AUDRIUS KULIKAJEVAS

RECONSTRUCTION
ALGORITHM OF
INVISIBLE SIDES OF
A 3D OBJECT FOR
DEPTH SCANNING
SYSTEMS

DOCTORAL DISSERTATION

N o
o c
N S
N o



KAUNAS UNIVERSITY OF TECHNOLOGY

AUDRIUS KULIKAJEVAS

RECONSTRUCTION ALGORITHM OF
INVISIBLE SIDES OF A 3D OBJECT FOR
DEPTH SCANNING SYSTEMS

Doctoral dissertation
Natural sciences, Informatics (N 009)

Kaunas, 2022



This doctoral dissertation was prepared at Kaunas University of Technology, Faculty of
Informatics, Department of Multimedia Engineering during the period of 2017-2021.
The doctoral right has been granted to Kaunas University of Technology together with
Vilnius Magnus University and Vilnius Gediminas Technical University.

Scientific supervisor B
Prof. Dr. Rytis MASKELIUNAS (Kaunas University of Technology, Technological
Sciences, Informatics Engineering, T 007).

Edited by: English language editor dr. Armandas Rumsas (Publishing House
Technologija), Lithuanian language editor Aurelija Grazina Ruksaité (Publishing
House Technologija)

Dissertation Defence Board of Informatics Science Field:

Prof. Hab. Dr. Rimantas BARAUSKAS (Kaunas University of Technology, Natural
Sciences, Informatics, N 009) — chairperson;

Prof. Hab. Dr. Gintautas DZEMYDA (Vilnius University, Natural Sciences,
Informatics, N 009);

Prof. Hab. Dr. Justyna PATALAS-MALISZEWSKA (University of Zielona Gora,
Poland, Natural Sciences, Informatics, N 009);

Prof. Dr. Gintaras PALUBECKIS (Kaunas University of Technology, Natural
Sciences, Informatics, N 009);

Doc. Dr. Agné PAULAUSKAITE-TARASEVICIENE (Kaunas University of
Technology, Natural Sciences, Informatics, N 009).

The official defence of the dissertation will be held at 10:00 a.m. on 22nd April, 2022
at the public meeting of Dissertation Defence Board of Informatics Science Field in
Dissertation Defence Hall at Kaunas University of Technology.

Address: Donelaicio 73-403, Kaunas LT-44249, Lithuania.
Phone (+370) 37 300 042; fax. (+370) 37 324 144; e-mail doktorantura@ktu.lt
The doctoral dissertation was sent out on 22 March, 2022.

The doctoral dissertation is available on the internet at http://ktu.edu, at the library of
Kaunas University of Technology (Donelaicio 20, Kaunas LT-44239, Lithuania), at the
library of Vilnius Magnus University (Donelaicio g. 52, Kaunas LT-44244, Lithuania)
and the library of Vilnius Gediminas Technical University (Saulétekio al. 14, Vilnius
LT-10223, Lithuania).

© A. Kulikajevas, 2022



KAUNO TECHNOLOGIJOS UNIVERSITETAS

AUDRIUS KULIKAJEVAS

3D OBJEKTO NEMATOMU ZONU
REKONSTRUKCIJOS ALGORITMAS GYLIO
SKENAVIMO SISTEMOMS

Daktaro disertacija
Gamtos mokslai, informatika (N 009)

Kaunas, 2022



Disertacija rengta 2017-2021 m. Kauno technologijos universiteto Informatikos
fakultete, Multimedijos inzinerijos katedroje.

Doktorantiiros teis¢ Kauno technologijos universitetui suteikta kartu su Vytauto
Didziojo universitetu ir Vilniaus Gedimino technikos universitetu.

Mokslinis vadovas: prof. dr. Rytis MASKELIUNAS (Kauno technologijos
universitetas, technologijos mokslai, informatikos inzinerija, T 007).

Redagavo: angly kalbos redaktorius dr. Armandas Rumsas (leidykla ,, Technologija“),
lietuviy kalbos redaktoré Aurelija Grazina Ruksaité (leidykla ,, Technologija“)

Informatikos mokslo krypties disertacijos gynimo taryba:

prof. habil. dr. Rimantas BARAUSKAS (Kauno technologijos universitetas, gamtos
mokslai, informatika, N 009) — pirmininkas;

prof. habil. dr. Gintautas DZEMYDA (Vilniaus universitetas, gamtos mokslai,
informatika, N 009);

prof. habil. dr. Justyna PATALAS-MALISZEWSKA (Zielona Guros universitetas,
Lenkija, gamtos mokslai, informatika, N 009);

prof. dr. Gintaras Palubeckis (Kauno technologijos universitetas, gamtos mokslai,
informatika, N 009);

doc. dr.  Agné PAULAUSKAITE-TARASEVICIENE (Kauno technologijos
universitetas, gamtos mokslai, informatika, N 009).

Disertacija bus ginama vieSame Informatikos mokslo krypties disertacijos gynimo
tarybos posédyje 2022 m. balandzio 22 d. 10 val. Kauno technologijos universiteto
Disertacijy gynimo sal¢je.

Adresas: K. Donelai¢io g. 73-403, Kaunas LT-44249, Lietuva.
Tel. (+370) 37 30 00 42; faks. (+370) 37 32 41 44; el. pastas doktorantura@ktu.It

Disertacija iSsiysta 2022 m. kovo 22 d.
Su disertacija galima susipazinti interneto svetaingje http://ktu.edu, Kauno

technologijos universiteto (K. Donelai¢io g. 20, Kaunas LT-44239), Vytauto DidZiojo
universiteto (K. Donelaicio g. 52, Kaunas LT-44244) ir Vilniaus Gedimino technikos
universiteto (Saulétekio al. 14, Vilnius LT-10223) bibliotekose.

© A. Kulikajevas, 2022



Table of Contents

1

2
3

4
5
6

Introduction . ... ... .. .. ... 7
1.1 Problem Statement . . . . . .. ... ... ... ....... 7
1.2 ResearchAim . . . . ... .. ... .. ... .. . ...... 8
1.3 Methods and Software . . . . .. ... ... ... .. .... 8
1.4 Practical Application . . . ... ... ... ... .. ..... 9
1.5 ResearchNovelty . . . ... ... ... ... ... ...... 10
1.6 Dissertation Statements to be Defended . . . . . .. ... .. 10
Scientific literature review . . . . . . . ... ... 12
Submitted paperoverview . . ... .. ... 16
3.1 Generaloverview . . . . . . . ... e 17

3.2 Reconstruction of 3D Object Shape Using Hybrid Modular
Neural Network Architecture Trained on 3D Models from

ShapeNetCore Dataset . . . . . .. ... ... ........ 19
3.2.1 Materialsand Methods . . . . . ... ... ... ... 20
322 Dataset . . . . ... ... 22
323 Results ... ... 23
3.3 3D Object Reconstruction from Imperfect Data Using
Extended YOLOv3 Network . . . . ... ... ........ 27
3.3.1 Materialsand Methods . . . . ... .. ........ 28
332 Dataset . . . . .. ... 33
333 Results . ... ... . 34

3.4 HUMANNET—A Two-Tiered Deep Neural Network
Architecture for Self-Occluding Humanoid Pose Reconstruction 37

3.4.1 Materialsand Methods . . . . ... ... ... .... 37
342 Dataset . . ... ... ... 44
343 Results . . ... ... ..o 44
3.5 Auto-Refining Reconstruction Algorithm for Recreation of
Limited Angle Humanoid Depth Data . . . . . .. ... ... 47
3.5.1 Materialsand Methods . . . . . ... ... ...... 47
352 Dataset . . .. .. ... 55
353 Results . . ... ... o 56
ConcClusioNS . . . ..ottt 59
Future Works. . . . ... ... . . . 60
Summary . . ... ... 61
6.1 Ivadas . . . .. . . . . ... 61
6.1.1 Tirtamaproblema . . . . . ... .. ... ... .... 61
6.1.2 Tyrimytikslas. . . .. ... ... ... ... ..... 61
6.1.3 Darbouzdaviniai . . . ... ... ........... 61



6.1.4 Praktiné darboreikSmé . . . . . . .. ... ... ... 61

6.1.5 Naujumas . . . .. .. ... ... ... ........ 62
6.1.6  Ginamieji teiginiai . . . . . . ... ... ... .... 62
6.1.7 Darbo rezultaty aprobavimas . . . . . . .. ... ... 62
6.2 Straipsniyapzvalga . . . . ... ..o 65

6.2.1  Reconstruction of 3D Object Shape Using Hybrid
Modular Neural Network Architecture Trained on 3D

Models from ShapeNetCore Dataset . . . . . . . ... 66
6.2.2 3D Object Reconstruction from Imperfect Depth Data
Using Extended YOLOv3 Network . . . . . ... ... 69

6.2.3 HUMANNET—A Two-Tiered Deep Neural Network
Architecture for Self-Occluding Humanoid Pose

Reconstruction . . . . . ... ... 73

6.2.4  Auto-Refining Reconstruction Algorithm for
Recreation of Limited Angle Humanoid Depth Data . . 78
6.3 Rezultatai . . . ... ... ... ... 85
6.4 ISvados . . . . . . ... 92
7 References . . ... .. ... 93
8 Submitted papers . . ... ... 102

8.1 Reconstruction of 3D Object Shape Using Hybrid Modular
Neural Network Architecture Trained on 3D Models from

ShapeNetCore Dataset . . . . . . ... ... ... ...... 102
8.2 3D Object Reconstruction from Imperfect Depth Data Using
Extended YOLOv3 Network . . . . .. ... ... .. .... 134

8.3 HUMANNET—a Two-Tiered Deep Neural Network
Architecture for Self-Occluding Humanoid Pose Reconstruction 175
8.4 Auto-Refining Reconstruction Algorithm for Recreation of

Limited Angle Humanoid Depth Data . . . . . ... ... .. 199
9 Curriculum Vitae . . . ... ... . 227
10 List of scientific papers and conferences. . . ... .............. 228
A Abbreviationsand Terms . . . .. .. .. ... ... oL 230
B Symbolsandnotation . . .......... ... ... ... . ... ... ... 232



1. INTRODUCTION

Co-authors and publishers have given their permission to use and include
the research papers in the dissertation. The dissertation consists of the following
published research papers:

1. Reconstruction of 3D Object Shape Using Hybrid Modular Neural
Network Architecture Trained on 3D Models from ShapeNetCore
Dataset by Audrius Kulikajevas, Rytis Maskelitinas, Robertas
Damasevicius and Sanjay Misra.

2. 3D Object Reconstruction from Imperfect Data Using Extended
YOLOv3 Network by Audrius Kulikajevas, Rytis Maskeliiinas,
Robertas DamaSevicius and Edmond S. L. Ho.

3. HUMANNET—A Two-Tiered Deep Neural Network Architecture for
Self-Occluding  Humanoid Pose Reconstruction by Audrius
Kulikajevas, Rytis Maskelitinas, Robertas Damasevi¢ius and Rafal
Scherer.

4. Auto-Refining Reconstruction Algorithm for Recreation of Limited
Angle Humanoid Depth Data by Audrius Kulikajevas, Rytis
Maskeliiinas, Robertas Damasevicius and Marta Wlodarczyk-Sielicka.

1.1. Problem Statement

The problem to be addressed in this dissertation — full object completion
using only a single distorted or otherwise imperfect depth sensor perspective.

Object completion is a critical task in computer vision [1, 2, 3, 4] that is
required for various practical applications, e.g., autonomous vehicles or
surveillance. The two main types of methods that attempt to solve this issue
are: classical algorithms and machine learning models. Classical approaches
attempt to solve this issue in different ways — starting with using various
assertions about the object itself, e.g., symmetry axes; while other methods
use iterative point cloud fusion methods, e.g., Simultaneous Localization and
Mapping (SLAM) which fuse multiple frames taken over a period of time into
a final 3D objects’ representation [5, 6, 7, 8, 9]. However, because object
completion is such an important problem to solve, in recent time there has
been a surge of interest in applying deep learning approaches to solve this task
[10, 11, 12].

Different types of sensors are denoted by different pros and cons, e.g.,
visible light cameras tend to suffer from low light conditions but are more
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readily available; structured light and infrared depth sensors, while less
affected by lightning conditions, are more prone to distortions; laser radar
(LiDAR) sensors have an accurate depth field, but distortions can happen
from the material absorbing the wavelength that the sensor is emitting [13, 14,
15, 16]. As the world is gradually moving towards full automation, sensor
imperfections may cause dangerous situations [17, 18]. Object completion is a
useful tool when identifying object volume in robotics [19], for gesture
recognition [20], indoor mapping and navigation [21], recreating evidence and
crime scenes during forensic analysis [22], etc.

While the existing research already attempts to reconstruct the object, there
remains a knowledge gap for, e.g., high fidelity inputs can be slow to reconstruct
[23, 24], artifacts can be caused by improper assertions about the reconstructed
object [25], certain methods require tailored solutions for the environment [26,
27, 28] or can be expensive due to the specialized sensor requirement [29]. This
dissertation attempts to narrow down the knowledge gap left by other research
by proposing a solution for object reconstruction from a single perspective.

1.2. Research Aim

The aim of the research is the proposal and implementation of a computer
model or models which can reconstruct an object from a single imperfect, noisy
or distorted depth sensor perspective. To reach this research goal, three main
objectives have been raised:

1. Analyze the already existing classical and machine learning approaches
for object completion while using both: single and multiple perspective
inputs.

2. Propose and implement a computer model (or models) which can
complete probable objects’ invisible or occluded regions by using only
a single object frame.

3. Conceive and implement a computer model as well as its application
strategy for occluded object region reconstruction from a single
imperfect depth frame captured either by structured light or laser radar
depth sensors.

1.3. Methods and Software

Computer models proposed in this dissertation have been implemented
using two neural network frameworks. This allowed for rapid model
prototyping and experimentation. The machine learning frameworks used for
implementing deep learning models in this dissertation are Tensorflow and
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PyTorch. The initial experiments were conducted by using Tensorflow 1.14
and later Tensorflow 2.3 versions; CUDA 10.1 and cu DNN were used to train
the models by utilizing graphic processing units (GPUs). To train the neural
network models, initially, a GTX 1070 with 8GB of video memory was used
whereas, GTX 960M (4GB VRAM) was used to evaluate the model
performance on the lower-end devices. In the later stages of the research,
training of the neural networks was dedicated to RTX 3070 (8GB VRAM)
GPU. The switch was made due to a new generation of graphical processors
having been released. Because of this hardware change, CUDA toolkit had to
be upgraded to CUDA 11.1, whereas the older versions were no longer
supported by the manufacturer. Additionally, the move to a newer GPU
architecture allowed for half-precision floating point training, and this greatly
increased the complexity of the model that can be trained on a limited
graphical memory. Finally, later research also moved away from Zensorflow
to PyTorch 1.7.1. This move was made not only due to superior support of the
new generation of graphics cards but, during experiments, it was also noticed
that the PyTorch framework has a lower memory footprint, and this allowed
for more complex deep learning models to fit in the video memory with no
noticeable impact on training duration.

Synthetic dataset samples for training the deep learning models were
created by using Blender 2.79b. Blender allows for a fully scriptable pipeline
where the scene can be created by using the Python programming language
and rendered in the headless mode. Python 3.7 was used throughout this
dissertation for both Blender scriptable pipeline and the implementation of
deep learning models.

Real world RGB-D data samples were captured with three different depth
sensing devices: Intel ZR300, Intel D435i and Intel L515. Intel D435i and Intel
ZR300 are both structured light depth sensors that use light and infrared sensor
properties to infer the depth fields; whereas, Intel L515 is a LIDAR. As Intel
ZR300 was discontinued and no longer supported during the duration of the
research, experiments in the later papers do not include it.

1.4. Practical Application

This dissertation overviews four published research papers, each
proposing an improved machine learning model for maskless object
reconstruction from a single camera perspective. Each of the models can
reconstruct a probable object shape alongside other various novelties, e.g.,
real-time surface reconstruction, multiple object reconstruction, temporally
morphing and complex object reconstruction without the need for ground
truth for training.



The scientific impact of this dissertation is the publishing of four research
papers providing innovative improvements in object completion; the published
papers at the time of writing this dissertation have been viewed over 33,000
times and cited 19 times.

In addition to scientific importance, the conducted research has the
potential commercial application spanning various fields and disciplines,
starting with robotics [30], object reconstruction application for autonomous
vehicle collision avoidance [31, 32], as well as medical applications such as
posture recognition [33, 34] and magnetic resonance imaging (MRI) [35].
Furthermore, the conducted research has various entertainment industry
applications, e.g., obstacle alerts in virtual reality [36, 37], augmented [38]
and extended realities [39], film industry [40], etc.

1.5. Research Novelty

Each of the research papers in this dissertation proposed novel machine
learning models for object reconstruction while using only a single depth
sensor perspective. These novelties can potentially narrow the knowledge gap
existing in the field of three-dimensional object completion. The novel
suggestions to the field include such proposals as: object reconstruction in
real-time by using deep hybrid neural networks for object reconstruction;
completion of an object’s smooth polygonal mesh; reconstruction of several
objects in a single depth frame, whereas previous methods focused on single
object reconstruction; maskless object completion; complex and temporally
morphing object point cloud completion; detection and clipping of several
complex objects in a point cloud for region extraction and individual object
reconstruction; real world object point cloud cleanup and completion using
only a single distorted or otherwise imperfect structured light or laser sensor
frame without a ground truth by applying deep unsupervised adversarial
refining neural networks.

1.6. Dissertation Statements to be Defended

1. A computer model was proposed and implemented for object
completion from a single noisy, distorted or otherwise imperfect depth
perspective, by applying a novel unsupervised deep refining neural
network methodology.

2. A training strategy was proposed for object completing machine
learning models that can be trained without a ground truth value for the
comparison function.

3. Novel machine learning models were proposed for both single and
multiple static, complex and temporally morphing object reconstruction
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in real time from an imperfect input frame, providing similar
reconstruction quality, despite distortions in the depth field, to that of
the synthetic (perfect) dataset.
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2. SCIENTIFIC LITERATURE REVIEW

The field of research that this dissertation focuses on is the rapidly
expanding discipline of computer vision which is developing in part due to the
increased research interest in machine learning with deep neural networks in
particular. However, while there has been a lot of research and success with
the application of machine learning for computer vision tasks starting with
such applications as detection of disease in plants [41], detection and
diagnosis of faults in industrial devices [42] or even medical applications
ranging from gastric cancer segmentation in endoscopic images [43], skin
lesion detection [44], recognition of driver fatigue [45] and even recognition
of lung disease in an X-ray image [46]. However, there remains a knowledge
gap in the field of object completion.

Whereas several classical approaches for object surface reconstruction
exist, starting with methods exploiting object surface features such as convex
hull for its reconstruction [47] or objects gradient fields’ vertex normals [48,
49, 501, these methods can rarely account for occluded or self-occluded object
sides and other distorted or missing information. For missing information
substitution, several classical approaches exist, and these can range from
restoration based on assertions on object symmetry axes or the fusion of
multiple point clouds acquired from either multiple cameras or iteratively [51,
52, 53, 54]. However, the application of such methods is flawed and limited,
as these methods can fail for temporally shifting and morphing objects [55],
e.g., a person performing some exercise, or have high computational
complexity thus making high fidelity reconstruction difficult [56]. In addition
to these, the requirement of having multiple perspectives for full object
occluded region reconstruction can be difficult to meet. Therefore, there is
still a need for a solution that could reconstruct a real world object that is not
only robust against noise but can also complete an object while using only a
single perspective.

There are two primary data structures for three-dimensional object
representation — voxel grids and point clouds. One of the first machine
learning based object completion methods 3D-R2N2 used deep neural
networks [10] trained on ShapeNet [57] and Sandford Online Products [58]
datasets. 3D-R2N2 used a priori knowledge to train recurrent neural networks
with Long short-term memory (LSTM) layers [59, 60] in order to train deep
learning model to recognize and reconstruct an object from either a single or
multiple perspectives, by firstly exposing the neural network to the same
object shown from multiple sides. While the paper has become a benchmark
paper for comparison between state-of-the-art methods due to its progeny
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status in the field, it suffered from several flaws, one of which — it required
objects’ masks to perform a reconstruction. Moreover, it could not reconstruct
rotations and positions; meanwhile, having only a single perspective resulted
in poorer results when compared to reconstruction from multiple perspectives.
Further research in the field of object completion has improved on the method
by either removing the mask requirement [11] or by proposing the
incorporation of Chamfer distance as a loss metric for comparison between
the prediction and the ground truth, thus substantially improving the
reconstruction results [12]. Meanwhile, brand-new approaches attempted to
apply generative adversarial neural networks (GANNs) for object
reconstruction when given only a few perspectives [61], or even just a single
perspective [62]; whereas others attempted to use hierarchical surface
reconstruction methods, which allowed for much higher resolution object
reconstructions [63]. However, further research attempted to do away with the
voxel grid approach completely, while opting for point cloud completion
instead. One of the first successful experimental examples is PointOutNet;
here the authors demonstrated the ability to reconstruct an object’s point cloud
from an RGB image and its mask input [64]. Similarly to 3D-R2N2, mask
requirement makes the solution not applicable to non-synthetic real-time
applications. While further solutions attempted to improve the results for an
unstructured point cloud, they also experimented on using flat RGB images as
inputs [65]. The primary reason why most authors chose this flat RGB input
approach for their machine learning occluded object side reconstruction
methods is the ease of application of already well-known two-dimensional
convolutional kernels which had been successfully used in the past for
computer vision tasks [66, 67]. However, due to monocular cameras losing
useful information about objects’ shape that can now only be extrapolated
from the lighting conditions and material properties, these solutions generally
could still be improved upon. Therefore, other researchers proposed an
architectural feature extraction solution on how to use unstructured point
clouds as an input for machine learning models in the objects point cloud
classification and reconstruction tasks, where standard convolutional kernels
would have failed [68]. Other research proposed a dense-to-coarse object
reconstruction methodology for the improvement of an object’s reconstruction
[69], where coarse object features are used for primary object feature
reconstruction with finer details being reconstructed afterwards. AtlasNet
authors proposed patch-based approach reconstruction where multiple patches
are used for separate object feature reconstruction [70]. Up until this point,
research on object reconstruction predominantly used the Chamfer distance
(CD) as a loss metric and the Earth Mover’s distance (EMD) only as a
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quantitative validation metric for the evaluation of the results, despite the
Earth Mover s distance being a more sensitive metric to objects’ defects. This
is because EMD is more computationally expensive and has more demanding
operative memory requirements. To solve this, researchers proposed an
approximation for EMD; this linear approximation allowed for the application
of Earth Mover’s distance for high density unordered point clouds [71].
Despite all these advancements in the field of object completion from a single
perspective, state-of-the-art solutions still suffer from some knowledge gaps.
These include multiple object reconstruction from a single frame, maskless
object reconstruction which would make it applicable to non-synthetic
experiments, complex and temporally morphing object reconstruction; lastly,
the ability to reconstruct from an imperfect depth sensor input without
acquiring ground truth values.

To narrow this knowledge gap, this dissertation provides several machine
learning-based computer models, and a comparison between state-of-the-art
methods and object completion methods proposed in the research papers
overviewed in the dissertation can be seen in the Table 1. The machine
learning approach was selected based on the assertion that every person builds
a mental model of their world during their lifetime. This a priori mental model
allows them to roughly estimate what the occluded or self-occluded parts of
an object would look like. From this assertion, a hypothesis was put forward
that machine learning approaches, similarly able of pattern matching as a
human, is a tool adept of occluded side object reconstruction.
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3. SUBMITTED PAPER OVERVIEW

Based on the previously raised hypothesis in this dissertation, a total of four
papers shall be presented:

1. Reconstruction of 3D Object Shape Using Hybrid Modular Neural
Network Architecture Trained on 3D Models from ShapeNetCore
Dataset (Section 3.2) [73]

2. 3D Object Reconstruction from Imperfect Data Using Extended
YOLOv3 Network (Section 3.3) [74]

3. HUMANNET—A Two-Tiered Deep Neural Network Architecture for
Self-Occluding Humanoid Pose Reconstruction (Section 3.4) [75]

4. Auto-Refining Reconstruction Algorithm for Recreation of Limited
Angle Humanoid Depth Data (Section 3.5) [76]

16



3.1. General overview

In this dissertation, a total of four papers have been presented, each
incrementally attempting to solve the problem of occluded object region
reconstruction from a single perspective. The final computer model iteration
in this dissertation can be seen in Figure 1. The presented model can perform
single perspective object point cloud completion from an imperfect structured
light or a laser depth sensor. To achieve this result, the following steps are
taken. Firstly, depth frame frame information is retrieved from a depth
scanning sensor. Afterwards, additional processing is performed, where the
depth information is clipped to 2.5 meters, thereby giving this approach an
effective range of 2.5 meters. Once the candidate depth frame is ready, the
depth sensors intrinsic matrix K is used to construct a candidate point cloud.
Further processing is applied to filter out points which have a depth of zero;
this is important as in the next step the point cloud dimensionality is reduced
to 2048 points. Following that, the zero depth points are discarded before
resampling in order to prevent meaningless points from ruining the final point
cloud. Once the point cloud is ready, the objects refinement computer model
is applied. The result of this is the original point cloud feature vector and the
refined point cloud. The cleaned-up point cloud is then used to extract the
most viable features for course reconstruction and combined using residual
connections with the previously obtained input point cloud feature vector.
The resulting feature map is used for coarse reconstruction. Finally, the
combination of the coarse reconstruction result using residual connections
with the combined latent feature vector is performed, thus obtaining the final
fine-grained point cloud.

17



_|V

saunjeay
Jauyal Joenxg

[opow 1ndwod pazijeury Ay} Jo WeideIp ANANOY T 3N

syuod saUmeay
dnuea|D UES|D ]ORN
J0j9an
aimea

Juiod paeasiq

sjud g#0Z
0} s|dwesumog

passascidun
sEH

l

passaosoud
[axid yiew

SoISULYU
BIALIED BABLIEY

pnoaued
o) UsALDD

S10}02A 21MyE3)

UOoNISUODas

SE=
widap jaxig

SUIqUIDD aul4
UOI}2NISUoDas
aslecn
oy
ou
Y
passasoid 0122 O}
1=xid e Wpdap 185 O
awey BISWED spyBiam
wdap aasulEY uidap azZ|jenul [2powl pecT

18



Table 2. Author contributions to the paper

Author Contribution

Rytis Maskelitinas Conceptualization of the research direction of the conducted
research.

Sanjay Misra Formal analysis of the conducted research.

Audrius Kulikajevas Investigation of existing research in the field related to the

. . research paper.

Rytis Maskelitinas

Rytis Maskelitinas Proposing the methodology in order to have replicable research
results.

Audrius Kulikajevas Proposing and implementing the computer model used in the
research paper.

Rytis Maskelitinas Overseeing and supervising the conducted research.

Audrius Kulikajevas o )
Validation of the experimental results.

Rytis Maskelitinas

Audrius Kulikajevas ) S ]
Graphical visualization of the experimental results.

Robertas Damasevicius

Audrius Kulikajevas Writing of the original draft, paper modifications based on peer
reviewer comments.

Rytis Maskelitinas

. Reviewing and minor editing of the draft for errors and
Robertas DamaseviCius | |anguage inconsistencies.

Sanjay Misra

3.2. Reconstruction of 3D Object Shape Using Hybrid Modular Neural
Network Architecture Trained on 3D Models from ShapeNetCore Dataset

The first submitted research paper is Reconstruction of 3D Object Shape
Using Hybrid Modular Neural Network Architecture Trained on 3D Models
from ShapeNetCore Dataset by Audrius Kulikajevas, Rytis Maskeliiinas,
Robertas DamasSevicius and Sanjay Misra. The research conducted in this
paper should provide an insight into the application of modular hybrid neural
networks for an object’s smooth surface mesh completion from a single
imperfect depth sensor frame in real-time applications.  The author
contribution to the research can be seen in Table 2.
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3.2.1. Materials and Methods

The paper presents three novelties in the field of object reconstruction.
The first one is the hybrid deep neural network architecture, which allows for
faster neural network convergence and real-time performance, and, secondly,
smooth surface mesh reconstruction. Thirdly, unlike other similar object
reconstruction methods, e.g., 3D-R2N2, the proposed paper used depth sensor
frames, as opposed to flat RGB images, as this allowed for more accurate
object retention and maskless object reconstruction. Due to this, the paper’s
experimental results managed to achieve not only real-time performance, but,
when evaluated quantitatively, it also achieved 89.5% of the reconstruction
results which were in good (/oU € (0.25,0.75]) or excellent (IoU € (0.75,1])
category. The neural network overview can be seen in Figure 2; here ?
denotes selection of the most appropriate reconstruction branch, from one of n
pretrained feature encoder branches. The proposed computer model is a
two-tiered hybrid neural network comprised of classification and
reconstruction stages. The classification stage selects the most appropriate
reconstruction branch based on the predicted class to which the depth input is
passed along to.

Classification

Input 320x240
Caonv 2D 320x160x32
Reconstruction
RelLU
Feature Encoder 1
Max Pool 160x120 H
.L w Feature Encoder 2
FC 256 C? > FC 3P0axaz » R 32x32x32
[ Ll Ll ECon HILH
5 ! Q QQ ; Sigmoid
1

RelLU i
""| Feature Encoder n |>--‘
Dropout P(x)=0.2
'L »|  Classification n
FCn

Sigmoid

I

Figure 2. Hybrid-neural network overview

For the neural network input, a 320 x 240 depth frame is used. While the
native size of ZR300 is 640 x 480 recording the depth, due to hardware
graphical memory limitations during the training process, it used a
downsampled depth image. The image was downsampled without
interpolation as not to distort the depth field during the interpolation process.
The resulting depth frame is then passed through a 3 x 3 convolutional kernel
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to extract 32 feature vectors. As the convolutional kernel is a linear operation
and this solution is non-linear, a non-linearity function must be introduced.
Hence, the rectified linear units (ReLUs) are applied as a non-linearity
function [77, 78]. ReLU was chosen for its mathematical simplicity which
reduces the computational complexity, while, in addition, it has been shown
that ReLU when used with convolutional neural networks has a better recall
and convergence rate when compared to sigmoidal and hyperbolic tangent
non-linearity functions [79, 80], the ReLU function can be seen in Equation

(1) [78].
f(x) = max(0, ) (D

Following the non-linearity function, a maximum pooling operation is
performed by using a 3 x 3 extraction kernel with a stride of 2; this reduces
the feature map dimensionality and picks only the most important features,
thus leaving a 160 x 120 latent feature vector. The resulting feature vector is
used as an input for a 256 neuron fully-connected layer and its activation
function. To increase the sample count and reduce the network bias, a dropout
layer is added with the probability of dropping the neuron value set to
P(xz) = 0.2. It has been experimentally shown that when ReLU is combined
with the dropout layer, generalization and accuracy improve [81, 82, 83]. The
latent output is then connected to the fully-connected layer with n neurons,
where 7 is the trained reconstruction branch count. However, instead of ReLU
activation, in the final layer, the sigmoid activation function is used as the
non-linearity function clamps the neuron saturation range to [0,1]; the
sigmoid equation is shown in Equation (2) [84].

1

f(x) = = 2)
Once the proper reconstruction branch has been identified by the
classification stage, the input is then used in the selected reconstruction
branch. Here, the input features are encoded for later reconstruction, and the
feature encoder overview is shown in Figure 3. Not unlike the classificator,
convolutional neural networks with ReLU activation functions throughout the
feature extraction layers are used, except for the final layer. Where the
fully-connected layer uses the Leaky ReLU function, it was found that this
increases the network generalization rate because ReLU can sometimes suffer
from dead neurons, i.e., neurons which are always stuck at zero as their input
is negative thus not contributing to the network itself, whereas, Leaky ReLU
attempts to solve for this [85, 86]. Leaky ReLU equation can be seen in

Equation (3) [86], where « is the slope constant.
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Conv 20 180x120x32 Conv 2D 80xB0x84 Conv 2D 40x30x128 Conv 2D 20x15x256 RelU

Conv 2D 320x240x16 RelLU RelLU RelU RelLU Conv 2D 10x7x512
RelLU Conv 2D 160x120x32 Conv 2D B0x60x64 Conv 2D 40x30x128 Conv 2D 20x15x256 RelLU

Conv 2D 160x120x16 RelLU RelLU RelLU RelLU Conv 2D 10x7x512
RelLU Conv 2D 160x120x32 Conv 2D B0x60x64 Conv 2D 40x30x128 Conv 2D 20x15x256 RelLU

RelU RelLU RelU RelU Conv 2D 10x8x512

RelLU

Conv 2D 5x4x512

RelU

FC 512
Leaky RelLU
Dropout P(x)=0.4

Figure 3. Hybrid-reconstruction encoder branch example

f(z) = max(ax,x) (3)

Following this, the latent feature encoder output is then reconstructed by
using a 32 x 32 x 32 feature reconstruction layer. What is more, due to neural
network hybridization, it is also possible to have different network architectures
based on the reconstructed object type complexity. To train the hybrid model,
a sum of two loss functions have been used, one for classification and one for
reconstruction, and the final loss equation can be seen in Equation (4) which
includes softmax cross-entropy as one of the terms [87]. The resulting model
complexity when compared to other state-of-the-art approaches at the time can
be seen in Table 3. While the network has a lot of trainable parameters, due to
a large input image size and few pooling layers, the operation count remains
low, thus the network remains performant in terms of time.

N Zﬁv:l e’

Here, o and & are objects reconstruction prediction and ground truth values,
whereas 3 and B are objects true and predicted classes, additionally, N is the
training batch size, and Q is the product of grid density.

“4)

i=1

3.2.2. Dataset

The described object completion method in the paper requires a priori
information for the captured object and its occluded region reconstruction.
For this reason, a synthetic dataset was created by using the ShapeNet dataset
as a base. A given 3D model from the ShapeNet dataset is placed in the center
of the scene and rendered by using only depth information from 1 m and
1.5 m distance, in 45° camera rotation increments thus creating a total of 48
perspectives for a single object in the dataset. As the computer model is only
dealing with depth information, RGB information is not rendered.
Furthermore, a real world validation dataset is created by using Intel
Realsense ZR300 depth sensor for objects that the computer model is trained
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Table 3. Model complexity comparison.

No. of No. of | Model

Method Parameters | Operations Size
(M) | (GFLOPs) (MB)

3D-LSTM-1 30.92 12.46 | 174.25
3D-GRU-1 32.21 12.51 179.45
3D-LSTM-3 30.92 3599 | 27491
3D-GRU-3 32.21 37.41 | 280.44
Res3D-GRU-3 35.97 69.40 | 539.27
Hybrid 352.35 3.09 | 1458.68

to complete. Due to the hardware limitations, using the native depth sensor
resolution (640 x 480) is not feasible; therefore, a downscaled version (320 x
240) is used for both synthetic and real world datasets. To calculate the
reconstruction loss, ground truth voxel grid values are created for each of the
objects in the dataset [88]. To perform voxelization, objects’ geometry
boundaries are partitioned into equally sized cells, where the size of the axes
is determined by the axis containing the most cells, thereby creating a uniform
voxel grid. Afterwards, the voxel state is set to either filled or empty by
performing ray-triangle intersection [89], thus producing a 32 x 32 x 32
voxel grid representing the object’s shape. By using the created dataset, the
network was trained by using the Adam [90] optimizer with the learning rate
of Ir = 1073 for an average of 50 iterations before the model getting
converged. The learning rate and the optimizer were chosen experimentally,
for they showed the fastest convergence rates and the best evaluation dataset
accuracy.

3.2.3. Results

To quantitatively evaluate the objects’ voxel grid reconstruction, three
main evaluation metrics are used: Completeness (Equation (5)), Correctness
(Equation (6)) and Quality (Equation (7)) as proposed in the literature [91].
Here, A is filled with ground truth voxel values and B is filled with prediction
voxel values. Completeness (fcomp), also known as Producer’s Accuracy
Detection Rate, is the ratio of voxels in ground truth that are reconstructed.
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foo— P(B|A)
P P(BJA) + P(B|-A)
The Correctness (f.or) metric shows how well the reconstructed voxels
match the ground truth.

©)

_ P(B|A)
Jeor = BUBIA) + P(=B|A)

Meanwhile, Quality (fyuaiity) gives the combined value that balances both
the correctness and completeness metrics.

fcomp : fcorr
fcom + fcorr - fcom : fcm"r
P P

By using these quantitative evaluation metrics, the evaluation of the
experimental results is performed for the validation datasets whose results can
be seen in Figure 4.

As the results in the figures show, the primary problematic reconstruction
results are within the book and laptop data points. However, the major
discrepancies can be easily explained by the fact the two objects in question
had very few training samples. Meanwhile, other reconstruction results fit in
the good or excellent reconstruction results as defined by the paper being
within 0.25 < fouaiy < 0.75 and fyuaiy > 0.75, respectively, where the
value ranges were selected based on qualitative results. Furthermore, the
relative error bar size allows for the evaluation of the reconstruction stability
from various perspectives of the same object. In addition to this, the solution
managed to achieve 151 frames per second on one of the benchmarking
hardware setups with a GTX 1070 graphics card and 28.88 FPS with a GTX
960M graphical chipset, thus making it fit for use in real time applications. As
the neural network operation is a deterministic set of arithmetic matrix
operations, the performance, in terms of time, remains constant per all object
types and is only influenced by network complexity which remains constant
during all experiments in this dissertation. The qualitative results can be
observed in Figure 5. Row I shows the results of input (a) for the
state-of-the-art object completion model [10] when compared to the proposed
hybrid approach II. Finally, when evaluating a real dataset, it was noticed that
the ZR300 camera was unable to capture small object features and had an
effective reliable range of only 0.55 m to 2.8 m, thus making this type of
sensor applicable to only medium sized objects. Additionally, it was observed
that this sensor was unable to capture some types of materials, e.g., laptop

(6)

()

fquality =
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screens and plastics, as they created distortions in the depth field that the

proposed approach failed to account for.
b)

Figure 5. Model result comparison between the state-of-the-art and the
proposed versions

() (
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Table 4. Author contributions to the paper

Author Contribution

Rytis Maskelitinas Conceptualization of the research direction of the conducted
research.

Rytis Maskelitinas Proposing the methodology in order to have replicable research

results.

Audrius Kulikajevas

Proposing and implementing the computer model used in the

research paper.

Audrius Kulikajevas o )
Validation of the experimental results.

Rytis Maskelitinas

Rytis Maskelitinas Formal analysis of the conducted research.

Audrius Kulikajevas

Investigation of existing research in the field related to the

Rytis Maskelitinas research paper.

Robertas Damasevicius

Audrius Kulikajevas Writing of the original draft, paper modifications based on peer

Cexe reviewer comments.
Robertas Damasevicius

Robertas DamaseviCius | Reviewing and minor editing of the draft for errors and

language inconsistencies.
Edmond S. L. Ho £uag

Audrius Kulikajevas . ) o .
Graphical visualization of the experimental results.

Rytis Maskelitinas
Rytis Maskelitinas Overseeing and supervising the conducted research.
3.3. 3D Object Reconstruction from Imperfect Data Using Extended YOLOvV3

Network

The second submitted research paper is 3D Object Reconstruction from
Imperfect Data Using Extended YOLOv3 Network by Audrius Kulikajevas,
Rytis Maskelitinas, Robertas Damasevicius and Edmond S. L. Ho. The
research conducted in this paper should provide an insight into the application
of deep hybrid neural networks for multiple smooth object surface mesh
completion in the scene by using only a single imperfect depth sensor frame in
real-time applications. The author contribution to the research is shown in
Table 4.
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3.3.1. Materials and Methods

The second research paper attempts to solve an issue that was left
unaddressed in the previous one — the reconstruction of multiple objects in
the frame. During the publishing of paper, in the state-of-the-art research,
there was little focus on the multiple object reconstruction, thus making this
the main novelty. The approach opted to use YOLOv3 [92] as the neural
networks’ backbone model, and this allowed for more effective classification
and objects bounding box extraction, which is then used for geometric
segmentation allowing for improved object masking and contour clipping. In
addition to this, a periodic hyper parameter was suggested, which allowed for
better network generalization. This resulted in the relative reconstruction
quality increase of 8.53% compared to the previous paper. General neural
network architecture overview can be seen in Figure 6; where ? denotes
selection of the pretrained reconstruction model from # reconstruction
models, and X is input multiplication with binary mask.

