 and 800 ◦C) or ground red brick
waste as precursors. 6 M and 7 M NaOH solution were used for alkali activation [22,23].
Then combination of red brick waste and thermally treated clay was prepared with the
replacement ratio of each clay by 25 wt.%. The fineness of the precursor played a role in
the content of the alkali activation solution (AAS). Finer heat treated clay needed an extra
amount of AAS and the AAS—Calcined IC precursor (AAS/solid) was 0.6. For coarser red
brick waste precursor, the AAS ratio to precursor was 0.47. A mix of both clays gradually
increased AAS content as calcined IC content increased in the composition. The second
series of AAM consisted of red brick waste and 5 wt.% addition of silica gel activated with
6 M or 7 M NaOH solution. AAS/solid ratio was 0.43 (Table 3).

Table 2. AAM compositions based on heat-treated IC and ground red brick waste precursors, wt.%.

Composition 6 M NaOH
Solution

Red Brick
Waste Calcined IC AAS/Solid

1 C700 60 - 100 0.60
2 C800 60 - 100 0.60
3 Br1x 43 100 - 0.43
4 Br3x 43 100 - 0.43
5 B100C0 43 100 - 0.43
6 B75C25 47 25 75 0.47
7 B50C50 52 50 50 0.52
8 B50C50 7 M 43 50 50 0.43
9 B25C75 56 70 25 0.56
10 B0C100 60 - 100 0.60

Solid raw materials were homogenized before being gradually poured into the AAS.
A handheld electrical two-shaft mixer was used to prepare the samples. The material was
stirred until it was a homogeneous paste, then it was cast in a silicone mold measuring
20 × 20 × 20 mm. The molds were then coated with plastic film and placed in an 80 ◦C
drying chamber for 24 h to cure. Early age strength was measured after samples were taken
out of molds after 24 h of curing. The remaining samples were divided into two groups:
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half were cured at ambient room temperature (22 ± 2 ◦C, 50% RH), and the other half were
cured in a wet environment (22 ± 2 ◦C, 95% RH). Room temperature cured samples were
examined at the age of 28 days, while moist cured samples were conditioned and dried at
22 ± 2 ◦C, 50% RH before being tested at 35 days.

Table 3. AAM with red brick waste precursor with different fineness activated with 6 or 7 M NaOH
and with silica gel addition, wt.%.

Composition AAS Red Brick
Waste 1x

Red Brick
Waste 3x

Waste Silica
gel AAS/Solid

Br_1x_6 M 43 100 - - 0.43
Br_1x_7 M 43 100 - - 0.43
Br_3x_6 M 43 - 100 - 0.43
Br_3x_7 M 43 - 100 - 0.43

B95/5_1x_6 M 43 95 - 5 0.43
B95/5_1x_7 M 43 95 - 5 0.43
B95/5_3x_6 M 43 - 95 5 0.43
B95/5_3x_7 M 43 - 95 5 0.43

2.3. Testing Methods

A CILAS 1090 LD laser scattering particle size distribution analyzer was used to
determine specific surface area, density, and particle size distribution in the range from 0.1
to 500 µm for the precursors.

The XRD analysis was performed using a D8 Advance diffractometer (Bruker AXS,
Karlsruhe, Germany) operating at a tube voltage of 40 kV and a tube current of 40 mA. The
X-ray beam was filtered with a 0.02 mm Ni filter to select the CuKα wavelength. The XRD
patterns were identified with references available in the PDF-2 database.

A fluorescence spectrometer S8 Tiger (Bruker AXS, Karlsruhe, Germany) was used
to determine the chemical composition of raw IC, milled red brick waste, and silica gel.
A scanning electron microscope (SEM) FEI Quanta 200 FEG was used to investigate the
microstructure of AAM. The chemical elements of the materials were investigated with the
Bruker Quad 5040 energy-dispersive X-ray spectrometer (EDS) detector (123 eV).

The specific surface area was measured using the semi-automatic Blaine instrument
(TESTING Bluhm & Feuerherdt GmbH, 1.0290 E) according to EN 196-6:2010.

TG/DTA curves were registered with the Linseis STA PT-1600 thermal analytical
instrument up to 1000 ◦C (with a temperature rise rate of 10 ◦C/min; the air was used as
the oxidative environment; the weight of the sample was (50 ± 5) mg).

Mechanical properties of the AAM samples with dimensions of 20 × 20 × 20 mm were
performed on a Zwick Z100 universal testing machine with a testing speed of 0.5 mm/min.
The curing and testing conditions were described in Section 2.2.

