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Abstract: Determining Lamb wave dispersion curves when measuring phase and group velocity
values at a fixed frequency is now a common and relevant task. In most cases, in order to solve such
a problem, it is necessary to know the exact properties of the material, particularly its thickness. In
experimental methods, Lamb wave parameters are evaluated directly from the test materials. This
paper proposes a new and simple experimental algorithm for A0 mode group and phase velocity
determination based on signal filtering and zero-crossing estimating. The main idea is to capture
the zero-crossing instances of the signals closest to the signal envelope peaks and use these time
instances to determine the phase and group velocities. The reliability of the proposed method was
evaluated using simulated and experimental signals propagating in an aluminum plate. Theoretical
modeling has shown that the proposed method enables the calculation of the A0 mode group and
phase velocities with a mean relative error of less than 0.7%. An accuracy of 0.8% was observed
during the experimental measurements.

Keywords: ultrasonic lamb wave; A0 mode; group velocity; phase velocity; signal processing;
dispersion curve segments

1. Introduction

In recent years, researchers have extensively investigated Lamb waves for their poten-
tial use in structural health monitoring (SHM) and defect detection. These waves can be
used to examine the entire thickness of thin-walled structures over large areas and to detect
damage very sensitively [1,2]. The distinctive feature of these waves is their dispersive
nature—the phase and group velocities vary with frequency. Therefore, when measuring
phase and group velocities, questions arise not only about the value of the velocity itself,
but also about the corresponding frequency. In the general case, these dependencies are
defined by the dispersion curves. Therefore, the determination of dispersion curves and the
measurement of the values of phase and group velocities at a fixed frequency is currently a
very common task, the solution of which is significant for the application of Lamb waves.

In general, Lamb waves have an infinite number of symmetric and antisymmetric
modes that differ in their propagation properties. However, in most cases, to simplify
signal processing, only the fundamental modes (A0 or S0) are exploited. The advantage
of both fundamental modes is that they propagate in a wide frequency range, their exci-
tation is simple, and the peculiarities of their propagation have been widely studied in
the literature [3–5]. At the same time, research is continuing to develop new methods
and methodologies for measuring the phase and group velocities of fundamental modes.
These methodologies usually focus on either group velocity or phase velocity estimations.
Analytical, numerical and experimental methods are used to determine these velocities.
However, analytical and numerical methods require knowledge of the properties of the
materials in which Lamb waves propagate. Meanwhile, in experimental methods, Lamb
wave parameters are evaluated directly on the basis of the test materials.

In experimental methods, the group velocity of Lamb wave propagation is widely
measured using the Hilbert transform to determine the difference in time-of-flight (ToF)
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between the two positions [6]. However, this method makes it difficult to measure ToF
for overlapping modes and reflected signals. Therefore, a variety of new experimental
methods for estimating group velocity have emerged. One such method is the short-time
Fourier transform (STFT), which can be used to estimate the group velocity of the Lamb
wave [7,8]. STFT is used to extract information from the signal in the time-frequency
domain in order to measure the arrival time of single-frequency components. Based on the
results of these frequency measurements, the dispersion curves of the group velocity are
reproduced. However, the resolution of the STFT is controlled by the window length and
this is limited [7]. For the same purposes, many authors have used wavelet transform (WT)
and Wigner–Ville distribution (WVD) [8].

Two alternative approaches (two-dimensional fast Fourier transform (2D-FFT) and
methods of time-frequency processing) were used in [9] to determine the group velocities
of zero-order Lamb wave modes in aluminum plate. 2D-FFT provides approximated
dispersion curves in the k-f domain, which correlate with dispersion curves calculated
via the solution of the Rayleigh–Lamb equation. The authors in [10] presented a new
approach for the direct calculation of group velocity curves using the wave and finite
element (WFE) scheme. Their model is computationally efficient and can be used for
plate-like structures of arbitrary complexity. In [11], two kinds of time–frequency domain
methods for broadband Lamb waves were proposed. The first one is based on the concept
of the general parameterized time–frequency transform (GPTFT). The other one is called
the time–frequency de-dispersion transform (TFDT). The proposed method shows great
robustness in regard to inaccuracies in the dispersion data.