RGB Input Depth Input |
320%240x3 320x240

Classification
DarkNet33

Small Objects Medium Objects| Large Objects

Dropout Dropout Dropout
Px)=0.9 P(x)=0.5 P(x)=0.5 Reconstruction
Object recon 1
* Geom Segm
Object recon 2 Recon 32x32x32
¥ ¥ ¥ 1
[ voos | [ voom | [ vooL | : Q00 i
! [
| | | - Object recon n i

Figure 6. Deep neural network for occluded object side reconstruction
overview

Described approach uses a modified version of DarkNet53 as the
backbone for object classification, and this backbone was chosen over others
in the same category for it had shown some of the best state-of-the-art
accuracy at the time; additionally, unlike some other approaches, it not only
detected bounding boxes, but also classified the object in a single pass [93, 94,
95]. The modified DarkNet53 backbone takes a combined RGB and depth
sensor (RGB-D) frame as an input and outputs three main object branches
with distinct features, one being for small objects (S), one for medium-sized
objects (M) and, lastly, for large objects (L). In order to improve the neural
network generalization rate, a dropout layer was added after each of the
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branches with the probability of P(x) = 0.5 to drop the neuron. The result of
this stage is the prediction of object classes and their bounding boxes for a
given input frame. Additionally, the encoded features are sent to the object
segmentation branch which is needed to cut out each of the object features for
latter reconstruction, and the segmentation network architecture can be seen in
Figure 7; + indicates residual connections. This module uses all three
DarkNet53 outputs as an input. During the first step transposed convolutions
are performed on the large object latent feature vector to upscale the features.
Unlike interpolation-based upscaling methods, like bilinear and bicubic
upscaling, transposed convolutions have trainable parameters which can
improve the upscaled edge quality when compared to interpolation [96, 97].

Conv 2D
B0x60x128
! Bal;h .
Mormalization
RelLU
Conv 2D
160x120x32
Batch
Large Objects Small Objects MNormmalization
Transposed Conv 2D ReLU 7
20x20x1024 I+
Batch B(D:Dg; 2125
- B0
Narmalization Transposed Conv 2D Batch
RelLU 40x40x256 Normalization
Batch
MNommalization RelLU
Medium Objects
RelLU
z 0 Conv 2D -
onv
Transposed Conv 2D BOXBOX256 ] 160x120x32 G‘\
40x40x256 Batch Batch ‘{ ¢
A Normalization
Batch Normalization Conv 2D
MNormalization RelLU B0xE0x256
RelLU Batch
RelLU Conv 2D izati
" Mormalization
o 2D Upscaling 160x120x32
ony 160x120 Batch RelLU
20x20x256 - aeh —
Batch MNormalization Conv 2D
MNormmalization RelLU B0xE0x128
Batch
RelLU GConv 2D Normalization
BOxG0x128
Batch ReLU
MNarmalization Conv 2D
RelLU G0xE0x1
Batch
Normalization
4){ Max Pool 80x60 }7 RelLU

B0xE0
Figure 7. Object geometric segmentation architecture

Batch normalization is applied to the transposed input, for it has been
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proven to, in many cases, improve the convergence rate and reduce the
network bias thus improving overall generalization on validation datasets
without adding additional data points during the training [98, 99]. Afterwards,
the non-linearity function is applied, and resulting features are combined with
medium object features. The process is then repeated with small object latent
features to combine them with the previous output. Following this, additional
transposition is used, followed by bilinear upscaling to the correct aspect ratio,
twice the size of the desired final feature map. This upscaling is performed
twice, and, following this, parallel object feature extraction is applied by using
the Inception model; it has been shown that four-level parallel feature
extraction allows for each of the branches to extract separate scale features
thus improving object detection [100]. Afterwards, parallel features are then
combined by using residual connections, as these have shown to improve the
gradient flow by skipping unnecessary connections [101].

Moreover, the paper proposes to use an improved hybridized neural
network architecture, where each of the branches is trained to reconstruct
different types of objects. A variational auto-encoder node was added to each
of the object completion branch bottlenecks. They were chosen for their
ability of suggesting non-deterministic predictions for the same input thus
improving the results when given an imperfect and noisy input [102, 103]. A
single variational auto-encoder branch architecture, used for reconstructing
individual objects, can be seen in Figure 8.

Feature Extraction
Object Reconstruction

Conv 2D 160x120x96
ReLU
Dropout P(x)=0.1
Inception 2D 160x120
Gonv 2D 160x120x16

Inception 3D 4x4x4x16
Inception 3D 4x4x4x8
Inception 3D 4xdxdxd
Conv 30 4x4x4x16
RelU

RelU
Conv 2D B0xB0x128
ReLU
Dropout P(x)}=0.05

Inception 3D BxBxBxd
Inception 2D 50x60 Mean 2
1 Konv. 3D 8x6x8x16
Input 320x240 Inception 2D 80x60 FC 512 Sampling 2 FC 64 Recon 32x32x32
| ReLU
s
Conv 2D B0x60x32 Standard Dev 2

Transp Conv 3D 16x16x16x32
RelU
Inception 3D 16x16x16x4
Gonv 3D 16x1616x16
RelU
Transp Conv 3D 32x32x32x4
RelU

Transp Conv 3D 8xBx8x64
RelU
Variational Aufo-Encoder. Inception 3D BxBxBx8

ReLU
Conv 2D 40x30x128
Inception 2D 40x30
Inception 2D 40x30
Inception 2D 40x30
Conv 2D 40x30x64
RelU
Conv 2D 20x20x256
ReLU

Conv 3D 32x32x32x2

Softmax

Figure 8. Example of variational auto-encoder branch used for object and its
occluded side reconstruction

For object feature extraction, [Inception architecture is used with
two-dimensional convolutional kernels. Whereas, the reconstruction side of
the architecture uses three-dimensional /nception kernels. In the paper, it was
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found that symmetrical variational auto-encoder models performed better than
their asymmetric counterparts. The variational auto-encoder had two latent
vectors and used standard deviation for random value sampling. The resulting
model complexity can be seen in Table 5.

Table 5. Model complexity comparison

No. of No. of | Model

Method Parameters | Operations Size
M) | (GFLOPs) | (MB)

3D-LSTM-1 30.92 12.46 174.25
3D-GRU-1 32.21 12.51 179.45
3D-LSTM-3 30.92 35.99 27491
3D-GRU-3 32.21 37.41 280.44
Res3D-GRU-3 35.97 69.40 539.27
Hybrid 352.35 3.09 | 1458.68
YoloExt 40.14 7.50 153.15

To train the neural network, a combination of the classification and
reconstruction loss functions was used, to compare the prediction and ground
truth results. The final loss function can be seen in Equation (8), which is a
sum of these terms: f; — loss between object bounding box ground truth and
prediction; f, — object confidence loss; f-, — confidence that the bounding
box does not contain an object; fr — object class loss; f, is the object’s
segmentation mask loss; f. — object reconstruction loss. Hyperparameter
values of A\, = 5 and A\, = 0.5 were left unchanged as per suggestion in
source literature [92].

f=Xfat fo+Mfp+ ot fst [ (8)

To further break down the terms, f; is given in Equation (9) [92]; here,
(x4, yi, w;, h;) are object bounding box center coordinates along with its size, S
denotes the region count that partitions the image width and height axes, and B
is the bounding box number.
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B
fd - Z ]IOb] fdxy + fdwh]
=1 j=1

Moreover, f, (see Equation (10)) [92] and its inverse f-, Equation (see
Equation (11)) [92] show confidence loss, where f,, shows the confidence that
the given region contains an object, whereas, f-, shows the confidence that a
given region does not contain an object.

Z Z 127(C; - C;)? (10)

=1 j=1

S? B
—0bj A

=) 1M(C -G (11)

i=1 j=1
Furthermore, f; shows the loss between the predicted class and its ground
truth, it is shown in Equation (12) [92], where 7 is the class count that the neural
network is trained to differentiate, whereas, p;(j) and p;(j) are the class true

and prediction values, respectively.

fo= ZW > wild) = 0i4))? (12)

JjEN

The next loss functions component is the segmentation term f;, it can be
seen in the Equation (13). Segmentation loss shows the between the ground
truth value of the segmentation and the predicted value of the segmentation
mask, where W and H are the image width and height respectively, and s and
s are the true and predicted pixel values.

W H
=)D (s — 8)” (13)

i=1 j=1

Finally, the final term f, as seen in Equation (14), is the reconstruction
loss. The reconstruction loss itself is a sum of two sub-terms, first one being
KL divergence [104] used for variational auto-encoder loss calculation, and the
second one being the cross-entropy loss for object reconstruction [87]. Here, [
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is the latent variational auto-encoder neuron count, o and g are the probability
distribution of the standard deviation.

l ) ) Q 2

i1 07 — L+ + et 1 A

= D i 5 ) E E alog & (14)
i=1 j=1

3.3.2. Dataset

As per the first paper, the process for creating a priori information is very
similar. However, this computer model has several improvements which not
only achieve better accuracy results but also permit the model to reconstruct
multiple objects per scene. Therefore, the dataset needs to be modified to
have data samples containing multiple objects per scene. This is done by
placing nopjects = [1;10) objects from the ShapeNet dataset with random
transformations within the scene. The random transformations are as follows:
objects are given a random scale uniform (on all three axes) in the range of
s = [0.7,2) in addition to a random rotation on the world’s Up axis (z) in the
range 0, = [0,27). All objects are placed on the same plane; therefore, only
the x and y coordinates are given to the object’s translation. Objects are placed
around it by using the following Equation (15), where » = [—5,5] and
a = [0,27). Additionally, a check is added to determine whether any objects
intersect, and if they do, a new random translation is tried until objects no
longer intersect.  Moreover, as the YOLOv3 network now uses RGB
information, the object’s texture and material are rendered alongside. The real
world validation dataset contains all test cases from the first paper in addition
to new test cases captured by using a Realsense D435i device. When using the
created dataset, the neural network was trained by using the Adam [90]
optimizer for an average of 120 iterations. During training, it was noticed that
the neural network may fall into local minimums thus negatively impacting
the convergence. Therefore, a periodic learning rate function (seen in
Equation (16)) has been proposed, which has allowed the model to potentially
jump out of the local minimums. Here, I7,,;, = 107% and Ir,,,, = 10~* were
discovered empirically. Additionally, wg = 4 X s and w; = 2 X s, where s is
the number of mini-batches per epoch. The first function is used to initially
train the network with smaller learning rates so that to avoid potentially
encountering exploding gradients [105].

{.Z':TXCOSOé (15)

y=rXsina
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o X (ITmaz — rmin) + Timin, i 2 < wp

flr(l‘) — ]_ 1+7T><COS (z—wqy)mod(wg+1) (16)
€

wo

X .
wed otherwise
(lrmax - lrmin) + lrminv

3.3.3. Results

Same as per previous paper, computer model results are compared by
using the Completeness, Correctness and Quality quantitative metrics as seen
in Figure 9.
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Figure 9. Quantitative reconstruction results using completeness, correctness
and quality metrics

Additionally, when the approach is compared to the previous paper in
Figure 11, a clear improvement in the results can be observed as most of the
reconstructions increased in quality, and the shrunk error bars indicate much
more stable results. Additionally, even previously poor results, due to low
training dataset samples, showed an improvement. Even though there was a
reduction in the speed of the reconstruction to 55.76 and 11.50 frames per
second on GTX 1070 and GTX 960M GPUs, respectively, the solution still
remains competitive for real-time reconstruction, while improving the
reconstruction accuracy and having the ability to reconstruct multiple objects
per frame. The qualitative results can be seen in Figure 10, I is state-of-the-art
[10] results for (a) input, II is the result of the previous paper, I1I is the result
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of the proposed new model, it can be observed that the results of the proposed
network are a lot more detailed and with fewer distortions. During the
research, it was noticed that, unlike ZR300, the Intel Realsense D435i device
had an improved effective range of 0.3 m to 3 m thus allowing for a wider
object type capture. Furthermore, there was a noticeable improvement in the
clarity and reduction of dead zomes in the depth field of the D435i when
compared to its predecessor. However, both depth sensor types seem to suffer
when capturing translucent materials, such as PET plastics. Finally, both
devices exhibit a wave-like pattern slightly distorting the depth field.

(a) (b)

1T

111

Figure 10. Model result comparison between the state-of-the-art and the
proposed versions
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3.4. HUMANNET—A Two-Tiered Deep Neural Network Architecture for
Self-Occluding Humanoid Pose Reconstruction

The third submitted research paper is HUMANNET—A Two-Tiered Deep
Neural Network Architecture for Self-Occluding Humanoid Pose
Reconstruction by Audrius Kulikajevas, Rytis Maskelitinas, Robertas
Damasevicius and Rafal Scherer. The research conducted in this paper should
provide a possible strategy for applying point cloud-based object completion
deep neural networks for complex and dynamically morphing shapes. The
author’s contribution to the research is shown in Table 6.

3.4.1. Materials and Methods

The final goal of the object completion research field is the reconstruction
of the entire scene with only a single imperfect perspective frame. Previous
research showed that this is possible for a simple static object, thus the
following research papers in this dissertation shall focus on more complex
object completion from a single perspective. Whereas the two initial papers
for objects and their occluded side reconstruction used voxel grids for object
and its surface mesh reconstruction, the third research paper instead moved
away from voxels into point clouds. Previous papers, along with
state-of-the-art, used voxel grids as the base object reconstruction due to the
simplistic and well-known mathematical comparison of object ground truth Y
and the predicted voxel Y values. However, voxel grid-based methods suffer
from a critical flaw — the inefficiency of data structure that increases the
memory requirements in a geometric progression of n® when increasing the
voxel grid density, which is required for more complex object reconstruction.
This issue is a critical one as the modern hardware for training machine
learning models (GPUs and TPUs) generally has much stricter operative
memory allowances and cannot be sensibly expanded. Although there have
been attempts to reduce the memory footprint of voxel grids with more
efficient voxel grid representations, such as oct-trees [72, 106], the problems
with the voxel grids do not end with the high memory requirements. Another
issue that is apparent in voxel-based approaches is the homography problem,
where, for an effective reconstruction algorithm, there is also the need to solve
for the object transformation matrix which consists of the object’s position,
rotation and scale. To avoid these issues altogether, in the third paper
presented in this dissertation, an unordered point cloud was used instead.
Unlike voxel grids, unordered point clouds have very little memory overhead,
making them ideal for training deep neural network models. However, while
the memory overhead is solved with this data structure, the unstructured
nature of the point clouds makes the comparison function an issue. As they
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Table 6. Author contributions to the paper

Author

Contribution

Rytis Maskelitinas

Conceptualization of the research direction of the conducted
research.

Rytis Maskelitinas

Proposing the methodology in order to have replicable research
results.

Audrius Kulikajevas

Proposing and implementing the computer model used in the
research paper.

Audrius Kulikajevas
Rytis Maskelitinas

Robertas Damasevicius

Validation of the experimental results.

Robertas Damasevicius

Rafal Scherer

Formal analysis of the conducted research.

Audrius Kulikajevas
Rytis Maskelitinas

Robertas Damasevicius

Investigation of existing research in the field related to the
research paper.

Audrius Kulikajevas

Rytis Maskelitinas

Writing of the original draft, paper modifications based on peer
reviewer comments.

Robertas Damasevicius

Rafal Scherer

Reviewing and minor editing of the draft for errors and
language inconsistencies.

Robertas Damasevicius
Rafal Scherer

Audrius Kulikajevas

Graphical visualization of the experimental results.

Rytis Maskelitinas

Overseeing and supervising the conducted research.

Rafal Scherer

Funding of the research.
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are an unstructured dataset, regular ground truth comparison methods are not
applicable as each of the Y values can be assigned to any of the Y values; in
addition to that, multiple Y can converge on a single Y, and this subsequently
creates a complexity of O(n!) possible permutations. For this reason, two
main methods for comparing unordered point clouds have been proposed in
the scientific literature, with the first the Chamfer distance [107] and the other
being the Earth Mover s distance [108], each of them having slightly different
loss characteristics and sensitivity to point cloud errors. These two loss
functions allow for the improvement on the mathematical complexity;
however, the Earth Mover’s distance maintains the O(n?logn) memory
footprint thus making it not applicable to large point clouds. However, an
approximation for it has been proposed, reducing the memory footprint to a
linear one [109]. The main focus of the state-of-the-art research is a single
simple static object’s reconstruction for a given input. Therefore, the main
novelty of the proposed solution is the ability to isolate and clip the region of
the point cloud that will be used as input for further complex object
reconstruction. To do this, similar techniques from a previous paper of the
dissertation are borrowed for object isolation, where YOLOv3 was used to find
the object’s bounds and to create its segmentation masks, which could then be
used to cut out the region-of-interest (Rol) containing the object in question.
However, instead of 2D bounding boxes for the isolation of the region in the
three-dimensional point cloud, the paper presents clipping bounds. The neural
network consists of two stages: clipping proposal and reconstruction. The
clipping proposal neural network proposes two clipping boxes which are then
used to cut out the Rol from the input point cloud. Meanwhile, the
reconstruction network uses the clipped point cloud input for the complex and
temporally morphing object reconstruction. This solution has managed to
achieve the Jacaards index of 0.7907 for clipping boxes and 0.0256 and
0.0276 for Chamfer and Earth Mover’s distance metrics for reconstruction,
respectively, from as little as 50% visible points in the point cloud. The
overview of the neural network architecture for the occluded object
reconstruction is presented in Figure 12, where X is multiplication with the
binary clipping mask and + is residual connections. A depth frame input is
combined with the camera intrinsic matrix K to produce a point cloud.
However, the produced point cloud contains 307200 vertices (640 x 480),
which makes it impossible to work with on modern consumer grade parallel
computing hardware. For this reason, the input point cloud is downsampled to
the desired density (in this case, 2048 vertices) by using the Farthest Point
Sampling (FPS) algorithm. Whereas previous research used images
downsampled to 320 x 240, this paper no longer uses the entire image as an
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input, and it only uses the resampled point cloud. Farthest point sampling was
chosen over other options for its ability to select a deterministic number of
points in the point cloud where other methods, such as voxel grid-based, may
provide a non-concrete number of selected points [110]. Moreover, FPS is
also resistant to uneven point distributions in the point cloud, e.g., uniform
sampling would be biased towards the highest concentration of points [111,
112]. The resulting downsampled point cloud is then used as an input for
feature extraction layers. For the models featuring the extraction structure, the
PointNetFeat architecture was used, which showed great results when dealing
with unstructured data inputs, namely, point clouds, by extracting 64, 128 and
1024 features while using single dimension convolutional kernels for best
feature selection [68]. Whereby, following this action, the 1024 neuron
feature map is compressed into two by applying the adaptive max pooling
function, and this allows the network to filter for the two most prominent
latent feature vectors that will act as the clipping boxes [113]. The clipping
box is a regression task which can have both positive and negative values; for
this reason, the final activation function uses uses the hyperbolic which is
provided in Equation (17).

Depth Frame Camera ﬁ
G40x480 Intrinsics K Conv 1D 4096x64 ﬁ'
I Batch Mormalization %
| Pointcloud 30720063 F—— ReLU
v Conv 1D 128 g
FPS 2048x3 Batch Mormalization %
Conv 1D 2048x564 RelU
Batch Mormalization Conv 1D 4096x1024
RelLU Batch Mormalization
Conv 1D 2048x128 Max Pool 1024
Batch Mormalization - .,1,
- RelLU b FC 256
= Conv 1D 2048x1024 Batch Mormalization
g Batch Mormalization RelU
¥ | Adapt Max Pool 2x1024 v
'E: Conv 1D 2x7 | Coarse Recon 4096x3
% Batch Mormalization Clipped Input 307200x3 .,l,
] Hyperbolic Tangent FPS 4096x3 | Fine Recon 4096x3

Figure 12. Proposed temporally morphing complex object reconstruction
neural network architecture overview
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1 — 6721:

f(x) = Tro (17)
Afterwards, from the two resulting clipping boxes, the one with the higher
confidence is used to filter out points that are within the clipping region. The
resulting Rol is then downsampled into the desired density, which is 4096 in
the paper. The paper suggests this reclipping methodology to solve for high
density point clouds, as, otherwise, it would not be feasible to work with
them. However, when resampling the entire input objects which do not belong
to the Rol, it would also be counted towards the given vertex allowance. This
solution allows the HumanNet to retain much higher density inputs isolated
from the background noise to be used in reconstruction, thus allowing for
complex object reconstruction. The clipped input is then ran through a
separate feature extraction bottleneck, again using the PointNetFeat
bottleneck, after which, coarse reconstruction is applied. Following coarse
reconstruction, residual connections and coarse features are used for finer
object reconstruction [69, 71]; the reconstruction neural network branch
architecture can be seen in Figure 13, yet, for brevity, only one of the Random
Grid Reconstruction branches is shown. The extracted latent features are then
used as an input in random grid patch-based reconstruction where 16 branches
are constructed, one for each reconstruction patch. The 16 patches perform a
coarse object’s point cloud reconstruction, the coarse reconstruction is then
combined by using residual connections with the input features. The residual
connections act as a guide in creating a finer point cloud reconstruction
output, and the complexity of the network is shown in Table 7.

Table 7. Model complexity comparison

No. of No. of | Model
Method Parameters | Operations Size

(M) | (GFLOPs) | (MB)

PointNet w/ FCAE 7.43 1.18 | 28.36
PCN 6.87 295 | 26.25
AtlasNet 3.31 6.46 12.66
MSN 29.50 12.89 | 112.89
HumanNet 29.71 11.74 | 112.94

To train the neural network, as described in the research paper, a two-term
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loss function is used as described by Equation (18). Here, f; is the clipping
loss and f, is conditional reconstruction loss, which is only applied when the
clipping loss is below threshold f; < 0.3.

f=F e +1{fr £0.3}f, (18)

The three-dimensional region of interest clipping loss f; is defined by
Equation (19). Here, o and o are the object’s center ground truth and
prediction values, meanwhile, s and s is its scale, y. is the confidence that an
object exists in the bounding box, n is the allowed clipping box count.

fdp = Ye Z L15(0i7 61,)
i=1

fds = Ye Z L15(3i7 §z)
p (19)

1 n
ce — c'l Ac ]-_c1 ]-_Ac
fo n;y ogge + (1 —ye) - log (1 — 3c)

fk) - fdp+fds +fbce

L1, denotes the smooth loss function, as defined by Equation (20) [114]
unlike the least absolute deviation (L /), smooth L/ has lower sensitivity to data
outliers, and this can prevent gradient explosion and divergence [114].

N0 )\2 . .
2i(yi, i) = (%2@%) ) if |, —ys| < B
2 yuyz) - N .

|0; — yi| — 0.5, otherwise 20)

. 1 <
=1

The next loss term is the reconstruction, as defined by Equation (21) [71],
which contains three sub-terms. The first two terms are f.,,q (Equation (22))
[71], which compare the reconstruction quality of coarse and fine point clouds
against ground truths; meanwhile, f.,,, as defined by Equation (23) [71], is
a constraint term that prevents points from the same patch from moving too
far away from each other, as per the original paper in which the constraint is
suggested, and the constraint value is set to a = 0.1 [71].

f?" - femd(Sa S’fine) + femd(sy Scoarse) + O-/fea:p (21)
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femd = mm E Z ||z — o(z)||2 (22)

forp = ﬁ > 1{d(u,v) = Mi}d(u, v) (23)

1<i<K (u,veT;)

3.4.2. Dataset

In the first two papers, the main focus of reconstruction was simple static
object reconstruction because the focus of the research was expanded to more
complex objects, e.g., humanoid shapes in addition to improving the
reconstruction fidelity by moving away from voxel grid-based approaches to
point cloud-based approaches. To achieve this, a new type of the dataset is
required. A new synthetic dataset was created by using the MoVi [115] dataset
which contains a large amount of motion capture data from multiple camera
perspectives as a base for the humanoid posture. However, because the
approach described in the paper requires depth sensor information, which the
MoVi dataset lacks, the captured information is skinned onto triangle meshes
provided in the AMASS [116] dataset. = Similarly to the first paper
(Reconstruction of 3D Object Shape Using Hybrid Modular Neural Network
Architecture Trained on 3D Models from ShapeNetCore Dataset), the dataset
is generated by placing an object inside a scene and rendered from various
angles by using only depth information. For every motion capture recording,
both given male and female models are bound and placed within a scene
imitating a room with a wall behind the user. The subject model is being
rotated around in the range fgupjec: = [0°,360°) 45° increments, while the
camera is rotated around the subject in the range of O.4mera = [—35°,35°] in
15° increments. Finally, a ground truth point cloud is generated from the
polygon mesh; this was done by sampling 4096 surface points while using
uniform sampling. To train the network, the Adam [90] optimizer on the
generated dataset was used with the initial learning rate of Ir = 1073
discovered experimentally. Additionally, once the loss plateau [117] has been
reached and the loss has not improved in 10 iterations, the learning rate is
reduced by a factor of 10. This reduction on the plateau is done until the
model converges, which is typically 170 epochs.

3.4.3. Results

Evaluation of the unordered point cloud approaches is not possible by using
the same quantitative evaluation metrics as with the voxel grids. For this reason,
two main metrics were chosen for the evaluation of the point cloud approach;
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these metrics are EMD (Equation (22)) and CD (Equation (24)) [118]. They
were chosen for being used as a benchmark in the majority of state-of-the-art
point cloud reconstruction evaluations.

o= 3 ( 15y Sominlle — ol + 5 Sominlle ~ul2) @4

ES y yES

In the experiments, the MoVi dataset is used which is comprised of
recordings containing subjects performing various actions and poses. These
recordings are used as a basis for the training and validation datasets, where
every 75th frame is used from the recording in the processed dataset. This is
done to reduce the amount of similar, and, in some cases, nearly frames. Even
though the MoVi dataset contains motion capture information, it is missing
depth frames. To solve this, the motion capture poses are bound to the AMASS
dataset provided male and female meshes generating depth maps for frames.
Once the dataset has been prepared, it is split as 80:20 to separate the dataset,
where 80% of the frames are used for the network training and 20% for the
validation. Once the network has been trained, the validation dataset is used
to evaluate the results quantitatively on each of the frames individually. To
evaluate the model results, they are separated based on the exercise/pose the
subject has performed (see Figure 14) and by the subject’s gender (see Figure
15).

0.05

Em EMD
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0.03 1
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Reconstruction Quality
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1 2 3 4 5 6 7 8 9 10
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Figure 14. Reconstruction results evaluated based on exercise
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Figure 15. Reconstruction results evaluated based on gender

As the results show, there are no clear disparities between the poses;
whereas, small error bars indicate that there are no outliers in the data
samples. This indicates that the machine learning model can approximate the
human body pattern. Meanwhile, the similarity between the reconstruction
results for both genders indicates that not only has the approach managed to
generalize the human body pattern by reconstructing such features as limbs, it
has also been able to discern the body shape by reconstructing such features as
secondary sex characteristics. In addition to this, the achieved quantitative
metrics (0.0256 EMD and 0.0276 CD) have shown to be on par or exceed the
state-of-the-art research (see Table 8) while providing the novelty of
reconstructing complex and temporally morphing objects; whereas,
state-of-the-art deals only with single static object reconstruction. ShapeNet
quantitative metrics are self-reported by authors, AMASS metrics were
calculated by using the same dataset that was created for this dissertation.

Table 8. Comparison between different methods

Method ShapeNet AMASS
EMD CD EMD CD
PCN [119] 0.0734 | 0.0121 | 3.0456 | 4.0955
AtlasNet [120] 0.0653 | 0.0182 | 2.0875 | 6.4343
MSN [109] 0.0378 | 0.0114 | 1.1525 | 0.8016
HumanNet — — 0.0256 | 0.0276
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3.5. Auto-Refining Reconstruction Algorithm for Recreation of Limited Angle
Humanoid Depth Data

The fourth and final submitted research paper is Auto-Refining
Reconstruction Algorithm for Recreation of Limited Angle Humanoid Depth
Data by Audrius Kulikajevas, Rytis Maskelitinas, Robertas Damasevicius
and Marta Wlodarczyk-Sielicka. The research conducted in this paper should
improve the field of object and its occluded region completion by applying
unsupervised deep adversarial auto-refining neural networks for a complex
object point completion from a single imperfect non-synthetic depth frame
without known ground truth for network training. The author’s contribution to
the research can be seen in Table 9.

3.5.1. Materials and Methods

The main knowledge gap that remains even in the state-of-the-art methods
is the ability to reconstruct from real structured light and laser depth sensors;
whereby, other research focuses on reconstruction from synthetic datasets
only. In the fourth paper, Auto-Refining Reconstruction Algorithm for
Recreation of Limited Angle Humanoid Depth Data that is presented in the
dissertation, a method for reconstructing an object and its occluded regions
has been proposed by applying unsupervised deep adversarial refining neural
networks which can clean-up the noisy sensor input, thus making them similar
to synthetically generated data points without losing the original input
features. The main novelty of the proposed computer model is the application
of adversarial neural networks for the refinement of the input point cloud.
Unlike widely known applications for adversarial neural networks where they
are used for the generation of non-existing images [121] or even sound and
text-to-voice synthesis [122], the paper proposed a way to train the adversarial
neural network for cleaning up the input while using fully unsupervised
adversarial training for the cleanup of the real world data point input. This is
done in order to make it similar to a synthetic dataset thus removing the need
for ground truth values during the reconstruction step. This methodology was
developed as a solution to the problem of imperfections in depth sensors
frames. Both structured light and laser depth sensors provide output of very
noisy and distorted frames which even the state-of-the-art methods can fail to
account for. When comparing this solution to that of state-of-the-art (see
Table 10), it can be observed that the computer model described by the paper
outperforms the other by combining such features as point cloud
reconstruction for higher resolution reconstructions, Earth Mover’s distance
for better point cloud reconstruction quality, and, finally, unlike most other
methods, it can work with real world frames as opposed to only synthetic
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Table 9. Author contributions to the paper

Author Contribution

Rytis Maskelitinas Conceptualization of the research direction of the
conducted research.

Rytis Maskelitinas Proposing the methodology in order to have replicable

research results.

Audrius Kulikajevas

Proposing and implementing the computer model used in
the research paper.

Audrius Kulikajevas
Rytis Maskelitinas
Robertas Damasevicius

Marta Wlodarczyk-Sielicka

Validation of the experimental results.

Rytis Maskelitinas

Robertas Damasevicius

Formal analysis of the conducted research.

Audrius Kulikajevas

Rytis Maskelitinas

Investigation of existing research in the field related to the
research paper.

Audrius Kulikajevas

Rytis Maskelitinas

Writing of the original draft, paper modifications based on
peer reviewer comments.

Robertas Damasevicius

Marta Wlodarczyk-Sielicka

Reviewing and minor editing of the draft for errors and
language inconsistencies.

Audrius Kulikajevas

Rytis Maskelitinas

Graphical visualization of the experimental results.

Rytis Maskelitinas

Overseeing and supervising the conducted research.

Marta Wlodarczyk-Sielicka

Funding of the research.
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ones.

In addition to this, the proposed point cloud refining process solves this
issue without having ground truth values for the reconstructed objects with fully
unsupervised training. The refining output stage is a latent feature vector along
with the cleaned-up point cloud, which is then used for object reconstruction
by applying further feature extraction and concatenation with the previously
selected latent feature vector. The result of which is then used for the coarse and
fine object and its invisible side reconstruction by using residual connections
to connect coarse and refined feature vectors for the final reconstruction. After
performing quantitative analysis, it was found that the suggested neural network
architecture has achieved the Earth Mover's and Chamfer distance metrics of
0.059 and 0.079, respectively. These values put them on the same level in terms
of the reconstruction quality with state-of-the-art, while providing a novel way
of reconstructing noisy and distorted real world depth sensor inputs without
having ground truth values for training on real objects. The overview of the
method is shown in in Figure 16.

Object reconstruction

Fine
Depth Frame l Reconstruction 1

Feature
Selection Discriminator

Camera I & Coarse
Intrinsic K [ Reconstruction

Pointcloud [ Refinement

Figure 16. Object refinement and its invisible side reconstruction computer
model overview

The input depth field is combined with the depth sensor intrinsic camera
matrix K to produce a point cloud which is then used during the refinement
step.  Following this, similarly to a previous paper (HUMANNET—A
Two-Tiered Deep Neural Network Architecture for Self-Occluding Humanoid
Pose Reconstruction), coarse-to-fine object reconstruction is performed. The
output of this process is the fine detail point cloud that is then shown to the
discriminator in order to evaluate it by guessing if the reconstruction came
from the real world dataset or a synthetic one, the result of which is then
subsequently used to update the refiner for it to learn to deceive the
discriminator.

For the object cleanup and refinement stage, a very similar architectural
solution to the coarse point cloud reconstruction is used. The network branch
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structure is shown in Figure 17; for brevity, only one of the parallel branches
is displayed. For a given input point cloud, the most influential latent feature
vector is extracted, from which, a random grid reconstruction is performed by
using 8 patches. The resulting output is a cleaned-up original input and a
previously extracted feature vector. Following this, further feature extraction
from the reconstructed point cloud is performed. This is done separately
because only the refined point cloud is used in the adversarial training. The
newly extracted features are then concatenated with the extracted input
features and passed on through along with the refined point cloud to the
occluded region reconstruction branch seen in Figure 18; for brevity, only,
one of the parallel branches is displayed.

The resulting fine point cloud reconstruction is then used as an input in the
discriminator branch. The discriminator attempts, as seen in Figure 19, to
classify the synthetic data point reconstruction as (1) and the real world
reconstruction as (0). Whereas, the refinement neural network branch
attempts to deceive the discriminator, by using its inverse loss. This creates a
competition between the refiner and the discriminator networks. The resulting
model complexity for both the reconstruction and the reconstruction with the
discriminator branch is shown in Table 11.

PointNetFeat
Conv 1D 2048x64
Batch Mormalization

RelLU
Conv 1D 2048x128
- —— FC1
Fine Recon 2048x3 |—> Batch Mormalization - "
igmoi
RelLU

Conv 1D 2048x1024
Batch Mormalization
Max Pool 1024

Figure 19. The discriminator that is used to determine if the point cloud is
real or synthetic

Due to the complexity of the neural network architecture, it is difficult to
train it in a single stage; for this reason, a four-staged training methodology
is devised for the unsupervised adversarial network training of the computer
model.

Phase I. Auto-encoder During the first phase, the neural network is trained
to take an input and return the same input as an output. This is generally referred
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Table 11. Model complexity comparison

No. of No. of | Model

Method Parameters | Operations Size
(M) | (GFLOPs) | (MB)

PointNet w/ FCAE 7.43 1.18 | 28.36
PCN 6.87 29.5 | 2625
AtlasNet 3.31 6.46 | 12.66
MSN 29.50 12.89 | 112.89
HumanNet 29.71 11.74 | 112.94
Auto-Refining 6.93 7.51 23.12
Auto-Refining w/ Discriminator 7.51 7.65 | 23.62

to as auto-encoders, as these are able to reconstruct the output from a reduced
dimensionality input. During this phase, Equation (25) is used as the training
loss metric which is a derivative of Equations (22) and (23). This phase allows
us to increase the training of the refinement phase by training coarse and fine
reconstruction branches to act as auto-encoders; whereas, the training refiner
alone greatly reduces the network convergence rate.

f¢1 - femd(Scleana S(clean) + femd(Scleana Scoarse)"’
femd(sclemu S’fine)—l_ (25)
a(femp(sclean7 Sclean) + femp(ScleaTU Sfine))

Phase II. Reconstruction The second phase is the coarse and fine
reconstruction network branch reconstruction training phase. During it, coarse
and fine branches are trained on synthetic input to make a prediction which
would result in reducing the loss between the prediction and the ground truth,
with the loss being defined by Equation (26).

f¢>2 - femd(Scleana Sclean) + femd(Sa gf'me)—i—
femd(S> 5Vcoarse)‘" (26)
a(fexp(scleany Sclean) + fea:p(Scleana Sfine))
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Phase I1I. Discriminator During this phase, the training of the discriminator
is performed to classify the fine reconstruction output as either synthetic (1)
or real (0). The discriminator is trained in a separate stage, as it was found
that training with the initial reconstruction seed values can cause it to have bad
gradients or even potentially explode and diverge. As the loss metric binary
cross-entropy is used which is defined by Equation (27) [123].

N
fos = ZZJZ ~log(yi) + (1 — i) - log(1 — y;) (27)
=1

Phase IV. Adversaries The fourth and final phase combines the training of
the refiner, coarse-to-fine reconstruction and discriminator branches. Here,
three-step training is applied. During the first step, Equation (28) is used as a
loss metric for the reinforcement of the already existing reconstruction
weights. The second stage uses the inverse discriminator loss as seen in
Equation (29) with the constraint of v = 0.4; this allows the real inputs to
retain their features. The final step reinforces the discriminator using
Equation (27) as a loss metric.

Joda = fo2 + fo3 (28)

~

fd>4b - ermd(Scleana Sclean)+

. ) (29)
afexp(‘gclean; Sclean) + f¢3(1 - Y, y)

3.5.2. Dataset

In this research, two sets of data are required: synthetic and real world.
The synthetic dataset is created in a very similar manner to the previous
research paper (HUMANNET—A Two-Tiered Deep Neural Network
Architecture for Self-Occluding Humanoid Pose Reconstruction). However,
the key difference between the two datasets being a synthetic dataset in this
research was reduced to 2048 points per point cloud. Any additional points
were found to have virtually no effect on the reconstruction accuracy, thus a
smaller point cloud allows for a less memory intensive model during the
training process. Additionally, a real world dataset was introduced, which was
recorded by using Intel Realsense D435i and Intel Realsense L515 depth
sensors. The real world dataset consists of 168 different recordings from three
subjects performing various exercises. D435i was placed to the right side of
the subject, meanwhile, the L5715 sensor was placed directly in front of the
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subject. This recording gives two different depth field errors that the
computer model needs to account for due to the different type of the depth
sensor characteristics. Each of the subjects has performed the following
exercise tasks: 1) shoulder flexion; 2) shoulder flexion and internal rotation;
3) shoulder flexion and internal rotation, elbow flexion; 4) shoulder extension
and internal rotation; 5) shoulder flexion, wrist on the back; 6) full shoulder
flexion; 7) shoulder adduction. Each of the exercises was performed four
times totaling 28 recordings of each subject from each of the cameras. By
using this dataset, the network is trained by using the Adam optimizer [90]
with a learning rate of [7,,,, = 10™* and Ir,,;, = 107 in addition to cosine
annealing with warm restarts [117] with a period of 50 epochs; this allows the
network to jump out of the potential local minimums that can be caused by
real world dataset inputs. The model converges on average in 300 epochs.

3.5.3. Results

Similarly to the previous paper, both EMD and CD metrics are used to
evaluate the object reconstruction results quantitatively. Firstly, the findings
are evaluated by the performed exercise as shown in Figure 20. Secondly, by
gender, the results are presented in Figure 21. When comparing the error bars
to those of the previous paper, it can be seen that the error bars are also
slightly higher relative to the metric mean, which indicates that certain
reconstruction angles may act as outliers.

B EMD

—— 1

Ml YN

Female —

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10
Reconstruction Quality

|_'_|

Figure 21. Reconstruction results evaluated based on gender

From the results, assertions can be made that the unsupervised deep
adversarial refining neural network can approximate the human pattern as
there are no disparities either by exercise or by gender. While the results have
slightly lower average EMD and CD values of 0.059 and 0.079, respectively,
when compared to the HUMANNET—A Two-Tiered Deep Neural Network
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Architecture for Self-Occluding Humanoid Pose Reconstruction paper, they
are still competitive with those of the state-of-the-art (see Table 12), while
additionally fully reconstructing occluded object sides from noisy and
distorted ones, structured light or a laser sensor, real world input with very
few defects. ShapeNet quantitative metrics are self-reported by authors,
AMASS metrics were calculated by using the same dataset that was created for
this dissertation.

Finally, from the results of qualitative experiments, it is possible to draw
an assumption that the proposed neural network can reconstruct expert
identifiable probable occluded object regions; meanwhile, the quantitative
results show that this assumption holds true in the entire validation dataset;
from this, it is possible to confirm the hypothesis that machine learning
approaches, similarly able of pattern matching as a human, are a tool adept of
occluded side object reconstruction.  Unlike the first research paper
(Reconstruction of 3D Object Shape Using Hybrid Modular Neural Network
Architecture Trained on 3D Models from ShapeNetCore Dataset), this paper
omitted the use of Intel Realsense ZR300 for it not only provides depth field
results on larger objects, but it was also discontinued, thereby making research
on it obsolete. Instead, D435i and L5175 depth sensors were used. During the
research, it was noticed that, while L5/5 usually provides a much cleaner and
less distorted depth field, it seemed to suffer from holes in the depth field
depending on the fabric the person is wearing, unlike D435i which did not
have issues with clothing. This is likely because the L5175 laser emitter beam
is more likely to be absorbed by the fabric itself, meanwhile, D435i uses both
visible light and infrared sensors to infer the object depth field, thereby
making it more robust against various materials.