3. Results

XRD results of AAM at the age of 35d are given in Figure 4. For all samples, crys-
talline quartz was detected as a strong peak (79-1910). For the AAM based on calcined
IC at 700 ◦C, montmorillonite, (Al(OH)2)0.33Al2(Si3.67Al0.33O10)(OH)2, (11-303) and mus-
covite, KAl2Si3AlO10(OH)2, (7-25) was detected. Hydrosodalite Na8Si6Al6O24(OH)2(H2O)2
(72-2329) was also detected. The combination of red brick waste and calcined IC at 700 ◦C
shows the presence of both crystalline peaks detected on AAM with separately activated pre-
cursors. Together with muscovite (7-25), philipsite andNa4KAl5Si11O32(H2O)10, (73-1419)
were also detected. Different peaks were detected for mixture composition Br3x, where
new peaks appeared which are associated with herschelite, NaAlSi2O6·3H2O (19-1178),
and X—Faujasite (76-843). For the red brick waste-based sample with silica gel addition
(BR95/5), besides muscovite (7-25), and hematite, syn (13-534), zeolitic mineral X—faujasite,
(Na2Ca )0.075(Al0.3Si0.7)O2(H2O)0.22, (76-843) were detected.
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Figure 4. XRD results of AAM. X—faujasite (76-843), Q—quartz (79-1910), H—hematite, syn (13-
534), S—hydrosodalite (72-2329), L—montmorillonite (11-303), M—muscovite (7-25), F—philipsite
(73-1419), E—herschelite (19-1178).

During the curing of the samples, efflorescence was observed in samples with silica
gel addition. This white powder was collected from the surface of the samples and tested.
XRD analysis of this powder was performed. Results indicate it is an amorphous substance
with strong villiaumite, syn, NaF, (36-1455) compound peaks determined. A halo in the
region from 20 to 30◦ 2θ indicates amorphous silica present in this powder.

SEM micrography was used to study the microstructure of four mixtures of different
AAM (Figure 5). The energy dispersive spectroscopy (EDS) was performed on SEM images
for the chemical characterization of the geopolymerization products. The sample surface is
covered with typical hydrosodalite “rose-shaped” individual crystals with a size of around
1.5 µm [24]. The samples based on red brick waste precursor had the highest hydrosodalite
crystal coverage. Samples with calcined IC precursor and the red brick waste mixture had
different morphology. For composition B50, needle-like and reticular C-S-H phases were
embedded within the matrix [25,26].

The EDS test results are shown in Figure 6. The oxygen content of the AAM matrix
was from 59 to 61 wt.%, aluminium from 6.2 to 7.6 wt.%, silicon from 16.7 to 19.9 wt.%, and
Na from 7.9 to 10.5 wt.%.

The compressive strength results are given in Figure 7. The compressive strength of
calcined IC at 700 ◦C showed a growing trend during 1, 28, and 35 days of curing. Early
compressive strength was 5 MPa and it increased to 16 MPa. IC precursor obtained at
higher temperatures (800 ◦C) showed lower strength gain and strength increased from 3
to 11 MPa. Compressive strength with red brick waste precursor showed rapid strength
increase at early age reaching its maximal valuearound 15 to 16 MPa.
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Figure 7. Compressive strength of AAM based on different red clay precursors.

The compressive strength results of red brick waste precursor-based AAM are given
in Figure 8. The use of higher molarity AAS led to a compressive strength increase for all
mixture compositions. Red brick waste precursor which is of a courser nature and activated
with 6 M NaOH (6M 1x) showed strength results at around 15–16 MPa at all ages. The
extra grinding of red brick waste did not affect strength with 6M NaOH AAS. Compressive
strength for 6M 3x was 14–16 MPa. Alkali activation with 7 M NaOH AAS leads to strength
increase, for 7M 1x it was 21–23 MPa and for 7M 3x it was 22–28 MPa. The addition of
silica gel at 5 wt.% slightly reduced the compressive strength of AAM and it was in the
range from 11 to 14 MPa. 7M AAS increased these results from 15 to 23 MPa. A similar
tendency was observed from additional ground red brick waste. Compressive strength
slightly increased to 11–15 MPa (6M 3x 95/5) and from 19 to 22 MPa for 7 M 3x 95/5.
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Figure 8. Compressive strength of AAM based on different red brick waste precursors.