It should be noted that STFT, WT, WVD and the other methods mentioned above
provide information on group velocity dispersion curves.

Many methods that are more varied have been proposed for measuring the phase
velocity of Lamb wave propagation. These include frequency-wavenumber domain filter-
ing [12–14], the matrix pencil method [15,16], the non-contact hybrid method [17,18], the
zero-crossing method [19,20], etc. A similar method, using the frequency and wavenum-
ber mapping of the dispersion curves, is called multi-signal classification (MUSIC) [21].
Two-dimensional fast Fourier transform (2D FFT) has recently been the most widely used
experimental method for determining dispersion curves [22–26].

Recently, new modified methods have emerged that combine the advantages of several
methods. The phase velocity filter described in [27] can extract waves of a certain phase
velocity, regardless of the frequency. This technique exhibits reduced artefacts and is able
to extract modes across the full bandwidth of the excitation.

The authors in [28] described 2D matrices that record the total response of a Lamb
wave field in a limited surface measurement area. Using the discrete Fourier transform, a
spectral estimate of the 2D matrix in the frequency-phase velocity domain is obtained. The
variation of the phase velocity is mapped by moving the 2D matrix in the measurement
area. The presented methodology has been investigated only for a specific plate, and its
further development has not yet been analyzed.

The reliability of the measurement results of these methods is determined by the
requirements that many measurements can be made at different distances and that the
main result of the measurements is the phase velocity of the Lamb waves. Recently, new
methodologies have been developed that allow the simultaneous measurement of both
phase and group velocities of Lamb wave propagation.

The authors in [29] present an experimental methodology for the calculation of Lamb
wave phases and group velocities. This technique uses conventional transducers to record
two signals, spaced a few centimeters apart. The proposed method for calculating the dis-
persion curves has a number of limitations: highly dispersive modes are more challenging
to evaluate, overlapping between wavepackets limits the method’s applicability, the size of
the sample can be smaller at higher frequencies, etc.

A similar methodology is described in [30], in which an analytical cross-correlation
method is used to determine the group delay and phase shift, which requires measurements
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at only two adjacent positions. The method was proposed for phase velocity estimation
of fundamental Lamb wave modes. However, the presented method is not resistant to
measurement noise and mode interference.

In [31], the phase and group velocities of the propagation of the Lamb wave are
determined by measuring the propagation times. The propagation times were estimated
using the zero-crossing technique. The phase velocity was estimated by setting zero-
crossing instances, and these instances were fixed depending on the selected threshold. The
essence of the method was to accurately measure the duration of each half-period of the
signal at a selected distance. However, it has been found that the half-periods of different
signals vary with the wave propagation in the plate and this affects the accuracy of the
phase velocity determination. The measurement results are also influenced by the choice
of threshold.

In this paper, we propose a new and simple algorithm for group and phase velocity
determination based on signal filtering and zero-crossing estimation. The paper is orga-
nized as follows. In Section 2 the methodologies used for the determination of the group
and phase velocities are described. In Section 3, the proposed method is analyzed using
simulated signals, investigating the influences of the signal and filter parameters. The
reliability of the proposed method using experimental signals from aluminum plate is
evaluated in Section 4. Finally, Section 5 discusses the advantages and limitations of using
the method, as well as outlining further research perspectives.