Table 12. Comparison between different methods

Method ShapeNet AMASS
EMD CD EMD CD
PCN [119] 0.0734 | 0.0121 | 3.0456 | 4.0955
AtlasNet [120] 0.0653 | 0.0182 | 2.0875 | 6.4343
MSN [109] 0.0378 | 0.0114 | 1.1525 | 0.8016
HumanNet — — 0.0256 | 0.0276
Auto-Refining — — 0.0590 | 0.0790
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4.

1.

CONCLUSIONS

This dissertation has proposed and implemented a computer model
based on deep hybrid neural networks for smooth polygonal mesh
reconstruction achieving 151 frames per second from a single camera
perspective thus improving state-of-the-art object reconstruction
metrics from a single perspective by 19.3%, without requiring an object
segmentation mask for a single real world object reconstruction, which
makes the approach applicable for real time problems.

This dissertation has proposed a modification to the hybrid neural
network model which has improved the reconstruction results by 8.53%
relative to the initial hybrid model, in addition to performing maskless
multiple object reconstruction from a single perspective frame.

This dissertation has proposed and implemented a computer model
alongside its application strategy which has used the unordered point
data structure as opposed to the voxel grid and can reconstruct multiple
complex and temporally morphing objects per scene with the
fema = 0.0256 and f.; = 0.0276 evaluation metrics, which exceeds or
is on par with other state-of-the-art methods, such as PCN, AtlasNet
and MSN.

This dissertation has proposed and implemented a computer model for
reconstructing an object and its invisible sides from a single distorted
and noisy perspective input by using unstructured light and laser sensor
depth frames as an input at competitive f.,,q = 0.059 and f.; = 0.079
quantitative metrics without the need for ground truth for the training
of the reconstruction by applying unsupervised deep adversarial refining
neural networks.

. During qualitative evaluation, it was concluded that the models make

probable reconstructed object predictions; quantitative evaluation
metrics of fe,,q = 0.059 and f.; = 0.079 have shown that qualitative
results hold true throughout the entire validation dataset; therefore, the
hypothesis that machine learning approaches, similarly able of pattern
matching as a human, is a tool adept of occluded side object
reconstruction has been tested and confirmed.

59



5. FUTURE WORKS

The proposed human point cloud completion methods are focused on the
naked subject point clouds, i.e., they are not fit for completing the subject’s
clothing or accessories. Further research is being conducted in order to
reconstruct the worn clothing. Additionally, the point cloud completion
method has not proposed a solution for restoring the object’s surface mesh.
However, such solutions are being developed in the future research. They
would allow for full integration into the already existing three-dimensional
systems. Finally, the currently available solutions do not yet attempt to
complete the object’s material; further investigation into this would allow this
type of solution to each an even broader real-world audience in terms of
application in the daily life, e.g., teleconferencing or the entertainment
industry.
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6. SUMMARY
6.1. Jvadas

6.1.1. Tiriama problema

Darbo problema — nematomy objekto zony atkiirimas naudojant vienos
kameros perspektyvos vaizda.

Pagrindiniai Siomis dienomis praktikoje taikomi objekto nematomy zony
atkiirimo metodai — tai klasikiniai algoritmai, naudojantys daugelio kamery
perspektyvu sujungimo metodus tiek naudojant individualiy kamery vaizdus,
tiek iteracinius objekto atkiirimo metodus [5, 6, 7, 8, 9]. Taciau Sie metodai
daznai pasizymi prastomis atkiirimo charakteristikomis, pavyzdziui,
atkiirimas ties objekty susijungimo krastinémis [25]. Kita kylanti problema —
iteraciniy bei kity taSkiniy debesy atkiirimo metodai gali buti sunkiai
pricinami d¢l reikalingy kasty keletui specializuoty jutikliy isigyti [29].
Galiausiai, iteraciniai metodai, tokie kaip SLAM, pasizymi skaiCiavimy
kompleksiskumu, tai juos daro sunkiai pritaikomus praktikoje realaus laiko
sistemose, todél reikalingos vairios optimizacijos [26, 27, 28].

Dél siy priezas€iy yra reikalingi atsparts objekty nematomy zony atkiirimo
metodai, gebantys atkurti objektus naudojant viena objekto perspektyva.

6.1.2. Tyrimy tikslas

Pagrindinis tyrimy tikslas — sukurti masSininio mokymo modelj, gebanti
1§ vieno netobulo gylio jutiklio kadro perspektyvos atkurti objekta bei jo
nematomas zonas.

6.1.3. Darbo uzdaviniai

Darbui igyvendinti suformuluoti trys uzdaviniai:

1. ISanalizuoti egzistuojancius tiek klasikinius, tiek maSininio mokymo
sprendimus, susijusius su objekto bei jo nematomy zony atkirimu,
esant tiek vienos, tiek keleto perspektyvy kadrams.

2. Pasiiilyti bei realizuoti modeli ar modelius, gebancius atkurti jtikinamas,
nematomas ar uzdengtas objekto zonas 1§ vienos objekto perspektyvos.

3. Sukurti gilaus mokymo modelj, gebantj atkurti nematomas objekto zonas
esant vienam netobulam gylio kadrui, i§gaunamam tiek i8 struktiirizuotos
Sviesos, tiek lazeriniy jutikliy Saltiniy, bei jo pritaikymo metodologija.

6.1.4. Praktiné darbo reik§mé

Pasitlyti bei igyvendinti modeliai objekto nematomoms zonoms atkurti i$
vienos perspektyvos netobulo gylio kadro. Pasiiilyti modeliai gebéjo atkurti
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viena arba keleta tiek paprasty, tiek sudétingy ir laike kintanciu objekty,
matomy kadre realiuoju laiku. Taip pat buvo pasiiilytas sprendimas iSmokyti
gilivosius neuroninius tinklus atkurti objektus i$ vienos perspektyvos, neturint
tikryjy reikSmiy jo mokymo funkcijai. Eksperimentai bei rezultatai buvo
pavieSinti aukstai vertinamuose atvirai prieinamuose zurnaluose [73, 74, 75,
76].

6.1.5. Naujumas

Tyrimy rezultatai — gilaus masininio mokymo modeliai, pagristi
neuroniniy tinkly veikimu, gebantys atkurti tiek paprastus, tiek sudétingus
objektus naudojant viena gylio jutiklio perspektyvos kadra. Kiekviename
straipsnyje buvo sitlomi sprendimai, sumazinantys likusias naujausiy
sprendimy, susijusiy su objekty atkiirimu, spragas. Disertacijos metu atlikty
tyrimy indélis: objekty atkiirimas realiuoju laiku bei greitas atktirimo tinklo
praplétimas naudojant hibridinius neuroninius tinklus; lygaus objekto
pavirsiaus tinklelio atkiirimas; keleto objekty atkiirimas vienu metu; objekty
atkiirimas nenaudojant kaukés; sudétinguy bei kintanciy objektu taskinio
debesies atkiirimas naudojant giliuosius neuroninius tinklus; galimybe aptikti
bei iskirpti sudétingus objektus taskiniame debesyje keletui taskiniy objekty
atkurti; realiy struktiirizuotos Sviesos bei lazeriniy gylio jutikliy taskiniy

v —

objektams atkurti neturint tiesos reikSmiy ju mokymui.
6.1.6. Ginamieji teiginiai

1. Pasitlytas bei jgyvendintas sprendimas, gebantis i§ vieno netobulo
gylio perspektyvos kadro atkurti nematomas objekto zonas, pritaikant
neprizitrimy besivarzanciy giliyjy iSvalan¢iyju neuroniniy tinkly
metodologija.

2. Sukurta strategija giliesiems neuroniniams tinklams, objektams bei ju
nematomoms zonoms atkurti i§ triukSmingy strukttirizuotos $viesos bei
lazeriniy gylio jutikliy, mokymui neturint tiesos reikSmiy.

3. Pasiiilyti sprendimai tiek vienam, tiek keletui paprasty bei sudétingy ir
laike kintanc¢iy objekty bei ju nematomoms zonoms atkurti i§ vieno
netobulo gylio jutiklio kadro, kuriy atktirimo kokybé, nepaisant jutikliy
iSkraipymu, prilygsta sintetiniams (tobuliems) duomenims.

6.1.7. Darbo rezultaty aprobavimas

Web of Science ir Scopus duomeny baziy leidiniuose su citavimo rodikliu:
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1. Kulikajevas, Audrius; Maskelitinas, Rytis; Damasevicius, Robertas.
Detection of sitting posture using hierarchical image composition and
deep learning // Peer] computer science. London : PeerJ. ISSN
2376-5992. 2021, vol. 7, art. no. e442, p. 1-20. DOI:
10.7717/peerj-cs.442. Autoriaus indelis: 0.334.

2. Kulikajevas, Audrius; Maskelitinas, Rytis; Damasevicius, Robertas;
Scherer, Rafal. HUMANNET—a two-tiered deep neural network
architecture for self-occluding humanoid pose reconstruction // Sensors.
Basel : MDPI. ISSN 1424-8220. 2021, vol. 21, iss. 12, art. no. 3945, p.
1-16. DOI: 10.3390/s21123945. Autoriaus indélis: 0.250.

3. Kulikajevas, Audrius; Maskelitinas, Rytis; Damasevicius, Robertas;
Wlodarczyk-Sielicka, Marta. Auto-refining reconstruction algorithm
for recreation of limited angle humanoid depth data // Sensors. Basel :
MDPI. ISSN 1424-8220. 2021, vol. 21, iss. 11, art. no. 3702, p. 1-17.
DOI: 10.3390/s21113702. Autoriaus indélis: 0.250.

4. Kulikajevas, Audrius; Maskelitinas, Rytis; Damasevicius, Robertas;
S.L. Ho, Edmond. 3D object reconstruction from imperfect depth data
using extended YOLOv3 network // Sensors. Basel : MDPI. ISSN
1424-8220. 2020, vol. 20, iss. 7, art. no. 2025, p. 1-28. DOI:
10.3390/s20072025. Autoriaus indélis: 0.500.

5. Kulikajevas, Audrius; Maskelitinas, Rytis; Damasevicius, Robertas;
Misra, Sanjay. Reconstruction of 3D object shape using hybrid modular
neural network architecture trained on 3D models from ShapeNetCore
dataset // Sensors. Basel : MDPI. ISSN 1424-8220. 2019, vol. 19, iss.
7, art. no. 1553, p. 1-21. DOI: 10.3390/s19071553. Autoriaus ind¢lis:
0.400.

Tarptautinése ir nacionalinése konferencijose:

1. Kulikajevas, Audrius; Maskelitinas, Rytis; Damasevicius, Robertas;
Griskevi¢ius, Julius; Daunoravi¢iene, Kristina; ZiZiené, Jurgita;
Luksys, Donatas; AdomaviCiené¢, Ausra; Exercise Abnormality
Detection Using BlazePose Skeleton Reconstruction // ICCSA 2021:
Computational Science and Its Applications, Cagliari, Italy, 13-16
September 2021. DOI: 10.1007/978-3-030-86976-2 7. p. 90-104.
Autoriaus indélis: 0.125.
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Wozniak, Marcin. Reconstruction algorithm of invisible sides of a 3D
object for depth scanning systems of a 3D object for cost effective
truncation of point cloud data / ECOS 2019: Proceedings of the 32nd
international conference on efficiency, cost, optimization, simulation
and environmental impact of energy systems, Wrocltaw, Poland, 23-28
June 2019 / edited by: Wojciech Stanek, Pawet Gladysz, Sebastian
Werle, Wojciech Adamczyk. Gliwice : Institute of Thermal Technology
Silesian University of Technology, 2019. ISBN 9788361506515. p.
4505-4507. Autoriaus indélis: 0.250.

. Bhandari, Sandeepak; Kulikajevas, Audrius. Ontology based image

recognition: a review // CEUR workshop proceedings : IVUS 2018:
proceedings of the international conference on information
technologies, Kaunas, Lithuania, April 27, 2018 / edited by G. Capizzi,
R. Damasevicius, A. Lopata, T. Krilavi¢ius, Ch. Napoli, M. Wozniak.
Aachen : CEUR-WS. eISSN 1613-0073. 2018, vol. 2145, p. 13-18.
Autoriaus indélis: 0.500.
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6.2. Straipsniy apZvalga

Disertacijos metu tiriama mokslo sritis — dél didelio pastaryjy mety
susidoméjimo giliaisiais neuroniniais tinklais atgijusi mokslo kryptis.
Klasikiniai objekty atkiirimo algoritmai objekto pavirSiui atkurti pasitelkdavo
tokias esmines savybes, kaip iSgaubtasis korpusas [47] arba objekto virStniy
normalés vektorius [48, 49, 50]. O objekto nematomoms zonoms atkurti
vyrauja keletas spendimy, tai objekto nufilmavimas i§ visy reikiamy
perspektyvy bei sujungiant gautus taskinius debesis, taip atkuriant bendra
objekto forma, arba panaudojus objekto simetrijos asis [51, 52, 53, 54].
Taciau tokiy sprendimy panaudojimas yra ribotas bei sunkiai pritaikomas
sudétingesniems ar laike kintantiems objektams, toliems kaip, pavyzdZziui,
zmogus. Siekiant sukurti atspary objekty pokyc¢iams bei pritaikoma tikroje
aplinkoje objekto atkiirimo model; i§ vienos perspektyvos, buvo atlieckami
tyrimai, susij¢ su masininiu mokymu. Egzistuoja dvi pagrindinés duomeny
struktiiros trimaciams objektams atvaizduoti erdvéje — tai tiirinio tasky
tinklelio bei taskinio debesies. Vienas pirmyju tyrimy, susijusiy su objekto bei
jo nematomy zony atkiirimu naudojant masinini mokyma 3D-R2N2 [10],
naudoja Sanford Online Products [58] bei ShapeNet [57] duomeny rinkinius
kaip a priori zinias rekurentiniam neuroniniam tinklui mokyti, kur
rekurentiniai ilgos ir trumpos atminties [59, 60] sluoksniai mokomi atkurti
objekta parodant tinklui ta patj objekta i§ keliy perspektyvy, Siame straipsnyje
minimas sprendimas gebe¢jo atkurti objekta tiek i§ vieno, tiek i§ keleto kadry,
kur didesnis ivesties perspektyvy kiekis pagerino galutinio atkurto objekto
kokybg.  Vélesni sprendimai patobulino gautuosius rezultatus pritaikius
Chamfer atstuma kaip paklaidos metrika, lyginancia spéjima bei tiesa [12].
Kiti sprendimai bandé pritaikyti generatyvinius besivarzancius neuroninius
tinklus objektui atkurti naudojant tiek keleta skirtingy perspektyvu [61], tiek
vieng perspektyvos paveiksla [62].  Kiti autoriai pritaiké hierarchinius
pavirSiaus atkiirimo metodus, taip uztikrindami auksStesnés raiSkos tiiriniy
tasky tinklelio objekty atkiirimo rezultatus [63]. Vélesni metodai vietoj tiirinio
tasky tinklelio pradéjo naudoti taskiniy debesy atkiirimo metodus, pavyzdziui,
PointOutNet [64] naudoja tikimybinj objekto pavirSiaus taSky pasiskirstyma
jo taskiniam debesiui atkurti i§ dvimacio paveikslo bei jo kaukés. Véliau
raSiusiy autoriy pasitilyti sprendimai bandé pagerinti §iuos metodus, taip pat
naudodami nerikiuotiems taskiniams debesims atpazinti bei atkurti i$
dvimaciy paveiksly [65]. Pagrindiné priezastis, dél kurios autoriai naudojo
dvimacius paveikslus kaip maSininio mokymo jvesti, — jau zinomy
konvoliuciniy branduoliy, kurie yra naudojami panaSioms su objekty
atpazinimu susijusioms uzduotims spresti, pritaikymas [66, 67], dél to
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nukencia pastaryjyu metody rezultaty kokybé, kadangi monokuliariuose
kadruose prarandama svarbi objekto gylio informacija. Kiti autoriai pasiiile
sprendima, kaip panaudoti nesurikiuotus taskinius debesis kaip jvesti, kadangi
standartiniai konvoliuciniai metodai néra tinkami nerikiuotiems duomenims
[68]. D¢l to vélesni autoriai pasitlé naudoti tankaus-detalaus tinklelio
atkiirimo metodus objekto taskiniam debesiui atkurti [69], o AtlasNet autoriai
pasiiilé sprendima pagerinti objekty atkiirima pritaikius sulopymo metoda, kai
naudojama keletas atskiry tinkleliy objekto formai atkurti [70]. Kaip
pagrinding metrika tiesai bei spéjimui palyginti pastarieji autoriai naudojo
Chamfer atstuma, o Earth Mover's atstuma tik kaip kiekybinio jvertinimo
metrika vertinant gautuosius rezultatus, nors pastarosios metrikos rezultatai
yra labiau jautriis nuokrypiams, taciau dél jo sudétingumo jis yra sunkiai
pritaikomas tankesniems taskiniams debesims, kity autoriy pasitilyta tiesiné
aproksimacija iSsprendé Sia problema [71]. Nepaisant Sios pazangos atkuriant
nematomas objekty zonas, tiek Lietuvos, tiek pasaulio mokslinéje literatiiroje
vis tiek iSlieka keletas problemy, susijusiu su objekty atktrimu, tai keliy
objekty atkiirimas 1§ vieno kadro, sudétingesniy bei laike kintanciy objekty
nematomy zony atkiirimas ir objekty atkiirimas ne i§ sintetiniy duomeny bei
nesant papildomos informacijos apie objekta, pavyzdziui, objekto kauke
kadre.

Sioms problemoms spresti taip pat buvo naudojamas modelis, pagristas
masininio mokymo principu. Sis sprendimas buvo pasirinktas remiantis
teiginiu, kad kiekvienas Zmogus per savo gyvenima sukuria mintyse esanti
modeli, kuri naudodamas gali i§ dalies nuspresti, kaip atrodys nematoma
objekto zona, kai Sias uzstoja tiek pats objektas, esant saves uzdengimo
situacijai, tiek jas uzdengiant kitiems objektams. IS to keliame hipotezg, jog
masininio mokymo sprendimai, gebantys aptikti Sablonus, yra tinkami S$iai
problemai spresti.

6.2.1. Reconstruction of 3D Object Shape Using Hybrid Modular Neural
Network Architecture Trained on 3D Models from ShapeNetCore Dataset

Sios hipotezés pagrindu buvo i$spausdintas pirmasis nematomy objekto
zony atkiirimo straipsnis Reconstruction of 3D Object Shape Using Hybrid
Modular Neural Network Architecture Trained on 3D Models from
ShapeNetCore Dataset. Pagrindinis Sio metodo tikslas — naudojant viena
gylio kameros perspektyvos kadra atkurti objekta bei jo nematomas zonas.
Straipsnyje buvo pasiiilyti du pagrindiniai naujumai, pirmasis tai hibridiné
giliyju neuroniniy tinkly architektira. Si architektira leido paspartinti giliyjy
neuroniniy modeliy konvergavimo laika bei sumazinti kastus, kai atktirimui
pridedamas naujas objekto tipas, kitaip nei kiti panasiis metodai, atkuriantys
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trimacius objektus, naudojantys masinini mokyma, pavyzdziui 3D-R2N2 [10],
kuris naudojo gylio jutiklio duomenis, o ne ploksc¢ius paveikslus. Tai leido
tiksliau islaikyti objekto forma bei atkurti objektus nenaudojant papildomu
kaukiy, o dél hibridiniy savybiy suteikiamos galimybés naudoti lengvesnés
architekttiros tinklus $is modelis gal¢jo veikti realiuoju laiku. Taip pat
kiekybiniy tyrimy metu buvo nustatyta, jog sukurto modelio tikslumas
atkuriant trimacius objektus buvo 89,5%. Giliojo hibridinio neuroninio tinklo,
apibiidinamo straipsnyje, architektiira pateikiama 1 paveiksle. Modelis
susideda i$ dvieju pakopuy, pirmojoje atlickamas objekto tipo atpazinimas.
Pastarasis yra reikalingas siekiant atpazinti, kuriai neuroninio tinklo Sakai
priklauso matomas objektas. Tinklo ivestis yra gylio laukas, perduodamas i§
naudojamo jutiklio. = Pastarajam yra pritatkomas konvoliucinis 3 X 3
branduolys, kurio rezultatas yra 32 bruozy Zemélapiai. Kadangi atliekamos
uzduoties rezultatas néra tiesinis, reikia jvesti netiesiSkuma, Siuo atveju
naudojama ReLU funkcija [77, 78]. Si pasirinkta dél jos matematinés
iSraiSkos paprastumo, tai supaprastina aritmetikq ir sumazina reikalingy
kompiuterio resursy kiekj, taip pat ReLU beveik visais atvejais pagerina
konvoliuciniy tinkly veikima [79, 80], funkcijos iSraiSka pateikta formuléje

(1) [78].
f(2) = max(0, ) (1)

Kitu zingsniu atlickama telkimo operacija atrenkant tik maksimalias
reikSmes. Kaip ir konvoliucinis branduolys, telkimo operacijai naudojamas
3 x 3 formos branduolys su 2 Zingsniy intervalu. Tai sumazina jvesties dydi
perpus. Gautas bruozy rinkinys paver¢iamas eilute ir sujungiamas su 256-iu
pilnai sujungty neurony sluoksniu, rezultatui pritaikius netiesiSkumo funkcija,
papildomai pridedamas atmetimas su 20% tikimybe atmesti neurono reikSmg.
Atmetimo  strategija buvo pasirinkta siekiant pagerinti modelio
generalizavima bei sumazinti SaliSkuma, kadangi jrodyta, jog atmetimas gali
pagerinti neuroniniy tinkly, naudojanc¢iy ReLU netiesiSkumo funkcija,
isiminima [81, 82, 83]. ISvestis jungiama su iki galo sujungtu sluoksniu,
turin¢iu # neurony, kur » nurodo, kiek yra iSmokyta antrojo tipo pakopuy, ¢ia
kiekviena pakopa yra atskira hibridinio tinklo rekonstravimo Saka.
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Klasifikavimas

Jvestis 320x240

Konv 20 320x160x32 Atklrimas
RelLU
Maks Telk. 160x120

Bruozy uzkod. 1
v v .l

Bruozy uzkod

PS5 32x32x32
»| Atklrimas 32x32x32

PS 256 C’P
Sigmoidas

Q Q Q
RelLU

“*‘| BruoZy uzkod. n |---
Atrmetimas P(x)=0.2
'L > Klasé n
PS5 n

Sigmoidas

I

[
La

1 pav. Bendroji giliojo neuroninio tinklo struktiira

Nustacius tinkama Saka, gylio Zzemélapis perduodamas i uzkodavimo Saka.
Uzkodavimo Sakos pavyzdys matomas 2 paveiksle, hibridinés savybés leidzia
kiekvienos uzkodavimo Sakos architekttirai skirtis. Hibridiné architektiira
leidzia keisti parametry kieki pagal atkuriamo objekto sudétinguma. Tai
sutrumpina mokymo laika bei pagreitina naujy objekty pridéjimo procesa,
kadangi nereikia 1§ naujo mokyti viso tinklo, uZtenka iSmokyti tik
klasifikatoriy atpazinti naujaji objekta bei Saka, kuriai priskiriamas objektas.

Konv 2D 10x7x512
Konv 2D 160x120x32 Kanv 20 80x60x64 Kanv 2D 40x30x128 Konv 2D 20x15x256 RelLU
Konv 2D 5x4x512
Konv 2D 320x240x18 RelLU RelLU RelLU RelLU Kanwv 20 10x7x512 ReLU
e
RelLU Konv 2D 160x120x32 Kanv 20 80x60x64 Kanv 2D 40x30x128 Konv 2D 20x15x256 RelLU ps 512
Konv 2D 160x120x16 RelLU RelLU RelU RelU Konv 2D 10x7x512
Pralaidus ReLU
RelLU Konv 2D 160x120x32 Konv 2D 80x60x64 Konv 2D 40x30x128 Konv 2D 20x15x256 RelLU
Atmetimas P(x)=0.4
RelU RelLU RelU RelU Konv 2D 10x8x512
RelLU

2 pav. Giliojo neuroninio tinklo objekto bruozy vektoriaus Saka, skirta vieno tipo
objekto esybéms atkurti

Neuroniniam tinklui mokyti naudojama dviejy palyginimo funkcijy suma
(zitréti formulg (2)), kur « ir & yra objekto rekonstruoto tiirinio tasko tikroji
bei spéjama vertés, [ ir B objekto klases tikroji bei spéjama reikSme [87], IV
yra partijos dydis, o () yra tinklelio tankio asiy sandauga.

N @ )2 B;
7oy Q; i
1, Z ZJ_1 ( J ]) B, log 5

N (2)
i=1 N Zj:l e’
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6.2.2. 3D Object Reconstruction from Imperfect Depth Data Using Extended
YOLOv3 Network

Tolimesniu tyrimy etapu buvo sprendZiama keliy objekty atkiirimo
problema, kurios pagrindu buvo i$leistas straipsnis 3D Object Reconstruction
from Imperfect Depth Data Using Extended YOLOv3 Network, apraSantis
rastus sprendimus. Pastarojo tyrimo metu buvo naudojamas modifikuotas
YOLOv3 [92] stuburinis modelis, kuris leido efektyviai rasti bei identifikuoti
individualius objektus scenoje. Vienas i§ YOLOv3 privalumy yra tas, jog, be
to, kad klasifikuojamas objektas, naudojama objektus ribojanti dézute.
Panaudojus dézute buvo randama geometriné kauké objekty kontiirams
aptikti. Naudojant geometring kauke galima rasti bei isfiltruoti potencialias
objekty instancijas, tai leido atlikti individualiy rekonstrukcijas, perduodant
tik reikiamo objekto gylio Zemélapius i tam iSmokytas hibridinio neuroninio
tinklo dalis. Taip pat buvo pasitilytas periodinis hiperparametras neuroninio
tinklo mokymo zingsniui, Sie priimti sprendimai ne tik pagerino ankstesnius
tyrimus atsiradusia galimybe atkurti keleta objekty 1S vieno kadro, bet taip pat
ir pagerino objekty atkiirimo kokybg 8,53%. Bendra neuroninio tinklo vaizda
galima matyti 3 paveiksle, kaip ir YOLOv3 straipsnyje, objektui atpaZzinti
naudojamas modifikuotas DarkNet53 [92] neuroninio tinklo stuburas, kuriam
perduodamas RGB-D (matomo Sviesos spektro bei gylio) kardas. Pastarojo
iSvestis yra trys tinklo atSakos, kurios yra skirstomos { mazy (S), vidutiniy (M)
bei dideliy objekty (L) grupes pagal tai, kokio dydzio objektus Saka yra
specializuota atpazinti bei atkurti.  Siekiant pagerinti neuroninio tinklo
abstrahavimo lygj, prie kiekvienos Sakos yra prijungiamas atmetimo sluoksnis
su tikimybe atmesti 50% ivesties neurony, kaip ir originaliajame YOLOv3
modelyje, toliau seka objekto dézuciy atkiirimas kiekvienam i$ objekty tipu,
kur randama objekto klasé bei ji ribojanti dézuté.
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RGB |vestis Gylio lvestis |
320%240x3 320x240 |

Klasifikavimas

DarkNet33

MaZi abjektai Vidutiniai objektai  Dideli objektai

Atmetimas Atmetimas Atmetimas
P(x)=0.5 Pix)=0.5 P(x)=0.5 Atkiirimas

Objekto atkar. 1

Atklirimas 32x32x32

Objekto atkdr. 2 T
!

:

: 0 Q Q g
.

!
“-»  Objekto atkar.n |

3 pav. Giliojo neuroninio tinklo architekttira daugeliui objekty atkurti. Architektiira
naudoja DarkNet53 kaip stuburinj tinkla bruozams istraukti, atlicka objekty
atpazinima, objekty regiono aptikima, automatini segmentavima bei daugelio
objekty atktirima

A 4 A 4 Y
[ voos | [ voom | [ vooL |

Taciau DarkNet53 atrinkti bruozai yra taip pat perduodami { objekto
geometrinio segmentavimo giliojo neuroninio tinklo Saka, kurioje yra
atkuriamos objekty kaukés, reikalingos keletui objekty atrinkti ju atkiirimo
stadijoje. Geometrinio segmentavimo $aka matoma 4 paveiksle. Si kauke
atkuriama naudojant DarkNet53 tinklo Sakas, pirmuoju zingsniu didziyju
objekty Sakai yra pritaikomas transponuotas konvoliucinis branduolys, kitaip
nei interpoliaciniai bruozy Zemélapiy bei paveiksléliy padidinimo metodai
transponuoti neuroniniai konvoliuciniai branduoliai, dar Zinomi kaip
dekonvoliuciniai branduoliai, geba iSmokti, §i maSininio mokymosi savybe
daznai pagerina rezultato kontiiry rySkuma, palyginti su interpoliaciniais
metodais [96, 97]. Transponuotam rezultatui pritaikomas partijos
normalizavimas, kuris standartizuoja partijos rezultatus. [rodyta, jog Sis
sprendimas daugeliu atvejy pagreitina neuroninio tinklo mokymosi procesa
bei pagerina jo tiksluma su validavimo duomeny rinkiniais [98, 99]. Pritaikius
netiesiSkumo funkcija, rezultatas sujungiamas su vidutinio dydzio objekty
bruozy rinkiniu. Sis procesas yra kartojamas su gautu rezultatu, kuris yra
sujungiamas su mazaisiais objektais. Tolesniu etapu atlickamas objekto
bruozy apdorojimas, kurio paskutiniu Zzingsniu naudojama dvinariy
interpoliacija tam, kad 80 x 80 dydzio bruozy zemélapis biity padidintas i
tinkamo krastiniy santykio paveiksla. Toliau naudojant /nception paralelinio
objekto bruozy istraukimo strategija, yra atrenkami keturiuy lygiy bruozai,
kurie leidzia kiekvienai neuroninio tinklo Sakai iSsirinkti skirtingo tipo bei
dydzio bruozus, §is paralelizmas pagerina objekty aptikima [100], paraleliniai
bruozai sujungiami liekamosiomis jungtimis, kurios pagerina gradiento
perdavima ankstesniems sluoksniams, praleidziant nereikalingas neurony
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Jungtis [101].

Konv. 2D
BOx60x128

Partijos
MNormalizavimas

RelLU

Konv. 2D
160x120x32

— Partijos
Mazi objektai MNormalizavimas

ReLU =
* » Konv. 2D
. BOxGE0X128

Dideli objektal

Transp. Kenv. 2D
20x20x1024

Partijos
MNormalizavimas Transp. Konv. 2D Parios
ReLU 40%40%256 Nor
Partijos
Normalizavimas ReLU
Widutiniai objektai
RelLU
" P Konv. 2D r
onv.
Transp. Konv. 2D BOxB0X256 160)(12__0)(32 G\‘
40x40%256 Bt Partjos 4 ¢
Parti artjos Normalizavimas K ET)
artijos Normalizavimas on.
Mormalizavimas ReLU BOx60x256
RelU Partjjos
RelLU Konv. 2D i
Dydzio keitimas 16001 20x32 Normalizavimas
Konv. 2D 160x120 Parti ReLU
20x20x256 artjos -
Partijos Mormalizavimas Konv. 20
Mormalizavimas RelLU BOx60x128
Partijos
ReLu Konv. 2D Normalizavimas
B0xE0x128
Partjos ReLU
Normalizavimas Konv. 2D
ReLU B80x60x1
Partijos
Mormalizavimas
—>| Maks. Telk. 80x60 }— RelLU

Segmento kauké
80x60

4 pav. Objekty geometrinio segmentavimo modulis

Naudojant hibridiniy neuroniniy tinkly metodologija, yra mokomos
skirtingos objekty atkiirimo Sakos, kiekviena specializuojasi atkurti tam tikro
tipo objektus. Objektui atkurti naudojami variaciniai autokoduotuojai, kurie
pasirinkti dél gebe¢jimo pasitilyti kintancius, nedeterministinius jvesties
spé&jimus, tai leidzia pagerinti atkiirimo rezultatus esant triukSmingiems ar
kitokiy trikumy turintiems duomenims [102, 103], neuroninio tinklo Sakos
architektiira matoma 5 paveiksle. Objekto bruozams atrinkti naudojami
Inception architektiros moduliai, naudojantys dvimatés konvoliucijos
branduolius, o objektui atkurti naudojami trimatés konvoliucijos branduoliai.
Tai leidzia i$ dalies iSlaikyti tinklo architektiros simetriSkuma, Siuo atveju
kuo didesné asimetrija tarp uzkodavimo bei atkodavimo sluoksniy, tuo tinklui
buvo sudétingiau iSmokti tinkamus bruozus.  Variacinio autokodavimo
sluoksnyje pasirinkti du latentiniai vektoriai.
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Bruo2y parinkimas.
. Objekto atkirimas

[Konwv. 2D 160x120x28
ReLU
Atmetimas P(x}=0.1
Inception 2D 160x120
[Konv. 2D 160x120x16
ReLU
Konv. 2D B0x60x128
ReLU
Atmetimas P(x)=0.05

Inception 3D BxBxBxd
Inception 2D B0x60 Vidurkis 2
- | Konw. 3D BxBx8x16 —
Ivestis 320x240 || Inception 2D 80x60_|—3| PS 512 Latent veki. 2|3 PS 64 | ReLU Atkiirimas 32x32x32
e
Kanv. 2D B0x60x32 Variacija 2

[Transp. Konv. 3D 16x16x16x32
RelU

Inception 3D 4x4x4x16
Inception 3D 4x4x4x8
Inception 3D 4xdxdxd
Konv. 3D 4x4x4x16
RelU
Transp. Konv. 3D BxBxBx64
RelU

Variacinis aulo-kodavimas Inception 3D BxBxBx8

ReLU
Konv. 2D 40x30x128
Inception 2D 40x30
Inception 2D 40x30
Inception 2D 40x30
Konv. 2D 40x30x64
RelU
Konv. 2D 20x20x256
ReLU

Inception 3D 16x16x16x4
Konv. 3D 16x1616x16
RelU
Transp. Konv. 3D 32x32x32x4
RelU
Konv. 3D 32x32x32x2

Minkstas Maksimumas

5 pav. Viena objektu rekonstravimo Saka, naudojamas variacinis autokodavimo
modelis latentiniams vektoriams atrinkti

Neuroniniam tinklui mokyti naudota sudétiné funkcija, siekiant palyginti
klasifikavimo tiksluma, ribojancios dézutés tiksluma, geometrijos
segmentacijos nuokrypi nuo tiesos bei atkiirimo tiksluma. Galutiné
palyginimo funkcija matoma formuléje (3), kuri susideda i$ $iy termy: f; —
objekta gaubiancCios dézutés paklaida; f, — objekto aptikimo pasitikéjimo
paklaida; f., — pasitikéjimo, kad regione néra objekto, paklaida; f, —
objekto klasés paklaida; f, — objekto segmentacijos paklaida; f, — nurodo
objekto rekonstravimo paklaida, A\, = 5, A, = 0, 5, Sios konstanty vertés buvo
parinktos pagal literattiroje sitilomas reikSmes [92].

f:)\afd+fp+>\bfﬂp+fk+fs+fr (3)

Funkcijos f,; iSraiska pateikiama (4) [92] lygtyse, ¢ia (z;, y;, w;, h;) yra

objekto dézutés centro koordinatés bei objekta gaubiancios dézutés ilgis ir

plotis, S yra regionu, dalijan¢iy kiekviena i$ objekto asiuy, skaitius, o B —
gaubiamyjy dézuciy skaicius.

fazy = (i = 20)" + (s — 9:)°

Fawn = (VWi = Vioi)* + (/i — \/>2

B

S2
fd - Z Z ]lijl')j[fdxy + fdwh]

i=1 j=1

Funkcijos f, (zitréti (5) lygti [92]) bei f-, ((6) lygtis [92]) iSraiSkos labai
panaSios. Pagrindinis skirtumas tai, kad f, yra pasitikéjimo paklaida, jog
nurodytame regione yra objektas, o f-, yra atvirkStiné jai — tikimybés
paklaida, jog objekto néra.
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52 B
=) > 1(C=G) (5)

i=1 j=1

sz B A
=)D LG -G (6)
i=1 j=1
Funkcijos f; nurodo objekto klasés paklaida, iSraiSka matoma (7) [92]
lygtyje, ¢ia n yra klasiy, kuriomis mokomas objektas, skaiCius, o p;(j) bei
pi(j) yra regiony tikroji bei spéjamoji klasés tikimybés reik§mé.

Z]ld”z (4) — Di(4))? (7)

JEN

Tolimesnis termas f; — tai segmentavimo paklaidos termas, matomas (8)
lygtyje, jis nurodo paklaida tarp tikrosios bei spéjamosios geometrinés
segmentacijos reik§més. Cia W ir H yra segmentacijos kaukeés ilgio ir plogio
dimensijos, 0 s ir § yra segmentacijos tikroji bei spéjama reikSmes.

- Z Z Sij — 52] (8)

Paskutinysis termas f, yra tﬁrinlq tasky rekonstravimo paklaida, jos iSraiska
matoma (9) lygtyje, §i susideda 1§ KL divergacijos [104] bei rekonstrukcijos
paklaidos sumos [87]. Cia [ yra latentiniy variacinio autokoduotojo neurony
kiekis, o ir p tikimybiy pasiskirstymas normaliuoju skirstiniu.

l 2 )
. 2_1 i Wi 1 .
[P VEL S SRS o o R )

6.2.3. HUMANNET—A Two-Tiered Deep Neural Network Architecture for
Self-Occluding Humanoid Pose Reconstruction

Ankstesni du metodai objekto rekonstravimo tematika naudojo objekty
atklirima tiriniy tasky principu. Nors §i duomeny struktiira supaprastina
tikrojo objekto Y bei tinklo spéjimo Y matemating israiska, dél ko yra
mazesni tinklo mokymo kastai tiek laiko, tiek reikiamy resursy atzvilgiu,
ta¢iau tiriniy tasky sprendimai turi kritini trikuma:  siekiant atkurti
nematomas zonas sudétingesniems objektams, tiiriniy tasky tinklelis turi biiti
ganétinai tankus, kitaip prarandamos svarbios detalés. Taciau turinis tasky
tinklelis yra neefektyvi duomeny struktiira reikalingos operatyviosios
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atminties atzvilgiu, kadangi reikalingi kaStai jiems atvaizduoti seka
geometrine priklausomybes kreive n?. Dél Sios priezasties efektyviai iSmokyti
tokius tinklus tampa progresyviai sudétinga, kadangi viena i§ priezasciy,
kodel gilieji neuroniniai tinklai taip iSpopuliar¢jo, tai galimybe pritaikyti
paralelinio skaiiavimo jrenginius — grafinius procesorius, turin¢ius ribota
operatyviosios atminties kieki. Net ir i§ dalies iSsprendus Sia problema ir
efektyviau atvaizduojant turiniy taSky tinklelius pasinaudojus tokias
struktiiras, kaip oktaninis medis [72, 106], iSlieka kitos problemos, susijusios
su tiriniu tasky tinkleliu, pavyzdziui, homografijos problema, kai, norint
atkurti objekto pozicija erdvé¢je, kuri reikalinga efektyviam atktrimui, taip pat
reikia atkurti objekto transformacijas, t. y. pozicija, pasukima bei dydi.
Siekiant iSvengti Siy problemy, tolimesniems tyrimams buvo naudojami
nesurikiuoti  taSkiniai debesys ir buvo iSspausdintas  straipsnis
HUMANNET—A Two-Tiered Deep Neural Network Architecture for
Self-Occluding Humanoid Pose Reconstruction, trima¢iam objektui atkurti
naudojant vienos perspektyvos vaizda. Kitaip nei tiiriniy tasky tinkleliai,
taskiniai debesys neturi perteklinés informacijos, tai juos padaro viena
efektyviausiy trimacius objektus atvaizduojanciy struktiiry. Taciau,
iSsprendus duomenuy dydzio problema, kyla skai¢iavimo sudétingumo
problema. Kadangi taskiniai debesys yra nesurikiuota duomeny struktira,
kiekvienas i§ Y tasky gali buti priskiriamas bet kuriam kitam Y taskui, taip pat
bet koks kiekis V' tasky gali buti priskiriamas vienam Y taskui, tai padaro
tokio palyginimo sudétinguma O(n!), dél Sios priezasties iprastos giliuju
neuronininiy tinkly mokymo nuostolio funkcijos yra netinkamos. Mokslinéje
literatliroje  egzistuoja dvi pagrindinés nuostolio funkcijos dviem
nerikiuotiems taskiniams debesims palyginti — tai Chamfer [107] bei Earth
Mover’s [108] atstumai, Sie leidzia supaprastinti skai¢iavimo sudétinguma.
Abu sprendimai turi skirtingas tasky pasiskirstymo charakteristikas, taciau
Earth Mover’s rezultatai yra tolygesni. Vis délto pastarojo skaiciavimo
sudétingumas yra O(n®logn), dél Sios priezasties tyrime buvo naudojama
tiesinio laiko bei operatyviosios atminties aproksimacija [109]. Kadangi kiti
pazangiausi modeliai objekty rekonstravimo srityje fokusuojami ties vieno
statinio objekto atkiirimu, pagrindinis pasiiilytas naujumas — apkarpymo
dézutés. Sis naujumas i3 dalies pasinaudoja 3D Object Reconstruction from
Imperfect Depth Data Using Extended YOLOv3 Network idé€ja, taCiau vietoj
dvimaciy ribojimo dézuciy bei objekty klasifikavimo buvo naudojamos
trimatés apkarpomosios dézutés objektui izoliuoti.  Sis gilaus mokymo
modelis — tai dviejy lygiy gilusis neuroninis tinklas. Pirmasis neuroninis
tinklas pasitilo dvi apkarpomasias dézutes bei atrenka geriausias
nepersidengiancias i$ jy tolimesniam atkiirimui. Karpomoji dézuté i§ jvesties
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neuroninio tinklo isfiltruoja tik jos regionui priklausancius taskus, kitu etapu
regiono tasky imtis yra sumazinama, kadangi jvesties taskinis debesis yra per
tankus naudoti. Sumazintas taskinis debesis yra perduodamas { antraja giliojo
neuroninio tinklo pakopa, kur atlieckamas nematomuy objekto zony atkiirimas.
Atlikus kiekybinj jvertinima, buvo nustatyta, jog apkarpomyju dézuciy
tikslumas pagal Dzakardo panasumo indeksa yra 0,7907, o objekto atkiirimo
panaSumo indeksas pagal Earth Mover s bei Chamfer atstuma atitinkamai yra
0,0256 ir 0,0276. D¢l Sios priezasties pasiiilyto modelio tikslumas yra
konkurencingas su kitais sprendimais, ta¢iau taip pat, kitaip nei kiti
pazangiausi sprendimai, sugeba atkurti keleta objekty i§ vieno taSkinio
debesies jvesties. Be to, kitaip nei egzistuojantys atkiirimo sprendimai,
pasiiilytas gilaus neuroninio tinklo modelis sugeb¢jo atkurti ne tik statinius
objektus, bet ir sudétingesnius, laike deformuojamus objektus, Siuo atveju
zmogaus modelis buvo atkuriamas i§ apytiksliai 50% matomy taSky. Bendras
tinklo vaizdas matomas 6 paveiksle, naudojamo gylio jutiklio kadras bei
kameros vidiniy parametry matrica K sujungiama — taip atkuriamas taskinis
debesis, taciau pastarojo tankis yra per didelis dirbti su Siuolaikine technine
franga, deél Sios priezasties yra reikalingas mastelio sumazinimas, todeél
naudojamas tolimiausio taSko atrinkimo algoritmas dé¢l jo savybés islaikyti
objekto pavirSiaus forma netolygiai pasiskirs¢iusiuose taskiniuose debesyse
bei deterministinio atrenkamy tasky kiekio [112]. Pirmojo etapo metu
atliekamas gylio kadro trimaciy objektus apgaubianciy dézuciy atrinkimas,
tvesties taskini debesi sumazinus iki 2048 taSkuy bei naudojant vienmacius
konvoliucinius tinklus reikSmingiausiems bruozams atrinkti.  Bruozams
atrinkti naudojama PointNetFeat struktira, kai atrenkami 64, 128 bei 1024
svarbiausi bruozai [68]. Atrinktiesiems bruozams yra pritaikomas
prisitaikan¢io maksimalaus atrinkimo branduolys, atrenkantis du rezultatus,
darancius didziausia itaka bruozy zemelapiams [113], dél ko yra iStraukiami
branduolio rezultatai — dvi objektus gaubiancios trimatés dézutés.