4. Discussion

A geopolymerisation reaction of the precursor was detected as new crystalline peaks
were identified after alkali activation of a red brick waste and calcined IC. Minerals such
as montmorillonite and muscovite in the composition of AAM samples made with 700 ◦C
treated IC precursor could indicate that polymerization reaction was not completed and
these could be remaining from red clay precursors. This also corresponds to the gradual
strength increase during the curing period of specimens made with this precursor. Geopoly-
merisation secondary reaction products such as hydrosodalite were detected which act
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as an indication for the partial crystallization of sodium aluminate silicate hydrates (N-A-
S-H gel) [25,27]. For the mixture composition with a combination of red brick waste and
calcined IC at 700 ◦C, philipsite crystalline phase was detected which could be a further
crystallization product of hydrosodalite. The detected needle-like crystals could be referred
to the newly crystallized Na-aluminosilicate phase, which could represent zeolite nanocrys-
tals [11]. New zeolite minerals such as herschelite and X—faujasite were detected for AAM
based on red brick waste precursors (Br3x). For AAM with silica gel addition, the higher
amount of reactive silica initiated the formation of zeolites as fluoride from silica gel may
react as a mineralizator. NaF was detected as white efflorescence powder is evidence of an
exchange reaction between Al3F and NaOH from an alkali activation solution. Villiaumite
and gibbsite (Al (OH)3) can be formed. Similar peaks were observed for AAM with 5%
silica gel addition, but the peak intensity was lower as the AAM matrix overwhelmed the
quantity of salt in the sample. Such formation of different types of zeolites must be studied
in detail to investigate the possibility of forming stable crystalline zeolites with various
applications.

SEM results indicated, that the degree of reaction for AAM based on red brick waste
precursor is much denser leading to a higher degree of geopolymerisation contributing to a
higher compressive strength [28]. EDS results indicate that there is a similar compound
content for all mixtures as the same raw IC was used for the preparation of precursors
only with different temperature treatment conditions. Compared to metakaolin-based
geopolymers which possess O from 41–43%, aluminium from 11.6 to 16.5 wt.%, silicon
from 24.5 to 26 wt.% and sodium from 5.2 to 7.4 wt.%, the oxygen and sodium content has
increased while the aluminium and silicon content is lower [28]. This is also allocated from
the chemical composition of the precursor and activator solution.

The compressive strength results indicate that the red brick waste precursor shows
a higher initial strength increase compared to the calcined IC precursor. This could be
associated with higher temperature treatment and the increase of reactive phase in clay.
Despite the coarser particle size distribution for red brick waste and following lower specific
surface area (which could reduce the rate of geopolymerisation during alkali activation),
the AAS-solid ratio was lower meaning that a denser structure of AAM was achieved which
resulted in higher early compressive strength. Similar tendencies were observed for both
red brick waste precursor types ground with different powder fineness or particle sizes
milling regimes. A combination of calcined IC precursor and red brick waste precursor
leads to a compressive strength decrease. Red brick waste activated with higher molarity
NaOH solution showed in general a higher compressive strength and is a favorable option
in alkali activation solution selection. Silica gel addition slightly reduced the strength of
AAM which corresponds to previously published data [14,16]. Obtained strength results fit
well in the traditional AAM strength range giving a reasonable option to replace traditional
cementitious binders.

5. Conclusions

Heat-treated illite clay (IC) at 700 to 800 ◦C was used as a precursor for obtaining AAM
which corresponds to DTA/TG results, indicating the dehydroxylation of IC at a range from
411 to 546 ◦C. A comparison to red brick waste precursor from a brick production factory
was conducted. The precursor fineness was determined based on grinding parameters, and
it was concluded that the grinding of soft raw clay followed by heat treatment provides a
finer particle size than the grinding of red brick waste particles (3925 cm2/g to 1448 cm2/g).
Additional grinding of red brick waste allowed us to increase the fineness to 2515 cm2/g.
A high early strength was obtained with no strength gain during further curing for AAM
based on ground red brick waste. Both the 6 M and 7 M NaOH solutions proved to be
suitable to produce AAM with strength from 11 to 28 MPa. The coarser particle nature of
clay treated at higher temperatures led to lower strength at 35 d from 11 to 16 MPa. The
highest strength results were obtained for AAM based on red brick waste. Additionally
ground red brick waste with 7 M NaOH alkali activation solution led to 28 MPa strength.
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An important difference was detected between thermally treated IC and red brick waste
precursors—strength gain was more rapid for red brick waste precursor AAM while
thermally treated red clay had a lower initial strength and it gradually increased. The
addition of silica gel led to a compressive strength decrease and efflorescence was detected
with a salt consisting of NaF compounds. The hydrosodalite and zeolite crystals were
detected in the structure of AAM based on the red brick waste precursor. Results indicate
the difference in characteristics of AAM based on similar source IC precursors, showing
the important role of the proper treatment of a precursor before alkali activation. Red brick
waste from the brick production process proved to be highly suitable for the production
of AAM.
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