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Abstract: The identification of human activities from videos is important for many applications. For
such a task, three-dimensional (3D) depth images or image sequences (videos) can be used, which
represent the positioning information of the objects in a 3D scene obtained from depth sensors. This
paper presents a framework to create foreground–background masks from depth images for human
body segmentation. The framework can be used to speed up the manual depth image annotation
process with no semantics known beforehand and can apply segmentation using a performant
algorithm while the user only adjusts the parameters, or corrects the automatic segmentation results,
or gives it hints by drawing a boundary of the desired object. The approach has been tested using
two different datasets with a human in a real-world closed environment. The solution has provided
promising results in terms of reducing the manual segmentation time from the perspective of the
processing time as well as the human input time.

Keywords: human body segmentation; depth images; image processing; point cloud

1. Introduction

Deep learning has shown great success in tackling large difficulties in several domains,
including image and video processing, computer vision, and multimedia, as a key advance
in artificial intelligence. It is also particularly useful for object detection, tracking, and
segmentation, all of which are important tasks in recognizing human activity from images.
Whole-image classification is often used for activity recognition, while pixelwise classifica-
tion is often used for detection and segmentation. In this field, deep learning networks and
very efficient forward and backward propagation techniques are already commonplace.
Data labeling became an important part of creating a supervised neural network model.
The application domains covered are likewise quite diverse [1].

For human body segmentation, three-dimensional (3D) depth images or image se-
quences (videos) can be used, which represent the positioning information of the objects
in a 3D scene obtained from depth sensors, such as Microsoft Kinect and Intel Realsense.
Despite the fact that these devices are deemed low-cost, the level of precision they attain
makes them acceptable for application in a variety of research fields such as education,
rehabilitation, and entertainment [2]. However, the use of low-cost depth cameras also
has limitations, such as variable lighting conditions and background clutter, which can
negatively affect the quality of the tracking [3]. Moreover, depth maps recorded by depth
camera sensors are frequently distorted with various sorts of spatial and temporal artifacts
such as Gaussian noise and hole pixels as spatial artifacts, as well as flickering between
depth video frames [4]. By separating poses and removing context, the misleading context
can be avoided. Furthermore, while movies in general include more information, the
network may not learn the correct feature for classification (for example, learning more
from the background instead of a person’s movement), causing the test case to fail [5].
Other challenges faced by depth cameras include handling fast motion and topological
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changes [6], which is especially relevant in the case of humans performing motions, while
human body parts may become self-occluded in the process. Given a video stream of
30 frames per second and a duration of 1 min, 1800 frames have to be marked, which
makes it infeasible to mark large datasets manually. However, this might be a difficult
process if the network is used to mask an image and even more challenging if a video has
to be masked when preparing the training dataset. Image masking is used in areas such
as human body segmentation [7]. Some frequent problems, such as occlusion, distortion,
motion blur, and scale variation, make object segmentation and object tracking challenging.
By combining the two difficulties of video object segmentation and tracking, they can be
overcome and their performance improved [8]. Human body images have regular geomet-
ric structures and layouts [9], whereas general object and scene images have significantly
more complex geometric structures and layouts [10].

In this paper, a framework to assist in human body segmentation is presented with
the main focus points being on the performance by minimizing both computational and
human involvement over time.

The structure of the remaining parts of this article is organized as follow. Section 2
discusses the previous works on human body segmentation. Section 3 formulates the
problem and describes the proposed framework. Section 4 describes the dataset and the
results of the experiments. Finally, Section 5 presents the discussion and conclusions.

2. Related Works

In human motion analysis, segmentation of posture is critical. On a large-scale training
dataset, however, high-dimensional features are memory-intensive and difficult to handle.
The authors of [11] presented a two-stage dimension reduction approach (biview learning)
to encode two distinct viewpoints, namely depth-difference characteristics and relative
position information, in order to allow for learning a low-dimensional feature space for
posture segmentation.