Atrinkus dézute su didziausiu spéjimo isitikinimu, jvesties debesis yra
apkarpomas pagal naudotos dézutés matmenis, taip atrenkamos tik tam
objektui priklausancios taskinio debesies vir§iinés, kuriy tankis sumazinamas
iki 4096. Sis sprendimas buvo pasirinktas dél to, kad jis leidzia atlickant
debesies tasSkinio debesies sumazinimo operacija turéti daug didesnés raiskos
tvesti, kadangi prieSingu atveju kiti objektai, pavyzdziui, sienos, ne tik
sumazinty ivesties tiksluma, pridédami savo informacija i ribota virStiniy
skaiciy, bet ir pasunkinty tinklo mokyma. Be to, naudotas sprendimas suteikia
galimybe daugelio objekty atkiirimui naudoti ta pacia ivesti. Tolesniame etape
apkarpytas taskinis debesis yra apdorojamas bruozy atrinkimo Sakoje.
Bruozams apdoroti taip pat naudojama PointNetFeat struktiira dél jos
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Gylio Kadras

G40x480

k.ameros
matrica K

Apkarpandiyjy déZuciy radimas

\fl

m

5

]

=

| Tagk. debesis 307200x3 b———— ReLU g

1 Konv. 1D 128 %

Tolim. Task. Atr. 2048x3 Part. Mormalizavimas j
Konv. 1D 2048x64 RelU

Part. Normalizavimas
RelLU

Konv. 1D 2048x128

Part. Normalizavimas

Pris. Maks. Atfr. 2x1024
Konv. 1D 2x7

3

Komy. 10 4096x64

Part. Mormalizavimas

Konv. 1D 4096x1024

Part. Normalizavimas

Maks. Atrink. 1024

4

RelLU » PS 256
Kow. 10 2048x1024 Part. Normalizavimas
Part. Normalizavimas RelLU

4

| Siurkst. Atkor. 4096x3

Part. Normalizavimas

Apkrip. |vestis 307200x3

4

Hiperb. Tangentas

Tolim. Task. Atr. 4096x3

| Detalus Atkar. 4096x3

6 pav. Straipsnyje pasiiilyto tinklo apZvalga, pastarasis susideda i§ apkirpimo,
SturkStaus atkiirimo bei detalaus atk@irimo stadijy

geb¢jimo dirbti su netvarkingais taskiniais debesimis. Toliau naudojama
dviejuy zingsniy objekty taSkinio debesies atkiirimo strategija, kai pirmojo
etapo metu yra atkuriami Siurk$tlis objekto bruozai, o kito zingsnio metu
atkuriami detalesni objekto bruozai naudojant iSlieckamasias jungtis bei jau
atkurtus SiurkSC¢iuosius objekto bruozus [69, 71], tinklo Sakos struktiira
matoma 7 paveiksle. Praé¢jusiame zingsnyje uzkoduoti latentiniai bruozai yra
sujungiami kartu su 16 atSaky, Sios atSakos sudaromos naudojant atsitiktines
tolyginio skirstinio reikSmes. Taip sukonstruojama 16 skirtingy tarpusavyje
susijusiy pavirSiaus grupiy atSaky, kuriomis padengiamas objekto pavirsius,
taip atkuriant Siurk$¢ius objekto bruozus. Siurk$¢iy objekty bruozy bei
tvesties lieckamosios sajungos bruozai, atrinkti minimalaus tankio atrinkimo
budu, yra atkuriami { detaly objekto taskini debesi.

Straipsnyje minimam tinklui mokyti naudojama sudétiné funkcija i$ dvieju
pagrindiniy termy, matomy (10) lygtyje.

f=h+1{fi <0,3}f. (10)

Cia f, (ziareti (11) lygtis) — iskirpimo paklaida, kur o yra objekta
gaubianciosios dézutés centras, s — jos dydis, y. — tikimybe¢, jog egzistuoja
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objektas joje, o n — galimy dézuciy skaicius.

fdp = Ye Z L15(0i7 6@)
i=1

fds =Y Z L]-s<3i7 §z)
=1

1< ) X
foce =~ D e logie + (1= .) - log (1 — G)
i=1

fk fdp+fds+fbce

L1,, matoma (12) [114] lygtyje, tai tolygios absoliutinés paklaidos
funkcija, turinti mazesni jautruma ekstremumo reikSméms bei padedanti
iSvengti diverguojanciy gradienty [114].

(11)

i [ Je [ = ] < 5
zi(yi, i) = |G — yi| — 0.58, kitaip (12)

n

1
Ly, ) =~ 2
=1

Kitas paklaidos termas — tai objekto atkiirimo f,. (zitréti lygti (13) [71]),
Cia atliekamas palyginimas naudojant Earth Movers f.,,q (matomas (14) [71]
lygtyje) atstuma tiek SiurkStaus Sgiurkgtus, tiek detalaus gdetalus atktirimo
rezultatas kartu su tikraja taskinio debesies reikSme S. Taip pat pridedamas
iSsiplétimo suvarzymas f.,, (zitréti (15) [71] lygti, neleidZiantis tos pacios
Sakos taskams nutolti per toli viena kitos, kur o« = 0,1 [71].

fr = femd(sa S(detalus) + femd(Sa 5%iurkzétus) + afexp (13)
fema = min E Z |z — p(x)|]2 (14)

1
feap = 7o > ) 1{d(u,v) = Midd(u,v) (15)

1<i<K (uper;)

6.2.4. Auto-Refining Reconstruction Algorithm for Recreation of Limited Angle
Humanoid Depth Data

Viena i§ pagrindiniy ankstesnio metodo problemy — galimybé dirbti tik
su sintetiniais duomenimis. Tai pagrindiné problema, su kuria susiduria ir kiti
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pazangiausi objekty atkiirimo sprendimai, naudojantys taskinius debesis kaip
tvesti. Taciau ketvirtame straipsnyje Auto-Refining Reconstruction Algorithm
for Recreation of Limited Angle Humanoid Depth Data buvo pasiiilytas
neuroninius tinklus, gebancius iSvalyti tikro gylio jutiklio kadro jvesti, taip
juos supanaSinant su sintetiniais duomenimis, bet nesugadinant jy originalios
formos dél pritaikomy suvarzymo kriterijy. Pagrindinis $io modelio naujumas
— atvirkStiniam procesui besivarzanciy giliyjy neuroniniy tinkly pritaikymas.
Kitaip nei jprastai, kur atsitiktinio skirstinio duomenys yra panaudojami dar
neegzituojan¢iam vaizdui [121] ar garsui [122] sukurti, straipsnyje buvo
pasitlytas ju pritaikymas kartu su nepriziirimu mokymu, tokiu kaip realaus
pasaulio duomeny iSvalymas siekiant juos padaryti panaSesnius i sintetinius,
taip atsikratant priklausomybés nuo tiesos reikimiy. Sis sprendimas buvo
reikalingas, kadangi tiek struktiirizuotos Sviesos, tiek lazeriniai gylio jutikliai
grazina labai triukSmingus duomenis, dé¢l ko net ir pazangiausi atkiirimo
sprendimai tampa neveiksmingi atkuriant i§ realiyju duomeny. Pasitlytasis
rafinavimo procesas iSsprendzia §ia problema neturint tikryjy tiesos Y
yra tikrosios jvesties latentiniai bruozai bei iSvalytas taskinis debesis.
Tolesniame etape atlickamas iSvalyto taskinio debesies uzkodavimas, kurio
metu atrenkami aktualiausi objekto latentiniai bruozai.  Pastarieji yra
sujungiami su jvesties bruozais ir tolesniame zingsnyje atrinktieji bruozai yra
naudojami objekto SiurkS¢iam atkiirimui, Sio etapo metu grazinamas Siurkstus
objekto taskinis debesis kartu su atkurtomis nematomomis zonomis. Taskinis
debesis gryninimo etape yra sujungiamas su iSvalyto taSkinio debesies
liekamosiomis jungtimis, taip iSgaunamas iSgrynintas objekto ir jo nematomy
zony taskinis debesis. Sis rezultatas yra perduodamas diskriminatoriui, kuris
klasifikuoja tikrus bei sintetinius duomenis, Sis rezultatas bei paklaida yra
naudojami iSvalymo etapui atnaujinti. Atlikus kiekybing rezultaty analizg
nustatyta, kad pasiekta atkiirimo kokybé pagal Earth Movers atstumo metrika
0,059, o pagal Chamfer atstuma — 0,079. Sie rezultatai leidzia daryti i§vada,
jog modelio atkiirimo kokybé yra tarp pazangiausiy, taCiau taip pat turi
galimybe atkurti realaus pasaulio duomenis. 8 paveiksle pateiktas objekty
nematomy zony atkiirimo modelio bendras vaizdas. Objekto taskinis debesis
yra apdorojamas iSvalymo zingsnyje, todél, kaip ir HUMANNET—A
Two-Tiered Deep Neural Network Architecture for Self-Occluding Humanoid
Pose Reconstruction modelyje, vyksta bruozy atrinkimas bei Siurk$tus ir
detalus atkiirimai. Detalaus atkirimo rezultatas yra naudojamas
diskriminatoriaus mokymui, kuriuo siekiama atskirti tikrus bei sintetinius
duomenis, taip mokant iSvalymo Saka.
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Objekto atkirimas

Detalus
atkirimas 1

Gylio kadras l

Takinis BruoZy
debesis [ 0] 'SVAYMAS M inkimas

Kameros &
matrica K Y

8 pav. Bendras objekto nematomy zony atkiirimo modelio vaizdas

Diskriminatorius

Siurkstus
atkdrimas

Objektams iSvalyti naudojama panasi giliojo neuroninio tinklo struktiira,
kaip ir SiurkStiems bruozams atkurti, §i matoma 9 paveiksle. TaSkinio
debesies ivesciai yra randamas tinkamiausiy latentiniy bruozy vektorius ir
atlickamas atsitiktinio tinklelio atkiirimas naudojant astuonis primityvus.
Primityvy atkiirimo rezultatas yra iSvalytas nuo triukSmo neuroninio tinklo
rezultatas. Tolesniame etape iSrenkami atkurto neuroninio tinklo latentiniai
bruozai, kurie yra sujungiami su prie$ tai rastais jvesties latentiniais bruozais
naudojant iSlickamasias aksony jungtis. Galiausiai latentiniy bruozy vektorius
bei iSvalytos taskinio debesies virStinés yra perduodamos atkiirimo objekto
nematomy zony atktirimo tinklui, matomam 10 paveiksle.

Atkurtasis detalusis rezultatas yra naudojamas kaip diskriminatoriaus
ivestis, Sis matomas 11 paveiksle. Diskriminatorius — tai atskirai iSmokomas
neuroninio tinklo modulis, kuris klasifikuoja tarp sintetiniy (1) bei tikry (0)
duomeny, stengdamasis teisingai atspéti, i§ kokio duomenuy rinkinio yra
atkuriamasis  objektas. O iSvalymo tinklas naudoja atvirksting
diskriminatoriaus paklaidos funkcijos reikSme, taip besivarzydamas su
diskriminatorium, siekdamas ji apgauti.

PointiNetFeat
Konv. 1D 2048x64
Part. Normalizavimas
RelLU
Konv. 1D 2048x128
Detalus Atkar, 2048:(3|—> Part. Mormalizavimas
RelU
Konw. 1D 2048x1024
Part. Normalizavimas
Maks. Atrink. 1024

PS1
Sigmoidas

11 pav. Diskriminatorius, naudojamas atkurtam objektui klasifikuoti i tikra bei
sintetinj

D¢l neuroninio tinklo sudétingumo ji iSmokyti vienu Zingsniu buvo per
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daug sudétinga uzduotis, dél Sios priezasties buvo sukurta keturiy faziy
mokymo strategija.

I fazé. Autokodavimas Pirmos fazés metu yra mokoma tik neuroninio tinklo
atkiirimo Saka. Jos metu visos iSvalymo, SiurksStaus atkiirimo bei detalaus
atkiirimo Sakos yra mokomos tik atkurti matoma ivesti. Autokodavimo fazés
metu naudojama paklaidos funkcija matoma (16) lygtyje, kuri iSvedama i$
(14) ir (15) lyggiy kombinacijos. Sis sprendimas leidzia paspartinti i§valymo
neuroninio tinklo mokyma, mat kitos Sakos paspartina gradienty perdavima {
Ja.

fd)l — femd(Sé'uarus; gévarus) + femd(Sévarus; Séiurkétus)"‘
femd(sévarusa Sdetalus)+ (16)
o (fe:cp (Sévarus ) Sévarus ) + fexp ( Sévarus ) Sdetalus ) )

II fazé. Atkiarimas Sios fazés metu mokomos tiek Siurk$taus atkiirimo, tiek
detalaus atkiirimo tinklo Sakos, taip pat sutvirtinamas iSvalymo Sakos
veikimas.  Atkiirimo stadijos metu abi nematomu zonuy atkiirimo Sakos
mokomos su tikrosiomis objekty reikSmémis, todél, kitaip nei ankstesniosios
fazés metu, Sioje fazéje yra naudojami tik sintetiniai duomenys. Fazes
paklaidos funkcija matoma (17) lygtyje.

f¢2 - femd(Sévarusa géva’rus) + femd(Sa Sdetalus)—{'
femd(87 Séiurk§tus)+ (17)
a(fexp(sévarusu Sévarus) + fexp(Sévarusy Sdetalus))

III fazé. Diskriminatorius Sios fazés metu yra mokomas tik
diskriminatorius atpazinti, ar ivesties rezultatas yra sintetinis (1), ar tikras (0).
Diskriminatorius mokomas atskiroje fazéje, kadangi ankstyvas jo mokymas
gali potencialiai diverguoti, taip sugadindamas gradientus.  Sios fazés
mokymo paklaida matoma (18) lygtyje.

N
fos =Y 0 - log(ys) + (1 — i) - log(1 — y;) (18)
=1

IV fazé. Varzymasis Ketvirtosios ir paskutinés fazés metu yra vykdomas
giliyjy besivarZzanéiy tinkly mokymas. Sioje fazéje mokomas tiek
diskriminatorius, tiek atktirimo Sakos. Tai atlickama trimis Zingsniais, pirmojo
zingsnio metu sustiprinami egzistuojantys svoriai naudojant paklaidos
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funkcija, matoma lygtyje (19). Kito zingsnio metu atnaujinami iSvalymo
tinklo svoriai naudojant atvirkSting diskriminatoriaus funkcija. Mokymo
paklaidos funkcija matoma (20) lygtyje, taip pat ivedamas v = 0,4
suvarzymas, kuris naudojamas tam, kad realiis ivesties duomenys neprarasty
ju bendros formos. Paskutinio Zingsnio metu sustiprinami diskriminatoriaus
svoriai naudojant funkcija, nurodoma (18) lygtyje.

Joaa = foo + [43 (19)

f(b4b - /y.femd (Sévarusa gévarus)—l_

. ) (20)
afemp(sévav'usa Sévarus)) + f¢3(1 - Y, y)
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6.3. Rezultatai

Tiriniy tasky tinklelio objekto nematomuy zonuy atkiirimo tikslumo
kiekybiniam palyginimui atlikti buvo naudojamos trys pagrindinés metrikos
— tai isbaigtumas ((21) lygtis [91]), teisingumas ((22) lygtis [91]) bei kokybé
((23) lygtis [91]). Cia 4 yra uzpildytos tiesos tirinio tasky tinklelio reiksmes,
B yra uzpildytos sp¢jimo reikSmés, o P — salygineé tikimybe. IShaigtumas
nurodo tiesos bei sp¢jimo santyki taSkams, kurie turéjo biiti jjungti.
Teisingumas nurodo, kaip tiksliai atkuriamas objektas, o kokybé parodo
teisingy bei isbaigty metriky balansa.

_ P
Jisp = P(B’A)+P(B|_'A) D
P
fteis - P(B’A) + P(_|B|A) (22)
o fi§b : fteis
kakybé B fi§b + fteis - fiéb ' fteis (23)

Naudojant Sias metrikas jvertinta atkiirimo kokybé straipsniuose
Reconstruction of 3D Object Shape Using Hybrid Modular Neural Network
Architecture Trained on 3D Models from ShapeNetCore Dataset (12 pav.) ir
3D Object Reconstruction from Imperfect Depth Data Using Extended
YOLOv3 Network (13 pav.), atkiirimai, kuriy 0,25 < frorgee < 0,75, buvo
vertinami kaip patenkinami spéjimai, rézis pasirinktas kokybinio vertinimo
metu, gebant atskirti atkuriama objekta. Atkurimai, kuriy frorype > 0,75,
buvo vertinami kaip puikiai atkurti. Kaip matoma 12 paveiksle,
problemiskiausi objektai buvo kompiuteris bei knyga, tacCiau tai galima
paaiskinti tuo, jog Siy objekty kiekis duomeny rinkinyje buvo neproporcingai
mazas, palyginti su kitais.
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12 pav. Straipsnio Reconstruction of 3D Object Shape Using Hybrid Modular
Neural Network Architecture Trained on 3D Models from ShapeNetCore Dataset
objekto nematomy zony atktirimo kokybés kiekybinio palyginimo metrikos
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13 pav. Straipsnio 3D Object Reconstruction from Imperfect Depth Data Using
Extended YOLOv3 Network objekto nematomy zony atkiirimo kokybés kiekybinio
palyginimo metrikos

Taip pat, palyginus abiejuy tyrimy metu atlikty eksperimenty rezultatus
(14 pav.), matoma, kad, pritaikius naujaja architektiira, beveik visais atvejais
buvo pasiekti daug geresni atklirimo rezultatai. Be to, dél sumazéjusiy klaidos
stulpeliy galima teigti, jog atkiirimai kad tapo daug stabilesni. Galiausiai, net
ir objektai, turintys mazesni duomenu rinkinio pavyzdziy skaiCiy, buvo
atkuriami kokybiskiau.
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14 pav. Atkarimo kokybés metrikos palyginimas tarp Reconstruction of 3D Object

Shape Using Hybrid Modular Neural Network Architecture Trained on 3D Models

from ShapeNetCore Dataset (1) ir 3D Object Reconstruction from Imperfect Depth
Data Using Extended YOLOv3 Network (2) gautyju rezultaty

Tolimesniy tyrimy metu buvo atlieckami eksperimentai naudojant taskinius
debesis, dél Sios priezasties negalima naudoti anks¢iau naudoty kiekybiniy
metriky, o taskiniy debesy atkiirimo kokybei palyginti bus naudojamas Earth
Movers atstumas (EMD), kurio lygtis matoma (14), bei Chamfer atstumas
(CD), sio lygtis matoma (24) [118].
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Tyrimuose naudojamas duomenu rinkinys (Moli) susideda i§ jvairiy
atlickamy pratimy bei veiksmu jrasy. [raSy kadrai yra naudojami norint
sukurti tyrimuose naudojama duomeny rinkini, o tam, kad biity sumazintas
panaSiy duomeny kiekis rinkinyje, yra atrenkamas tik kas 75 kadras. Be to,
MoVi duomeny rinkinys neturi gylio zemélapiy, taciau turi judesiy fiksavimo
informacija. Pritaikydami judesiy fiksavimo duomenis AMASS duomeny
rinkinyje pateikiamam vyro bei moters modeliams, sukuriami atskiri
duomeny taskai kiekvienai ly€iai bei pratimui. Sukurta duomeny rinkini
suskaldzius pagal 80:20 taisyklg, 80% kadry priskiriama neuroninio tinklo
mokymui, 20% jo validavimui. Su validavimo rinkiniu atlieckami kiekybiniai
tinklo jvertinimo eksperimentai individualiems kadrams. I$skaidzius
eksperimento metu gautus kiekybinius rezultatus pagal atlickama pratima
(15 pav.) bei subjekto lyti (16 pav.), matyti, kad atkuriamyju objekty kokybé
HUMANNET—A Two-Tiered Deep Neural Network Architecture for
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Self~-Occluding Humanoid Pose Reconstruction straipsnyje neturi dideliy
nuokrypiy. Nesant dideliy kokybés metriky nukrypimy pozy atzvilgiu galima
teigti, kad Sis gilaus mokymo modelis gali aproksimuoti zmogaus figiira bei
isiminti zmogaus figiiros Sablona. Tolimesnis iSskaidymas pagal lyti parodo,
kad gilusis neuroninis tinklas ne tik prisitaiko tik prie subjekto kiino formos,
bet ir geba suprasti ir atkurti §varias kiino savybes, pavyzdziui, antrines lyties
charakteristikas. Gautieji rezultatai prilygsta ir daugeliu atvejy pranoksta iki
Siol literatiiroje minimus atkiirimo kokybés rezultatus naudojant tas pacias
metrikas (1 lentelé).

B EMD
1 CD

Atkurimo kokybe

0_

1 2 3 4 5 6 1 8 9 10
Pratimas
15 pav. Straipsnio HUMANNET—A Two-Tiered Deep Neural Network Architecture

for Self-Occluding Humanoid Pose Reconstruction objekto nematomy zony
atkiirimo kokybés kiekybiniy metriky iSskaidymas pagal pratima

- B EMD
Wres e )
,_|_¢

e 7

0 0,01 0,02 0,03 0,04 0,05

Atkdrimo kokybe

16 pav. Straipsnio HUMANNET—A Two-Tiered Deep Neural Network Architecture
for Self-Occluding Humanoid Pose Reconstruction objekto nematomy zony
atkiirimo kokybés kiekybiniy metriky iSskaidymas pagal lyti
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1 lentelé. Skirtingy metody kiekybiniy atkiirimo metriky palyginimas

ShapeNet AMASS
Metodas
EMD CD EMD CD
PCN [119] 0,0734 | 0,0121 | 3,0456 | 4,0955
AtlasNet [120] 0,0653 | 0,0182 | 2,0875 | 6,4343
MSN [109] 0,0378 | 0,0114 | 1,1525 | 0,8016
HumanNet — — 0,0256 | 0,0276

Paskutiniojo mokslinio straipsnio Auto-Refining Reconstruction Algorithm
for Recreation of Limited Angle Humanoid Depth Data modelis yra pagristas
taskiniais debesimis, todéel EMD bei CD metrikos buvo naudojamos
kiekybiniam jvertinimui. Eksperimentinius atkiirimo rezultatus iSskaidZius
pagal subjekto atlickama pratima (17 pav.) bei lyti (18 pav.), kaip ir
ankstesnio straipsnio rezultatuose, nematyti didesniy nukrypimy tarp subjekto
kitino formos ar atlickamo pratimo, tai indikatorius, kad neuroninis tinklas
tinkamai aproksimuoja zmogaus figiira bei jos forma. Nors gautieji rezultatai
kiekybiniu atzvilgiu yra Siek tiek prastesni (2 lentelé), taciau Sie rezultatai vis
tiek prilygsta iki Siol publikuotiems literatiroje. Be to, kitaip nei literatiroje
minimi pazangiausi sprendimai, pasitilytas masininio mokymo modelis gali
dirbti ne tik su sintetiniais duomenimis, bet ir su realaus pasaulio duomenimis.
Iki Siol literatiiroje minimi nematomy objekty zony atkiirimo metodai
sprendimo S§iai problemai spresti neturéjo, kadangi struktiirizuotos Sviesos bei
lazeriniai gylio jutikliai graZina labai triukSmingus rezultatus.

Ivertinus kokybinius eksperimenty rezultatus galima daryti prielaida, jog
modelis geba atkurti jtikinamas nematomas objekty zonas, o kokybiniai
tyrimy rezultatai su validavimo duomenuy rinkiniu $ia prielaida patvirtina,
tod¢l patvirtinama hipotez¢, kad masininio mokymo sprendimai, gebantys
aptikti Sablonus, yra tinkami iskeltai problemai spresti.
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Atkurimo kokybe

18 pav. Straipsnio Auto-Refining Reconstruction Algorithm for Recreation of
Limited Angle Humanoid Depth Data objekto nematomy zony atkiirimo kokybés

kiekybiniy metriky iSskaidymas pagal lyti

2 lentelé. Skirtingy metody kiekybiniy atkiirimo metriky palyginimas

Metodas ShapeNet AMASS
EMD CD EMD CD
PCN [119] 0,0734 | 0,0121 | 3,0456 | 4,0955
AtlasNet [120] 0,0653 | 0,0182 | 2,0875 | 6,4343
MSN [109] 0,0378 | 0,0114 | 1,1525 | 0,8016
HumanNet — — 0,0256 | 0,0276
Auto-Refining — — 0,0590 | 0,0790
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6.4.

92

ISvados

. Pasitilytas gilaus mokymo modelis, naudojantis hibridinius giliuosius

neuroninius tinklus ttriniy tasky pagrindu, galintis atkurti nematomas
objekto zonas ir jo pavirSiaus forma 151 karta per sekunde bei
pranokstantis ankstesnius pazangiausius sprendimus 19,3%; taip pat,
skirtingai nei kiti sprendimai, pasitilytam modeliui nereikéjo
segmentavimo kaukés vienam objektui atkurti, tai leidZia ji panaudoti
realaus laiko sprendimams.

. Pasitilytas modelio praplétimas, atkuriantis keleta objekty tame paciame

gylio jutiklio kadre bei pagerinantis pirmuoju modeliu pasiektus
rezultatus 8,53%, naudojant tas pacias kiekybinio vertinimo metrikas.

. Pasitlytas maSininio mokymo modelis, naudojantis giliuosius

neuroninius tinklus, taSkinio debesies pagrindu atkuriantis keleta
sudétingy laike kintan¢iy zmogaus figiry, kurio kiekybinés
fema = 0,0256 bei f.,; = 0,0276 metrikos prilygsta arba pranoksta
kitus pazangiausius objekty atkiirimo sprendimus, tokius kaip PCN,
AtlasNet bei MSN, taikomus vieno paprasto objekto nematomuy zony
atklirimo sprendimuose.

. Pasililytas modelis bei jo panaudojimo strategija, naudojant

v —

debesies pagrindu, kitaip nei ankS$¢iau publikuoti pazangiausi
sprendimai, atkuria sudétingus objektus i$ triukSmingy struktiirizuotos
Sviesos bei lazeriniy gylio jutikliuy duomeny, jo kiekybinés
fema = 0,059 bei f.,;, = 0,079 prilygsta kitiems sprendimams,
atkuriantiems nematomas objekto zonas tik i§ sintetiniy duomeny.

. Atlikti kokybiniai eksperimentai rodo, kad pasiiilyti modeliai geba

atkurti objekto nematomas zonas; jvertinus kiekybines metrikas
(foma = 0,059 bei f.q = 0,079), galima teigti, kad gautieji kokybinio
vertinimo rezultatai yra pastoviis visame validavimo duomenuy
rinkinyje; gilieji neuroniniai tinklai, taip pat kaip ir zmogus, geba
atkurti trimati objekta bei jo nematomas zonas net ir sudétingomis
salygomis, t. y. esant netobulam gylio kadrui; tuo patvirtinta iskelta
hipoteze, kad maSininio mokymo sprendimai, gebantys aptikti Sablonus,
yra tinkami iSkeltai problemai spresti.



7.

10.

I1.

12.

13.

14.

15.

REFERENCES

Anju Jose Tom and Sudhish N. George. “Video Completion and Simultaneous Moving
Object Detection for Extreme Surveillance Environments”. In: /EEE Signal Processing
Leiters 26.4 (2019), pp. 577-581. DOI: 10.1109/LSP.2019.2900126.

Ibrahim Kajo, Nidal Kamel, and Yassine Ruichek. “Incremental Tensor-Based
Completion Method for Detection of Stationary Foreground Objects”. In: /EEE
Transactions on Circuits and Systems for Video Technology 29.5 (2019),
pp- 1325-1338. DOI: 10.1109/TCSVT.2018.2841825

Jingzhi Tu, Gang Mei, and Francesco Piccialli. “An Efficient Deep Learning
Approach Using Improved Generative Adversarial Networks for Incomplete
Information Completion of Self-driving”. In: ArXiv abs/2109.02629 (2021).

Takahiro Hayashi and Motoki Sasaki. “Contour Completion of Partly Occluded
Skew-Symmetry Objects”. In: 2014 IEEE International Symposium on Multimedia.
2014, pp. 90-93. DOI: 10.1109/ISM.2014. 15.

Jorge Fuentes-Pacheco, José Ruiz-Ascencio, and Juan Manuel Rendon-Mancha.
“Visual simultaneous localization and mapping: a survey”. In: Artificial Intelligence
Review 43.1 (2012), pp. 55-81. DOI: 10.1007/s10462-012-9365-8.

Jing Li, Hongtao Huo, Chenhong Sui, Chenchen Jiang, and Chang Li. “Poisson
Reconstruction-Based Fusion of Infrared and Visible Images via Saliency Detection”.
In: IEEE Access 7 (2019), pp- 20676-20688. DOI:
10.1109/ACCESS.2019.2897320.

Yu Zhang, Mao Ye, Dinesh Manocha, and Ruigang Yang. “3D Reconstruction in the
Presence of Glass and Mirrors by Acoustic and Visual Fusion”. In: JEEE Transactions
on Pattern Analysis and Machine Intelligence 40.8 (2018), pp. 1785-1798. DOI: 10.
1109/TPAMI.2017.2723883.

Chen Zhang. “CuFusion2: Accurate and Denoised Volumetric 3D Object
Reconstruction Using Depth Cameras”. In: IEEE Access 7 (2019), pp. 4988249893
DOI: 10.1109/ACCESS.2019.2911119.

Xu Chen, Qingfeng Wu, and Shengzhe Wang. “Research on 3D Reconstruction Based
on Multiple Views”. In: 2018 13th International Conference on Computer Science
Education (ICCSE). 2018, pp. 1-5. DOI: 10.1109/ICCSE.2018.8468705.

Christopher B. Choy, Danfei Xu, JunYoung Gwak, Kevin Chen, and Silvio Savarese.
“3D-R2N2: A Unified Approach for Single and Multi-view 3D Object Reconstruction”.
In: Computer Vision — ECCV 2016. Ed. by Bastian Leibe, Jiri Matas, Nicu Sebe, and
Max Welling. Cham: Springer International Publishing, 2016, pp. 628—644. ISBN: 978-
3-319-46484-8.

Olivia Wiles and Andrew Zisserman. “Learning to Predict 3D Surfaces of Sculptures
from Single and Multiple Views”. In: International Journal of Computer Vision 127.11-
12 (2018), pp. 1780-1800. DOI: 10.1007/s11263-018-1124-0.

Tingsong Ma, Ping Kuang, and Wenhong Tian. “An improved recurrent neural networks
for 3d object reconstruction”. In: Applied Intelligence 50 (2019), pp. 905-923.

Jacky C. K. Chow and Derek D. Lichti. “Photogrammetric Bundle Adjustment With
Self-Calibration of the PrimeSense 3D Camera Technology: Microsoft Kinect”. In:
IEEE Access 1 (2013), pp. 465-474. DOI: 10.1109/ACCESS.2013.2271860.

Lin Yang, Longyu Zhang, Haiwei Dong, Abdulhameed Alelaiwi, and Abdulmotaleb El
Saddik. “Evaluating and Improving the Depth Accuracy of Kinect for Windows v2”.
In: IEEE Sensors Journal 15.8 (2015), pp. 4275-4285. DOI: 10.1109/JSEN. 2015.
2416651.

Ji-Min Cho, Soon-Yong Park, and Sung-II Chien. “Hole-Filling of RealSense Depth
Images Using a Color Edge Map”. In: IEEE Access 8 (2020), pp. 53901-53914. DOI:
10.1109/ACCESS.2020.2981378.

93



16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

94

Jingfang Yin, Dengming Zhu, Min Shi, and Zhaoqi Wang. “Depth Maps Restoration
for Human Using RealSense”. In: IEEE Access 7 (2019), pp. 112544-112553. DOI:
10.1109/ACCESS.2019.2934863.

Hossein Eshraghi, Babak Majidi, and Ali Movaghar. “Anomaly modelling in machine
learning based navigation system of autonomous vehicles”. In: 2020 6th Iranian
Conference on Signal Processing and Intelligent Systems (ICSPIS). 2020, pp. 1-6.
DOI: 10.1109/ICSPIS51611.2020.9349606.

Takashi Yasuno, Daiki Tanaka, and Akinobu Kuwahara. “Autonomous navigation
system based on collision danger-degree for unmanned ground vehicle”. In: 2014
International Power Electronics Conference (IPEC-Hiroshima 2014 - ECCE ASIA).
2014, pp. 3179-3184. DOI: 10.1109/IPEC.2014.6870141.

Maria Jodo Sousa, Alexandra Moutinho, and Miguel Almeida. “Thermal Infrared
Sensing for Near Real-Time Data-Driven Fire Detection and Monitoring Systems”. In:
Sensors 20.23 (2020). ISSN: 1424-8220. DOIL: 10 . 3390 / s20236803. Online:
https://www.mdpi.com/1424-8220/20/23/6803.

Bo Liao, Jing Li, Zhaojie Ju, and Gaoxiang Ouyang. “Hand Gesture Recognition with
Generalized Hough Transform and DC-CNN Using Realsense”. In: 2018 FEighth
International Conference on Information Science and Technology (ICIST). IEEE, June
2018. DOI: 10 . 1109 / dicist . 2018 . 8426125. Online:
https://doi.org/10.1109/icist.2018.8426125.

Chi Chen, Bisheng Yang, Shuang Song, Mao Tian, Jianping Li, Wenxia Dai, and
Lina Fang. “Calibrate Multiple Consumer RGB-D Cameras for Low-Cost and
Efficient 3D Indoor Mapping”. In: Remote Sensing 10.2 (Feb. 2018), p. 328. DOI:
10.3390/rs10020328. Online: https://doi.org/10.3390/rs10020328.

Madalina Maria Diac, Kamel Earar, Simona Irina Damian, Anton Knieling, Tatiana
Iov, Sarah Shrimpton, Maria Castaneyra-Ruiz, Caroline Wilkinson, and Diana Bulgaru
Iliescu. “Facial Reconstruction: Anthropometric Studies Regarding the Morphology of
the Nose for Romanian Adult Population I: Nose Width”. In: Applied Sciences 10.18
(2020). ISSN: 2076-3417. DOI: 10 . 3390/ app10186479. Online: https : / /www .
mdpi.com/2076-3417/10/18/6479.

Mohammad Rostami, Oleg V. Michailovich, and Zhou Wang. “Surface
Reconstruction in Gradient-Field Domain Using Compressed Sensing”. In: [EEE
Transactions on Image Processing 24.5 (2015), pp. 1628-1638. DOI:
10.1109/TIP.2015.2409565.

Chen Yin, Dang Gang, Cheng Zhi-quan, Li Hong-hua, Li Jun, and Jin Shi-yao. “An
algorithm of CUDA-based Poisson surface reconstruction”. In: 2010 International
Conference on Audio, Language and Image Processing. 2010, pp. 203-207. DOLI:
10.1109/ICALIP.2010.5684972.

F. Pedersini, A. Sarti, and S. Tubaro. “Visible surface reconstruction with accurate
localization of object boundaries”. In: IEEE Transactions on Circuits and Systems for
Video Technology 10.2 (2000), pp. 278-292. DOI: 10.1109/76.825727.

Yubao Liu and Jun Miura. “RDS-SLAM: Real-Time Dynamic SLAM Using Semantic
Segmentation Methods”. In: IEEE Access 9 (2021), pp. 23772-23785. DOI: 10.1109/
ACCESS.2021.3050617.

Hriday Bavle, Paloma De La Puente, Jonathan P. How, and Pascual Campoy. “VPS-
SLAM: Visual Planar Semantic SLAM for Aerial Robotic Systems”. In: IEEE Access
8 (2020), pp. 60704—-60718. DOI: 10.1109/ACCESS.2020.2983121.

Maxime Ferrera, Alexandre FEudes, Julien Moras, Martial Sanfourche, and
Guy Le Besnerais. “OV2SLAM: A Fully Online and Versatile Visual SLAM for
Real-Time Applications”. In: IEEE Robotics and Automation Letters 6.2 (2021),
pp. 1399—-1406. DOI: 10.1109/LRA.2021.3058069.

Seung-Mok Lee, Jongdae Jung, Shin Kim, In-Joo Kim, and Hyun Myung.
“DV-SLAM (Dual-Sensor-Based Vector-Field SLAM) and Observability Analysis”.



30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

In: IEEE Transactions on Industrial Electronics 62.2 (2015), pp. 1101-1112. DOI:
10.1109/TIE.2014.2341595.

Javier Pérez, Mitch Bryson, Stefan B. Williams, and Pedro J. Sanz. “Recovering Depth
from Still Images for Underwater Dehazing Using Deep Learning”. In: Sensors 20.16
(2020). ISSN: 1424-8220. DOI: 10.3390/s20164580. Online: https://www.mdpi.
com/1424-8220/20/16/4580.

Alberto Diaz-Alvarez, Miguel Clavijo, Felipe Jiménez, and Francisco Serradilla.
“Inferring the Driver’s Lane Change Intention through LiDAR-Based Environment
Analysis Using Convolutional Neural Networks”. In: Sensors 21.2 (2021). ISSN:
1424-8220. DOI: 10 . 3390 / 521020475. Online:
https://www.mdpi.com/1424-8220/21/2/475.