2. Methodology for Estimating Phase and Group Velocities

If a single Lamb wave mode is excited in an ideal plate of constant-thickness d, then
a recorded signal u(x,t) with a propagation distance x can be described by the following
equations [11,32]:

u(x, t) = 1
2π

∫ ∞
−∞ FT(y(t))e−jk(ω)xejωtdω = 1

2π

∫ ∞
−∞ FT(y(t))e

−jω x
cp(ω) ejωtdω =

1
2π

∫ ∞
−∞ FT(y(t))e

−j
∫ x

cg(ω)
dω

ejωtdω,
(1)

where y(t) is the excitation signal, t is the time, FT is the Fourier transform, k(ω) is the
wavenumber, j is the basic imaginary unit j =

√
−1, ω = 2πf is the angular frequency, f is

the frequency, cp(ω) is the phase velocity and cg(ω) is the group velocity.
As we can see from Equation (1), the signal u(x,t), which has propagated the distance

x, encodes information about the phase cp(ω) and group cg(ω) velocities. Therefore, the
aim of this work was to extract this information from these signals. A filter packet and a
zero-crossing method were used for this.

To explain the algorithm used for calculating the Lamb wave velocities, let us take
a typical B-scan image of signal propagation in a d = 1 mm thick aluminum plate at an
excitation frequency of f ex = 300 kHz (Figure 1a). As the excitation signal y(t), a three-
period harmonic signal with a Gaussian envelope was used. The signals propagated at
the distances x1 = 40 mm and x2 = 160 mm, respectively, are shown in Figure 1b. The
envelopes of these signals are also presented, the peaks of which determine the location of
the maximum energy concentration of the signals:

e(x, t) = HT[u(x, t)], (2)

where HT is the Hilbert transform.
With this assumption in mind, the idea was to capture the signal’s zero-crossing

instances closest to the signal’s envelopes peaks, and then to use these time instances to
determine the phase and group velocities.

To implement the idea, a filter packet of selected parameters was used to filter the
signals. Then, filtered signals si(x,t) at the propagated distance x can be described:

si(x, t) =
1

2π

∫ ∞

−∞
FT(y(t))Bi(ω)e

−jω x
cp(ω) ejωtdω, (3)
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where Bi(ω) represents the frequency response of i-th bandpass filter, I = 1, 2, . . ., N, where
N is the total number of filters.

To reduce the reconstruction error due to the wave decomposition process, we allow
each filter to have a Gaussian magnitude function [33]:

Bi( f ) = e−2.77·( f− fL−(i−1)d f
∆B )

2

, (4)

where f L is the lower frequency limit, d f = fH− fL
N−1 is the step in the frequency domain

between the central frequencies of two neighbouring filters, f H is the upper frequency
limit and ∆B is the filter bandwidth. The upper and lower frequency limits are selected
according to the frequency response of the test signal u(x,t) at the −6 dB level (level of 0.5).
Thus, the signal bandwidth is ∆ f = fH − fL.

When filtering the dispersed signals using the filtering algorithm [20], it was observed that
the signals filtered using different filters si(x,t) have zero-crossing instances on the time axis, which
are concentrated in the signal envelope peak environment (Figure 2a,b). The signal envelope peak
environment is treated as the time interval corresponding to the envelope at the−6 dB level.
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Therefore, in our subsequent studies, only the zero-crossing instances in the signal
envelope peak environment were selected. The analyzed zero-crossing instances to both
sides of the maximum were selected according to the following equations:

temax = arg{max(e(x, t))}, (5)

t0
ik = arg{si(x, t) ∼= 0}, if temax −

5
2 fi

< t < temax +
5

2 fi
, (6)

where t0
ik is the zero-crossing instances of i-th filter, k = 1, 2, . . . , K is the number of zero-

crossing instances; K is the total number of zero-crossing instances and fi is the central
frequency of the i-th filter.

Concentrated zero-crossing instances on the time axis were determined according to
the minimum time difference between them:

t0
iM = arg

{
min

(
∑N−1

i = 1

(
min

1<k<K

(
t0
ik − t0

(i+1)k

)))}
, (7)

where t0
iM is concentrated zero-crossing instances and M is the number of zero-crossing

instance in i-th filter.
As a result of these calculations, we obtained one zero-crossing instance t0

iM for each
filtered signal si(x,t). In the next stage we calculated these zero-crossing instances t0