Depth sensor-based systems often misinterpret bodily parts, and the problem becomes
more serious. This is due to the fact that applications have limited information on the
correctness of recognition, and employing those parts to synthesize body postures would
result in significant visual artifacts [12]. Paper [13] describes a data fusion algorithm based
on algebraic operations in vector space, the system’s deployment using three depth sensor
units, and the analysis of dynamic characteristics (joint position, speed of movement,
functional working envelope, body asymmetry, and rate of fatigue) of human motion
during physical exercise. The consistency of several elements throughout time can be used
to assess a joint’s reliability, and learning the weights of dependability terms improves the
performance of the classifier [14]. To capture the concurrent correlations between body
joint and limb data, Huang et al. suggested a feature transfer paradigm [15]. Concurrent
correlations of these features can help build a structural link that might improve the
network’s inferences while reducing the requirement for refinement modules.

Human point cloud segmentation is typically challenging and difficult to achieve
correct approximations, especially when there is self-occlusion and no color or texture
signals. Lehment et al.’s suggested segmentation model [16] attempted to address this
issue by extracting tiny regions of high saliency, such as the hands or arms, and ensuring
that the information contained in these regions is not overshadowed by larger, less salient
parts, such as the chest. The use of a deep recurrent hierarchical network can also provide
more flexibility by minimizing or eliminating posture detection issues caused by a limited
visibility human torso in the frame, also known as the frame occlusion problem, which
occurs when only a portion of the body is visible [17].

Alternatively, Qin et al. [18] proposed that 3D human skeleton extraction be converted
into offset vector regression and human body segmentation using a deep learning-based
point cloud contraction to improve the robustness of the joint point regression.

Kulikajevas et al. pioneered an adversarial architecture [19] for point cloud recreation,
built specifically for targeting humanoid shapes. The same research team suggested a
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three-staged deep adversarial neural network architecture for a comprehensive human
body posture reconstruction capable of denoising and improving real-world depth sensor
data [20], achieving impressive Earth Mover and Chamfer distances of 0.059 and 0.079. The
modified approach in conjunction with the camera’s inherent settings was shown to be
capable of rebuilding self-obstructed human-like morphing shapes from a depth frame [21].

Hu et al. presented an alternate approach with high operability because it is unaffected
by the pose and the pose fluctuations between the two depth images, which can also
reconstruct a user’s precise body shape beneath tight or loose clothing, with the added
benefit of being able to generate an animatable human body model [22].

3. Methodology
3.1. Problem Statement

Say we have a depth video (a sequence of depth images)

S = {I0, I1, . . . , In} (1)

Here, n is the number of depth frames in the sequence and all frames are taken
continuously in the same scene. We need to find binary masks

SM = {MI0, MI1, . . . , MIn} (2)

for each frame in S such that values of 1 represent pixels where the desired object is present.
Thus, SM is an image that has the same dimensions as S and acts as a mask for it.

SM could be found by a human manually marking every frame of the sequence.
Because this would be a long and tedious process, a tool that helps segmenting the video
quicker is required.

3.2. Suggested Framework

The suggested framework operates on depth streams—single stream images where
each pixel’s value corresponds to its distance from the camera. Each video (image sequence)
is represented as a list of 2D arrays and information about their dimensions, serialized by
Protobuf [23] library. The output is a sequence of two types of images—the original image
and its mask. More formally, the framework performs a transformation

SM = T(S) (3)

and outputs both SM and S.
The framework can work in multiple modes:

• Full manual—the user draws the mask on the image by hand. Useful in case all other
modes fail to provide the desired results. In this case, the transformation is simply
user input:

IM = H(I) (4)

• Segmentation based on initial point—the user selects segmentation sensitivity b and
a point that belongs to the desired object. Selected object is added to the mask and
the process is repeated until the whole desired object is marked. In this case, the
transformation is a union of autosegmented blobs of the image where initial points
are provided by the user:

IM = ∪n
i=1 A(Pi, b) (5)

• Segmentation based on the previous frame—segmentation based on initial point is
performed, but initial points are taken from the previous frame. This is only applicable
if at least one frame is already segmented. In this case, the transformation is the same
as in segmentation based on initial point, but the points are recalculated in case the
object moved:

IM = ∪n
i=1 A(Pmod) (6)
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where Pmod is the recalculated point: the user-selected 2D point from the previous point
cloud is taken (ignoring the depth value) and a point with the same 2D coordinates
in the current frame is selected. Pmod is found using a standard algorithm for closest
point search in a kd-tree. Euclidean distance between target point and root node is
calculated and the same algorithm is repeated for left and right branches of the tree
recursively. If a closer point is found, the result is updated to that point. If the distance
from the target point to the plane splitting the child node is greater than our best guess
distance, we can eliminate the entire subtree. Selection of the new point works very
well if the user selects a point near the middle of the object—even if the object moves
slightly, segmentation is still applied correctly.