Melissa Latella, Fabio Sola, and Carlo Camporeale. “A Density-Based Algorithm for
the Detection of Individual Trees from LiDAR Data”. In: Remote Sensing 13.2 (2021).
ISSN: 2072-4292. DOI: 10.3390/rs13020322. Online: https://www.mdpi.com/
2072-4292/13/2/322.

W.Ren, O. Ma, H. Ji, and X. Liu. “Human Posture Recognition Using a Hybrid of Fuzzy
Logic and Machine Learning Approaches”. In: IEEE Access 8 (2020), pp. 135628—
135639. DOI: 10.1109/ACCESS.2020.3011697.

Audrius Kulikajevas, Rytis Maskeliunas, and Robertas Damasevicius. “Detection of
sitting posture using hierarchical image composition and deep learning”. In: PeerJ
Computer Science 7 (2021). DOI: 10.7717/peerj-cs.442.

F. F. Ting, K. S. Sim, and Y. Lee. “Three-dimensional model reconstruction using
surface interpolation with the interfacing of Hermite surface for breast cancer MRI
imaging system”. In: 2016 International Conference on Robotics, Automation and
Sciences (ICORAS). 2016, pp. 1-5. DOI: 10.1109/ICORAS.2016.7872625.

Bert Coolen, Peter J. Beek, Daphne J. Geerse, and Melvyn Roerdink. “Avoiding 3D
Obstacles in Mixed Reality: Does It Differ from Negotiating Real Obstacles?” In:
Sensors 20.4 (2020), p. 1095. DOI: 10.3390/s20041095.

Bruno Fanini, Alfonsina Pagano, and Danicle Ferdani. “A Novel Immersive VR Game
Model for Recontextualization in Virtual Environments: The uVRModel”. In:
Multimodal Technologies and Interaction 2.2 (Apr. 2018), p. 20. DOI:
10.3390/mti2020020. Online: https://doi.org/10.3390/mti2020020.

Alex Ibafiez-Etxeberria, Cosme J. Goémez-Carrasco, Olaia Fontal, and
Silvia Garcia-Ceballos. “Virtual Environments and Augmented Reality Applied to
Heritage Education. An Evaluative Study”. In: Applied Sciences 10.7 (2020). ISSN:
2076-3417. DOLI: 10 . 3390 / app10072352. Online:
https://www.mdpi.com/2076-3417/10/7/2352.

Asa Fast-Berglund, Liang Gong, and Dan Li. “Testing and validating Extended
Reality (xR) technologies in manufacturing”. In: Procedia Manufacturing 25 (2018).
Proceedings of the 8th Swedish Production Symposium (SPS 2018), pp. 31-38. ISSN:
2351-9789. DOIL: https://doi.org/10.1016/j.promfg.2018.06.054. Online:
http :
//www.sciencedirect.com/science/article/pii/S2351978918305730.
Hansung Kim, Jean-Yves Guillemaut, Takeshi Takai, Muhammad Sarim, and
Adrian Hilton. “Outdoor Dynamic 3-D Scene Reconstruction”. In: /EEE Transactions
on Circuits and Systems for Video Technology 22.11 (2012), pp. 1611-1622. DOI:
10.1109/TCSVT.2012.2202185.

A. Kamilaris and F. X. Prenafeta-Boldu. “Deep learning in agriculture: A survey”. In:
Computers and Electronics in Agriculture 147 (2018), pp. 70-90.

L. Wen, X. Li, L. Gao, and Y. Zhang. “A New Convolutional Neural Network-Based
Data-Driven Fault Diagnosis Method”. In: [EEE Transactions on Industrial Electronics
65.7 (2018), pp. 5990-5998.

95



43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

96

T. Hirasawa, K. Aoyama, T. Tanimoto, S. Ishihara, S. Shichijo, T. Ozawa, T. Ohnishi,
M. Fujishiro, K. Matsuo, J. Fujisaki, and T. Tada. “Application of artificial
intelligence using a convolutional neural network for detecting gastric cancer in
endoscopic images”. In: Gastric Cancer 21.4 (2018), pp. 653-660.

Y. Li and L. Shen. “Skin lesion analysis towards melanoma detection using deep
learning network”. In: Sensors (Switzerland) 18.2 (2018).

R. Chai, S. H. Ling, P. P. San, G. R. Naik, T. N. Nguyen, Y. Tran, A. Craig, and H. T.
Nguyen. “Improving EEG-based driver fatigue classification using sparse-deep belief
networks”. In: Frontiers in Neuroscience 11. MAR (2017).

Q. Ke, J. Zhang, W. Wei, D. Potap, M. WozZniak, L. Ko$mider, and R. Damasevicius.
“A neuro-heuristic approach for recognition of lung diseases from X-ray images”. In:
Expert Systems with Applications 126 (2019), pp. 218-232.

Herbert Edelsbrunner and Ernst P. Miicke. “Three-Dimensional Alpha Shapes”. In:
ACM Trans. Graph. 13.1 (Jan. 1994), pp. 43-72. ISSN: 0730-0301. DOI:
10.1145/174462.156635. Online: https://doi.org/10.1145/174462.156635.

F. Bernardini, J. Mittleman, H. Rushmeier, C. Silva, and G. Taubin. “The ball-pivoting
algorithm for surface reconstruction”. In: IEEE Transactions on Visualization and
Computer Graphics 5.4 (1999), pp. 349-359. DOI: 10.1109/2945.817351.

Julie Digne. “An Analysis and Implementation of a Parallel Ball Pivoting Algorithm”.
In: Image Processing On Line 4 (2014). https://doi.org/10.5201/ipol.2014.
81, pp. 149-168.

Michael Kazhdan and Hugues Hoppe. “Screened Poisson Surface Reconstruction”. In:
ACM Trans. Graph. 32.3 (July 2013). ISSN: 0730-0301. DOI: 10 . 1145/2487228 .
2487237. Online: https://doi.org/10.1145/2487228.2487237.

I. Shimshoni, Y. Moses, and M. Lindenbaumlpr. “Shape reconstruction of 3D bilaterally
symmetric surfaces”. In: Proceedings 10th International Conference on Image Analysis
and Processing. 1999, pp. 76-81. DOI: 10.1109/ICIAP.1999.797574.

Demetri Terzopoulos, Andrew Witkin, and Michael Kass. “Symmetry-seeking models
and 3D object reconstruction”. In: International Journal of Computer Vision 1.3 (1988),
pp. 211-221. DOI: 10.1007/b£00127821.

Allen Y. Yang, Kun Huang, Shankar Rao, Wei Hong, and Yi Ma. “Symmetry-Based 3-D
Reconstruction from Perspective Images”. In: Comput. Vis. Image Underst. 99.2 (Aug.
2005), pp. 210-240. ISSN: 1077-3142.

Tianfan Xue, Jianzhuang Liu, and Xiaoou Tang. “Symmetric piecewise planar object
reconstruction from a single image”. In: CVPR 2011. 2011, pp. 2577-2584. DOI: 10.
1109/CVPR.2011.5995405.

Marc Forstenhdusler, Nico Engel, and Klaus Dietmayer. “Temporal Filtering to
Stabilize Features for SLAM”. In: 2019 IEEE/ASME International Conference on
Advanced  Intelligent Mechatronics (AIM). 2019, pp. 1592-1597. DOI:
10.1109/AIM.2019.8868846.

Shahram Izadi, David Kim, Otmar Hilliges, David Molyneaux, Richard Newcombe,
Pushmeet Kohli, Jamie Shotton, Steve Hodges, Dustin Freeman, Andrew Davison,
and Andrew Fitzgibbon. “KinectFusion: Real-Time 3D Reconstruction and Interaction
Using a Moving Depth Camera”. In: Proceedings of the 24th Annual ACM Symposium
on User Interface Software and Technology. UIST ’11. Santa Barbara, California,
USA: Association for Computing Machinery, 2011, pp. 559-568. ISBN:
9781450307161. DOI: 10 . 1145 / 2047196 . 2047270. Online:
https://doi.org/10.1145/2047196.2047270.

Angel X. Chang, Thomas A. Funkhouser, Leonidas J Guibas, Pat Hanrahan,
Qi-Xing Huang, Zimo Li, Silvio Savarese, Manolis Savva, Shuran Song, Hao Su,
Jianxiong Xiao, Li Yi, and Fisher Yu. “ShapeNet: An Information-Rich 3D Model
Repository”. In: CoRR abs/1512.03012 (2015).



58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

Hyun Oh Song, Yu Xiang, Stefanie Jegelka, and Silvio Savarese. “Deep Metric Learning
via Lifted Structured Feature Embedding”. In: IEEE Conference on Computer Vision
and Pattern Recognition (CVPR). 2016.

K. Greff, R. K. Srivastava, J. Koutnik, B. R. Steunebrink, and J. Schmidhuber. “LSTM:
A Search Space Odyssey”. In: IEEE Transactions on Neural Networks and Learning
Systems 28.10 (2017), pp. 2222-2232. DOI: 10.1109/TNNLS.2016.2582924.

W. Kong, Z. Y. Dong, Y. Jia, D. J. Hill, Y. Xu, and Y. Zhang. “Short-Term Residential
Load Forecasting Based on LSTM Recurrent Neural Network™. In: I[EEE Transactions
on Smart Grid 10.1 (2019), pp. 841-851. DOI: 10.1109/TSG.2017.2753802.

Amol Dhondse, Siddhivinayak Kulkarni, Kunal Khadilkar, Indrajeect Kane,
Sumit Chavan, and Rahul Barhate. “Generative Adversarial Networks as an
Advancement in 2D to 3D Reconstruction Techniques”. In: Data Management,
Analytics and Innovation. Ed. by Neha Sharma, Amlan Chakrabarti, and
Valentina Emilia Balas. Singapore: Springer Singapore, 2020, pp. 343-364. ISBN:
978-981-13-9364-8.

C. Guzel Turhan and H.S. Bilge. “Fused voxel autoencoder for single image to 3D object
reconstruction”. In: Electronics Letters 56.3 (2020), pp. 134-137. DOI: https://doi.
org/10.1049/el1.2019.3293. eprint: https://ietresearch.onlinelibrary.
wiley.com/doi/pdf/10.1049/e1.2019.3293. Online: https://ietresearch.
onlinelibrary.wiley.com/doi/abs/10.1049/e1.2019.3293.

Christian Hane, Shubham Tulsiani, and Jitendra Malik. “Hierarchical Surface Prediction
for 3D Object Reconstruction”. In: 2017 International Conference on 3D Vision (3DV)
(2017), pp. 412-420.

Haoqiang Fan, Hao Su, and L. Guibas. “A Point Set Generation Network for 3D Object
Reconstruction from a Single Image”. In: 2017 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR) (2017), pp. 2463-2471.

Wenxuan Wu, Zhongang Qi, and Fuxin Li. “PointConv: Deep Convolutional Networks
on 3D Point Clouds”. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR) (2019), pp. 9613-9622.

S. Targ, Diogo Almeida, and Kevin Lyman. “Resnet in Resnet: Generalizing Residual
Architectures”. In: ArXiv abs/1603.08029 (2016).

Andrew G. Howard, Menglong Zhu, Bo Chen, D. Kalenichenko, Weijun Wang,
Tobias Weyand, M. Andreetto, and Hartwig Adam. “MobileNets: Efficient
Convolutional Neural Networks for Mobile Vision Applications”. In: ArXiv
abs/1704.04861 (2017).

R. Qi Charles, Hao Su, Mo Kaichun, and Leonidas J. Guibas. “PointNet: Deep Learning
on Point Sets for 3D Classification and Segmentation”. In: 2017 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). 2017, pp. 77-85. DOI: 10.1109/
CVPR.2017.16.

Wentao Yuan, Tejas Khot, David Held, Christoph Mertz, and Martial Hebert. “PCN:
Point Completion Network™. In: 2018 International Conference on 3D Vision (3DV).
2018, pp. 728-737. DOI: 10.1109/3DV.2018.00088.

Thibault Groueix, Matthew Fisher, Vladimir G. Kim, Bryan C. Russell, and
Mathieu Aubry. “A Papier-Mache Approach to Learning 3D Surface Generation”. In:
2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (2018),
pp. 216-224.

Minghua Liu, Lu Sheng, Sheng Yang, Jing Shao, and Shi-Min Hu. “Morphing and
Sampling Network for Dense Point Cloud Completion”. In: arXiv preprint
arXiv:1912.00280 (2019).

M. Tatarchenko, A. Dosovitskiy, and T. Brox. “Octree Generating Networks: Efficient
Convolutional Architectures for High-resolution 3D Outputs”. In: 2017 [EEE
International Conference on Computer Vision (ICCV). 2017, pp. 2107-2115. DOI:
10.1109/ICCV.2017.230.

97



73.

74.

75.

76.

71.

78.

79.

80.

81.

82.

83.

84.

85.

98

Audrius Kulikajevas, Rytis Maskelitinas, Robertas Damasevicius, and Sanjay Misra.
“Reconstruction of 3D Object Shape Using Hybrid Modular Neural Network
Architecture Trained on 3D Models from ShapeNetCore Dataset”. In: Sensors 19.7
(2019). ISSN: 1424-8220. DOI: 10 . 3390 / s19071553. Online:
https://www.mdpi.com/1424-8220/19/7/1553.

Audrius Kulikajevas, Rytis Maskelilinas, Robertas Damasevicius, and Edmond S. L.
Ho. “3D Object Reconstruction from Imperfect Depth Data Using Extended YOLOvV3
Network”. In: Sensors 20.7 (2020). ISSN: 1424-8220. DOI: 10 . 3390/ s20072025.
Online: https://www.mdpi.com/1424-8220/20/7/2025.

Audrius Kulikajevas, Rytis Maskeliunas, Robertas Damasevicius, and Rafal Scherer.
“HUMANNET—A Two-Tiered Deep Neural Network Architecture for Self-Occluding
Humanoid Pose Reconstruction”. In: Sensors 21.12 (2021). ISSN: 1424-8220. DOI:
10.3390/521123945. Online: https://www.mdpi.com/1424-8220/21/12/3945.

Audrius  Kulikajevas, Rytis Maskelitinas, Robertas Damasevic¢ius, and
Marta Wlodarczyk-Sielicka. “Auto-Refining Reconstruction Algorithm for Recreation
of Limited Angle Humanoid Depth Data”. In: Semsors 21.11 (2021). ISSN:
1424-8220. DOI: 10 . 3390 / 521113702. Online:
https://www.mdpi.com/1424-8220/21/11/3702.

Kevin Jarrett, Koray Kavukcuoglu, Marc’ Aurelio Ranzato, and Yann LeCun. “What is
the best multi-stage architecture for object recognition?” In: 2009 IEEE 12th
International Conference on Computer Vision. 2009, pp. 2146-2153. DOLI:
10.1109/ICCV.2009.5459469.

Vinod Nair and Geoffrey E. Hinton. “Rectified Linear Units Improve Restricted
Boltzmann Machines”. In: Proceedings of the 27th International Conference on
International Conference on Machine Learning. ICML’10. Haifa, Israel: Omnipress,
2010, pp. 807-814. ISBN: 9781605589077.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. “Delving Deep into
Rectifiers: Surpassing Human-Level Performance on ImageNet Classification”. In:
2015 IEEE International Conference on Computer Vision (ICCV). 2015,
pp- 1026-1034. DOI: 10.1109/ICCV.2015.123.

Quoc V. Le, Navdeep Jaitly, and Geoffrey E. Hinton. “A Simple Way to Initialize
Recurrent Networks of Rectified Linear Units”. In: CoRR abs/1504.00941 (2015).
arXiv: 1504.00941. Online: http://arxiv.org/abs/1504.00941.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and
Ruslan Salakhutdinov. “Dropout: A Simple Way to Prevent Neural Networks from
Overfitting”. In: Journal of Machine Learning Research 15.56 (2014), pp. 1929—-1958.
Online: http://jmlr.org/papers/vi5/srivastaval4a.html.

George E. Dahl, Tara N. Sainath, and Geoffrey E. Hinton. “Improving deep neural
networks for LVCSR using rectified linear units and dropout”. In: 2013 IEEE
International Conference on Acoustics, Speech and Signal Processing. 2013,
pp- 8609—-8613. DOI: 10.1109/ICASSP.2013.6639346.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. “ImageNet Classification
with Deep Convolutional Neural Networks”. In: Commun. ACM 60.6 (May 2017),
pp. 84-90. ISSN: 0001-0782. DOI: 10 . 1145 / 3065386. Online:
https://doi.org/10.1145/3065386.

Jun Han and Claudio Moraga. “The influence of the sigmoid function parameters on
the speed of backpropagation learning”. In: From Natural to Artificial Neural
Computation. Ed. by José Mira and Francisco Sandoval. Berlin, Heidelberg: Springer
Berlin Heidelberg, 1995, pp. 195-201. ISBN: 978-3-540-49288-7.

Gang Wang, Georgios B. Giannakis, and Jie Chen. “Learning ReLU Networks on
Linearly Separable Data: Algorithm, Optimality, and Generalization”. In: [EEE
Transactions on Signal Processing 679 (2019), pp. 2357-2370. DOI:
10.1109/TSP.2019.2904921.



86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

97.

98.

99.

100.

Khaled Mabrouk Amer Adweb, Nadire Cavus, and Boran Sekeroglu. “Cervical Cancer
Diagnosis Using Very Deep Networks Over Different Activation Functions”. In: /EEE
Access 9 (2021), pp. 46612-46625. DOI: 10.1109/ACCESS . 2021 . 3067195.

Kamaledin Ghiasi-Shirazi. “Competitive Cross-Entropy Loss: A Study on Training
Single-Layer Neural Networks for Solving Nonlinearly Separable Classification
Problems”. In: Neural Processing Letters 50.2 (2018), pp. 1115-1122. DOI:
10.1007/s11063-018-9906-5.

Jacopo Pantaleoni. “VoxelPipe”. In: Proceedings of the ACM SIGGRAPH Symposium
on High Performance Graphics - HPG. ACM Press, 2011. DOI: 10.1145/2018323.
2018339. Online: https://doi.org/10.1145/2018323.2018339.

Doug Baldwin and Michael Weber. “Fast Ray-Triangle Intersections by Coordinate
Transformation”. In: Journal of Computer Graphics Techniques (JCGT) 5.3 (Sept.
2016), pp- 39-49. ISSN: 2331-7418. Online:
http://jcgt.org/published/0005/03/03/.

Diederik P. Kingma and Jimmy Ba. “Adam: A Method for Stochastic Optimization”.
In: CoRR abs/1412.6980 (2015).

Martin Rutzinger, Franz Rottensteiner, and Norbert Pfeifer. “A Comparison of
Evaluation Techniques for Building Extraction From Airborne Laser Scanning”. In:
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
2.1(2009), pp. 11-20. DOIL: 10.1109/JSTARS.2009.2012488.

Joseph Redmon and Ali Farhadi. “YOLOvV3: An Incremental Improvement”. In: CoRR
abs/1804.02767 (2018). Online: http://arxiv.org/abs/1804.02767.

Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng-
Yang Fu, and Alexander C. Berg. “SSD: Single Shot MultiBox Detector”. In: Computer
Vision — ECCV 2016. Ed. by Bastian Leibe, Jiri Matas, Nicu Sebe, and Max Welling.
Cham: Springer International Publishing, 2016, pp. 21-37. ISBN: 978-3-319-46448-0.

Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. “Rich Feature
Hierarchies for Accurate Object Detection and Semantic Segmentation”. In: 2074
IEEE Conference on Computer Vision and Pattern Recognition. 2014, pp. 580-587.
DOI: 10.1109/CVPR.2014.81.

Debjyoti Sinha and Mohamed El-Sharkawy. “Thin MobileNet: An Enhanced
MobileNet Architecture”. In: 2019 IEEE 10th Annual Ubiquitous Computing,
Electronics Mobile Communication Conference (UEMCON). 2019, pp. 0280-0285.
DOI: 10.1109/UEMCON47517.2019.8993089.

Dongseok Im, Donghyeon Han, Sungpill Choi, Sanghoon Kang, and Hoi-Jun Yoo.
“DT-CNN: An Energy-Efficient Dilated and Transposed Convolutional Neural
Network Processor for Region of Interest Based Image Segmentation”. In: /EEE
Transactions on Circuits and Systems I: Regular Papers 67.10 (2020), pp. 3471-3483.
DOI: 10.1109/TCSI.2020.2991189.

Mehmet Saygm Seyfioglu, Ahmet Murat Ozbayoglu, and Sevgi Zubeyde Giirbiiz.
“Deep convolutional autoencoder for radar-based classification of similar aided and
unaided human activities”. In: [EEE Transactions on Aerospace and Electronic
Systems 54.4 (2018), pp. 1709-1723. DOI: 10.1109/TAES.2018.2799758.

K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang. “Beyond a Gaussian Denoiser:
Residual Learning of Deep CNN for Image Denoising”. In: IEEE Transactions on Image
Processing 26.7 (2017), pp. 3142-3155. DOI: 10.1109/TIP.2017.2662206.

S. Wu, G. Li, L. Deng, L. Liu, D. Wu, Y. Xie, and L. Shi. “L1 -Norm Batch
Normalization for Efficient Training of Deep Neural Networks”. In: [EEE
Transactions on Neural Networks and Learning Systems 30.7 (2019), pp. 2043-2051.
DOI: 10.1109/TNNLS.2018.2876179.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,
Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich.
“Going deeper with convolutions”. In: 2015 IEEE Conference on Computer Vision

99



101.

102.

103.

104.

105.

106.

107.

108.

109.

110.

I11.

112.

113.

114.

100

and Pattern Recognition (CVPR). 2015, PP- 1-9. DOI:
10.1109/CVPR.2015.7298594.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. “Deep Residual Learning
for Image Recognition”. In: 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). 2016, pp. 770-778. DOI: 10.1109/CVPR.2016.90.

Yeongbin Kim, Joongchol Shin, Hasil Park, and Joonki Paik. “Real-Time Visual
Tracking with Variational Structure Attention Network™. In: Sensors 19.22 (2019).
ISSN:  1424-8220. DOIL: 10 . 3390 / $19224904.  Online:
https://www.mdpi.com/1424-8220/19/22/4904.

Kouhei Sekiguchi, Yoshiaki Bando, Aditya Arie Nugraha, Kazuyoshi Yoshii, and
Tatsuya Kawahara. “Semi-Supervised Multichannel Speech Enhancement With a
Deep Speech Prior”. In: IEEE/ACM Transactions on Audio, Speech, and Language
Processing 27.12 (2019), pp. 2197-2212. DOI: 10.1109/TASLP.2019.2944348.

S. Kullback and R. A. Leibler. “On Information and Sufficiency”. In: The Annals of
Mathematical Statistics 22.1 (1951), pp. 79—86. DOI: 10.1214/aoms/1177729694.

George Philipp, Dawn Xiaodong Song, and Jaime G. Carbonell. “The exploding
gradient problem demystified - definition, prevalence, impact, origin, tradeoffs, and
solutions”. In: arXiv: Learning (2017).

Z. Mi, Y. Luo, and W. Tao. “SSRNet: Scalable 3D Surface Reconstruction Network”.
In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).
2020, pp. 967-976. DOI: 10.1109/CVPR42600.2020.00105.

G. Borgefors. “Hierarchical chamfer matching: a parametric edge matching
algorithm”. In: IEEE Transactions on Pattern Analysis and Machine Intelligence 10.6
(1988), pp. 849-865. DOL: 10.1109/34.9107.

Yossi Rubner, Carlo Tomasi, and Leonidas Guibas. “The Earth Mover’s Distance as a
metric for image retrieval”. In: International Journal of Computer Vision 40 (Jan. 2000),
pp. 99-121.

Minghua Liu, Lu Sheng, Sheng Yang, Jing Shao, and Shi-Min Hu. “Morphing and
Sampling Network for Dense Point Cloud Completion”. In: Proceedings of the AAAI
Conference on Artificial Intelligence 34.07 (Apr. 2020), pp. 11596-11603. DOI:
10 . 1609 / aaai . v341i07 . 6827. Online:
https://ojs.aaai.org/index.php/AAAI/article/view/6827.

Marius Miknis, Ross Davies, Peter Plassmann, and Andrew Ware. “Near real-time point
cloud processing using the PCL”. In: 2015 International Conference on Systems, Signals
and Image Processing (IWSSIP). 2015, pp. 153-156. DOI: 10.1109/IWSSIP.2015.
7314200.

Carsten Moenning and Neil A. Dodgson. “Fast Marching farthest point sampling”. In:
Eurographics 2003 - Posters. Eurographics Association, 2003. DOI: 10.2312/egp.
20031024.

Pegah Kamousi, Sylvain Lazard, Anil Maheshwari, and Stefanie Wuhrer. “Analysis of
farthest point sampling for approximating geodesics in a graph”. In: Computational
Geometry 57 (2016), pp. 1-7. ISSN: 0925-7721. DOI: https://doi.org/10.1016/
j.comgeo.2016.05.005. Online: https://www.sciencedirect.com/science/
article/pii/S0925772116300487.

Dong Liu, Yizhou Zhou, Xiaoyan Sun, Zhengjun Zha, and Wenjun Zeng. “Adaptive
Pooling in Multi-instance Learning for Web Video Annotation”. In: 2017 IEEE
International Conference on Computer Vision Workshops (ICCVW). 2017,
pp. 318-327. DOI: 10.1109/ICCVW.2017.46.

Shaoqing Ren, Kaiming He, Ross B. Girshick, and Jian Sun. “Faster R-CNN: Towards
Real-Time Object Detection with Region Proposal Networks”. In: CoRR
abs/1506.01497 (2015). arXiv: 1506 . 01497. Online:
http://arxiv.org/abs/1506.01497.



115.

116.

117.

118.

119.

120.

121.

122.

123.

Saeed Ghorbani, Kimia Mahdaviani, Anne Thaler, Konrad Kording, Douglas James
Cook, Gunnar Blohm, and Nikolaus F. Troje. MoVi: A Large Multipurpose Motion and
Video Dataset. 2020. arXiv: 2003.01888 [cs.CV].

Naureen Mahmood, Nima Ghorbani, Nikolaus F. Troje, Gerard Pons-Moll, and Michael
J. Black. “AMASS: Archive of Motion Capture as Surface Shapes”. In: International
Conference on Computer Vision. Oct. 2019, pp. 5442-5451.

Koyel Mukherjee, Alind Khare, and Ashish Verma. “A Simple Dynamic Learning
Rate Tuning Algorithm For Automated Training of DNNs”. In: A7Xiv abs/1910.11605
(2019).

Andras Hajdu, Lajos Hajdu, and Robert Tijdeman. Approximations of the Euclidean
distance by chamfer distances. 2012. arXiv: 1201.0876 [cs.IT].

Wentao Yuan, Tejas Khot, David Held, Christoph Mertz, and Martial Hebert. “PCN:
Point Completion Network™. In: CoRR abs/1808.00671 (2018). arXiv: 1808 . 00671.
Online: http://arxiv.org/abs/1808.00671.

Thibault Groueix, Matthew Fisher, Vladimir G. Kim, Bryan C. Russell, and Mathieu
Aubry. “AtlasNet: A Papier-Maché Approach to Learning 3D Surface Generation”. In:
CoRR abs/1802.05384 (2018). arXiv: 1802 . 05384. Online: http://arxiv.org/
abs/1802.05384.

Yanghua Jin, Jiakai Zhang, Minjun Li, Yingtao Tian, Huachun Zhu, and Zhihao Fang.
“Towards the Automatic Anime Characters Creation with Generative Adversarial
Networks”. In: ArXiv abs/1708.05509 (2017).

Yuki Saito, Shinnosuke Takamichi, and Hiroshi Saruwatari. “Statistical Parametric
Speech Synthesis Incorporating Generative Adversarial Networks”. In: IEEE/ACM
Transactions on Audio, Speech, and Language Processing 26.1 (2018), pp. 84-96.
DOI: 10.1109/TASLP.2017.2761547.

Yan Huang, Wei Wang, Liang Wang, and Tieniu Tan. “Multi-task deep neural network
for multi-label learning”. In: 2013 IEEE International Conference on Image Processing.
2013, pp. 2897-2900. DOI: 10.1109/ICIP.2013.6738596.

101



8. SUBMITTED PAPERS

8.1. Reconstruction of 3D Object Shape Using Hybrid Modular Neural
Network Architecture Trained on 3D Models from ShapeNetCore Dataset

Authors Audrius  Kulikajevas!,  Rytis Maskelilinas?®,  Robertas
Damasevi¢ius®® and Sanjay Misra®®

1 Department of Multimedia Engineering, Kaunas University of Technology, 51368

Kaunas, Lithuania; audrius.kulikajevas@ktu.edu

2 Centre of Real Time Computer Systems, Kaunas University of Technology, 51368
Kaunas, Lithuania; rytis.maskeliunas@ktu.lt

3 Department of Software Engineering, Kaunas University of Technology, 51368 Kaunas,
Lithuania

4 Department of Electrical and Information Engineering, Covenant University, Ota 1023,
Nigeria

®  Department of Computer Engineering, Atilim University, Ankara 06830, Turkey;
sanjay.misra@atilim.edu.tr

Sensors 2019, 19(7), 1553; https://doi.org/10.3390/s19071553

Received: 28 February 2019/ Revised: 27 March 2019 / Accepted: 28 March 2019 / Published:
31 March 2019

Abstract Depth-based reconstruction of three-dimensional (3D) shape of
objects is one of core problems in computer vision with a lot of commercial
applications. = However, the 3D scanning for point cloud-based video
streaming is expensive and is generally unattainable to an average user due to
required setup of multiple depth sensors. We propose a novel hybrid modular
artificial neural network (ANN) architecture, which can reconstruct smooth
polygonal meshes from a single depth frame, using a priori knowledge.
The architecture of neural network consists of separate nodes for recognition
of object type and reconstruction thus allowing for easy retraining and
extension for new object types. We performed recognition of nine real-world
objects using the neural network trained on the ShapeNetCore model dataset.
The results evaluated quantitatively using the Intersection-over-Union (IoU),
Completeness, Correctness and Quality metrics, and qualitative evaluation by
visual inspection demonstrate the robustness of the proposed architecture with
respect to different viewing angles and illumination conditions.

Keywords 3D depth shape recognition; 3D depth scanning; RGB-D sensors;
hybrid neural networks

8.1.1. Introduction

Reconstruction of three-dimensional (3D) depth-based geometry is one of
the core problems in computer vision with commercial applications. These
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applications range from importing 3D scanned assets into video games and
virtual reality (VR) applications [1], gesture recognition [2], indoor
mapping [3], recreating environments in movies, recreating evidence and
crime scenes in digital forensics [4], designing of dental implants and
prosthetics [5], performing Building Information Modelling (BIM) in
construction industry [6], environmental perception for industrial/service
robots [7], and preserving cultural heritage in museums [8]. However, to this
day, the systems that provide 3D scanning capabilities are expensive and are
generally unattainable for an average user. Yet, the desirability to have the 3D
scene reconstruction is so crucial that the researchers propose new methods
that aim to transform RGB images into depth cloud, without the need for
additional hardware [9], so that 3D scanning systems would be more
affordable and accessible.

We cannot expect the user to either have expensive laser depth scanners
which are capable of great accuracy of scanned objects, or an array of sensors
which would be capable to pick up all regions occluded by other objects or
even self-occlusion and we cannot expect from a general user to be bothered
with taking time to precisely scan the entirety of the object so that it would be
reconstructed incrementally [10, 11] based on delta frames and camera
localization. For example, many classical scene reconstruction algorithms
rely on simultaneous localization and mapping (SLAM) [12], in order to scan
the entirety of 3D objects in the environment, which is then converted either
into point-cloud, voxel-cloud volume or triangulated into a mesh.
Unfortunately, incremental algorithms tend suffer from one major flaw:
changes in scene can create corruptions in the mesh [13].

This makes the application of such approaches unstable in real-world
scenes, where objects rather than the view perspective move in space. Other
methods such as space carving [14] bypass some of these issues by
performing subtractive reconstruction from multiple perspectives with
an addition of mask. However, this method assumes that we can accurately
extract the mask of an object, which can prove to be very difficult in some
aspects due to adverse illumination conditions.

Another approach employed by some of the most successful reconstruction
algorithms is to use a priori knowledge of the objects to be reconstructed [15,
16, 17].

While these methods have shown great recall capabilities and are less
prone to errors do to a priori knowledge, they still depend on illumination
conditions as the RGB cameras only capture the visible light spectrum, which
may cause distortions in case of dim light and would be impossible to use in
dark environments.
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With the increasing amount of available low-cost consumer-grade depth
sensors such as Microsoft Kinect [18], Intel RealSense [19], and depth
cameras becoming a standard feature in some flagship mobile phones, we are
moving towards an era where RGB-Depth (RGB-D) sensors are as common
as regular RGB cameras. Object detection and segmentation with RGB-D
sensors has been widely used in recent years, such as Canonical Correlation
Analysis (CCA)-based multi-view Convolutional Neural Networks
(CNN) [20], using regular point clouds in addition to multi-views for point
cloud recognition [21], fusing CNNs with simultaneous localization and
mapping in order to perform object segmentation [22], employing
multi-modal deep neural networks and Dempster Shafer evidence theory to
achieve the task of object recognition [23], or adopting multifoveated point
clouds [24].

Applying data acquired from RGB-D sensors is a logical evolution of the
reconstruction algorithms as the non-stereoscopic (two RGB lenses
side-by-side simulating binocular vision) depth sensors are less dependant on
ambient light conditions and are capable of capturing even in pitch black
environments using infrared projectors, albeit are still prone to speckles due to
the properties of object surface [25, 26]. There have already been attempts to
achieve surface prediction by using depth [27] and silhouettes [28] performed
experiments mostly consist of synthetic data. On the other hand, these
cameras have limitations too. While RGB frames are generally difficult to
segment due to different textures and colors [29] and it is generally easier to
segment an object from a noisy background using RGB-D sensor from a
sufficient distance, objects in close proximity to each other are difficult to be
segmented due to their depth values being very similar. Furthermore,
commercially used depth sensors tend to suffer from distortions when
projecting infrared (IR) laser [30].

We present a hybrid neural network architecture, capable of reconstructing
smooth polygonal meshes from a single depth frame, using a priori knowledge
and still being capable of running on low-end RGB-D sensor devices in
intractable frame rates. The aim is not to scan the 3D geometry, but rather a
stream of depth data, which can later be used to recreate 3D holographic
objects. The structure of this paper is organized as follows: Section 8.1.2
describes the proposed modular neural network, reconstruction algorithm for
3D object recognition, and network training; Section 8.1.3 presents
experimental results of the proposed network architecture; and finally, Section
8.1.4 discusses the results and concludes the article.
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8.1.2. Materials and Methods
8.1.2.1. Architecture of Hybrid Neural Network

The proposed hybrid network consists of a single classifier network that
branches off into n-reconstruction networks (in comparison to standard
methods of having a single neural network performing both of these tasks at
once).

For our hybrid ANN architecture we adopted the hierarchical approach. The
ANN consists of a single predictor node and multiple reconstruction nodes,
where each reconstruction node is dedicated to recognizing either a specific
object or a group of similar objects.

This allows more easily training additional types of objects without having
to re-train for reconstruction or facing the risk of loosing existing gradients by
training on additional models [31]. This adds some modularity to the system
while also giving the benefit of reducing the training time due to low iteration
count required as the Adam optimizer [32] manages to converge the model in
very few iterations generally under 50, depending under model complexity.

For the discriminator ANN in the hybrid network (Figure 1), we use a
simple one hot CNN, which takes an input of 320 x 240 depth frame and runs
it through a convolution layer. In convolution layer, we create 32 samples by
using a 3 x 3 kernel with max-pooling function, downsampling the original
image by a factor of two. After convolution layer we add random noise to the
output by using a dropout layer with a chance of P(z) = 0.2, which allows for
better generalization. Finally, we flatten our output into 1-dimensional tensor
and run it through 256 neuron density layer with the output being returned as
one-hot encoded array. For all of our layers we used Rectified Linear Units
(ReLUs) [33] as they have been shown to give great results in conjunction
with CNNs [34]. Finally, we compute the loss using softmax cross-entropy
(1) in order to discriminate between different types of object classes, where
is ground truth value, p is predicted value. Once we have the classifier result,
we can select the appropriate neural network best fitting for the reconstruction
of the observed object frame. Thus the hybridization of these two neural
networks allows us to have desired modularity in our method.

H(yo,p) = — > yolog(=—) (1)

eP
. er

A single node that is used for reconstructing the voxel volume is shown in
Figure 2. The reconstruction ANN adopts the convolutional encoder layers
from PointOutNet [15] architecture as it has shown to have good encoding
capabilities. However, we modified the decoding components. First, we
added a dropout layer with P(z) = 0.4 for increased generalization, following
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a 512 neuron density connected layer. The final layer is the 32 x 32 x 32
voxel space layer. While all other layers use ReLLU as activation function,
the output layer uses the sigmoid function to clamp the output ranges
B € [0;1]. For a loss function, mean square error (Equation (2)) is used,
where p is prediction, ¥, is ground truth, z is the number of elements in batch.
Please note that using the mean value instead of absolute loss creates a better
network topology, as the latter may fall into a local minima and constantly
generate the same output.

H(yo,p) = Z@ 2)

pooled feature featu pooled feature  Fully-connected

feature maj featt i
ps eature maps maps maps 1 with dropout

plylx)

/

Convolutional Convolutional Pooling 5 Convolutional

Pooling 6
layer 1 layer 2 layer 18 g Outputs

Figure 2. A single branch of ANN used for reconstruction of voxel space.

8.1.2.2. Reconstruction Algorithm

The proposed 3D reconstruction algorithm (Figure 3) consists of three main
steps: prediction, reconstruction and post-processing. In the prediction step we
use depth sensor data as our input in order to select the reconstruction network,
if its was pre-trained. Once the reconstruction ANN is decided the input is then
fed to the network to perform voxel cloud prediction.

Finally, the algorithm performs voxel cloud post-processing by turning the
reconstruction network output into a polygonal mesh and applying an
additional surface smoothing to eliminate noisiness. To use native rendering
as provided by graphics pipeline we need to turn the voxel volume cloud into
a triangle mesh, which is performed in two steps. First, we convert voxels into
triangles via marching cubes [35] using an algorithm presented in Figure 4.
We iterate over all voxels in the voxel cloud and create an adjacency cube that
is used to determine the shape the voxel should take as follows: we calculate
the edges based on adjacency cube. If the adjacency cube ege flag returns 0,
we assume that the voxel is inside the mesh and skip it, otherwise we select
the edge flag from the marching cube hash table and find the point of
intersection of the surface with each edge, if intersections exist we compute
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the edge vertice positions. Finally, we construct the triangles based on triangle
connection table and push them to mesh.

However, this approach produces ambiguities which causes holes to appear
in the mesh. Due to the fundamental way non-stereoscopic depth sensors work
they are prone to noise. The noise in depth frame acts as /oles that have a depth
value of zero. When using real sensor data, we add additional postprocessing
in order to denoise the image as much as possible. We do this by using a kernel
method that finds the most frequent value in the kernel and using that as new
pixel value (see Equation (3)), where D is depth field matrix, x and y is the
coordinates of the pixel on the image.

D(z,y), if v # 0
D(i, ) for
D = 3
(z9) i=x—2,...,0+2 otherwise ®)

andj=y—2,...,y+2,

Furthermore, the generated mesh is somewhat blocky. To mitigate this
issue, we further apply smoothing by applying dual contouring [36] on the
generated mesh.

8.1.2.3. Network Training

For neural network training and validation, we use the ShapeNetCore
dataset and Blender in order to generate appropriate depth images and ground
truths of voxel cloud. To train the neural network, first, we find all available
objects that we are working with and separate them into different objects.
Once that step is complete, we pick the first category and load a single OBJ
object from that category. After the object is loaded, we use Blender to render
depth fields for each object from different angles. We have selected values the
perspectives in such a way that the object would be rendered from all 45° and
90° angles at distances of 1 and 1.5 units, except the bottom, giving us a total
of 48 perspectives. We save the perspectives as OpenEXR format as unlike
standard image formats OpenEXR 1is linear, allowing us to retain all depth
range values, which standard non-lossy image formats would loose due to the
limitation of 32 bits per pixel [37].

Furthermore, as our network is trained only on depth frames, we do not
encounter any problems related emulating lighting as opposed to when
choosing Lambert, Phong, PBR, etc. shading models for realistic lightning in
RGB enviroments. After we have rendered the given object mesh into depth
fields, we perform geometry voxelization as suggested in [38]. This is done
by partitioning the geometry boundaries into equal sized cells. The size of the
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cell is chosen based on the largest object axis. Once the space is partitioned,
we iterate over all cells and calculate if the cell should be filled or not, the
state is determined using ray-triangle intersection [39]. After the model is
processed, we continue with all the models in the class until none are left and
move on to next class, we continue this until no classes or objects are left.

When data preparation step is complete we perform our training. This is
done in multiple stages. First stage consists of training classifier network to
recognize the object class so that an appropriate network can be chosen
afterwards.

Once the classification model has converged or we reach 500 iterations we
train each class individually on a new neural network, while saving tensor
values for each network. An UML activity diagram in Figure 5 demonstrates
this process. Due to automatization of very large quantities of models,
automatic depth generation may fail due to irregular object sizes, mainly very
thin objects like knives. Therefore, we add an additional check to filter out
invalid object inputs such as empty frames and very few clustered pixels that
could potentially spoil the training gradients.
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Reconstruction from depth sensor workflow

Depth Sensor Prediction ANN Reconstruction ANN (R)

~ is_running Perform depth
alse- normalization

e - has_dead_pixels

Retrieve sensor data ——

Load reconstruction
model tensor values

Predict voxel cloud for
input depth

s
true

Find most frequent
depth in kernel

Polygonize voxel
dloud

Fill pixel with found
value

Classify image

<> e
c208

Pick reconstruction
model R

Smooth mesh

Trained models

AT
AT

ImTT T T ittt 'V%
I Sesnor input resolution - 320x240

1is_running - should the algorithm continue polling for frames |
Ihas_dead_pixels - are there any dead pixels in retrieves
| depth map (value=0), kernel size is 3x3, maximum of one
| iteration

}confidence - confidence level that the depth input is
| positively identified by classifier
IR - trained reconstruction network model selected by
| classifier
| Voxel volume resolution: 32x32x32

I Smoothing parameters - octree depth = 5; scale = 0.8

f
Voxel cloud result

Figure 3. Depth sensor data is captured and sent to classifier ANN. If classifier
network recognizes the object, the sensor data is sent to reconstruction ANN,
otherwise the frame is dropped. Reconstruction ANN generates the voxel cloud.
Voxel cloud is turned into polygonal mesh, and mesh smoothing is applied.
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8.1.2.4. Dataset

3D recognition depends on a priori information about desired
objects. Therefore, it is a requirement to have a good labeled element dataset.
However, for 3D object recognition there are a few such datasets that are
more limited. Our main sources are ShapeNetCore, a subset of ShapeNet [40]
dataset that has clean 3D models and manually verified categories, and
real-world data captured by the Intel RealSense ZR300 (Intel Corporation,
Santa Clara, CA, USA) device. An example of 3D models provided in
ShapeNetCore dataset is shown in Figure 8, and an example of real depth
sensor data acquired by Intel RealSense ZR300 is given in Figure 7. While we
use ShapeNetCore as a source of training data, we also use real depth sensor
data for visual validation and testing in real-life applications. This is mainly
due to not having ground-truth data for real objects, which unlike virtual
model datasets would allow us to extract all the necessary features.

We also have explored different subsets of the ShapeNet database.
However, these models have proved to be problematic due to their shapes not
being properly normalized and aligned as opposed to ShapeNetCore, which is
undesired effects for training. Therefore, the only model we used from
ShapeNetSem for our experiments was Book, which had the worst recall rates
of all models due the problems specified previously.
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Model training workflow
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Figure 5. Overview of workflow for ShapeNetCore data set preparation and model
training.
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Figure 6. An example of a model from ShapeNetCore dataset.

: ¥
Figure 7. An example of real depth sensor data set captured by Infel RealSense
ZR300 captured from different vantage points.

8.1.2.5. Evaluation

The goal of reconstruction is usually to achieve a difference between the
reconstruction and the ground truth as small as possible. We define
reconstruction quality by using Intersection-over-Union (IoU) metric [41] as
defined by Equation (4), where A4 denotes a turned on voxel in ground truth
and B denotes a turned on voxel in prediction, and P is conditional probability.

P(BJA)
(B|A) + P(—B|A) + P(B|-A)

IoU = Iz 4)

We also use the Completeness, Correctness and Quality metrics [42].
Completeness, also known as Producer s Accuracy and Detection Rate, is the
ratio of voxels in ground truth that were reconstructed:

P(BlA)
(BlA) + P(B|~4)

)

Complet =
ompleteness = 4
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The Correctness metric shows how well the reconstructed voxels match the
ground truth:

P(B|A)
(B]A) + P(=B|A)

The Quality metric gives a combined value that balances both correctness
and completeness as follows:

Correctness = Iz

(6)

Quality =
Completeness - Correctness (7)
Completeness + Correctness — Completeness - Correctness

8.1.3. Results
8.1.3.1. Experimental Settings

The experiments were performed on two different computers: (1) a
computer workstation containing nVidia 1070 graphics card, Intel i7-4790
processor and installed /6 GB of RAM which managed to achieve an average
of 151 frames per second, and (2) a laptop with a nVidia 960M graphics chip,
Intel i5-4210H processor and installed /2GB of RAM, which was still able to
achieve an average of 28.88 frames per second. We think that both computers
represent the range of consumer devices, while the achieved graphics
processing speed should be enough for most applications that would use
consumer grade depth sensors. Please note that the proposed reconstruction
algorithm is GPU bound, therefore we are interested in specifications of the
graphics chip.

8.1.3.2. Quantitative Results

The quantitative results of the proposed algorithm during classification task
can be observed in Table 1, as we can see the median recall rate for classification
task is close to 84% in the classification task.

The qualitative results for the proposed reconstruction neural network are
presented in terms of the /oU metric in Table 2.

Please note that the /oU metric values presented in Table 2 do not fully
capture the quality of the reconstruction due to the low minimum values
skewed by failed reconstruction. Therefore, we differentiate the /oU values
into three groups of Poor, Good and Excellent quality. We have selected the
IoU values corresponding to said groups based on the heuristically set
threshold values for the best and worst results when inspecting the models
visually. We assume Poor quality reconstruction is not able to reach IoU of
0.25, and Excellent quality reconstruction has the /oU value exceeding 0.75,
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while the Good quality has [oU € (0.25,0.75]. As we can see from Figure 8,
a majority of reconstruction results fall into Good category, letting us assert
that we achieved the desired goal. However, we still have outliers, such as
Laptop and Book. The poor quality of Book reconstruction can be explained
by training set being the least diverse of all, which, unlike other sets, has not
been properly normalized. Poor reconstruction of Laptop may also be caused
by poor training set as all of the training models, which contain only opened
laptops. To present an overall evaluation of quality, we present the percentage
of good and excellent reconstructions with /oU > 0.25 in Table 2.

The values of Completeness, Corectness, and Quality are summarized in
Figure 9. More simple objects with round shape (such as Can or Bottle) were
reconstructed with a larger accuracy.

We also have compared object similarity based on its kernel features (see
Figure 10). This was done by computing the average a sliding 3 x 3 kernel and
comparing to the features found in the ground truth object. Difference between
features indicates drift from the expected ground truth, while 0 indicates that
features are identical.

0.2 . .

T T T T T
‘ I Kernel Features

0.15

0.1

0.05

Kernel feature difference

book bottle bowl can chair knife laptop mug pillow

Figure 10. Comparison of kernel features when using 3 x 3 kernel to identify
similarities between objects. Zero indicates that kernel features are identical to those
of ground truth.

8.1.3.3. Visual Comparison of Reconstruction Results

As we do not have ground truths for real sensor data we can evaluate the
results qualitatively by visual inspection. In Figure 11, we provide an example
of real depth sensor data and the reconstruction results. For this example, we
take an RGB-D frame using a depth sensor used for reconstruction. We use
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RGB sensor data only as reference point for us to inspect the quality of
reconstruction, as the data is not used in the algorithm. We normalize the
given depth frame as described in Figure 3, classify it in order to select the
correct reconstruction network and forward data to the trained reconstruction
model. Once we receive the voxel cloud, we transform it into polygonal mesh
and apply smoothing. Finally, we inspect it visually using Blender.

We also visually compare predictions on synthetic data for our existing
models. In Figure 12, we can see the validation results from multiple angles
for an example of synthetic depth input of Bow/ object. The predicted voxel
cloud (red) value does resemble the object depth field quite well, including
the inlet of the bowl, the difference between ground truth (green) and
prediction are definitely noticeable albeit majority of differences can be
considered as negligible. For example, the predicted value is slightly offset
from the ground truth center, and predicted bowl is slightly higher then
ground truth. However, there are some more important defects, like holes in
the predicted voxel cloud and islands of disjointed voxels.

We have collected frames for each of the trained objects in order to inspect
reconstruction quality for each class. The results are presented in Table 5 with
frames taken at extreme angles, in an attempt to test the reconstruction
network. The results show that the proposed neural network architecture is
robust against such manipulations and was still able to predict the general
shape of an object. The depth frames of Bowl! captured by Intel RealSense
have been reconstructed properly in terms of shape, albeit we can see some
issues with the inner part of the bowl. In the first reconstruction (see the Ist
row of Table 5), the reconstructed bowl is very shallow. In the second
reconstruction (see the 2nd row of Table 5), the reconstructed shape has
multiple artefacts inside it, although due to the localization of the noise it may
be attributed that depth map in question being a lot noisier. The Book dataset
managed to reconstruct the basic shape of the object. However, it contains an
additional appendage which does not seem to be immediately obvious in the
depth field. The Knife dataset has managed to reconstruct the shape very well,
retaining handle-to-blade ratio and seemingly recognizing smaller dents in the
handle. Neural network managed to reconstruct the Bottle without any
obvious glitches. However, we can observe in the RGB image that the object
has a narrowing at the top which the network did not manage to capture.
However, we still can see that the specific part of object is noisy as well, as
Intel RealSense was not able to capture it properly. However, due to the 32 x
32 x 32 voxel density we are using, such details would most likely not be
visible anyway.

ANN that is trained to reconstruct Pillow has managed to perform the task
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relatively well. However, we can see from the RGB image that the pillow had
odd corners, which were not captured by reconstructing ANN. The Mug was
one of the most complex objects in our training set. However, the
reconstructed object is definitely recognizable as a mug. However, we can see
that with so many errors in the reconstructed voxel cloud, the smoothing
algorithm had trouble while polygonizing the mesh. The Chair was
reconstructed well and is recognizable as a chair. Unfortunately the full detail
of chair’s legs was not captured. The Notebook also is easily recognizable,
although the polarized glass screen of the notebook appears as black in Intel
RealSense frame. While this may cause a lot of issues due to network not
being trained for it, reconstruction has failed in other places instead. The final
dataset consists of Bottle, which faced the issue with Intel RealSense being
unable capturing PET objects, which has caused the depth map to be
completely garbled, while the reconstruction results are not recognizable.

In Figure 13, we present an example of the results of reconstruction for the
same object captured from different viewing angles. In one of the images we
can see that the handle of a Mug is not present in the RGB camera. However,
the ANN was still able to infer that the mug should have a handle as the
network was only trained on mugs that have handles. Finally, we can see that
in the particularly noisy depth fields, the reconstruction quality has dropped
significantly, meaning the there was not enough data in the corrupted images
for us to reconstruct from a single frame.

In Table 4, we present an example of 3D object reconstruction performed
in pitch black (row 1) and low (row 2) illumination conditions. we can see
that although in RGB images (column 1) Mug is poorly visible, the IR camera
captures Mug (column 2) fairy well and the result of reconstruction (column 6)
is easily recognizable.
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Original sensor inputs
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Reconstructed voxel cloud

smoothed polygonal mesh

Figure 11. Visual comparison between inputs and outputs.
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Table 3. Visual qualitative reconstruction results. Table shows: RGB frame, infrared
(depth) frame, normalized depth frame; reconstructed voxel cloud; polygonized and
smoothed voxel cloud; an example of a similar object in training set.
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gtams

Figure 12. An example of visual comparison ground truth and prediction on the
validation set of Bowl/ shape. Green color denotes ground truth, and red color shows
prediction.

Table 4. 3D reconstruction in low illumination conditions: RGB frame, infrared
frame, depth frame, normalized depth frame; reconstructed voxel cloud; polygonized
and smoothed voxel cloud.

Normalized Voxel
Depth Cloud

Infrared Normalized

RGB
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Figure 13. Visual comparison of the same Mug object from varying perspectives.
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8.1.4. Discussion and Concluding Remarks

8.1.4.1. Discussion

The advantage of the proposed hybrid neural network (HNN) architecture
is that unlike non-hybrid approach, which usually requires to re-train the
entire network (off-line) or risk loosing existing gradients (on-line) due to
network being skewed towards new data points, the proposed HNN
architecture is modular and can easily extend the already trained network by
adding additional reconstruction nodes, replace already existing nodes with a
better trained model, etc. Although adding additional reconstruction nodes
requires to re-train the classifier network, the classifier network still is more
light-weight and requires less processing power to train. In addition to this we
can have different ANN architectures per node, allowing for a specific
reconstruction node to have a more precisely selected reconstruction model.
Furthermore, this approach gives us the potential to have variable network
complexity contingent upon the complexity of the object we desire to
reconstruct, further expanding the applicability of the proposed HNN
architecture. Such architecture allowed us to create a system capable of
reconstructing polygonal mesh of a self-occluding object by using only
a single depth frame on lower-end devices.

We believe that further improvements of network architecture are possible
to improve the quantitative performance of 3D recognition. Possible venues
of future research may include selecting network architecture that manages to
converge well and pruning dead neurons [43]; gradually increasing the
complexity of the network wuntil desired reconstruction quality is
achieved [44]; using neuro-evolutionary and neuro-genetic algorithms in
order to find satisfying network solution [45]; improving learning of networks
by using metaheuristic control mechanisms [46]; or using video feed instead
of a single frame of an object as multiple depth frames from a single
perspective can actually reveal new features [47] thus improving the recall
rate, with recurrent neural networks (RNN) being one of the biggest
contenders in predicting sequential data [48, 49]. Moreover, additional
functionality in the method such as solving homography would allow us to
extract the transformation matrix of the object, allowing the system to be used
for such applications as Virtual Reality in conjunction with Augmented
Reality. Finally, using RGB sensor frames in conjunction with depth frames
may add some missing features to improve the recall rate even more [50, 51].

127



8.1.4.2. Threats to Validity

A relatively old Intel RealSense device was used for the preparation of
real-life training dataset which introduced a limitation as the used device did
not provide valid depth information if placed too close to the object, while
simultaneously being unable to capture the minute details. This has limited us
to relatively large (at least 8 x 10 cm) objects that we can use for
reconstruction as putting the camera too close to an object would result in
frame corruption (see an example given in Figure 14), while placing the
camera far enough (reliable depth capture range is 0.55 to 2.8 m distance) to
use the depth sensor would cause the object features to be indistinguishable
from the background.

Moreover, the Intel RealSense device was unable to properly capture glass
surface, e.g., a laptop screen, or translucent PET plastics, which resulted in

creating holes and distortions in depth images thus making 3D reconstruction
difficult.

8.1.4.3. Concluding Remarks

We have proposed a hybrid neural network architecture that has managed to
reach the goal of reconstructing the shape of 3D objects from different viewing
angles using the Intel RealSense ZR300 device.

The mean IoU value for all objects was in the range of 0.333 to 0.798,
obtaining on average 89.5% of good and excellent reconstructions, which is
equivalent to the results achieved by other methods, while the reconstructed
shapes are easily recognizable by visual inspection.

Furthermore, our proposed architecture allows for an easy extension
(requiring very few iterations to train for a new an object type), can work in
low illumination environments and has little dependence on ambient
lightning, which enables the application of it in more realistic lightning
conditions and even where there is no ambient light. This allows our method a
broader application spectrum as opposed to other approaches.
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Figure 14. An example of corrupted frames.
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Abstract State-of-the-art intelligent versatile applications provoke the usage
of full 3D, depth-based streams, especially in the scenarios of intelligent
remote control and communications, where virtual and augmented reality will
soon become outdated and are forecasted to be replaced by point cloud
streams providing explorable 3D environments of communication and
industrial data. One of the most novel approaches employed in modern object
reconstruction methods is to use a priori knowledge of the objects that are
being reconstructed. Our approach is different as we strive to reconstruct a 3D
object within much more difficult scenarios of limited data availability. Data
stream is often limited by insufficient depth camera coverage and, as a result,
the objects are occluded and data is lost. Our proposed hybrid artificial neural
network modifications have improved the reconstruction results by 8.53%
which allows us for much more precise filling of occluded object sides and
reduction of noise during the process. Furthermore, the addition of object
segmentation masks and the individual object instance classification is a leap
forward towards a general-purpose scene reconstruction as opposed to a single
object reconstruction task due to the ability to mask out overlapping object
instances and using only masked object area in the reconstruction process.

Keywords 3D scanning; 3D shape reconstruction; RGB-D sensors;
imperfect data; hybrid neural networks

8.2.1. Introduction

One of the pressing issues in computer vision is three-dimensional (3D)
object reconstruction, due to it becoming a core technology in numerous
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high-end industrial applications such as smart manufacturing, industrial
automation and Industry 4.0 [1]. Moreover, there exists a wide variety of
applications that would benefit from real time computer vision systems that
are capable of fully reconstructing scenes, with most notable examples being
an interactive medium such as virtual reality (VR) games and simulations [2],
augmented reality (AR) applications or even in newest booming technologies
such as extended reality (XR) [3]. Further examples for applications of such
systems could include gesture [4, 5] and posture [6] applications, indoor
mapping [7], obstacle detection [8] recreating environments in movies or even
digital forensics [9] to allow for crime scene recreation, robotics [10],
teleconferencing [11] with the use of holograms and more. Therefore, we can
safely assert that there is definitely a need for affordable, commercially viable
solutions capable of providing real-time reconstruction capabilities available
to the average user with as little complexity and barrier of entry, in terms of
both financial investments and knowledge about the field, as possible.

As we cannot expect an average user to have the access to professional
filming sets, mounting arrays of laser scanners capable of scanning the entirety
of the room, in addition to the computing resources that would be required to
stitch the data retrieved from multiple high-fidelity depth sensors, we need a
solution that would meet or exceed the previous caveats. Therefore, we need
a solution capable of working in real-time on a regular non-enthusiast grade
workstation or even on a laptop. Furthermore, while we cannot expect the user
to have a modern sensor array setup we can try to minimize the initial setup cost
to a single depth sensor available in electronics stores or even in quite a few
modern mid-tier and flagship phones. While solutions for scene reconstruction
from a single depth sensor already exist, these solutions require incremental
building per each frame [12, 13]. This is done based on camera localization
information and delta frames and in the scene reconstruction algorithms that
make use of simultaneous localization and mapping (SLAM) [14]. To reliably
fill all the holes in the areas that are occluded by other objects and even because
of self-occlusion, we would have to scan the entirety of the object from all sides
to have its full profile. Furthermore, incremental methods tend to underperform
because of one principal flaw: changes in the scene can disrupt the mesh [15].
Making the applications in non-static real world scenes limited, where instead
of the entirety of the view moving some objects can change their localization, or
even suddenly pop-in or pop-out of the frame. Other proposed methods, such as
space carving [16], would bypass some of the incremental building problems
by performing what is essentially a subtractive reconstruction from multiple
perspectives. However, these methods assume that you can accurately acquire
the mask, which can be impossible in certain lighting conditions.
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A majority of current algorithms for performing 3D object reconstruction
have limitations: objects must be monitored from a large number of views; or
views must follow a small baseline, thus the methods cannot function properly
when provided only a small number or a single view. To solve these issues
one of the most novel approaches employed for state-of-the-art reconstruction
algorithms is to employ a priori knowledge of the objects that are being
reconstructed [17, 18]. These are generally relying on black-box models such
as neural networks (NN). One of the most obvious advantages of using a
priori information is for the algorithm to approximate the occluded object
information, which we as humans are capable inferring quite easily. These
methods have shown success in solving this task. For example, 3D Recurrent
Reconstruction Neural Network (3D-R2N2) for multi-view reconstruction on
the Sanford Online Products [19] and ShapeNet [20] datasets, has managed to
achieve this task with fewer images available with competitive results [21],
with the proposed improvement that uses densely connected structure as
encoder and utilizing Chamfer Distance as loss function [22]. Additionally,
Generative Adversarial Networks (GANs) can be used to generate 3D objects
from multiple 2D views [23] or even from a single image [24]. GANs have
also been shown to be able to predict former geometry of damaged
objects [25]. Other authors have used feedforward NNs to detect valid
matches between points in an image using different views with more than
98% accuracy [26]. Additionally it was shown that by adopting Bernstein
Basis Function Networks (BBFNs) it is also possible to solve the task of
reconstructing a 3D shape [27]. A trilateral convolutional neural network
(Tri-CNN) that uses three dilated convolutions in 3D to extend the
convolutional receptive field was applied on the ShapeNet and Big Data for
Grasp Planning [28] data sets to obtain 3D reconstruction from a single depth
image [29].

A majority of methods are using voxel based representations, e.g.,
PointOutNet [30] has shown the ability to predict and generate plausible 3D
object shapes. This allows for the model to perform multiple predictions from
a single input and using point cloud distribution modeling to refine the final
results. Other approaches include: hierarchical surface predictions
(HSPs) [31] for predicting high resolution voxel grids using convolutional
neural networks (CNNs); discrete wavelet transform (DWT) and principal
component analysis (PCA) can be used to get targeted object models, which
can be used as an input to an artificial neural network (ANN) to recognize the
3D shape. Other authors have used geometric adversarial loss (GAL) in order
to regularize single-view 3D object for object reconstruction using a global
perspective by training the GAN to reconstruct multi-view valid 3D
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models [32]. RealPoint3D network composed of an encoder, a 2D-3D fusion
module, and a decoder, accepts a single-object image and a nearest-shape
retrieved from ShapeNet to generate fine-grained point clouds [33]. Similarly,
PGNet [34], a recurrent generative network, uses the original images and
partial projection images for fine-grained 3D reconstruction. Finally, it was
shown that using ANNs it is possible to produce a fully textured,
appropriately proportioned 3D model from a single RGB [35] or RGB-D
frame [36], however, this approach was limited to basic volume primitives
(rectangular boxes and spheres) .

Even though the black-box methods have shown substantial
improvements over existing state-of-art reconstruction algorithms such as
incremental reconstruction, they can still be prone to severe mishaps due to
poor illumination conditions, and object material interaction with light
(mainly reflectivity). Furthermore, due to the fact that these methods rely on
the visible light spectrum, they are incapable of working in dark
environments. Therefore, they would not be suitable to be used in critical
applications such as security.

Starting with the Microsoft Kinect released in 2010 [37] to Intel
Realsense [38], the depth sensors are becoming the norm not only in the
flagship mobile phones. As of late, stereoscopic depth is becoming available
in newer budget phones with the introduction of multiple back facing cameras
on a single device. For these reasons we have almost reached an era of the
RGB-Depth (RGB-D) sensors being readily available. Therefore, focusing
solely on the RGB cameras is missing the potential that the RGB-D cameras
may provide for the object reconstruction tasks. For example, depth data
stream from the Kinect camera has been used to generate topologically correct
3D mesh models [39].

Applying additional information provided by the RGB-D senor is the
logical next step in the lifecycle of the object reconstruction algorithms as we
believe they are less dependent on ambient conditions and could potentially
be used in pitch black situations due to modern depth sensors using infrared
cameras for object depth calculations on the hardware level. We concede that
the depth sensors have their own limitations such as speckling due to surface
properties [40, 41] and distortions caused by infrared projections [42].
However, we believe that the addition of the depth sensor information in
conjunction with readily available color data adds useful information. This
information helps ANNs to better generalize input data and increase
robustness against different lighting conditions. This includes pitch black
environments as the depth information is sufficient to reconstruct the captured
scene in most cases.
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We present an improved hybrid ANN architecture for reconstructing
polygonal meshes using only a single RGB-D frame, and employing a priori
knowledge, which allows the neural network to be deployed on low-end
RGB-D sensor devices with low frame rates.

8.2.2. Materials and Methods
8.2.2.1. Proposed Hybrid Neural Network Architecture

Our hybrid NN architecture (Figure 1) consists of two major branches: the
preliminary input branch that is used for object instance classification and
their mask extraction; secondary input branch, which uses the results of
preliminary branch in conjunction with the inputs of preliminary branch to
perform individual object reconstruction. However, unlike preliminary branch
we do not use generalized branches for reconstruction, instead we have n of
specialized branches for each of the object categories. This allows us to more
easily train additional types of objects in the reconstruction branches without
having to re-train for classification, in addition this allows to re-train any of
the individual reconstruction branches without losing the existing gradients by
performing the training on more models [43]. The modularity of the system
also provides the advantage of reduced training times as each branch can
specialize onto its own generalization task, which gives the ability to change
the network configurations of the reconstruction branches by simplifying for
easier objects or having more elaborate ANN structures for more complex
objects.

Geometrical
Object Segmentation
Segmentation Output
Extension

Dropout
Large
Object Dropout
Branch Large Object
Predictions

RGBD

Camera Darknet53 Dropout
Input

Dropout Medium

Object
Predictions

Dropout
Small
Object Dropout .
B h Small Object
e Predictions

Figure 1. Our extended YOLOv3 capable of extracting geometric object
segmentation along with object bounding boxes.

8.2.2.2. Classification and Segmentation Algorithm

Our aim is to detect individual object instances in the scene in order to
have a system that is usable in real-world environments. Therefore, we need
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a classifier that is capable of detecting more than a single object instance for
given frame, for example, having two cups and a toy plane on a table would
require us to rebuild both of the cups and the toy plane models, respectively.
Fortunately, some research has already been performed in the area of individual
object instance classification [44, 45, 46].

For this reason, to perform our classification task we use one of existing
state-of-the-art classifiers as it has shown to produce some of the best results
in classification tasks, i.e. YOLOv3 [47], which we have adapted to our needs
to output an additional geometric segmentation mask (Figure 1), while authors
have mentioned to be unable to achieve object instance segmentation in their
original paper. Additionally, we define the term geometric segmentation as
extension to segmentation that allows to discriminate between nearby object
instances. This is done by generating a heatmap glow that radiates from the
origin of the object. While other more lightweight methods exist, such as
MobileNet [48], in our paper we try to compare the classification results using
three different methods: using only color information; using only depth
information; using both color and depth information. Therefore, we have
decided to use a slower, but more accurate algorithm to have the most
representative results.

Just as the majority of the individual object instance classifying
algorithms, YOLOv3 uses what is know as anchors for object detection. These
anchors are used as jumping off bounding boxes when classifying objects, for
example, a motor vehicle has a very different profile from a basketball.
While the basketball in most cases has close to 1:1 aspect ratio bounding box,
meaning that their width is the same, or very close when the image is
distorted, to its height, while a motor vehicle like an automobile for the most
part has height that is lower than its width. For this reason, one anchor could
specialize in detecting automobiles, while the other can specialize in detecting
basketballs. Additional feature, albeit a less useful one due to the way our
training and testing dataset is generated, is the specification of bounding box
scales by the authors of YOLOv3. These size specializations group bounding
boxes into three groups: small, medium and large. For example small objects
may include kitchen utensils, medium objects may include people, large
objects may include vehicles. However, these bounding box groups are not
exclusionary for these objects unlike anchors as these can vary a lot based on
the camera distance from the object. Therefore, as our dataset is completely
uniformly generating object scales this grouping loses some of its usefulness.

In our work, we have experimented with three types of inputs into the
ANN: color space, front-to-back object depth field and the combination of
both. In the case of color space, we use 3 channel inputs for representation of
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red, green, blue colors; when using depth field, we use a single channel input
containing only normalized depth field values and for the combination of both
we use RGBD channels in the same principle. Depth value normalization is
performed by dividing each pixel z value using 2,,,, of the frame thus landing
the depth in range of z = [0,1]. Our input layer is thereafter connected to
DarkNet53 network containing 53 convolutional layers as per specifications,
which outputs three routes: main route used generally used for larger objects,
route 2 used for medium sized objects and, finally, route 1 for smaller objects.
Due to testing set being uniformly randomly generated, and containing the
same object in potentially all size categories, we lose some of the flexibility
that is provided by this setup and it impacts classification performance
minimally, if removed. However, to stay true to the original algorithm and
have an as unbiased result as possible, we have decided to keep all of the
branches used in the source material. Additionally, these three routes provide
good jumping off points for shortcuts to be used in our segmentation
extension (Figure 2).

Geometrical Object Segmentation Extension

& Convolutional
Branch A Layer

Branch B I Branch B Convolutlonal
Layer

Branch C I Branch B I Branch B Convolutional
Layer

Branch D

Main
Route

Segmentation
Output

Route 1

T

Figure 2. Our proposed geometrical object segmentation extension.

Due to each of the nearby routes being separated by the power-of-two
scale, we use transposed convolutional layer [49] to upscale them gradually
and then and merge them into desired final shape matrix. We construct our
classless geometric segmentation mask by firstly upscaling the main route
output and merging it with route 2, and the resulting layer is then upscaled
again and merged with the final DarkNet output (route 1) which provides us a
layer containing latent information of all previous layers that are each
specified in learning different sized objects.

Next, we branch out our resulting hidden nodes into four different layers.
Each layer contains slightly different network configuration, allowing them to
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essentially vote on their influence in the final result by extracting different
latent feature-maps from the previous layers (Table 1). The first three
branches (4, B, C) are convolutional branches containing one, two and three
convolutional layers, respectively. However, for our final branch (D) instead
of the convolutional layer, we use a max pool layer to extract the most
prominent features. We have selected this parallel stacked approach, because
we found it to be more efficient in extracting the object masks than linearly
stacked layers when training the segmentation layers independently from the
entirety of a model. This decoupling of the segmentation task from the
classification task when training gives the additional benefit of allowing us to
use transfer learning, which has shown to have very good practical
results [50].

Next, we run our concatenated branches through convolutional layers to
extract the most viable features and normalize their output in the range of (0,
1) giving us the final segmentation image. In our case the final segmentation
output is 80 x 60 due to it being more than sufficient to extract approximate
depth masks as we do not require pixel perfect segment representations.
Finally, we use cascading flood-fill (Algorithm 1) to classify the masks
pixels-wise. This is done because we found the generated binary masks to be
impervious to false positives and false negatives, unlike classification using
bounding boxes which can have three types of errors: false positives, false
negatives and misclassification. This allows us to remove false positive
bounding box detections when they do not intersect the origin of the mask. In
our testing set, best cascade parameters were ¢ = 0.9, § = 0.01.
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Table 1. Geometric Segmentation architecture.
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Type Filters Size Output
Transposed Conv 1024 2 x2x2  20x20
Main route  Concatenate - - 20 x 20
Convolution 256 1x1 20 x 20
Transposed Conv 256 2x2x2 40x40
Route 2 Concatenate - - 40 x 40
Convolution 256 1x1 40 x 40
Upscale - - 160 x 120
Branch A Convolution 128 1x1/2 80 x 60
Branch B Convolution 32 1x1 160 x 120
Convolution 128 1x1/2 80 x 60
Convolution 32 1x1 160 x 120
Branch C  Convolution 128 2 x 2 160 x 120
Convolution 256 3x3/2 80 x 60
Branch D Max Pool 256 3x3/2 80 x 60
Concatenate - - 80 x 60
Convolution 256 1x1 80 x 60
Convolution 128 1x1 80 x 60
Convolution 1 1x1 80 x 60
Clip Values - - 80 x 60




Algorithm 1 Cascading flood-fill

1: procedure GET SEED(box, mask,€) > Seeds initial values.
2: cx, cy < box > Get center for box.
3: seed <— &
4: seed < find_closest_max(box, mask) > Find closest max pixel
within bounds.
5: if seed # @ A seedyque > € then
6: seed;q + box,g > Set seed 7d to box id
7: return seed > Return seed if value greater than e
8: end if
9: return & > No valid seed was found.
10: end procedure
11: procedure FILL NEIGHBOURS(seed, 6) > Recursively fill free
neightbours with same or lower values.
12: for each n € seed,cightvours Ao > For every neighboring mask pixel.
13: if N0 = O A Npgine < S€edyaiue N\ Nvaiue > 0 then
14: N;q < seed;y > Set neighbor to same ¢d as seed.
15: FILL NEIGHBOURS(n) > Call recursively.
16: end if
17: end for
18: end procedure
19: bounding boxes < sort_con fidence(bounding boxes)r Sort bounding
boxes by confidence.
20: for each box € bounding boxres do > For each bounding box b
21: seed < GET _SEED(box,e€)
22: if seed # @ then
23: FILL NEIGHBOURS(seed,®)
24: end if
25: end for

Additionally, we have also modified YOLOv3 network for we had issues

with the network being unable to train by consistently falling into local
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minima during gradient descent and getting perpetually stuck in them. To
solve this issue we introduced periodic hyper parameters [51] during model
learning.  Specifically, we had changed the learning rate to alternate in
specified range of I7,;, = 175, 1), = le™%

wil X (Irmaz — Fmin) + Piin,  1f 2 < wp

y(gj‘) = 1 1+ﬂ_><cns(z—w1)mod(w0+l) (1)
—e wo X .
e’ otherwise

(lrma:v - lrmm) + lrmirm

This periodical learning rate (Equation 1) has vastly improved our models
ability to learn the underlying relationships of input date by alternating between
low and high training rates, therefore jumping out of potential local minima that
it might start orbiting around during stochastic gradient descent. Our function
has two stages, the first stage that consists of two training iterations, where w; =
2 x s, and the second stage of 4 iterations, where wy = 4 X s where s is the
number of steps per batch. We selected the two state learning function because
having high learning rates initially may cause the model to diverge. Therefore,
during the first stage we linearly increase the learning rate. Once in the second
stage we use the cosine function and the modulus operator for the model to
alternate between two values. The shape of the alternating function also can
have influence in model convergence as some models require to be in different
extremum points for different amounts of times. Therefore, having a different
dataset may require more fine-tuning of parameters of this equation for different
slope shapes, while still maintaining the benefits of having alternating learning
rates.

Additionally, as we are training the NN from scratch, we have noticed that
our network, despite being able to find better convergence results due to
periodical learning rate jumping out of local minima, had a high bias rate. A
high bias rate is an indicator that our model is over-fitting on our data set. To
solve this additional issue, we modified the YOLOv3 network by adding
additional dropout layers with the dropout rate of P(z) = 0.5 after each
branch of DarkNet53 and before each of the final layers predicting the
bounding boxes.

Furthermore, we had issues of model overfitting to the training set, to
solve this we additionally modified the neural network by adding two
additional dropout layers. We trained our model 6 times, each with 50
iterations using mini-batch of size 8 for comparison, because after about 50
iterations the standard YOLOv3 model starts to overfit and loose precision
with our validation dataset. Therefore, for most objective comparison we

144



trained our modified network for same number of epochs. Note that even
though our method also starts to overfit, unlike the YOLOv3 network model,
the accuracy of our modified model when overfitting remains roughly at the
same value from which we can deduce that the changes make the model more
stable.

Figure 3 shows the differences in loss function when trained using the
RGB, RGB-D and Depth data as input. For the unmodified YOLOv3 we are
using Ir = 1e™® as the midpoint between our minimum and maximum
learning rates in the periodic learning rate function. As we can see from the
graph, the loss function using static learning rate on the RGB and RGB-D
datasets reaches a local minimum causing the model to slow down its ability
to learn new features, unlike our periodic learning rate which seems to
temporarily force the model to overshoot its target which sometimes causes it
to fall into a better local minimum. This effect can be seen in the distinct
peaks and valleys in the graphs. The outlier in these graphs are depth-only
data points. While in both cases the loss function seems lower and has a better
downwards trajectory in stochastic descent, however, we have noticed that
despite seemingly lower loss when compared to RGB and RGB-D, the actual
model accuracy is very unstable on epoch-per-epoch basis. We assert that this
is the case due to depth alone providing very unstable data that’s very hard to
interpret. We make this assumption due to the fact that even when taken an
expert to evaluate the depth maps alone, it is usually very hard to discern what
type of object it is without knowing its texture; it is only possible to tell that
there is in fact an object in the frame. Finally, we can see that the RGB-D data
is a clear winner when training in both cases, which means that depth data can
indeed help in model generalization.
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Figure 3. Training loss comparison between baseline YOLOv3 and our modified
version when using RGB, RGB-D and depth data as training. Due to the loss
function being inherently noisy for each of the mini-batches, we have used
Savitzky-Golay [52] digital filter to perform the smoothing of the overall graph.

8.2.2.3. Reconstruction Algorithm

The proposed algorithm for 3D object reconstruction consists of two
subsystems: voxel cloud reconstruction and post-processing (Figure 4). In
reconstruction step we take the outputs of the 3D classifier mask for the object
and in conjunction with the original depth map which we feed into our
reconstruction ANN (Figure 5) that performs the object reconstruction task for
the given masked input frame. Unlike the classification algorithm we only use
the underlying depth input from the classifier as it provides enough
information for the specific object reconstruction. This is due to fact that we
already know the class of the object, which is required for classification
because different objects can have very similar depth representations.
However, during reconstruction this is not an issue because our ANN is
designed in such a way that each branch is responsible for reconstructing
similar object representations.

Once the classifier-segmentation branch has finished its task, for each
object instance the appropriately trained reconstruction branch is selected. In
our case all the branches are highly specialized on a single type of object that
it can reconstruct, which is why object classification is required. However, we
believe that there is no roadblock to having more generic object
reconstruction branches for example all similar objects may be grouped to a
single reconstruction task. This could potentially allow some simplifications
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in the classification-segmentation as it would no longer be required to classify
highly specific object instances thus reducing failure rate caused by object
similarities. For example, a cup and a basket can be very similar objects and
be misclassified. Additionally, the hybridization allows for fine tuning of the
reconstruction branches without having to retrain the entire neural network
model potentially losing already existing gradients via on-line training
skewing the results towards new data posed. This in turn reduces re-training
time if new data points are provided for a specific object as we no longer need
to touch the established branches due to modularity.

Inside our reconstruction network branch (Figure 2) for given depth input
we use convolutional layers to reduce the dimensionality of the input image
during the encoding phase (see Table 2). For a given input, we create a
bottleneck convolution layer which extracts 96 features, afterwards we use a
spatial 2D dropout [53] layer before each with P(z) = 0.1 to improve
generalization. ~ We use spatial dropout as it is shown to improve
generalization during training as it reduces the effect of nearby pixels being
strongly correlated within the feature maps. Afterwards, we add an additional
inception [54] layer (Figure 6) which we will use as a residual block [55]
followed by another spatial dropout. Afterwards, we add two additional
bottleneck residual layers, each followed by additional dropouts. With final
convolution giving us final 256 features with the resolution of 20 x 15. Our
final encoder layer is connected using a fully-connected layer to a variational
autoencoder [56] containing 2 latent dimensions, as variational autoencoders
have shown great capabilities in generative tasks. Finally, the sampling layer
is connected to full-connected layer which is then unpacked into a 4 x 4 x 4
matrix. We use the transposed three-dimensional convolutional layers in order
to perform up-sampling. This is done twice, giving us 4 feature maps in 32 x
32 x 32 voxel space. Up to this point we have used Linear Rectified Units
[57] (ReLUs) for our activation function, however, for our final 3D
convolutional layer we use a softmax function in order to normalize its
outputs where each voxel contains two neurons. One neuron indicating the
confidence of it being toggled on, the other neuron showing the confidence of
the neuron being off. This switches the task from a regression task to a
classification task, allowing us to use categorical cross entropy to measure the
loss between the predicted value and our ground truth.
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Reconstruction from depth sensor workflow
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Figure 4. Workflow of object reconstruction from sensor data.
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Figure 5. Diagram of a single object reconstruction network architecture branch.
For the given depth frame, the depth encoder creates a bottleneck, which is then

directly connected to VAE node, the resulting sampler is connected into voxel

decoder. The voxel decoder layer outputs a 32 x 32 x 32 x 2 matrix which can be
explained as x X y X z X s, where x, y, z components indicate position in 3D grid,
and s component indicates voxel state encoded as one-hot.

Table 2. Architecture of the reconstruction neural network.

Type Filters Size Output
Input - - 320 x 240
Convolution 96 5x5/2 160 x 120
Dropout 2D
P(z) = 0.1 - 160 x 120
Inception 8,4) - 160 x 120
Convolution 16 1x1 160 x 120
Add - - 160 x 120
Convolution 128 5x5/2 80 x60
Dropout 2D
P(z) = 0.05 - 80> 60
Inception (8,4) - 80 x 60
Encoder 1 eption (16, 8) - 80 x 60
Convolution 32 1x1 80 x 60
Add - - 80 x 60
Convolution 128 3x3/2 40x30
Dropout 2D
P(z) = 0.025 - 40730
Inception (8,4) - 40 x 30
Inception (16, 8) - 40 x 30
Inception (32, 16) - 40 x 30
Convolution 64 1x1 40 x 30
Add - - 40 x 30
Convolution 256 3x3/2  20x20
Flatten - - 76 800
Fully-Connected - - 512
VAE Mean - - 2
Standard ) ) )
Deviation
Sampling - - 2
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Type Filters Size Output
Input - - 320 x 240
Fully-Connected - - 64
Reshape - - 4x4x4
Inception 3D (32, 16) - 4x4x4
Inception 3D (16, 8) - 4x4x4
Inception 3D (8,4) - 4x4x4
Conv 3D 16 1x1x1 4x4x4
Add - - 4x4x4
Transposed

Decoder Convolution 3D 64 3x3x3x2 8XEX8
Inception 3D (16, 8) - 8 X 8x8
Inception 3D (8,4) - 88X 8x8
Conv 3D 16 Ix1x1 8x8x8
Add - - 8 X 8x8
Transposed
Convolution 3D 32 3x3x3x2 16x16x 16
Inception 3D 8,4) - 16 x 16 x 16
Conv 3D 16 1x1x1 16x16x16
Add - - 16 x 16 x 16
Transposed
Convolution 3D 4 5x5xbhx2 32x32x32
Conv 3D
(Softmax) 2 3X3X3 32x32x32
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Figure 6. An example of the inception layer. An input layer is connected to three
branches in parallel. If multiple inception layers are used inception layers are
connected sequentially. Final inception layer outputs and 1 x 1 convolution are then
connected using addition. The result is then used for subsequent layers.

8.2.2.4. Proposed Network vs. YOLOV3

Our approach is the hybridization of two ANN architectures:
classification-segmentation branch and reconstruction branch (see Figure 7).
The classification-segmentation branch as the name suggests performs object
instance classification and segmentation. This information is then fed to the
object reconstruction branches. Object reconstruction branch contains a fleet
of specialized pre-trained autoencoder models where each of the
auto-encoders can reconstruct the model’s three-dimensional representation
while being provided only a single depth frame. The initial
classification-segmentation branch is our expanded interpretation of YOLOV3
which adds crucial output to already existing YOLOV3 network output, i.e.,
the object instance segmentation. This extension adds crucial information
which is required for the reconstruction step by extracting the object instance
mask that can be applied per each object on the initially captured depth.
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Figure 7. Full view of the proposed network model that extends the YOLOV3
network.

8.2.2.5. Dataset

As our method entails the requirement of a priori information for the
captured object reconstruction, there is a need for a large well labeled element
dataset. However, unlike for object recognition which has multiple datasets,
e.g., COCO [58] dataset, Pascal VOC [59]; there seems to be a lack of any
public datasets that provide RGB-D scene representation in addition to it’s
fully scanned point cloud information viable for our approach. While datasets
like ScanNet [60] exist, they are missing finer object details due to focusing
their scan on full room experience that we are trying to preserve. Therefore,
our training data consists exclusively out of synthetically generated datasets,
which use the ShapeNetCore, a subset of ShapeNet dataset that provides 3D
object models spanning 55 categories (see an example of a coffee cup model
in Figure 8). In addition, we use real-life data acquired by the Intel Realsense
ZR300 and Intel Realsense D435i (Intel Corp., Santa Clara, CA, USA)
devices for visual validation as it is impossible to measure it objectively
without having a 3D artist recreating a 1:1 replica of said objects, which is
unfortunately unfeasible option. However, using real world samples as a
validation set is not subject to training bias because they are never being use
in the training process.

As mentioned, for the training of the black-box model we are using the
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ShapeNetCore dataset that we prepare using Blender [61] in order to create
the appropriate datasets. Due to the fact that we are training a hybrid neural
network, we need two separate training and testing sets, one for each task.

Figure 8. A coffee cup model from the ShapeNetCore dataset.

8.2.2.5.1. Classification Dataset

To create this subset of data we create random scenes by performing the
following procedure. Firstly, we randomly decide how many objects we want
to have in the scene in the range of nypjcs = [1; 10) and pick that many random
objects from ShapeNetCore dataset to populate the scene. Before applying any
external transformations we transform the object geometry so that all objects
are of uniform scale and have the same pivot point. To perform the required
transformations firstly we calculate the geometry extents. Once we know the
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object extents we can move all the objects on Up axis (in our case this is z)
and scale down all vertices by the largest axis (Algorithm 2). This gives us a
uniformly scaled normalized geometry that we can freely use.

Algorithm 2 Normalize geometry

1: procedure Extents((7) > Calculates extents for geometry G
N, NN, min, < Infinity > Initialize min vector
Max,, max,, max, < —Infinity > Initialize max vector
for each v € G do > For each vertex v

ming < min(v,, ming)

2

3

4

5

6: min, <— min(vy, min,)
7 min, <— min(v,, min,)
8 mazx, < maz(v,, max,)
9 maz, < max(vy, max,)
10: max, < max(v,, max,)
11: end for

12: return min, max

13: end procedure

14: min,max < EXTENTS(G)
15: bounds < max — min

16: max_bound < 1/max(bounds,, bounds,, bounds,)

17: for each v € G do > For each vertex v
18: Uy 4— Uz /max_bound
19: vy < v, /maz_bound
20: v, < (v, — min,)/max_bound 1> Offset the vertex on up axis before

normalizing bounds

21: end for

We place the selected objects with random transformation matrices in the
scene, making sure sure that the objects would never overlap in space. To
generate random local transformation matrix (L) (Equation 3) we need three
of it’s components: Scale (§), Rotation (R,) and with random value; use either
capital or lower-case s in both places in the range of s = [0.7,2); Rotation
(R.), where rotation is random value in the range of § = [0, 27), we perform
rotation only on z axis to ensure that randomly generated scenes are realistic
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and do not require artist intervention; Translation (7), where x and y values

are non-intersecting values in the range of r = [—5,5] and & = [0,27)
(Equation 2).
T =17 X COS
{ : 2)
y=rXsina
L=SxRxT=
s 000 cos¢ —sinf 0 0O 0000
0 s 00 sinf cosf 0 0 0 00O 3)
00 s O 0 0 0 0 0 00O
0 0 01 0 0 01 r y z 1

Once the selection objects are placed we need to apply lighting in order to
have real-life like environments. To do this, we use the Lambertian shading
model and directional lights. We randomly generate 7,4, = [1;4) lights in
the scene. We pick a random light rotation, we ignore translation as it does
not matter in directional lights; we generate a random color in the range of
Colrgp = [0.7,1], we selected the minimum bound of 0.7 to avoid unrealistic
real-world lightning; and random intensity 7 = [0.7, 1]. This light acts as our
key light. To avoid hard shadows being created, which wouldn’t be the case
unless using spotlight in real world, for each key light we create a backlight
which is pointing the opposite direction of key light with half the intensity and
identical color to the key light.

Once the scene setup is complete, we render the scene in three modes:
color, depth and mask. Color mode gives us the scene representation from a
regular light spectrum camera. As we are not putting any background objects
into the scene the generated background is black. However, later on we use
augmentation during training to switch the backgrounds to improve recall
rates. Once the color frame is extracted we extract the mask, in order to
extract the mask we assign each object an incremental /D starting at 1, this
allows us to differentiate between objects in the frame. Finally, we render the
depth representation of the scene. Before rendering depth we place a plane on
the ground that acts as our ground place, this allows for more realistic depth
representations because the objects are no longer floating in space. The depth
is rendered front-to-back, meaning the closer the object is to the camera the
closer to zero depth value is, the front-to-back model was chosen because this
is the same as Intel Realsense model.

Each of the scenes is rendered in 320 x 240 resolution n. = 25 times by
placing it in random locations (Algorithm 3) and pointing it at the center of the
scene, where r = 10, 2, = 4, Zmaz = 0.
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Algorithm 3 Camera location

1: step size < 27/(1 —n)

2: fori<ndo

0 < random(i,i+ 1) > Random float in the range of [i, i+1]
x < cos(step _size x 0) X r

y < sin(step size x 0) x r

z + random(Zmin, Zmaz)

A A

end for

We save the perspectives as OpenEXR format [62] instead of traditional
image formats instead of, for example, PNG, as OpenEXR file format is
linear, allowing for retention of all depth range without any loss of
information as it is not limited to 32 bits per pixel. The final EXR file has
these channels in it R, G, B containing red, green and blue color information
respectively; id channel contains the information about the mask for specific
pixel; Z information containing the linear depth data.

Once we create the input image, we additionally label the data and extract
the segmentation mask that will be used as output when training the artificial
neural net. We perform this step after the scene is rendered in order to account
for any kind of occlusion that may occur when objects are in front of each other
causing them to overlap. We extract the object bounding boxes by finding the
most top-left and bottom-right pixel of the mask. The binary mask is extracted
based on the pixel square distance from the center of the bounding box. This
means that the center pixels for the bounding box are completely white and the
closer to the edges it is the darker it gets. We use non-flat segmentation to be
able to extrapolate individual object instances in the mask when they overlap,
and this is done by interpolating the pixel intensity from the bounding box edge
to bounding box center. The mask is then scaled down to 80 x 60 resolution as
it is generally sufficient and reduces the required resources.

8.2.2.5.2. Anchor Selection

The existing anchors that are being used with COCO, Pascal VOC and other
datasets are not suitable for our dataset, rarely fitting into them. Therefore,
we performed class data analysis and selected three most fitting anchors per
classifier branch scale. As we can see from Figure 9, our classes generally tend
to be biased towards 1:1 aspect ratio due to data set being randomly generated
unlike in real world applications.

However, while the classes tend to be biased towards 1:1 for the most part,
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the assertion that all individual object instances would neatly fit into this
aspect ratio would be incorrect as they still retain certain bias. According to
previous Single Shot Detection (SSD) research [63], selecting inadequate base
anchor boxes can negatively affect the training process and cause the network
to overfit. Therefore, we chose to have 3 anchors per anchor size as this seems
to sufficiently cover the entire bounding box scale spread by including tall,
wide and rectangle objects. We select the anchor points using K-Means to
split data into 9 distinct groups (Figure 10).

Once we have our cluster points for bounding box detections, we sort
them in order to group into small, medium and large anchor sets. Giving us
three different anchors, each having the most popular aspect ratios per that
scale detection branch as it can be seen in Table 3.
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Figure 9. Each individual point denotes the mean object bounding box scale for
each class type.
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Figure 10. Selected anchors using K-Means clustering algorithm. Different colors
denote distinct anchor groups responsible for detecting objects in the spread.

Table 3. Anchor scales in pixels calculated using the K-Means clustering method.

Anchor Type Anchor 1 Anchor 2 Anchor 3
Small 18.83, 47.53 52.34,37.53 34.13,73.28
Medium 86.35,46.02 62.74,68.31  62.75,102.19
Large 96.69, 84.20  103.66, 119.51 136.34, 146.64

The neural network architecture described in Section 8.2.2.2. was trained
in three separate modes in order to infer how much the additional depth
information improves the classification results. These three modes consist of
RGB, RGB-D and Depth training modes. Where RGB mode implies we train
using only the color information that was generated from the dataset, the
RGB-D mode uses both depth and color information and finally Depth mode
trains the network using only depth information. We do not use any additional
data augmentation when training in both RGB and RGB-D modes. We do
however, add additional augmentation when training in the RGB-D mode.
When training in the RGB-D mode there is a small chance that either RGB or
Depth channel will not be included in the testing sample. We perform this
augmentation because both RGB camera and Depth sensors may potentially
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have invalid frames. Therefore, we assert that both of these data points are
equally necessary for the classification task, and that they must be generalized
separately from each other and should provide equal contributions to the
classification task. This is decided randomly when preparing the mini-batch
to be sent to the artificial neural network for training. There is A = 0.1 chance
that the input specific data point will be picked for additional augmentation. If
the data point is picked for augmentation then there is equal probability that
either RGB or Depth Data will be erased from the input and replaced with
zeros. We decided on this augmentation approach because both RGB and
Depth frames using real sensors are prone to errors. For example, the RGB
camera may fail in bad lighting or even be unavailable when the room is pitch
black.  Likewise, the depth frames are also prone to errors due to
inconsistencies in generating depth map which causes the sensor to create
speckling effect in the depth information, additionally cameras being too close
to object may be completely unable to extract proper depth information.
Therefore, we chose this augmentation approach as it allows for the sensors to
work in tandem when both are available, but fill in the gaps, when one of
them is failing to provide an accurate information.

8.2.2.5.3. Reconstruction Dataset

For the reconstruction training set, we use the same ShapeNetCore dataset
to generate the corresponding depth images and ground truths for the
individual objects voxel cloud. We used Blender to generate the training data.
However, the generated input data is different. We assert that the object
material does not influence the objects shape, therefore we no longer generate
the color map unlike when generating classification data. Therefore, we only
render the depth information for each object. We render individual objects by
placing the cameras in such a way that the specific object would be visible
from all angles from 45° to 90° at a distance from 1 to 1.5 m, excluding the
bottom. As a result we have 48 perspectives for each of the object models.
Once again we save the models as OpenEXR file in order to preserve the depth
values in this lossless format.  Finally, we generate the voxel-cloud
representation [64]. Voxelization is performed by partitioning into the equally
sized cells, where the cell size is selected based on the largest object
dimension axis. Following the space partitioning, we repeat over each of the
cells and compute whether the specific cell should be filled by ray-polygon
intersection [65].
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8.2.2.6. Evaluation

In order to evaluate the correctness of our results, we evaluate the results
of the proposed algorithm, and additionally we evaluate both of the subsystems
individually. To evaluate the classification accuracy, we use the mA4P metrics
to assess the quality of the classifier and it’s output bounding boxes. When
performing the classification accuracy evaluation, we evaluate all three train
models: RGB, RGB-D and Depth. This allows us to determine the quality
differences between the addition of depth information in the classification task.

For the reconstruction task we require the output voxel representation of
the object to be as close to ground truth as possible. For that, we define our
reconstruction quality as the Intersection-over-Union metric. Furthermore, we
use the Correctness, Completeness, and Quality metrics during evaluation.

8.2.3. Results
8.2.3.1. Settings

Our experiments have been executed using two computers: (1) a
workstation with Intel i7-4790 CPU with 16 GB of RAM which achieved
55.76 tps, and nVidia 1070 graphics card with 8§ GB GDDRS5 VRAM; and (2) a
laptop computer using nVidia 960M graphics chip with 4GB GDDRS5 VRAM,
Intel i5-4210H CPU and 12 GB of RAM, which reached 11.503 fps. We
consider that these machines should represent the target range of end user
devices.

8.2.3.2. Quantitative Results
8.2.3.2.1. Object Instance Classification Results

In order to evaluate our model in all cases, we have used the mAP metric,
which is a widely used method in order to evaluate mean average precision of
the predicted bounding boxes with respect to their Intersection-over-Union
(IoU), provided that the object classes match. As per suggested COCO
evaluation we filter out bounding boxes which have an JoU < 0.5 in order to
compare all of our trained model versions.

As Table 4 suggests, our iterative training approach in addition to dropout
layer was substantially better in the object classification task as opposed to the
originally suggested variant which would either plateau with too low of a
learning rate or get stuck in a constant loop around the local minima due to the
initial learning rate being too high. Therefore, we can assert that a periodic
learning rate is a useful tool to improve model generalization and the speed at
which the network can train by adding additional noise during training time in
a form of sudden overshooting. Furthermore, we can see that the addition of
depth information as input greatly increases the recall rate in both cases, while
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the depth information alone has similar recall rate in both cases. This suggests
that the depth cameras can not only greatly benefit in the object classification
task when used in conjunction with visible light spectrum cameras but it can
be used as a fallback when no light source is available, albeit with
lower precision.

Table 4. Mean precision values in respect to JToU > (.5 for each of our trained
models.

Network Type mAP (%)

Our RGB-D 60.20%
YoloV3 RGB-D 55.75%
Our RGB 41.27%
YoloV3 RGB 37.96%
Our Depth 26.46%
YoloV3 Depth 20.87%

One of the glaring issues we noticed with the ShapeNetCore dataset
during our experiments is that, while there are specified a total of 55 classes, a
lot of those classes have major overlap in form and function which may
dramatically affect the overall mAP value, such as classes that are categorized
as distinct (e.g., pistol and handgun) could still be grouped into the same class
as they share key characteristics which may not be viable to differentiate
when using relatively low resolution images. Additionally, some groups of
objects can be distinct in their use (e.g., mug and ashcan and basket) in many
cases have no differentiable features and would require each individual scene
to be hand crafted by an artist in order to provide visual queues about the
objects in relation to the world, which should potentially allow for
differentiation between very similar objects (Figure 11). However, this is
currently beyond the scope of our paper.

161



Figure 11. Prediction made with our extended YOLOv3 network. Left to right: (1)
Input color image with predicted object instances; (2) Input depth frame; (3)
Upscaled to 320 x 240 ground truth mask; (4) Predicted mask upscaled to 320 x
240. Same object is being treated as two distinct classes due to lack of cues for the
artificial neural network of what the specific object may be due to scenes being
generated randomly.

8.2.3.2.2. Mask Prediction Results

As one of our main goals is to extract individual object instances from the
depth map, we extended the YOLOv3 network architecture to be able to
predict object masks. In order to compare the predicted mask similarity with
the ground truth we use the structural similarity index metric (SSIM) that
measures perceived similarity between two images.

As we can see from Figure 12, in all cases our YOLOv3 extension for
object mask prediction is capable of extracting mask frame not only from the
combined RGB-D frames but also from the RGB and Depth frames alone.
This shows us that both color and depth information individually is generally
enough for this task. However, both of these sensors may fail in different
environments so the conjunction of both would most likely procure the most
accurate results. Additionally, while in both method cases (static and
periodical) the similarity is generally more than enough to extract accurate
mask, using periodical approach provides a much lower standard deviation,
hence better expected results. Additionally, the higher similarity also signals a
tighter mask which may improve reconstruction quality due to reduction in
bad data. While in our tests RGB has slight advantage over RGB-D when
generating a mask, it is worth noting that Depth adds an additional dimension
to the data which makes the dataset slightly harder when compared to RGB
alone. This is due to RGB alone being able to drop the randomly generated
background, unlike RGB-D which has a non-uniform background due to
addition of ground plane. As we can see in Figure 13, our approach is
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applicable not only for synthetic but for real-world data too. This indicates
that the network managed to generalize well and it’s result can be used during
reconstruction step.

8.2.3.3. Reconstruction Results
8.2.3.3.1. Quantitative Results

2
2

We can observe the achieved results for our proposed method in Figure 14
as they compare to previously achieved results in hybrid neural-network
reconstruction [66]. As we can see the mean /oU metric value as compared to
the results presented in [66] has significantly improved for some of the
models, more importantly—even if the the improvement was minimal or if the
results were slightly lower the error spread is lower. This indicates that the
achieved results are much more stable. Additionally we can see that our
reconstruction results are comparable to that of other state-of-art methods like
3D-R2N?2 reporting 0.571 mean loU.
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Figure 12. Similarity of created mask to the mask of ground truth. The hashed bar
denotes the similarity of masks predicted by the YOLOv3 network, the solid bar
denotes the similarity of masks predicted for Depth, RGB-D and RGB frames by the
network model proposed in this paper.
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Figure 13. An example of real world object classification using the proposed
network model: segmented and classified RGB frame (left), depth frame (middle),
and predicted depth mask (right).
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Figure 14. Comparison between the predicted object shape and ground truth using
the IoU metric for different objects in the training set. The hashed bars denote the
results achieved using the network proposed in [66]. The solid bars denote the
results for the proposed network.

8.2.3.3.2. Visual Inspection and Result Validation

For every object that we have trained, we had collected real world examples
using Intel Realsense device in order to compare how well synthetic results
transfer into real world data. The results for the given dataset can be seen in the
Table 5.
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Table 5. Visual evaluation of object reconstruction. Table presents: RGB frame,
original depth frame; reconstructed cloud of voxels; triangulated and smoothed
surface created using predicted voxel cloud; and a corresponding similar object in
the training set.

Depth  Voxel Cloud  Mesh  Training Data

The reconstructed object shapes are generally recognizable. However,
certain object angles cause the network to fail the task, for example, one of the
bowls is missing half of it’s voxels, while the other bowl may be considered a
near perfect reconstruction. While the ANN has managed to reconstruct the
Book and Knife datasets, it has generally only managed to reconstruct their
base shape primitives which make the objects somewhat indistinguishable by
experts without any prior information of what the objects may be. While the
human bias may notice the minute structural differences between the knife
handle and blade in terms of it’s width, we still consider this a failed
reconstruction. Can has managed to achieve great results in terms of
reconstruction, while the pillow reconstruction could be considered near
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perfect. Mug in our training set is one of the trickiest objects as it contains a
handle which should be reconstructed with a hole and additionally the mug
cannot be fully filled in with voxels as in our case it is empty. While in all
three cases the basic shape of the cup was maintained, there are some issues
with two test cases. One of the test cases was missing a hole for the handle,
while another is substantially distorted. However, the distortions may be
explained by extremely noisy dataset. = The Chair dataset allowed to
reconstruct the shape of the chair although some of the details were missing.
The Laptop and Bottle datasets are the hardest ones in terms of depth sensor
capabilities. Depth sensor has issues in retrieving depth information for IR
reflective surfaces causing it to distort the images fully. Such surfaces in our
case are computer screen and a plastic bottle. However, the laptop data has
surprisingly managed to account for this error in depth map, albeit containing
some distortions.

8.2.3.3.3. Reconstruction of Multiple Objects

As a proof of concept, we have performed the experiments to reconstruct
multiple objects in the scene (see an example of results in Figure 15). By
extracting the individual object masks and performing an object
reconstruction individually we have managed to reconstruct the specific
objects in the scene. However, we are unable to predict the object’s relative
position, rotation and scale in relation to camera space. For this reason, we
have had to specify the object transformation in relation to camera and other
scene objects manually to perform final scene render.

Figure 15. An example of reconstruction of multiple objects in the scene:
segmented and classified RGB frame (left), depth frame (middle), and predicted
depth mask (right).

8.2.4. Discussion and Concluding Remarks

8.2.4.1. Discussion

One of the main advantages of our suggested hybrid NN based method is
that unlike other non-hybrid approaches, it is relatively easy to include
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additional objects into the dataset, due to the fact that you can train network
branches separately. Unlike other approaches, we do not need to re-train the
model with all the previous data as we do not risk losing any of the existing
gradients due to network being skewed to the new data points. The modularity
of the approach allows us to train the network reconstruction nodes per each
object category independently. Additionally, this modularity allows for
variance of the model per object class, meaning we can adjust complexity of
the ANN depending on the difficulty of the object that is being reconstructed.
Furthermore, we believe that our approach is a step forward to generic object
reconstruction as we are capable of extracting multiple objects from the same
scene thanks to masking during classification step, which allows to send only
the relevant objects depth information into the reconstruction node.

While our approach is capable of extracting the individual object instances
and reconstructing them, additional research is required for full scene
reconstruction. This feat requires finding the camera space matrices, paving
the way for application in Extended Reality systems. One of the standing
issues with our current approach in terms of reconstruction is that our
ground-truths are perspective-invariant. This makes training the network
slightly harder, additionally it may somewhat reduce the quality of the results
due to network somewhat trying to adjust to observation angle, therefore
making the loU metric values lower, despite visually being feasible. Solving
the perspective invariance may also be a partial solution to the
homography [67, 68] problem as our reconstructed object would already be
rotated with respect to the camera space.

Additionally, the improvements on the dataset may be obtained by
creating and incorporating a real-world dataset along with synthetic data for
the depth encoding step. Thus, we can potentially improved results when
using real depth sensors. Additional improvements to the network architecture
may also be found by changing the complexity of the model [69]; pruning
dead neurons [70]; using neuro-evolutionary and neuro-genetic algorithms to
find a much more fitting solution [71]; enhancing the learning of the artificial
neural networks by using metaheuristic control mechanism [72]; or using
multiple frames from a video feed instead of the current single frame solution
as a large number of depth frames from a single view may reveal some hidden
features and improve recall rate [73]. Using multiple frames would allow for
exploration of what improvements may be achieved with the use of recurrent
neural networks (RNN) for they have shown to be capable of predicting
sequential data [74, 75, 76]. Finally, using the RGB frames combined with
depth frames for reconstruction can potentially add some missing features
from the depth due to inherent noisiness of the sensor, therefore improving the
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recall rate [77, 78].

Finally, we have compared the complexity of the proposed network model
with the YOLOvV3 network as well as with other popular network
architectures. The results presented in Table 6 how that the proposed network
model is only sightly more complex than YOLOV3 in terms of the number of
model parameters and operation, but outperforms other network architectures
in terms of operations.

Table 6. Comparison of neural network complexity by the number of parameters,
number of operations and model size.

Network No. of No. of Model
Model Parameters Operations Size (MB)
YOLOV3 [47] 61.81 M 294.86 M 946
Proposed
(extended YOLOV3) 67.45M 305.61 M 1010
AlexNet [79] 60 M 16.04 G 217
GoogleNet [54] ™ 16.04 G 40
ResNet152 [80] 60 M 113G 230
VGC16 [80] 138 M 154.7G 512.24
NIN [81] 7.6 M 11.06 G 29
SimpleNet [82] 54M 652 M 20

8.2.4.2. Concluding Remarks

Our proposed hybrid artificial neural network modifications have allowed
to improve the reconstruction results with respect to theYOLOV3 network
results by 8.53% which allows for much more precise filling of occluded
object sides and the reduction of noise during the process. Additionally, the
reconstruction results are a lot more stable when compared to previous results.
Furthermore, the addition of object segmentation masks and the individual
object instance classification is a leap forward towards a general purpose
scene reconstruction as opposed to single object reconstruction task due to the
ability to mask out overlapping object instances and use only masked object
area in the reconstruction process. While further research is needed in order to
retrieve object orientation and position with respect to camera space, we
believe our method allows for a much broader application in comparison to
previous research due to its focus on single object reconstruction.
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Abstract Majority of current research focuses on a single static object
reconstruction from a given pointcloud. However, the existing approaches are
not applicable to real world applications such as dynamic and morphing scene
reconstruction. To solve this, we propose a novel two-tiered deep neural
network architecture, which is capable of reconstructing self-obstructed
human-like morphing shapes from a depth frame in conjunction with cameras
intrinsic parameters. The tests were performed using on custom dataset
generated using a combination of AMASS and MoVi datasets. The proposed
network achieved Jaccards’ Index of 0.7907 for the first tier, which is used to
extract region of interest from the point cloud. The second tier of the network
has achieved Earth Mover’s distance of 0.0256 and Chamfer distance of
0.0276, indicating good experimental results. Further, subjective
reconstruction results inspection shows strong predictive capabilities of the
network, with the solution being able to reconstruct limb positions from very
few object details.

Keywords 3D shape recognition; 3D depth scanning; pointcloud
reconstruction; human shape reconstruction

8.3.1. Introduction

Computer vision is a quickly expanding field because of the success of
deep neural networks [1]. The RGB camera frames have already been adopted
in various industries for environment recognition [2] and object detection [3]
tasks. Depth information is however, is less likely to be used due to generally
requiring special sensors or monocular camera setups. For this reason
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computer vision field has a lot of open questions regarding the application of
depth information. One of important computer vision research fields, related
to application of depth information, 1is three-dimensional object
reconstruction [4].

A lot of applications that would benefit from real-time object
reconstruction such as self-driving cars [5, 6], interactive medium particularly
virtual reality [7] (VR) and video games, augmented reality [8] (AR) and
extended reality [9] (XR). Furthermore, depth sensor information can improve
gesture [10, 11] and posture recognition [12] technologies as these tasks
generally have a lot of important depth information embedded into them.
Additional uses for object reconstruction from depth sensor information could
include recreating environments in film industry and teleconferencing with the
use of holograms, indoor mapping [13] or robotics [14, 15]. Unfortunately,
while this object reconstruction gives a lot of value to various fields, generally
such applications require intricate camera setups to scan the entire object from
all sides or to move camera in order to gradually build the object depth
profile. This makes the reconstruction technology have a high barrier of entry.

Users cannot be forced to have professional filming setups containing
laser sensor arrays that would scan entire object from all perspectives in a
single shot, or expect user to bother scanning the object from all sides to
reconstruct it each time they add additionally obstacles to the scene.
In addition, it potentially requires a lot of technical know-how and computing
power to perform high fidelity pointcloud fusion, this reduces the end-user
experience. For this reason, there is a need for different type solution which is
capable of performing such task using only a single view. Some novel
state-of-the-art methods already attempt to solve this problem using a priori
knowledge. Such methods generally involve using black-box models such as
deep neural networks as it gives the approaches ability to approximate the
occluded object information that is generally quite easy for a person to infer
based on the mental model each of us builds over our lifespans. Initial
successful research in the object reconstruction field has focused in the voxel
based reconstruction [16]. The proposed approach dubbed 3D-R2N2 has used
Sanford Online Products [17] and ShapeNet [18] datasets as a priori
knowledge to guess object shape using multi-view reconstruction. Other
research has improved the results with the addition of Chamfer Distance as a
loss function [19] thus increasing the reconstruction accuracy. Other attempts
have attempted improving the reconstruction by using network hybridization
where each network branch is trained on different group of objects thus
allowing for faster model convergence and real-time reconstruction [20].
While all the mentioned methods focus on single object per scene
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reconstruction, there have been attempts in improving this with the use of
object segmentation layer [21]. By segmenting only necessary depth
information and using that as reconstruction it allows for multiple object
per scene.

While the majority of methods focus on voxel based mesh representation
[22, 23, 24, 25, 26, 27], for object reconstruction due to their representation
simplicity, voxels have one major flaw—exponentially increasing
requirements to train them with increasing fidelity. Some papers tried to solve
this ever-increasing memory requirements using smarter data representation
styles like octrees [28, 29]. These allow for more details to be preserved,
however, they still are not as detailed as pointclouds. There already exists
some solutions that attempt to do this such as PointOutNet [30] that has
shown the ability to predict and generate plausible 3D shapes of objects.
While this solution has shown generally good prediction results, it relies on
user segmentation mask for reconstruction. While PointOutNet is capable of
leveraging 2D convolutions in order to reconstruct 3D object, there is some
information that is missing for this approach to be stable. Even though 3D
convolutions can be easily applied to voxel clouds both 2D and 3D
convolutions are not very useful when dealing with pointclouds as they have
fundamentally different structure. Some approaches configurations have
shown the ability to generalize pointcloud information [31].  Further
modifications to PointNet have been shown to be able to reconstruct shapes
using pointcloud inputs [32].

We propose a novel two tiered approach capable of full human body
pointcloud reconstruction using a single realistic imperfect (self-occluding)
depth view, where the first rank network clips the initial depth cloud and the
second rank uses prime output to reconstruct the captured object. Our
contribution to the field of object reconstruction is the addition of the
clipping-resampling node which gives our approach the ability to extract
three-dimensional Regions of Interest (Rols) that can be then used for
reconstruction. Unlike previous existing approaches which rely on
user-defined masks to extract regions of interest, ours is completely
independent and provides a complete solution sensor-to-screen
object reconstruction.

Generally, reconstruction focuses on static single object per scene
reconstruction. However, we attempt to reach new a frontier in this field. Our
approach attempts to take one step further, reconstruction of full human shape
using single imperfect depth frame information in order to reconstruct missing
scene information. Our method involves two tiered reconstruction networks
and a priori knowledge of the human body to make the predictions of the
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reconstructed pose.

8.3.2. Related Work

Object reconstruction is a rapidly expanding computer vision field. Most
of the new solutions that relate to this topic benefit from the advancements in
the artificial intelligence. Two main approaches for three-dimensional object
reconstruction are: voxel based and pointcloud based. One such voxel based
solution is 3D-R2N2. It uses Long Short Term Memory [33, 34] (LSTM) in
order to learn the object features from multiple views and later reconstruct
them. This approach is afterwards capable of reconstructing voxel grid using
only a single RGB view based on a priori knowledge obtained during training.
The method requires additional masks provided separately in order to
reconstruct the results. Another solution attempted to use an extended
YoloV3 [21] (YoloExt) has attempted to get rid of this dependency by
merging YoloV3 [35] with the reconstruction task. Unlike prior solution the
YoloExt was capable of detecting and then segmenting the Rols itself and
passing them mask and depth to the reconstruction branches. This allowed for
the solution to be independent of additional user input and could work with
real world data. However, the voxel based solutions while being simple to
train suffer from two major flaws: exponential memory requirements to train
and requiring high granularity grid in order to preserve small features.
To resolve high memory requirements while maintaining high fidelity another
competing reconstruction approach exists, i.e., pointcloud reconstruction.
Unlike previous approaches it has a much lower memory impact, therefore
potentially allowing for much higher fidelity reconstruction. However,
the pointcloud solutions are notoriously hard to train due to a more complex
loss function being required.

One of first such solutions was PointOutNet. Just like 3D-R2N2 it
requires an external mask provided to the network and reconstructs the shape
using RGB frames. However, unlike 3D-R2N2 it reconstructs the shape using
unstructured pointcloud. Thus obtaining higher efficiency than the competing
voxel approaches. The approach suggests both Chamfer and Earth Mover’s
distance as loss metrics.

Further research in pointcloud reconstruction in PointNet [36] has
attempted to instead of using RGB frame as input using a pointcloud.
However, such pointcloud methods are unable to use the traditional 2D
convolutions due to pointclouds being unstructured dataset. To solve for this
problem, PointNet attempts to learn symmetric functions and learn local
features. The addition of fully-connected auto-encoders to the PointNet has
shown the ability to fill in missing chunks of the malformed pointcloud.
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PCN [37] proposes a fine-grained pointcloud completion method while
maintaining a small number of training parameters due to its coarse-to-fine
approach. AtlasNet [38] proposes a patches based approach capable of
mapping 2D information into parametric 3D objects. Due to high complexity
of O(n?) required for the calculation of Earth Mover’s distance the majority
of solutions tend to use Chamfer distance as loss metric. However, the latter is
less sensitive to density distribution. For this reason, MSN [39] proposes an
Earth Mover’s approximation which can be applied to pointclouds and a
sampling algorithm for obtaining evenly distributed subset of pointcloud.
However, all prior approaches all revolve around reconstructing quite static
objects and not dynamically morphing meshes such as human body. Some
approaches dealing with human body prediction using depth information
exist [40, 41, 42, 43] however their body predictions do not deal with full
body reconstruction and only pose estimation.

The comparison of existing methods versus ours can be seen in Table 1,
as we can see our solution is capable reconstructing sensor-to-screen
pointclouds using only sensor provided information, while maintaining
sensitivity to high density distributions due to the use of EMD as loss metric.

8.3.3. Materials and Methods
8.3.3.1. Proposed Deep Neural Network Architecture

Our synthetic dataset attempts to create real-world like dataset that other
approaches were incapable of generalizing. For this reason our proposed
black-box model (artificial neural network) consists of two tier network
structure (see Figure 1). First network rank deals with extracting the required
features of the pointcloud and downsampling. The second rank uses the
clipped and resampled pointcloud in order to learn the required features for
full human body reconstruction.

HumanNet
Depth
Frame
) Clipping Clip And Reconstruction
[ Pointcloud Network Node Sample Node Network Node

Figure 1. Proposed two-tiered network overview. Intrinsic camera matrix is applied
to depth information in order to generate pointcloud. Pointcloud is then passed onto
Clipping Network Node which finds predict the bounding box. Bounding box is then
used along with initial point cloud to clip the Region of Interest and downsample.
The result is then used to reconstruct the human shape.

Camera
Intrinsics

179



/ X / qdaQ / X smQ
X X Va pnojdautod Va X NSIN
X Va X pnopduiod / X IONSePV
X Va X pnodxurod / X NOd
X , X pnojurod , X AV /M 19NpuIog
X / Vs a9y / X PNINOWIOg
Va - — a-gaod X VA IXHOJOA
X — — a5 X Va INTY-d¢
suofepue)s D dINA nduy pnopPIuIog  S[PXO0A oweN

"sy[sewr se yons ‘opraoxd

J0UUBD J[9S} JOSUDS dU} JBY) UONBULIOJUI [BUIXd Sumndur Jnoyiim pa3dadxa 9q ued [9pow paionnsuodal AJny e jndur Josuos
UOAIS AUB JOJ QIOUM SUOTINOS USIVS-03-I0SUIS 0} SIOJAI duo[epuel§ ‘suonejudwadur Sunsrxd judropyip Surredwos s[qe] T d[qeL

180



8.3.3.2. Clipping Network Architecture

Our dataset involves two inputs: pinhole depth image and camera intrinsic
matrix K (see Equation 1). By applying camera intrinsics to each of depth
points we create undistorted pointcloud that we can use for training. The first
rank network (see Table 2) is responsible for filtering as much unnecessary
information that the pointcloud contains as possible. This is done to avoid
poisoning the initial neural network training states as they are tightly
dependent on the input frame during training. Having too much unnecessary
information makes the reconstruction network very difficult to train. For this
reason the main purpose of the first rank is to detect the desired feature
bounding box.

One of the approaches to mask out only interesting data is to try and
predict the 2D mask by using segmentation techniques capable of segmenting
objects in the frame [44, 45, 46]. While such approaches can easily exploit 2D
convolutions they lack one very important feature — third dimension.
Therefore, we would be unable to filter out objects that are in front of the
object. Additionally, 2D convolutions are much slower than the approach we
have chosen that deals with pointclouds directly. Because our input depth
resolution is 6402480 pixels once convert it into pointcloud (see Equation 2)
we get a total of 307200 vertices in the cloud. While it is possible to use this
entire pointcloud as the neural network input it would make it unusable in
real-time applications. For this reason we use Farthest Point Sampling [47]
(FPS) operation to collect 2048 points. We found that this amount of vertices
is more than enough to extract all necessary features from frames. The
downsampled input is then used as input for the network.

While the network was capable of learning most of the feature bounding
boxes it was heavily biased by the imbalances of dataset. Our dataset contains
two primary types of bounding boxes tall-thin and short-wide due to two main
human poses being either standing or crouching. For this reason we had
borrowed widely used approach in Single Shot Detection methods where
anchor boxes are used to help neural network learn the 2D object bounding
boxes [48, 49, 50]. However, if we only had two anchor boxes our dataset
would become very imbalanced, for that reason we have increased the anchor
count to four anchors, this gives us a more even pose distribution. The
predicted three-dimensional bounding box acts as six clipping planes that
allows us to filter out all vertices that do not belong to that object.

f= 0 ¢
K=10 f, ¢ (1)
0O 0 1
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Due to the fact that our approach has four potential bounding box anchors
we get four potential bounding boxes. However, our network also outputs the
confidence level of the bounding box. The bounding box with the highest
confidence level is used for clipping. Once the highest confidence bounding
box is acquired we may perform clipping and resampling operation using the
initial 307200 vertex pointcloud. As our initial downsampling included points
that do not belong to Region of Interest the resulting point cloud has a much
lower density, hence less information that could be used for reconstruction.
For this reason we clip the original pointcloud and downsample to 4096
points. While it may seem counter-productive to resample twice instead of
having initial resampling much higher density however, FPS is a cheaper
operation than working with much higher pointcloud resolution.

eclip(ya Q) - Z Lls(yposa gpos) : yconf+

(3)
Z Lls(yscla yscl) : yconf + Ebce(yconfa yconf)

When training our neural network we calculate three different loss
functions: position loss, scale loss and confidence loss (see Equation 3). L1,
in Equation 3 refers to smooth L1 loss (see Equation 5) [51], while BCE
refers to binary cross entropy loss (see Equation 4),

X IBES X A
€vce(Y: ) = —;Zyi'logyﬂr(l—yi) -log (1 — ;) (4)
L) =13 5)
s ) = - Zi
Y,y n<
where z; is Equation 6 with 8 = 0.1.
NG TETAYA . N
(Y5, §5) = W7 if19i — il < B 6)
e |0; — yi| — 0.5 3, otherwise
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Table 2. Architecture of clipping network. Last convolutional layer does not contain
activation function because finding bounding boxes is a regression task.

Type Filters Size Output
Depth - - 640 x 480
Pointcloud - - 307200 x 3
Resample - - 2048 x 3
Convolution 1D 64 1 2048 x 64
Convolution 1D 128 1 2048 x 128
Convolution 1D 1024 1 2048 x 1024
Adaptive Max Pool 1D - 2 2 x 1024
Convolution 1D 512 1 2 x 512
Linear Convolution 1D 7 1 2x7
Clip Inputs - - 307200 x 3
Resample - - 4096 x 3

8.3.3.3. Reconstruction Network Architecture

Our second rank network (see Table 3) was heavily inspired by Morphing
and Sampling Network (MSN) which shows state-of-the-art reconstruction
results for pointcloud reconstruction. However, the proposed network got
easily poisoned by excess information that did not belong to the object which
was being reconstructed, as it was heavily influenced by the initial pointcloud
used as input.

Table 3. Architecture of the reconstruction neural network. We use 16
Morph-Based-Decoders for 16 potential surfaces for the network to be able to
predict.

Label Type Filters Size Output
Input - - 4096 x 3
Conv 1D 64 1 4096 x 64
Conv 1D 128 1 4096 x 128
Encoder Linear Conv 1D 1024 1 4096 x 1024
Max Pool 1D - - 1024
Fully Connected 256 - 256
Conv 1D 256 1 16 x 256 x 258
16 x Conv 1D 129 1 16 x 256 x 129
Coarse Decoder Conv 1D 64 1 16 x 256 x 64
Conv 1D 3 1 16 x 256 x 3
Conv - - 4096 x 3
Conv 1D 64 I 4096 x 64
Conv 1D 128 1 4096 x 128
Conv 1D 1024 1 4096 x 1024
Max Pool 1D - - 1024
Final Decoder  Residual - - 1088
Conv 1D 512 1 4096 x 512
Conv 1D 256 1 4096 x 256
Conv 1D 128 1 4096 x 128
Conv 1D 3 1 4096 x 3
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As we can see from the Table 4, the modifications we made to the deep
neural network architecture, had an overall negligible impact in terms of
trainable parameters our neural network had to learn weights for and the
model size, while slightly reducing the overall number of operations for the
network to process due to the addition of resampling after clipping the objects
Rols.

Table 4. Comparison of neural network complexity by number of parameters,
number of operations and model size.

No. of No. of Model

Method Parameters Operations Size
M) (GFLOPs) (MB)

PointNet w/ FCAE 7.43 1.18  28.36
PCN 6.87 29.5 2625
AtlasNet 3.31 6.46  12.66
MSN 29.50 12.89  112.89
Ours 29.71 11.74  112.94

Because the reconstruction network could easily get poisoned by bad input
data due to its dependence on initial point positions, clipping loss had to reach
e < 0.3 before reconstruction starts weights got updated. This approach kept
randomized initial weight values in stable positions, easing the training
process. The reconstruction training process requires a metric in order to
compare ground truth S and prediction S values. While one of the most
popular metrics when comparing pointclouds is Chamfer Distance [52] due to
its low memory impact and fast computation. The metric measures mean
distance between two pointclouds. However, we found that for our task it was
not able to learn the features properly causing vertices to congregate together
instead of spreading uniformly around the object shape. For this reason, we
chose to use Earth Mover’s Distance (see Equation (3)) with expansion
penalty (see Equation (4)), as per suggested penalization criteria for surface
regularization proposed in MSN, where d(u, v) is Euclidean distance between
two vertices in three-dimensional space and ¢ is the bijection of pointclouds.
1 is the indicator function used to filter which shorter than A\l; with A = 1.5 as
per suggested value, giving us a final combined reconstruction loss as final
Equation (9) with o = 0.1, Scoam is coarse decoder output and S tinal 1 final
decoder output.

cend(5,8) = min 3 |lr = 9(a)]l )
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8.3.3.4. Dataset

There are various existing datasets for object detection that contain labeled
image data such as COCO [53] and Pascal VOC [54], 3D object datasets such
as ShapeNet and even labeled voxel data [55]. However, our task required a
very specific dataset: it required human meshes that could be used as ground
truth, and it needed to contain depth camera information matching the mesh
positions. As far as we are aware there exists no publicly available dataset
matching this description. For this reason we generated a synthetic dataset
using Blender [56]. The MoVi [57] dataset contains a vast amounts of motion
capture data and multiple camera perspective video. However, videos contain
no depth information, therefore it does not fully match our criteria. For this
reason we used motion capture data bound to the AMASS [58] triangle
meshes. An example of AMASS dataset can be seen in Figure 1.

To create the dataset we placed the motion captured model into it and
capture depth frames from various angles by rotating the camera and the
person model itself. Rotating the camera simulated multiple cameras seeing
same event, while rotating the model emulated the person doing same poses
from different angles (see Figure 2). The person was rotated from 0°to 360°in
the increments of 45°, while the camera was rotated from -35°to 35°in the
increments of 15°. The camera was placed 4.5 m away from the person.
The rendered depth frame was saved using OpenEXR [59] file format as
unlike other general purpose image formats, such as JPEG, it is linear and
lossless therefore it does not lose any depth information and is not limited to 8
bits per channel. Additionally, the frame itself was rendered using mesh and
our ground-truth demands for pointcloud, to generate it we used uniform
random sampling.
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Figure 2. An example MoVi dataset motion capture pose applied to models provided
by AMASS. The same pose is applied to female and male body type.

Figure 3. An example of neural network input that is created rendered depth frame
converted to pointclouds with the help of camera intrinsic matrix K.

8.3.4. Results
8.3.4.1. Clipping Results

In order to evaluate the accuracy of our clipping node we used Jaccards
index [60, 61, 62] to compare the quality of our three-dimentional bounding
boxes, which is widely adopted as a metric to compare bounding boxes. Our
results (seen in Figure 4) indicate that for most of our anchors but one our I NU
~ 80%, with overall accuracy being 79.07%, with some clipping error was
able to be improved by slightly expanding the bounding boxes thus potentially
improving bounding boxes which were very close to ground truth. The Jaccard
index of Anchor 3 being much lower than others may be due to imbalanced
number of samples belonging to each dataset.
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Bounding Box Accuracy
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Figure 4. Bounding box accuracy expressed as I N U for anchors. Higher is better.

8.3.4.2. Reconstruction Results

The purpose of our network was to reconstruct the human body shapes.
To determine the quality of our reconstructions we needed an objective metric
to compare results. For this reason we used two main metrics to evaluate model
quality Chamfer Distance and Earth Movers Distance (Equation (3)), which is
summarized in Figure 11.

€cd<S; g) ==

s (10)
5 (57 Sminlle — ol + 5 S minlle ol

ye
xeS yes

Reconstruction Quality

s EMD
m CD

T T T T T
0.005 0.010 0.015 0.020 0.025
Pointcloud Similarity

Figure 5. Reconstruction similarity using both Earth Movers Distance and Chamfer
Distance. Lower value is better.

We also summarize the distribution of the errors in terms of histogram as
Figure 6. 95% of Earth Movers Distance was lower than 0.054, and for Chamfer
Distance, lower than 0.078.

We cannot directly compare our results to other researchers’
reconstruction results, due to us using a completely different dataset than other
state-of-the-art research uses. The approaches we have tested were unable to
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shows 95% of values are between 2.5% and 97.5% percentiles of values.

deal with the additional noise our dataset contains in the form of backgrounds
and depth shadows as they lacked a Region of Interest mechanism. However,
if we compare the metrics provided with other state-of-the-art methods (see
Table 2) we can see that our reconstruction results were similar with the added

robustness and flexibility by only reconstructing Rols.

Table 5. Reconstruction metric comparison between other methods and ours. While

direct comparison cannot be drawn due different datasets and techniques being
adopted we can see that the reconstruction values are at least very similar to
state-of-the-art when compared to ShapeNet dataset. As per Liu et al. (2020)

reference values.

Method EMD CD Dataset
PointNet w/ FCAE  0.0832 0.0182 ShapeNet
PCN 0.0734 0.0121  ShapeNet
AtlasNet 0.0653 0.0182  ShapeNet
MSN 0.0378 0.0114  ShapeNet
Ours 0.0256 0.0276 AMASS
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Another way to inspect prediction results that is not objective, nonetheless
very important, is visually. Figure 7 displays same pointclouds from four
different angles. The first row contains different views of input pointcloud
that the first tier network responsible for clipping and resampling was fed.
Once the prediction was made, the second row displays the pointcloud after
clipping removed points that did not belong to the Region of Interest and
downsampled them to 4096 points. The third row is the prediction made by
the second tier network, responsible for the human body reconstruction. The
final row shows first and second tier network results overlapped. As we can
see, the prediction network managed to rebuild entirely missing features based
on the most probable guess. Due to depth self-obstruction depth shadows
were cast. This caused the input frame to be missing these features: half of the
torso, half left hand, half of left hand, almost entire right hand, and half right
leg. As we can see the prediction managed to guess very realistic right leg and
right arm orientations based on the very few points that were provided by such
features as the angle of the right shoulder and elbow. From this we can assert
that our network had human-like speculative probabilities on how the
obstructed parts of the body may be orientated. Additional validation of this
assertion can be seen in Figure 12 comparing ground truth pointcloud and
prediction made by the deep neural network. As we can see while there were
imperfections in the predicted pointcloud the reconstructed object did in fact
reconstruct the entire object shape.
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Figure 7. Different viewpoints of same pointclouds. Contains stacked from top to
bottom: (a) input pointcloud; (b) clipped and sampled pointcloud; (c) predicted
pointcloud; (d) combined (b) and (c).

Figure 8. Comparison of ground truth (left/orange) and prediction (right/teal) from
different viewpoints.

If we break down the reconstruction results by the pose, which is presented
in Figure 10, we can see that the majority of our poses fell below 0.05 value
of EMD and CD. Therefore the neural network was in fact able to perform
pattern matching to the human pose. In further breakdown of our results (see
Figure 9), we can see that there was very little disparity between the gender
results, too. This implies that the suggested solution was body shape agnostic,
as it was able to reconstruct both male and female human body shapes that

190



were provided by the AMASS dataset with similar results. While a part of this
gender reconstruction similarities can be attributed to the general similarities
of the human shape, further visual inspection shows that the network was able
to restore the distinctly male or female features.
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0.10

0.08 ~

0.06

Chamfer Distance
1

0.04 +

Earth Mover's Distance

0.02 1 N Ul L ] [

T T T T
Male Female Male Female

Figure 9. Reconstruction quality breakdown of the subjects’ by gender.

8.3.5. Discussion and Concluding Remarks

8.3.5.1. Discussion

The main advantage of the proposed two-tiered neural network
architecture as compared to existing reconstruction algorithms is the addition
of the first tier Region of Interest (Rol) extraction node. Existing object
reconstruction implementations deal with pre-masked user data. Therefore,
they are not fit for real-world-like input data, where additional background
noise exists along with the object we are attempting to reconstruct.
Unfortunately, in addition to background noise, real-world depth sensors also
produce a lot of distortions in their depth frames, for which our approach was
not able to account for. This requires further research in the field by either
creating a real world dataset akin to our synthetic, or an attempt to recreate
the distortions for the synthetic dataset which could be used as an
augmentation. Additionally, our Rol node is not strongly coupled to the
reconstruction branch. This allows us to replace one part of the model
completely without retraining the other. For example, our current
implementation is unable to extract multiple Regions of Interest from a depth
frame. However, if such changes were to be applied, we would be able to
keep the existing reconstruction weights. This would allow us to run a
separate reconstruction task for each region of interest, without changing the
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Figure 10. Reconstruction quality breakdown by the recorded motion
capture exercise.
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entire reconstruction network architecture, thus reducing the amount of
Graphical Processing Unit (GPU) time required to train it. Finally, unlike a lot
of previous methods, that attempt to rebuild the object shape using voxel grid,
non-normalized pointcloud approach inherently does not need to solve for
homography, which removes the requirement of extracting the objects world
transformation matrix. Instead, the pointcloud based approaches that do not
apply normalization to the pointcloud in attempt to improve training process,
reconstruct the vertices in their positions in relation to camera space. This
removes the need of translating world space coordinates into camera space
post-reconstruction and therefore can be easily applied in such applications as
Virtual Reality in conjunction with Augmented Reality.

8.3.5.2. Concluding Remarks

We have proposed a two-tiered neural network architecture which has
successfully achieved the desired goal of reconstructing human
shaped pointcloud.

The proposed network achieved Jaccards’ Index of 0.7907 for the first tier
which is used to extract Region of Interest from the pointcloud. Second tier of
the network has achieved Earth Movers distance of 0.0256 and Chamfer
distance of 0.276 indicating good experimental results. Further, subjective
reconstruction results inspection shows strong predictive capabilities of the
network, with the solution being able to reconstruct limb positions from very
few object details.

Finally, unlike previous research, due to the use of anchor boxes our solution
does not rely on the user given mask in order to perform reconstruction step
giving us a clear advantage over other approaches and theoretical ability to
reconstruct multiple objects per scene.

8.3.5.3. Future Work

Our current implementation has been trained and tested using a noiseless
synthetic dataset only. Real world depth frames generally contain a lot of
imperfections when using consumer grade sensors for that reason future work
would have to adapt the proposed solution to be able to reconstruct real world
data. Producing such a dataset is a tedious task as it requires labeling 3D data
by manually extracting the three-dimensional bounding boxes from a given
depth frame in addition to creating an appropriate pointcloud representations
to be used as ground truths during the training process. The later can be
achieved by creating a dataset containing pointcloud fusion of multiple
camera perspectives. Additionally, our dataset only deals with the
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reconstruction of a single object, where there are no additional objects in the
scene, therefore a human body which is occluded by other objects within the
scene would not be properly reconstructed.
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Abstract With the majority of research, in relation to 3D object
reconstruction, focusing on single static synthetic object reconstruction, there
is a need for a method capable of reconstructing morphing objects in dynamic
scenes without external influence. However, such research requires a
time-consuming creation of real world object ground truths. To solve this, we
propose a novel three-staged deep adversarial neural network architecture
capable of denoising and refining real-world depth sensor input for full human
body posture reconstruction. The proposed network has achieved Earth
Mover and Chamfer distances of 0.059 and 0.079 on synthetic datasets,
respectively, which indicates on-par experimental results with other
approaches, in addition to the ability of reconstructing from maskless real
world depth frames. Additional visual inspection to the reconstructed
pointclouds has shown that the suggested approach manages to deal with the
majority of the real world depth sensor noise, with the exception of large
deformities to the depth field.

Keywords pointcloud reconstruction; adversarial auto-refinement; human
shape reconstruction

8.4.1. Introduction

One of the most rapidly expanding scientific research fields, thanks in part
to the advancements in artificial intelligence and, specifically, Deep Neural
Networks (DNN5s), is computer vision. Whereas regular cameras have already
been widely adopted in various object detection tasks, however, depth sensors
still have narrow range of research dedicated to them. This can be attributed
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to them not being easily available for personal use until relatively recently
with the introduction of the original Kinect sensor [1]. Unfortunately, while
the Kinect technology made the depth sensors affordable they have not had
wide consumer adoption outside of entertainment [2, 3], although
health-related applications were also considered [4, 5, 6]. This is, however,
likely a rapidly shifting trend with more consumer grade sensors, such as Intel
Realsense [7], being released and depth scanning systems being integrated as
part of mobile devices. With rapidly evolving field of three-dimensional
object reconstruction, such depth sensing systems [8, 9] may be the key to
boosting object reconstruction quality.

Quite a few real world applications would benefit greatly from depth
sensors and/or real-time object reconstruction, starting with collision
avoidance in autonomous vehicles [10, 11], robotics [12, 13], or posture
recognition [14, 15]. Other object reconstruction applications may involve
interactive medium, like obstacle avoidance in virtual reality [16, 17],
augmented reality [18], extended reality [19], and more. Even though 3D
object reconstruction opens up a lot of possibilities to various fields, the main
issue with object reconstruction is that it generally requires either intricate
camera setups or moving the camera around the object in order to scan the
entirety of the object and to build its full profile from all sides. This makes the
reconstruction have a high accessibility barrier, as daily users cannot be
expected to have professional filming setups containing laser sensors arrays
capable of single-shot scanning entire object from all perspectives, nor
expected to bother carefully scanning an object from all of its sides to
reconstruct the object iteratively. This is in conjunction with potentially
requiring a lot of computing power to perform high fidelity pointcloud fusion,
which greatly impacts end-user experience.

Therefore, there is a strong desire for a solution that is able of performing
object reconstruction task by using only a single camera view. There already
are existing solutions that attempt to solve the previously mentioned problems
with multi-view perspective reconstruction by using a priori knowledge.
These methods usually involve using artificial intelligence, specifically deep
neural networks which are able to approximate the occluded object
information leveraging reinforcement learning. This type of learning is
reminiscent of how a person is able to generally infer the objects shape based
on the mental object model they had built from their life experience. There
already exist methods capable of performing object reconstruction from a
single perspective, one of the most popular solutions due to its simple
implementation is volumetric pixel (voxel)-based reconstruction. However,
high fidelity models using voxel-based models require large amounts of
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operative memory to represent.

To mitigate this, certain reconstruction solutions instead of attempting to
reconstruct voxels try to predict pointclouds. Unlike voxel-based solutions,
pointclouds require very little memory overhead for their representation.
However, their comparison functions are much more complex, making them a
lot harder to train due to vertices being able to occupy any coordinate in
three-dimensional space. One of the first of such type of solutions being
PointOutnet [20], which has shown the capability of predicting and generating
plausible 3D shapes of objects. Although the solution has shown good
prediction results, it relies on hand drawn object segmentation masks, which
makes this solution not really applicable to real world applications.
Additionally, this solution worked on flat 2D images, which lose a lot of
important depth information.  Nevertheless, there are already existing
solutions capable of leveraging pointcloud information in order to improve
generalization and prediction quality [21]. However, these solutions generally
are only applicable to either synthetic or manually pre-processed real world
data, which makes them unsuitable for real-time applications.

To solve this, we propose a novel unsupervised adversarial auto-refiner
capable of full human body pointcloud reconstruction using only a single
self-occluding depth view capable of reconstructing real depth sensor data
with no masking nor any other direct interference. Our contribution to the
field of reconstruction is the three-stage (cleanup, coarse, and fine) adversarial
network capable of cleaning up the noise from real world input, without losing
the underlying shape or position of the body posture.

The structure of the remaining parts of the paper is as follows. Section
8.4.2 discusses the related work. Section 8.4.3 describes our synthetic dataset
and the proposed methodology. Section 8.4.4 presents the results. Section 8.4.5
discusses the results of this study. Section 8.4.6 presents the conclusions.

8.4.2. Related Work

Thanks to advancements in artificial intelligence and deep neural
networks, object reconstruction is a rapidly expanding computer vision field.
Currently, there are two main approaches in order to reconstruct a 3D,
voxel-based and pointcloud-based. One of the most well known voxel-based
solutions is 3D-R2N2 [22] that uses Sanford Online Products [23] and
ShapeNet [24] datasets as a priori knowledge in order to predict objects shape
using both either single or multi-perspective reconstruction. It uses deep
recurrent neural networks with Long Short Term Memory [25, 26] (LSTM) to
learn objects features using multiple views as training input, while still being
capable of predicting objects shape from a single perspective when

201



performing predictions. Unfortunately, the method requires additional masks
that need to be provided separately in order to make a prediction. One of the
solutions that attempted to resolve this drawback has extended YoloV3 [27]
network by merging the reconstruction and object prediction tasks
(YoloExt) [28]. Unlike 3D-R2N2, it was capable of detecting and performing
Region of Interest (Rol) segmentation independently before passing the mask
to the object reconstruction branches. This solution allowed it to be
independent of outside interference and could work with real world input.
Some other attempts were made using hybridized neural network models [29]
which are separately trained on groups of objects for faster model
convergence and ability to reconstruct in real-time due to reduced network
complexity. Despite voxel-based approaches being easy to represent and train
due to low mathematical complexity of loss function, they suffer from a major
flaw: the exponential memory requirements in order to train high granularity
model, which would be required in order to reconstruct complex models
containing a lot of details. While there have been attempts to solve this issue
of ever-increasing memory requirements by using more compact data
representation styles, such as octrees [30, 31], thus greatly reducing the
amount of required data to represent the same model, these still suffer from
overheads.

However, a much better solution of representing 3D volumes than voxels
is pointclouds. Unlike voxel-based solution, pointclouds have much lower
memory footprint both during training and prediction stages, this allows for
much higher fidelity reconstruction to be performed. Unfortunately, due to
their very nature training pointclouds is difficult, due to the high complexity
of loss function that is required to compare ground truth and prediction. One
of the first solutions being PointOutNet. Same as with 3D-R2N2, it requires
an external mask to be provided with the input in order for the network to
properly reconstruct from an RGB image. However, unlike its voxel-based
predecessor, it is able to reconstruct the shape using unstructured pointcloud.
The approach suggests both Chamfer [32] and Earth Mover's [33] distances
(CD and EMD, respectively) as loss metrics. Subsequent research in
pointcloud reconstruction instead of using RGB frame that loses depth
information attempted to use pointclouds as inputs [34, 35]. One of the main
drawbacks when using unstructured pointclouds is that it is not possible to use
well-known feature extracting convolutional neural networks, as due to
unstructured nature of the pointcloud data both 2D and 3D convolutional
kernels are not applicable to the input. To resolve this issue, PointNet
attempts in learning symmetric functions and local features. When PointNet is
matched with a fully-connected auto-encoder branch, it was able to fill in
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missing chunks in malformed pointclouds. Other research proposes the
addition of a fine-grained pointcloud completion method; this way PCN [36]
manages to maintain only a few parameters during training due to its
coarse-to-fine approach. However, AtlasNet [37] suggests the addition of
patch-based reconstruction that is capable of mapping 2D information into
parametric 3D object groups, while others generally focus on Chamfer
distance as a loss metric and only use Earth Mover s distance as an accuracy
metric. Moreover, EMD is less sensitive to density distribution, and it also has
high computational complexity of O(n?) for its calculation. An EMD
approximation [38], in addition to evenly distributed point sub-sampling
method, is proposed for application in MSN, which has shown state-of-the-art
reconstruction performance.

Table 1 compares different reconstruction solution implementations. As we
can see, our solution is capable of performing sensor-to-screen prediction; due
to the use of EMD as loss function, we are also able to maintain sensitivity to
high density distributions.

8.4.3. Materials and Methods
8.4.3.1. Dataset

There are multiple datasets for object detection which contain image data,
such as COCO [39] and Pascal VOC [40], 3D object datasets, such as
ShapeNet, and even labeled voxel data [41]. Our task requires human meshes
that contain ground truth information, in addition to depth camera information
which would match positions. Only a few such datasets exist publicly, like
ITOP [42] and EVAL [43]; unfortunately, in both cases, they use Kinect
sensors, which have been discontinued by Microsoft. Thus, any solutions
developed for it are obsolete as generally different manufacturer depth sensors
have different types depth errors. Therefore, it is up to us to create dataset that
matches our specifications. Because creating a dataset that would have real
world ground truths is prohibitively time-consuming, as in creating ground
truths for each of the frame of a recorded person manually, we have devised
two datasets: dataset containing synthetic data and dataset containing real
world data. Synthetic dataset contains data frame samples generated using
Blender [44], while real dataset contains data pre-recorded human poses using
two Intel Realsense devices.

8.4.3.1.1. Synthetic Dataset

To create synthetic dataset, we use MoVi [45] dataset as a base as it
contains a large library containing motion capture data from multiple camera
perspectives. Unfortunately, dataset contains no depth information; to solve
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this, we bind the motion capture data provided to the AMASS [46] triangle
meshes. An example of AMASS dataset can be seen in Figure 1.

In order to create the synthetic dataset from the motion captured models,
we render the depth maps from various angles by rotating the camera and the
human model itself. This is done to create multiple views of the same event
from a single motion capture file. The human model is rotated from [0°, 360°)
in 45°increments on Up (z) axis, whereas the camera itself is rotated in ranges
of [—35°, 35°] in the increments of 15°on Up (z) axis. The camera is placed
1.8 m away from person and 1.4 m above ground. This done so that the human
position relative to the frame is more in alignment with the real world depth
sensor data. The positioned model is then captured using raytracing, and the
exported depth frame is saved using OpenEXR [47]. This file format is chosen
as it does not have any type of compression and is linear and lossless; therefore,
itdoes not lose any depth information that a standard 8-bit channel image format
would provide. In addition to the rendered depth frame, we uniformly sample
2048 points of the surface mesh to create ground-truth pointclouds. An example
of resampled pointcloud can be seen in Figure 2.

Figure 1. MoVi dataset example. Motion capture pose applied to models provided
by AMASS. Same pose is applied to female and male body type.

205



Figure 2. An example of depth frame generated by Blender converted into
pointcloud using cameras intrinsic parameter matrix K.

In order to convert a pinhole typed depth camera frame into pointcloud,
we use intrinsic parameter matrix K (see Equation 1), whereby, applying
camera intrinsic to each of the pixels in the depth map, we are able to recreate
an undistorted pointcloud. The f, and f, denotes the image focal points,
while ¢, and ¢, is the sensor center point. The intrinsic parameters are applied
to the 640 x 480 depth frame using Algorithm 4, which maps each of the
depth pixels to one point in pointcloud. Points with zero depth can be filtered
out, while the rest can be resampled using Farthest Point Sampling [48] (FPS)
to desired resolution pointcloud.

0 c,

e
K=10 f, ¢f. (1)
0 0 1

Algorithm 4 Convert depth image to pointcloud
1: procedure TO_POINTS(w, h, f3, fy, ¢z, ¢y, D) > Converts depth D to

vertices
2: x40
3: y<+« 0
4: VvV« {0} > Create empty output vertex list
5: for x <w do
6: for y<h do
7: zi < D(x,y) > Get depth value from depth frame
8: i (v —¢p) - zi/ fa
9: yi < (y —¢y) - zi/ [y
10: insert (x;, y;, z;) into V
11: end for
12: end for
13: return V

14: end procedure
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8.4.3.1.2. Real World Dataset

For our real world dataset, we have captured multiple subjects performing
various tasks using two Intel Realsense devices. The first depth sensor (/ntel
Realsense L515) is positioned in, while the second depth sensor (/ntel
Realsense D435i) is positioned to 90° side of the subject. The subjects are
asked to perform these gestures while being filmed from both angles
simultaneously: standing in front camera raise the hand forward, place on top
of the head, touch the nose, move the hand to the side, raise the hand above
the head, or facing camera with the back raise the hand to the back. No
additional preprocessing of the camera depth frames is done outside of cutting
off anything further than 2.5 m away from the subject. The depth frame is
then converted into pointcloud using each of the sensors intrinsic parameters
and resampled using FPS to 2048 points. An example of resampled depth
frames from each of the devices can be seen below in Figure 3. As we can see,
the depth tends to be quite noisy when compared to synthetic, and this makes
the existing approaches fail completely or have very poor results when trained
on synthetic data.

Figure 3. An example of real world depth frame converted into pointcloud using
cameras intrinsic parameter matrix K.

8.4.3.2. Proposed Adversarial Auto-Refiner Network Architecture

Our proposed adversarial auto-refiner network architecture has three main
stages used for object reconstruction. Encoder/Refiner contains the first:
cleaning up and refining stage, it is responsible for cleaning out the noise from
the original input and capturing the most important features of the pointcloud.
The decoder contains two subsequent stages: coarse reconstruction and fine
reconstruction. These three stages are our deliverables and responsible for the
pointcloud reconstruction. In addition to these three stages, we also have an
additional discriminator network attached at the end of reconstruction that acts
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as a guide to clean up the noise from the real world depth sensor data and
make it synthetic-like without losing any of the input features. Overview of
the entire network architecture can be seen in Figure 4.

Encoder/Refiner Decoder

Depth
Frame | [
- Clean & Course Fine L
[ Pointcloud %4{ Refine | LReconsIruction H Reconstruction }74{ Discriminator

b

Camera
Intrinsics

Figure 4. An overview of our adversarial auto-refiner network architecture. It uses
captured depth frame and camera intrinsic matrix to convert depth information into a
pointcloud. Pointcloud is then fed into encoder stage. Extracted and cleaned up
features are sent to decoder where coarse and fine reconstruction stages take place.
The resulting fine reconstruction is then evaluated by the discriminator.

Once we have trained our artificial adversarial neural network, we are able
to perform sensor-to-screen reconstruction; see Figure 5 for full UML activity
diagram. To perform a reconstruction, firstly, we initialize the system by
loading the trained model weights and initialize the depth sensor; in our case,
this is an Intel Realsense depth camera sensor. Once the system is ready, we
retrieve a single depth frame, as we are not interested in the color information
of the captured frame. Afterwards, we filter out invalid pixels by setting all
pixels with depth over 2.5 m to zero. This is done to avoid irrelevant
background noise. Once we have the filtered depth frame, we convert it to
pointcloud using intrinsic camera parameters, and the resulting pointcloud is
then filtered again by discarding any of the vertices, in which distance is zero,
and flattening the input to a single dimension as the pointcloud itself is not an
unstructured data structure. The filtered pointcloud is thereafter downsampled
to 2048 points using FPS and used as an input in the refiner stage. Refiner
outputs input pointcloud features along with cleaned up pointcloud that is then
passed through the decoder network for object reconstruction. This gives the
final output of reconstructed human mesh with the density of 2048 points.

8.4.3.2.1. Refiner

The refiner architecture is our main contribution to the field of object
reconstruction. While the majority of the applications of adversarial neural
networks involve generation of new samples [49, 50, 51, 52], this can be done
either from random noise, hand drawn-input, etc. Very little research has
focused on refining the initial input without distorting the input. While there
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have been attempts at refining the synthetic data in order to make it similar to
synthetic [53], they still require some sort of knowledge of the given input, as
in the case of Reference [53], and it is the pupil direction. Our approach,
however, involves of refining real world data to make it more akin to
synthetic without knowing any correlation between synthetic and real world
data. The refiner network architecture can be seen in Figure 6. Our refiner
architecture uses the suggested PointNetFeat [21] pointcloud feature
extraction architecture directly connected to a fully-connected bottleneck
layer of size 256, followed by batch normalization in order to improve
generalization and reduce training times [54, 55], connected to non-linearity
function. For our non-linearity, we use Rectified Linear units [56] (ReLU) for
they have fast computation times and have been shown to achieve better
results when compared to other non-linearity functions, such as sigmoid.
Output feature vector is then connected a modified random grid (RandGrid)
decoder architecture, as suggested by Liu et al. [38], using 8 primitives for
reconstruction. The output pointcloud is them resampled using Minimum
Density Sampling (MDS) in order to more evenly distribute the subset
pointclouds. Our main modification to the random grid decoder consists of
having the uniform distribution for initial random positions be in range of
[—0.5,0.5] with the offset of input pointcloud center of mass, in addition to
the points being on all three axis instead of two. This has improved the
convergence by having the initial points more likely to be distributed around
the reconstructed object. Resampled pointcloud is part of the two outputs
provided by the refiner/encoder network. It acts as the comparison output for
our discriminator network and as part of feature vectors that are used for the
decoder. To obtain feature vectors from the refined pointcloud, we apply
additional feature extraction block as we did with original input. This gives us
two feature vectors of shape 256 that we combine into final feature vector of
shape 512 that is then used in the decoders’ reconstruction phases. For full
refiner architecture, see Figure 7.

- - Refiner Outputs
PoinNetFeat PoinNetFeat

Fully-Connected RandGrid Decoder Fully-Connected
Input > S— > > — Feature Vector
Batch Normalization MDS Batch Normalization

ReLU !U Cleanup Points

Figure 6. Refiner network architecture. For a given pointcloud, it outputs a cleaned
up pointcloud, in addition to a feature vector containing a combination of both
cleaned up and original feature vectors.
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8.4.3.2.2. Decoder

Our decoder network resembles Liu et al. [38] decoder architecture, with
the main modifications being in the random grid (RandGrid) decoder. Unlike
the paper suggested architecture, we have modified the random pointcloud to be
generated on all three axes, in the range of [—0.5, 0.5] with the offset of refined
pointcloud center of mass. The overview of the architecture can be seen in
Figure 8. The refiner output feature vector is passed to RandGrid decoder using
8 primitives for reconstruction, giving the reconstruction of coarse points. The
output coarse pointcloud is then merged with refined pointcloud instead of the
input pointcloud and resampled using minimum density sampling. Resampled
pointcloud is then passed through residual decoder (PointNetRes) giving the
final output of fine pointcloud reconstruction. For full decoder architecture,
see Figure 9.

Decoder Outputs

Refiner Outputs :
»  Course Poinis

- MDS - -
| Feature Vector I——bl RandGrid Decoder + » - » Fine Points
PointNetRes
Cleanup Points

Figure 8. Decoder architecture. Refiner feature vectors are used in order to
reconstruct the coarse human pointcloud. coarse features along with cleaned up
features are then resampled and passed through residual block, of which output is
fine-grained point reconstruction.

8.4.3.2.3. Discriminator

The main job of discriminator is to evaluate whether given input is either
synthetic or real input. Our discriminator is shown in Figure 10 below. We take
the output of the decoders fine pointcloud reconstruction and use that as an input
in the discriminator. The inputs are passed through feature extraction block
(PointNetFeat), which is subsequently connected to fully-connected layer. Our
fully connected layer only has an output of a single neuron that is then passed
through sigmoid function. The output of the sigmoid function indicates if the
generated pointcloud is synthetic (1) or if it is real (0). This is done in order to
make the input pointcloud as close to synthetic samples as possible as we only
have ground-truths for synthetic pointclouds, thus our only being able to train
the decoder on synthetic examples.
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PaointhetFeat
Conv 1D 2048x64
Batch Normalization
RelLU
Conv 1D 2048x128
Fine Points 2048x3 |—> Batch Normalization
RelLU
Caonv 1D 2048x1024
Batch Normalization
Max Pool 1024

FC1
Sigmoid

Figure 10. Discriminator architecture. Decoder fine pointcloud reconstruction is
used as discriminator input. It is passed through feature extraction block. Extracted
features are then connected to fully-connected layer, followed by sigmoidal function.

8.4.3.3. Training Procedure

To train our neural network, we have chosen a four phase approach:
encoder training, decoder training, discriminator training, and refiner training.
We have chosen four phased training approach as we have found the network
to be much easier to train this way, in addition to having much better
prediction results. Additionally, while training, we introduce augmentations
to the synthetic input in order to try and produce Realsense-like depth
deformities. This is done in two ways: either removing random patches from
the pointcloud or by adding wavelet disturbances to the pointcloud (see
Equation (2)). Wavelets have the period of w = [27, 327 and the amplitude of
A = (0,0.03]). There is a 75% chance of pointcloud having small patches
removed and 50% chance of it having wavelet deformities. These two types
of augmentations are expected to be cleaned up during the cleanup stage in the
refiner/encoder branch. In addition to these augmentations, there is a third
type of augmentation which involves adding random scale factor to the model.
This is done because real world people are different heights, while the
synthetic models only have single height subjects. Height augmentation also
has a 50% chance of applying height scaling in the range of [0.8, 1.8].

p(z,y,2) = (x+ A-cos(w-x),y+ A-sin(w-y), z). (2)

Phase I During first phase, we focus on passing the best weights to the
encoder to do this, in this phase we completely ignore the discriminator and
ignore its outputs. Instead, we train all three of the reconstruction stages
(cleanup, coarse and fine) to try and act as a regular auto-encoder by passing
through input values to output with. To compare the auto-encoder result, we
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need a loss function capable of comparing unstructured pointcloud data. One
of the most popular ones for this task is Chamfer distance due to its low
memory impact and fast computation. However, what we found is that the use
of Chamfer produces improper features by causing vertices to congregate
close to each other instead of spreading around the desired mesh properly.
Therefore, we have instead opted to use FEarth Mover’s distance (see
Equation (3)) along with suggested penalization criteria (see Equation (4)) in
Liu et al. [38], where d(u,v) is Euclidean distance between two vertices in
three-dimensional space; 1 is the indicator function used to filter which
shorter than A\l; with A = 1.5 as per suggested value.

~ ) 1
EMD(S,S) = min i 2; |z — p(x)|]2, (3)
EXP(S,S) = — Z > 1{d(u,v) > Aid(u,v). (4)

1<’L<K ('u, 7_)67’1)

During the Phase I training, our final loss function looks like Equation (5),
where Sclean is the result of the cleaning stage, Scoame is the result of coarse
stage, S fine 18 the result of fine point reconstruction, and S¢c,, is ground truth
for cleaned pointcloud, as the input pointcloud can have additional noise added
to it during augmentation. As per previous research, we kept v = 0.1 for the
expansion penalty factor. The network stays in Phase I training until €5, >
0.13; this training value was chosen during experiments as a good value to start
training next phase. Once this condition is triggered, Phase II of training starts.

€p1 = EMD(ScletMu Sclean) + EMD(Scleana Scoarse)+
EMD<Sclean7§fine)+' (5)
v (EXP<Sclean7 Sclean) + EXP<Sclean> Sfine))

Phase Il During this training phase, we focus on training the decoder itself;
therefore, during this stage, no modifications to the network weights are
applied to the refiner or discriminator branches. In addition, unlike in the
previous phase, we only train on synthetic dataset. When Phase II condition is
triggered for the first time, we need to apply some weight re-initialization to
the network in order to clean up previous training phases potential falls into
local minimums. This is done to clear all the decoder weights acquired during
Phase I training. To drop the weights, we re-initialize all the decoder weights
using Xavier initialization [57] and biases with uniform distribution. In
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addition, we drop any optimizer state that has been built up to this point for
both encoder and decoder optimizers. During Phase II, only decoder weights
are being modified in order to build a viable profile for both real and synthetic
pointcloud reconstructions during Phase III training. Because only decoder
weights are being trained during this phase, our loss equation can be
simplified to Equation (6), where S, is the synthetic ground truth for the
synthetic input. Phase II is trained while ego > 0.08; once loss drops below
the threshold, Phase III training starts. Like with Phase I, the threshold value
has been chosen experimentally.

€po = EMD(Sgta gcoarse) + EMD(Sgt> Sfine)"_

. 6

Y EXP(Scleana Sfine)- ( )
Phase III During this phase, we are concerned with training the
discriminator to differentiate between real and synthetic input predicted
pointclouds. Training discriminator up until this point makes the weights very
unstable; for this reason, training it was relegated to its own phase. The
discriminator is fed output of the decoder branch fine pointcloud and the
output is either 1 for synthetic dataset element or O for real dataset element.
Therefore, as loss function, we are able to use binary cross entropy; see
Equation (7) below. Discriminator is trained until eg3 < 0.05, then the final
training phase can begin.

N
eos = BCE(y,§) =Y 4 -log(y:) + (1 —4i) - log(1 — ;). (7)
1=1

Phase IV During the fourth and final phase, the actual adversarial training is
performed for pointcloud refinement. Because we want our training to start
afresh, we drop all previous optimizer states. This helps to kick-start the
training in case optimizers have built up local minima states. During the
adversarial training phase, we train on both synthetic and real datasets.
Synthetic dataset is used to further enforce the decoder state and to reinforce
discriminator, while real data is used to update the refiner/encoder weights
and to reinforce discriminator. Phase IV consists of three different steps for
each batch that is being trained with the weights being updated separately.
The first step of Phase IV reinforces the entire network using the synthetic
dataset, for loss function for step one see Equation (8). The second step of the
phase involves training refiner using adversarial loss, where the network
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attempts to predict such a pointcloud for real world data that the discriminator
would be fooled into thinking that this is a synthetic data sample. During this
step, only the refiner weights are being updated; the discriminator is left
untouched, and only its loss function is used (see Equation (9)). In addition,
we do not want the refiner to lose the shape of the point cloud, and, for this
reason, we constrain it with pointcloud loss in relation to the input frame with
a factor of @ = 0.4, the value of which was chosen experimentally. This
allows the pointcloud to gain adversarial properties and actually refine the
model without losing the underlying shape. And, finally, we reinforce the
discriminator to recognize the real dataset pointclouds from synthetic (see
Equation (10)).

€d4a = EMD(Scleana gclean) + €p2 + €a3, (8)

Epgp = A+ EMD(Scleana Sclean)+

. 9)
v EXP(Scleana Sfine) + BCE<1 - y’z@)’

€Epdec = €3- (10)
8.4.4. Results

The main purpose of our approach is to reconstruct self-occluded human
body shapes using real world depth sensor data. However, it is not possible to
objectively measure the achieved results for real world data as we have no
way of comparing ground truth with prediction, no such ground truth
pointclouds exist. For this reason, we will only objectively measure the
reconstruction quality using synthetic dataset, while the evaluation of the real
world data will be evaluated using expert knowledge. For evaluating synthetic
dataset, we will use two quality metrics Chamfer (see Equation (11)) and
Earth Mover s distance. Results for synthetic dataset reconstruction are shown
in Figure 11.

€a(S, ) =

<|S| meHx yll5 + me“x — 9| ) (11)

yES
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Figure 11. Reconstruction similarity using both Earth Movers Distance and
Chamfer Distance. Lower values are better.

To compare our approach to other state-of-the-art research using both
Earth Mover’s and Chamfer distance metrics, from Table 2, we can see that
the other approaches, without modifications, completely fail when attempting
to deal with our AMASS dataset, despite having comparable results (Liu et al.
[38]) when applied ShapeNet dataset to our results with AMASS dataset.
Unfortunately, we cannot compare our approach against ShapeNet dataset as
our suggested approach is meant for the synthesis of real-world object data for
reconstruction. Comparing against it would require collection of a real world
ShapeNet-like dataset using depth sensors, in addition to generation of
synthetic frames.

Table 2. Comparison of different reconstruction method metrics for different
reconstruction methods and ours. Our approach when applied to AMASS dataset has
very similar metrics to state-of-the-art approaches on ShapeNet datasets, whereas
other methods completely fail when reconstructing AMASS dataset. