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We have studied the manuscript of Nicholas et al. [1] very attentively; here are our
comments:

The authors have used a different dataset (ADNI-3, rather than ADNI-2 used in [2]).
The protocols of ADNI-2 and ADNI-3 datasets are not fully consistent [3]. The ADNI MR
data set includes a wide range of scanner platforms; however, there has been a broad gap
between older MRI systems and the state-of-the-art systems within each vendor’s product
line. In ADNI-3, the “ADNI 3 Basic” and “ADNI 3 Advanced” protocols were used. The
authors failed to mention if the images they used were made using a protocol compatible
with ADNI-2. The dMRI spatial resolution was improved between ADNI-2 and ADNI-3
by reducing the voxel size from 2.7 × 2.7 × 2.7 mm to 2.0 × 2.0 × 2.0 mm [4]. This may
have influenced the results. Moreover, the classification results among these studies are not
directly comparable, because they differ in terms of the sets of participants.

We fully agree that the replication of important findings by multiple independent
investigators is fundamental to the accumulation of scientific evidence [5]. Deep learning
network models are notoriously known for being difficult to replicate, even if the same
sets of parameters are used. The training of neural network models is not deterministic, so
the models are likely to produce differing results [6]. The strive of the authors to precisely
replicate the results may not be achievable.

1. Considering the description of the training process described in their manuscript, we
have tried our model on the ADNI-3 dataset using both cross-validation procedures
used by To et al., However, we failed to replicate their results (see the result Table 1
and Figure 1).

2. Our result is not exceptional. In fact, it is in line with the state-of-the-art studies,
which achieved a similar high performance in the ADNI dataset by using 2D CNN,
ResNet-18 [7] and custom CNN [8], as well as in other datasets such as OASIS [9,10].
We are somewhat puzzled as to why the performance reported by To et al. on the
ADNI dataset is so low.
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Table 1. Replicated results.

Binary Classes Accuracy (%) Sensitivity (%) Specificity (%)

EMCI vs. LMCI 70.62 68.98 95.23
CN vs. EMCI 77.30 73.50 92.03

          
 

 

    

        
      

      

 
       

                 
             

                  
               

    

       

          

 
                  

                
  

             
                  

                   
           

                 
                  

                   
                

        
                     

              
        

                  
                 

        
                    

            
                    

           

Figure 1. Confusion matrices of replicated result.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Nicholas, P.J.; To, A.; Tanglay, O.; Young, I.M.; Sughrue, M.E.; Doyen, S. Using a ResNet-18 Network to Detect Features of

Alzheimer’s Disease on Functional Magnetic Resonance Imaging: A Failed Replication. Comment on Odusami et al. Analysis of
Features of Alzheimer’s Disease: Detection of Early Stage from Functional Brain Changes in Magnetic Resonance Images Using a
Finetuned ResNet18 Network. Diagnostics 2021, 11, 1071. Diagnostics 2022, 12, 1094. [CrossRef]
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