A generalized view of how the segmentation algorithm is outlined in Figure 1.

Figure 1. Activity diagrams: autosegmentation (left), segmentation inside the point cloud (right).

3.2.1. Noise Reduction

A bilateral filter is used to reduce the noisiness of the depth frame. This filter has been
chosen because it smooths the noise yet preserves object edges [24]. Because the filter blurs
the image by combining values from the neighboring region of the pixel, it also smooths
out the outlier points that appear in the frame because of the properties of depth cameras
which makes segmenting the image easier. It was found experimentally that bilateral filter
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performed best with parameters σd = σr = 0.8. Thus, the noise is reduced by applying the
bilateral filter:

Id = B(I, 0.8, 0.8) (7)

3.2.2. Internal Data Representation

The depth images are stored as two-dimensional arrays of depth values. This is not an
ideal frame representation because it has O(n) complexity for finding neighboring points.
Because this search takes multiple passes for a single frame, after applying a bilateral filter
on the frame, the depth frame is converted to a point cloud that is represented as a 3D
binary tree [25]. This representation allows lower complexity of the search. Thus, after
applying a bilateral filter, the frame Id is converted to a three-dimensional binary tree Ibt.

3.2.3. Novel Clustering Algorithm

The algorithm for constructing a segment of the image defined in Formula (5) has two
parameters: an initial point Pi ∈ Ibt and a bounding box size b > 0. The objective is to find
such rectangular bounding box B that is the smallest possible bounding box containing
the point Pi and, if expanded in any dimension by b into a bounding box Bi, both B and Bi
would contain the same subset of the point cloud.

The approach used by PCL [26] (finding close points for each point separately) has
a downside of having to traverse the three-dimensional tree numerous times. The point
cloud is searched once for each point. Because the worst case complexity for radius search
in a 3D search tree is O(n

2
3 ) [27] (n is the number of points in the tree), the total number of

node traversals is O(n
5
3 ). If bounding boxes may be applied instead, for example, if the

object in the point cloud is known to be alone in such isolated bounding box, a bounding
box may be used instead of a separate sphere for each point. In a more general sense,
any 3D shape may be used, but it has to fulfill one requirement: it has to have constant
complexity (O(1)) to check whether a given point is inside the shape or not. A bounding
box has this property because containment check involves a fixed number of comparisons.
In that case, the number of traversals could be reduced. Instead of finding neighbors for
each point separately, the search could be performed for a set of points. The search space
would be the smallest bounding box that holds all points in the cluster expanded by b. After
all points are found, the bounding box is recomputed and the search is repeated until no
new points are added due to the expanded bounding box. This would reduce the amount
of tree traversals from the number of points to the number of bounding box expansions.

In addition to that, a further optimization may be made. Instead of finding the bound-
ing box after each search, it could be expanded during the search. This is implemented by
moving the expansion of bounding box, which is a low-cost operation, inside of the tree
traversing code. If the point is added to the current bounding box, the bounding box may
be expanded immediately. This does not guarantee that all points are found in a single
pass but reduces the number of searches inside the tree even further. Thus, the algorithm
to find a single cluster for Formula (5) is shown as Algorithm 1. The novelty suggested for
this algorithm is on line 28: the bounding box is expanded after adding each point to the
resulting point cloud. Without this optimization, the expansion would happen after line 11.

The data structures used in the listing are:

• Bounding box, which represents a rectangular box in 3D spaces, with properties minX,
maxX, minY, maxY, minZ, maxZ representing the corners of the box;

• Point, which represents a point in 3D space;
• Search tree, which has depth (0—split by x coordinate, 1—split by y, 2—split by

z), location (the point that the node holds), removed (internal property to prevent
returning already returned points), left and right (child nodes).
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Algorithm 1 Algorithm to find a cluster

Require: b > 0
Require: firstPoint ∈ pointCloud

1: while true do
2: cluster = createEmptyCluster
3: currentPoints = [firstPoint]
4: boundingBox = point.coordinates ± b
5: newPointsAdded = true
6: while newPointsAdded do
7: closePoints = FCP(boundingBox,b,root)
8: if closePoints.size = 0 then
9: newPointsAdded = false

10: end if
11: currentPoints ∪= closePoints
12: end while
13: return cluster(currentPoints)
14: end while
15: procedure FCP(boundingBox,b,node,result=[])
16: if node.depth = 0 then
17: currentLocation = node.location.x
18: else
19: if node.depth = 1 then
20: currentLocation = node.location.y
21: else
22: currentLocation = node.location.z
23: end if
24: end if
25: if !node.removed and boundingBox.contains(node) then
26: result ∪= node
27: node.removed = true
28: boundingBox = EXPAND(boundingBox, node, b)
29: end if
30: points ∪= FCP(boundingBox,b,node.left,result)
31: points ∪= FCP(boundingBox,b,node.right,result)
32: return points
33: end procedure
34: procedure EXPAND(boundingBox, node, b)
35: boundingBox.minX = MIN(boundingBox.minX, node.x−b)
36: boundingBox.maxX = MIN(boundingBox.maxX, node.x+b)
37: boundingBox.minY = MIN(boundingBox.minY, node.y−b)
38: boundingBox.maxY = MIN(boundingBox.maxY, node.y+b)
39: boundingBox.minZ = MIN(boundingBox.minZ, node.z−b)
40: boundingBox.maxZ = MIN(boundingBox.maxZ, node.z+b)
41: end procedure

In the worst case scenario, where the points are located in such a way that each
bounding box expansion adds no new points, iteration count is the same as in the case
of point–local sphere neighbor search. In the best case scenario, if all points are in close
proximity, inside the initial bounding box, only one iteration over the tree is required. In
general case, the iteration count depends on how many bounding box expansions are
required to cluster the whole point cloud. The largest gain compared to the approach
without autoexpanding bounding boxes is the case where every point ends up belonging
to the same cluster, but the tree is constructed in such way that every point, when added,
expands the bounding box. In this case, the whole tree would be added to the cluster and
only 1 tree traversal would be required. The fixed bounding box approach would require
1 tree traversal for each point.
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3.2.4. Working with the Point Cloud Manually

The constructed point cloud, when shown to the user, is converted back to a depth
image and visualized as an image where different colors correspond to different depth
values. The user selects an area of the image using a square selector of selected size and the
marked points are added to the selection. This is equivalent to Formula (4). The user may
also mark a part of frame manually and the rest automatically.

If a segmented cluster contains too many points, they can be removed by constructing
an “erased” segment. This is the same as marking a segment manually, but the cluster is
explicitly excluded from the final selection.

In case the automatic or manual selection is incorrect, the user may undo the last
selection. All selected clusters of points are thus stored in a stack and can be pushed and
popped. In case of a completely wrong segmentation, a full clear of all the selections is
available. This is equivalent to undoing all clusters.

3.3. Adapting the Solution to Video Streams

When a single frame is fully marked, the following frames should be similar if they
come from the same video sequence. Thus, it is reasonable to try applying the same
segmentation on the next frames. Because all clusters are stored separately, the same
sequence of segmentation can be applied again. Each segmentation step is repeated for the
next frames that are visible on the screen (1440p resolution screen fits 12 frames at once).
The segmentation depends on the type of the original segmentation method.

In case of a manually marked frame, there is no semantic information about the
marked area. Therefore, the only way to apply the segmentation again to mark the same
area of the image. This is performed by selecting the points in the same location of the
image regardless of their depth values. In case this is wrong, the user may correct the
selection by erasing or marking some points. If there is an erased cluster in the original
selection, the erasing is also transferred.

In case of automatic segmentation, the algorithm defined by Formula (6) is applied.
User’s click location is stored and the closest point to the originally clicked point is found in
the current point cloud. This acts as initial point for the automatic segmentation algorithm
that is reapplied. After that, each frame can be corrected by human if needed. When the
next page of frames is opened, segmentation is again transferred automatically from the
last frame of the previous page. All frames of the same page are processed in parallel
utilizing Java parallel streams.