iM(x)
for each value of distance x. The obtained results are presented in a B-scan image, together
with the investigated signals, in Figure 3a.
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As can be seen from the obtained results, the dependence of the zero-crossing instances
on the distance in the narrow ranges was linear. However, at some distances, there were
jumps in the line of the zero-crossing instances (Figure 3b). This phenomenon has been
noted earlier in [31]. This was based on the fact that the phase and group velocities differ,
and the half-periods of the signal “move” inside the signal envelope as the distance changes.
Two such jumps can be described by means of a set of four points (xi(1–4),ti(1–4)) (Figure 3b).
During this study, it was observed that line 1 was formed between the two jumps (xi2÷xi3),
which consisted of zero-crossing instances of equal phase of the filtered signals. From the
zero-crossing instances of the same phase, the phase velocity of the propagation of the
Lamb waves can be calculated as follows.

cpi(xi2 ÷ xi3) =
xi3 − xi2

t0
i3 − t0

i2
(8)
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Meanwhile, the nature of the signal envelope propagation was described by line 2,
which corresponds to the group velocity of the Lamb wave propagation:

cgi(xi2 ÷ xi4) =
xi4 − xi2

t0
i4 − t0

i2
, (9)

Both the phase cpi(xi2 ÷ xi3) and the group cgi(xi2 ÷ xi4) velocities of each filtered
signal si(x,t) for such a distance segment between two jumps (xi1 ÷ xi3) can be calculated.

3. Investigation of the Proposed Method Using Simulated Signals

Validation of the proposed method was performed using simulated signals. The
general verification algorithm of the proposed method is presented in Figure 4. The
objective of the verification was to calculate the mean relative error between the values of
the dispersion curves of the simulated groups and phase velocities in the selected frequency
range and the values calculated by the proposed method in this frequency range.
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Figure 4. General verification algorithm of the Lamb wave A0 mode group and phase velocity
calculation method.

A d = 1 mm thick aluminum 7075-T6 plate with the following parameters was se-
lected for modeling the propagation of Lamb wave A0 mode signals: Young modulus
E = 71.7 GPa, Poisson’s ratio ν = 0.33 and density ρ = 2710 kg/m3. According to these
parameters, the phase and group velocity dispersion curves of Lamb wave A0 mode propa-
gation in such a plate were calculated by means of the one-dimensional SAFE method [4]
(Figure 5).

Based on the phase velocity curve of the Lamb wave A0 mode propagation in the
aluminum plate (Figure 5), the B-scan images of different wave excitation frequencies f ex
(according to Equation (1)) were formed: 100, 300 and 700 kHz. These frequencies were
selected at different locations for the variations of the phase and group velocities.

In the modelling, a three-period harmonic signal with a Gaussian envelope was used
as the excitation signal y(t). The waveform of the transmitted signal was calculated at a
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distance of 200 mm with a step of dx = 0.1 mm. The B-scan images of the simulated Lamb
wave A0 mode, propagated in d = 1 mm thick aluminum plate at different wave excitation
frequencies f ex, are presented in Figure 6a–c.
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Filter packets of selected parameters were used to filter the signals of the simulated
B-scan images. The lower f L and upper f H frequency limits were selected according to
the frequency responses (FR) of the simulated signals at the −6 dB level (level of 0.5)
(Figure 7a). Different signal bandwidths ∆ f = fH − fL were obtained for different
excitation frequencies f ex: ∆f = 53.3 kHz for f ex = 100 kHz, ∆f = 160 kHz for f ex = 300 kHz
and ∆f = 376.7 kHz for f ex = 700 kHz. The center frequencies of the filters were selected
according to the frequency characteristics of the signals. The conditions were chosen so that
the center frequency of the lowest frequency filter corresponded to the frequency f L, the
center frequency of the highest frequency filter corresponded to the frequency f H, and the
center frequency of the middle filter corresponded to the maximum frequency of the signal
frequency response (Figure 7a). In this way, by selecting the number of filters in the filter
packet, the number of filters was three, five, seven, . . . , The next parameter selected was the
individual filter bandwidth ∆B. The ratio of the bandwidth of the signal frequency response
to the bandwidth of the individual filter R = ∆f /∆B was used to select this parameter.
The bandwidths of all individual filters were selected to be the same. Figure 7a shows an
example of how five filters with bandwidths R = 2.5 were selected for a 300 kHz signal.
The frequency response of the signal and the total frequency response of the filters are
shown next to them (Figure 7b). The values of phase and group velocities calculated for
the given parameters by means of the above-described algorithm are shown in Figure 7c. It
should be noted that the phase velocity values were obtained as much as the filters were
used. Meanwhile, only one value corresponding to the center frequency of the signal was
obtained for the group velocity.
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The measurements presented in Figure 7c were performed for all cases of excitation
frequency f ex signals. After theoretical modeling, it was observed that the main parameters
influencing the accuracy of phase and group velocity calculations were the number of filters
(N) and the bandwidths (∆B) of individual filters.

In order to evaluate the suitability of the proposed method, the mean relative error
δcp(g) was used for the comparison of the results obtained using the proposed method and
using the SAFE method:

δcp(g) = 100%· 1
N ∑N

i = 1

∣∣∣cip(g) − cSAFE
p(g)

∣∣∣
cSAFE

p(g)

, (10)

where cip(g) are the values of the phase (group) velocity calculated using the proposed
algorithm, cSAFE

p(g) are the values of the phase (group) velocity calculated using the SAFE
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method at the same frequencies and N is total number of the filters. The calculation results
of the mean relative error δcp(g) are presented in Table 1.

Table 1. The calculations of the mean relative error of the phase and group velocities using the
proposed method.

Excitation
Frequency

f ex, kHz

The Ratio of the Bandwidth of the Signal
Spectrum to the Bandwidth of the Filters

R = ∆f /∆B

Number of Filters N
3 5 7

Mean Relative Error δc, %

δcp δcg δcp δcg δcp δcg

100

1 4.35 1.75 4.03 1.75 3.63 1.75
1.5 2.60 1.92 2.48 1.92 2.16 1.92
2 1.60 2.03 1.60 2.03 1.33 2.03

2.5 1.03 2.09 1.09 2.09 0.86 2.09
3 0.68 2.89 0.79 2.89 0.57 2.89

300

1 4.05 0.49 3.56 0.49 3.36 0.49
1.5 2.50 1.61 2.20 1.61 2.07 1.61
2 1.63 1.68 1.42 1.68 1.34 1.68

2.5 1.12 1.72 0.98 1.72 0.92 1.72
3 0.81 0.74 0.71 0.74 0.67 0.74

700

1 3.19 0.42 2.80 0.42 2.65 0.42
1.5 1.99 0.47 1.74 0.47 1.64 0.47
2 1.29 0.50 1.13 0.50 1.06 0.50

2.5 0.89 0.52 0.78 0.52 0.73 0.52
3 0.64 0.53 0.56 0.53 0.53 0.53

The analysis of the results relating to the mean relative error δcp(g) in Table 1 provided
interesting information. The phase velocity calculation error was the lowest for all excitation
frequencies f ex when seven filters with bandwidth ratio R = 3 were used. In addition, the
values of the mean relative error differed quite slightly (0.57% for f ex = 100 kHz, 0.67% for
f ex = 300 kHz, 0.53% for f ex = 700 kHz). This difference can be explained by the varying
nature of the dispersion and the different bandwidths at the analyzed frequencies. The
obtained results suggest that an even larger number of filters is required. However, there
was no need to further increase the number of filters as uncertainties in the determination
of zero-crossing concentrations began to emerge (Equation (7)).

Different trends prevailed for group velocity calculations. Since the group velocity was
calculated only in the case of the middle filter, the number of filters does not affect its value.
However, the bandwidth of the filter affects the mean relative error. The smallest error
(1.75% for f ex = 100 kHz, 0.49% for f ex = 300 kHz, 0.42% for f ex = 700 kHz) was obtained
when using the filter bandwidth of the signal bandwidth (R = 1). A decrease in error was
also observed at a narrower filter band (R = 3), but only at higher frequencies (0.74% for
f ex = 300 kHz, 0.53% for f ex = 700 kHz).