Working with Large Video Sequences

A point cloud represented by a three-dimensional search tree proposed in this article
allocates several values per point:

• Current point, consisting of 3 doubles (x, y, and z coordinates in 3D space) and
2 integers (x and y coordinates on the depth image) and a reference to it, a total of
3× 8 + 2× 4 + 2× 8 = 48 bytes;

• References to the left and right child nodes of the tree. Because the application is
compiled for 64-bit platforms, the references use at least 2× 8 = 16 bytes;

• A Boolean that indicates whether the point has already been assigned to a cluster
(1 byte);

• A Boolean that indicates whether the node has any child nodes that have not yet been
assigned to a cluster (1 byte);

• Current dimension of the tree (an integer, 4 bytes).

This makes the total memory consumption at least 70 bytes per point. Because the
resolution of a Kinect’s depth frame is 640× 480 pixels and the frame rate is 30 frames per
second, a 10 s video (300 frames) uses 6.2 GB of memory just to store the point clouds. This
means that the tool is either limited to processing short frame sequences or the full video
must not be loaded all at once. The second approach is used.
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This is implemented by loading a portion of the frames into the memory, running
segmentation for all loaded frames, and storing the result to disk. After that, the next
portion is loaded, and the process is repeated until the full sequence is processed. Because
the result is just the two frames (original depth frame and the mask) represented as flattened
arrays, they take only 87 MB of memory for the same 300 frame sequence and can be loaded
to the memory together and then merged.

3.4. Software Solution

The implemented software solution is shown in Figure 2. A total of 12 frames are
visible to the user at once (the exact number depends on screen resolution, 2560 × 1440
is used in this example). In this case, the human body was clicked in first frame and
segmentation was transferred automatically to the other frames. Different shades of green
represent different colors, blue represents currently selected human body mask. After the
user is done with what is seen on the screen, “Next” button is clicked and the next batch of
frames is loaded and immediately segmented according to the previous frames.

Figure 2. A screenshot of implemented software solution.

4. Framework Evaluation
4.1. Dataset

The dataset consists of 800 depth video recordings gathered using Kinect Studio
(Microsoft Corporation, Redmond, Washington, DC, USA) and custom software to convert
it to a binary format using the Protobuf (Google LLC, Mountain View, CA, USA) [23] library
which can then be loaded again and analyzed. The data consist of two sessions recorded
with a triple Kinect setup with Kinects capturing the same room from different sides. The
first dataset is recordings of people in different positions (standing with raised hands,
laying on the ground, and similar) in a computer classroom with artificial light (7 people,
30 poses each, 674 recordings, over 193,000 frames). The second dataset is recordings of
people either standing up or sitting on a chair in an open room with natural + artificial light
(40 people, 2 poses each, 266 recordings, over 69,000 frames). There were also 295 frames
captured using an Intel RealSense ZR300 (Intel Corporation, Santa Clara, CA, USA) device.
Example frames are shown in Figure 3.
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Figure 3. Example depth images; different colors represent different distances from the sensor.

For our experiments, 1000 frames have been randomly selected from the two datasets
containing Kinect data and 10 frames from RealSense dataset. All the images shown in
Figure 3 are actually the first four frames from the benchmark dataset.

4.2. Test Hardware and Software

All of the benchmarks have been performed on a desktop PC running an AMD Ryzen
9 3900X CPU and 32 GB 3200 MHz DDR4 RAM (Kingston HyperX Fury Black, 2 × 16 GB
on dual channel). It was tested using the Ubuntu 20.04 OS and OpenJDK Java 11.0.14.1.
Custom software was implemented to run the benchmarks.

4.3. Performance Results

The test software has an implementation of three algorithms:

• PCL Euclidean clustering—the original PCL algorithm that uses a radius search;
• Bounding box—an algorithm that uses a bounding box search;
• Expanding bounding box—an algorithm that uses a bounding box search and expands

the bounding box during the tree search (implemented in the final software solution).

All algorithms have been implemented using the Java programming language and use the
same point cloud implementation. Two types of benchmarks have been performed: one for
the execution time (depends on platform) and one for the tree node visit count (does not
depend on platform). The PCL algorithm is implemented using the algorithm provided in
their documentation and yields different results than the bounding box-based algorithms.
Both bounding box-based algorithms always produce the same result given the same
input. The performance benchmark runs a full segmentation of a point cloud—clusters are
extracted until every point belongs to exactly one cluster.
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Only the clustering time for the whole image is measured; it does not account for the
tree build time which is equivalent for all of the algorithms.

The performance of the algorithms is outlined in Tables 1 and 2. The PCL algorithm
struggles with the RealSense data because it is much more noisy and the algorithm starts
by yielding a large cluster (on a scale of 200k points, one third of a point cloud). Then, the
algorithm has to traverse the search tree at least as many times as the number of points in
the first cluster, which makes it especially slow in that case. The PCL algorithm performance
is much better with the Kinect data which is generally much less noisy.

Table 1. Algorithm runtime comparison.

Kinect, ms RealSense, ms Worst Case, ms

PCL Euclidean clustering 980 344,944 236
Bounding box 184 247 228

Expanding bounding box 16.3 45.7 145

Table 2. Algorithm node traverse count comparison.

Kinect, M RealSense, M Worst Case, M

PCL Euclidean clustering 193.7 38,099.9 39.8
Bounding box 39.6 37.1 21.1

Expanding bounding box 2.5 4.2 21.1

The suggested expanding bounding box algorithm is 60 times faster than the PCL
segmentation and about 11 times faster than a classic bounding box method with the Kinect
data. This is mainly due to the greatly reduced tree node traversal count—77 times fewer
iterations over the tree compared to the PCL algorithm and almost 16 times fewer that
of the classic bounding box. The worst case scenario frame is crafted to yield the same
number of iterations for both bounding box algorithms.

The results show that this approach improves the classic bounding box-based search
performance by a large margin and brings it closer to being able to analyze the data from
depth scanning sensors without having to downscale them.

4.4. Fully Automatic Segmentation Accuracy Results

The full dataset has been marked using the created framework by manually checking
the output of the framework and then correcting its output if it is not correct. The ground
truth image masks have been obtained as the output of this image. In order to evaluate the
accuracy of the algorithm, the same images have been segmented using the middle point
of the human-selected point cloud that has not been added to the result cluster and the
segmentation performed until either no more points could be added, or the result cluster
size has reached 90% of the human-marked cluster. This has been repeated with all of the
integer bounding box sizes b = 1 . . . 9 and the best solution was selected because the best
value b depends on the scene. The accuracy was calculated as

a =
n(A ∪ G)

n(A)
× n(A ∪ G)

n(G)
(8)

where A is a set of points marked by the segmenter, G-a set of ground truth points. An
average of the accuracy values has been computed for each frame in the sequence.

It is important to note that even though this benchmark was performed, the goal of
the solution is not to reduce the runtime while sacrificing a bit of accuracy but rather to
find the middle ground between the algorithm failing so much that the user has to redo a
major part of the work and being so slow that the user is waiting for too long while the
data are being processed. In other words, the optimal solution is considered to be such
an algorithm that minimizes the total time spent by the human. The total time consists of
human manual marking or the supervision of the results and computer processing time
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(human wait time). However, this benchmark gives an insight on how well the algorithm
performs when marking real-world data.

The frequencies of the accuracy values are shown in Figure 4.

Figure 4. Frequencies of accuracy values.

Most of the sequences fall either into an accuracy of above 93% or between the 4% and
20% range. The example frames of common categories are shown in Figure 5. The red color
represents set A, green—G, yellow—A ∪ G.

(a) (b) (c)

(d) (e) (f)

Figure 5. Examples of different accuracy value frames: (a) accuracy score 11%, (b) accuracy score
12%, (c) accuracy score 16%, (d) accuracy score 96%, (e) accuracy score 97%, (f) accuracy score 100%.
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The most common mistake that the segmenter makes is including some points that do
not belong to the object, which expands the bounding box too much and it keeps growing
indefinitely. This could be solved by the human by drawing a border manually—if it is
present, it creates a cluster of points that are not added automatically which acts as an
artificial wall that prevents the segmenter from selecting too many points.

The results suggest that 40% of the data could be segmented fully automatically or
with very minor corrections if the user provides a correct initial point and bounding box
size, while the rest required at least some user input. A total of 39.2% of all frame sequences
have been segmented with an accuracy over 84%; however, this percentage is 24% for the
dataset with complex poses and 76% for the dataset with simpler poses. These results
confirm that the framework requires fewer human corrections for simple scenes, where the
object is contained inside a clear bounding box. If the automatic segmentation fails but the
segmented object edge is not moving in a part of the video, the same human-marked border
can be reused which speeds up the whole manual segmentation process. The effectiveness
is difficult to measure because it depends on the correct human input, but if the object is
not moving and there is one bleeding edge, only that particular bleeding edge must be
marked in the first frame and the framework will automatically mark the remaining video
correctly. The framework does not perform well if there are many bleeding edges or the
object blends with the environment. This was apparent in the videos when the human is
laying on the ground.

The accuracy values for the first dataset are shown in Figure 6a. The plot is dissected
by the Kinect viewing angle because there are no major differences in the accuracies, with
a few exceptions. The back view camera had the best view of the human, while the side
view camera usually captured a smaller human surface area, and the front camera view
was occluded by a free hanging cable as seen in Figure 5b,c. The area around the human
legs for the front view camera appeared noisy as well. This dataset was processed worse
than the second dataset without any human supervision.

The second dataset consists of videos of humans in standing and sitting positions
captured using three Kinect cameras that view the person from different sides. The ac-
curacy values dissected by the position and the Kinect side are shown in Figure 6b. The
results show that the suggested solution works well for both poses with median accuracies
exceeding 99% and averages exceeding 95% with a few poor accuracy outliers. Other angles
yield lower accuracies. A large portion of the frames exceeds 90% accuracy—for five out of
six dissections, the first quartile is higher than at 90%.

(a) (b)

Figure 6. Accuracy distributions of both datasets. (a) Accuracy distribution of the first dataset by
view side; (b) Accuracy distribution of the second dataset by view side and human pose.

Table 3 compares the suggested solution to other existing solutions.
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Table 3. Comparison of state-of-the-art segmentation solutions.

Solution Accuracy Segments Based on Data Type

RGB–Depth–Thermal [28] 79% Human Random forest RGBD + IR
Body part models + GC [29] 65% Human Geometrical + prior knowledge RGB
Pictorial structures + GC [30] 58% Human Geometrical + prior knowledge Depth

Semantic CNN [31] 65% Any object CNN RGBD
Depth aware CNN [32] 49–61% Any object CNN RGBD

Suggested 24–76% Any object Geometrical Depth

Palmero et al. suggest multi-model RGB–Depth–Thermal human body segmenta-
tion [28]. The authors experiment with different techniques and obtain the best results by
using random forest-based fusion. They were able to reach 79% accuracy on their own
dataset which is more similar to our second dataset. However, the solution requires ma-
chine learning, and ground truth had to be marked manually. The solution is also limited
to human body segmentation.

Huang et al. [29] implement a robust human body segmentation algorithm based on
part appearance and spatial constraint. They create body part models and compute the
probability of the pixels belonging to each part, then construct a cut-graph and segment
the image based on it. The solution works with RGB images and is created specifically for
human body segmentation. Li et al. also suggest a similar technique [30], but they use
pictorial structures instead of body part models.

There are also CNN-based solutions that try to segment objects and can be applied to
any scene. Couprie et al. perform semantic segmentation and apply it to video streams
as well; however, they provide quantitative metrics only to evaluate the accuracy for still
images, not for videos [31]. Wang et al. suggest their RGBD segmentation CNN which
yields similar accuracy. However, both methods required pre-labeled data.

4.5. Manual Segmentation Time Cost Analysis

The downside of the bounding box approach is that in some cases it captures too
many points and the bounding box grows more than it should. This is the reason manual
segmentation is also introduced as a part of the segmentation framework. It is relatively
straightforward for an experienced person to see the failing point of the bounding box
approach. The user can then build a “wall” by marking one part of the human manually.
For example, a common failing point is a leg with a lot of noise. Marking the leg or,
depending on the case, part of the leg manually is a quick operation compared to manually
marking the whole human. When this “wall” is created, the segmentation algorithm treats
manually marked points as already processed and does not expand the bounding box to
include them all. This manual fix enables the suggested algorithm to perform the rest of
the work automatically. Moreover, if the marked part still belongs to the human body in
the next frames, automatic segmentation works correctly.

The whole dataset has been marked by two people using the created framework. The
exact measurements of the spent time were not made because the work was interrupted, the
people were distracted. However, an approximate measure is possible by the save times of
the files (accurate to the minute). The total time spent on segmenting the frame sequences,
excluding frame processing, saving to disk, and other CPU-intensive tasks where the user
is waiting, is almost 2 min per frame sequence or ∼0.35 s per frame.

Segmentation using the PCL algorithm has not been performed; however, the sug-
gested framework segmented∼40% of the data automatically, while using the PCL solution,
this number is ∼70%. The human can see 12 frames on the screen at once and if the auto-
matic segmentation is correct, it takes about 1 s for an experienced user to visually verify
that the segmentation of those 12 frames is indeed correct. This means, in the case of
correct segmentation, the total processing time per 12 frames is 1 s of human time + 0.016 s
of processing time (the images on the screen are processed in parallel; the benchmark
hardware has 24 cores so it can process all of the frames in parallel which reduces the
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processing time of 12 frames to approximately the processing time of 1 frame). If the PCL
algorithm would be used, this would take 1 s of human time + 0.95 s of processing time.
This means that the total time taken to process 40% of the data (8700 batches, 12 frames
each) would be almost 2.5 h with the suggested framework and 4.7 h with the PCL solution.

It is difficult to estimate the impact of a better PCL accuracy vs. processing time;
however, a rough estimate could be made. If fully automatic segmentation takes 0.08 s of
user time per frame for 40%, the other part of the data should have taken 0.55 s per frame
or 6.6 s per 12-frame batch to obtain the average of 0.35 s per frame. However, in cases
where the PCL fails, both algorithms fail in such a way that is more difficult to fix manually
because the boundaries of the object are very fuzzy. A good example of this is a human
lying on the floor—the full perimeter of the human must be marked manually for both
algorithms, and this is much more time consuming than just manually marking one limb.
In other words, if the bounding box failure is easy to fix, the PCL would most likely not fail
at all, but when it fails, a lot of the manual work must be performed. Thus, the average
manual work time would most likely be higher for the worst 30% of the data. The exact
number is difficult to measure, but the authors believe it could be 1.5 times higher, i.e., 9.5 s
per 12 frames. If this is taken into account, the human would process 70% of the data with
1 s per 12 frames and 30% with 9.5 s per 12 frames. This reduces the human time to 0.29 s
per frame rather than 0.35 s with the bounding box approach. Thus, the total processing
times would be 4.5 s per 12 frames for the PCL and 4.2 s per 12 frames for the bounding
box approach. This difference could save 1.8 h of total work for our datasets.

This analysis shows that the PCL algorithm may be better suited if data are noisy and
the object boundaries are fuzzy, while the bounding box approach shines when the object
is in an open space.

5. Discussion and Conclusions

Given the fact that the Kinect’s frame processing time was reduced from 184 ms to
16.3 ms while reducing the amount of node visits by 95%, the remaining 5% takes 8.8 ms.
This leaves 7.5 ms for all the work that does not involve traversing the point cloud, such
as collecting the results to point lists (clusters) or selecting initial points for new clusters.
This shows that the most computationally expensive part of the algorithm may now take
around half of the computing time.

The iteration count difference between the Kinect and the RealSense processing results
shows that a good performance of the proposed algorithm is not guaranteed but provides
significant improvement over classic techniques in real-life scenarios. On the other hand,
even in the worst case scenarios, the expansion of the bounding box works like the non-
improved version of the algorithm. This makes the improvement a viable option in all of
the scenarios over the classic version. The PCL solution is much slower and is prone to
a very poor performance in some cases; however, it is more accurate in most cases. The
research measures the performance of the clustering of the point cloud using k-dimensional
trees. The tree must be constructed before using the search. This operation may also take a
portion of time which is not in the scope of this article and is therefore not considered.

The accuracy results show that the suggested framework can automatically segment a
distinct object in ∼40% of the dataset. Most of the rest can be automatically segmented if
the bleeding border of the object is marked manually. This can speed up the ground truth
marking by an order of magnitude. If the object is isolated in space, the accuracy is usually
over 92% which suggests that such datasets could be segmented by the framework only
with a human as a supervisor. This is also the case with PCL algorithms; however, this
sacrifices the performance. In the case of a non-cluttered depth video stream, the suggested
framework is a solution that provides a lower total spent time.
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