Theoretical modeling has shown that the proposed method enables the calculation of
group and phase velocities with a mean relative error of less than 0.7% using simulated
signals. In the case of experimental studies, these errors can change significantly. Therefore,
in the subsequent stage, experimental studies were performed and the mean relative errors
of group and phase velocity calculations were estimated.

4. The Reliability of the Proposed Method Using Experimental Signals

Quantitative evaluation of the proposed method for measuring the phase and group
velocity of Lamb waves was performed using A0 mode propagation experimental data
sets in a d = 2 mm thick aluminum plate (1.2 × 1.2 m2). Figure 8 presents a structural
scheme of the experimental equipment used in the study. The experiments were performed
using the ultrasonic measuring system “Ultralab” and an axis driver developed at the
Ultrasound Research Institute of Kaunas University of Technology. The position of the
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ultrasonic moving receiver was changed with a Standa 8MTF-75LS05 scanner (Standa Ltd.,
Vilnius, Lithuania).
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Figure 8. The structural scheme of Lamb wave A0 mode signal generation and recording in an
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The A0 mode of Lamb waves was generated in the aluminum plate by contact trans-
ducers, excited at a resonant frequency of f ex = 160 kHz. Contact-point-type transducers
with a hemispherical plastic tip were used. The excitation signal was a three-period burst
with the Gaussian envelope. A B-scan image was formed when the receiving transducer
moved at a distance of 60–260 mm with 0.1 mm steps (Figure 9a). Figure 9b shows the
recorded A0 mode signals at different distances, x1 = 80 mm and x2 = 220 mm. The ampli-
tudes of all B-scan image signals u(x,t) were normalized to the maximum amplitude of the
first received signal u(x0,t) (x0 = 60 mm). The next figure (Figure 9c) shows the amplitude
frequency responses (FR) of the displayed signals u(x1,t) and u(x2,t).

The required frequency band parameters of the filter packet were selected according
to the width of the amplitude frequency response of the determined signals. The signal
bandwidth (∆f = 46.1 kHz) was calculated based on the determined lower f L = 138.1 kHz
and upper f H = 184.2 frequency values. Based on the theoretical research, seven filters
(n = 7) with the frequency bandwidth ratio R = 3 were selected. The resonant frequency of
the central filter was f 4 = 161.15 kHz and the distance between the filters was df = 7.68 kHz.

Figure 10a presents a Lamb wave A0 mode experimental B-scan image (colour coded)
with the calculated zero-crossing instances (line). In jump-limited intervals, phase and
group velocities were calculated with the coordinates of the distance of each interval as the
center of the interval.

The results of the calculations are presented in Figure 10b (dots), where different
ranges of phase and group velocity changes are shown separately. Seven phase velocity
curves (both filters are used) and one group velocity curve were formed. After calculating
the averages of the phase and group velocity changes, the mean absolute errors ∆i

p(g) and

the mean relative errors δi
p(g) of the following velocities from the average were estimated

for each filter separately:

ci
p(g) =

1
Q ∑Q

q = 1 ci
p(g)q, ∆i

p(g) =
1
Q ∑Q

q = 1

∣∣∣ci
p(g)q − ci

p(g)

∣∣∣, δi
p(g) = 100%· 1

Q ∑Q
q = 1

∣∣∣ci
p(g)q − ci

p(g)

∣∣∣
ci

p(g)

, (11)

where ci
p(g) is the phase (or group) velocity average, q is number of the value of velocity

and q = 1, 2, . . . , Q, Q is the total number of the velocity values (jump-limited intervals).
The calculation results are presented in Table 2.
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Table 2. The calculations of the velocity averages, the mean absolute errors and the mean relative
errors of the phase and group velocities.

Velocity
Phase Velocity cp Group

Velocity
cg

Filter Number i (Corresponding Frequency, kHz)
1

(138.1)
2

(145.8)
3

(153.5)
4

(161.1)
5

(168.8)
6

(176.5)
7

(184.2)

Velocity
Average, m/s 1519.3 1551.2 1580.5 1606.9 1632.9 1658.6 1683.3 2637.5

Mean Absolute Error, m/s 10.7 10.2 9.4 9.4 10.2 11.1 11.5 20.6

Mean Relative Error, % 0.7 0.7 0.6 0.6 0.6 0.7 0.7 0.8

The results of the measurements and calculations show that the values of the phase
and group velocities in the isotropic material (aluminum) were measured stably and with a
small scattering relative to the mean (<0.8%).

A comparison with other methods should be performed to verify the proposed method.
For this purpose, a widely used 2D-FFT method [22] was chosen to evaluate the results
of the phase velocity calculations. The result of the 2D-FFT method is a two-dimensional
image, generated using the total B-scan image data (Figure 11, colored). Therefore, the
average values of the phase velocity over the measured distance were used for data
comparison. The obtained comparison results are presented in Figure 11. In summary, the
results of the phase velocity calculation obtained using the proposed method and the 2D
FFT method were consistent. The mean absolute error was ∆p = 4.7 m/s and the mean
relative error was δp = 0.3%.
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using 2D FFT method (color).

The correlation method described in [34] was used to calculate the group velocity. The
delay time ∆t between the two envelopes e(x1,t) and e(x2,t) of the signals u(x1,t) and u(x2,t)
was estimated using cross-correlation:

∆t = arg max{corr[e(x1, t), e(x2, t)]}. (12)
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Then the group velocity was estimated:

cg =
x2 − x1

∆t
. (13)

The group velocity was calculated 10 times by taking different distances (Figure 9a)
between the signals and averaging the values obtained. The value of the average group
velocity was cg = 2652.8 m/s. Comparing this value with the experimentally measured
value (Table 2) gave the mean absolute error ∆g = 15.3 m/s and the mean relative error
δg = 0.6%.

5. Discussion and Conclusions

This paper presents a new and simple experimental algorithm for Lamb wave A0
mode group and phase velocity measurements. The new tool based on a filter packet and
a zero-crossing method were used to process the signals. The proposed method captures
the zero-crossing time instances of the signal closest to the signal envelope maximum
and simultaneously determines the phase and group velocities using these time instances.
The reliability of the proposed method was evaluated using simulated and experimental
signals propagating in an aluminum plate. Theoretical modeling in a 1 mm thick aluminum
7075-T6 plate showed that the proposed method enabled the calculation of group and
phase velocities with a mean relative error of less than 0.7% using simulated signals. An
accuracy of 0.8% was observed during the experimental measurements in a 2 mm thick
aluminum plate. The obtained results showed that the proposed method of group and
phase velocity estimation enables researchers to calculate the segments of the A0 mode
dispersion curve of isotropic materials.

However, this method has some limitations and unexplored potential applications.
The overlapping of different modes limits the application of the method, as it distorts the
phase of the analyzed mode. The determination of the phase and group velocities requires
a certain scanning distance, which is conditioned by a fixed jump in the propagation of
the A0 mode. The duration of these jumps and the influence of optional parameters on
this duration need to be examined in further studies. Another unanswered question is
how the occurrence of a defect in the scan trajectory or a change in the plate thickness
affects the determination of the phase and group velocity. The application of this method
to complex composite plates is also relevant. The application of this methodology to a
non-dispersive mode (S0 mode) has not been investigated either. All these issues will be
studied in further work.

Despite the listed shortcomings, further investigation of this method is promising, as
this method can simultaneously measure the group and phase velocities and can complete
this process on-line. In our further research, we envisage the possibility of applying this
method in studies of the spatial distribution of phase and group velocities. Further research
would include the application of this method to address SHM problems when group and
phase velocities are used directly as qualitative indicators.
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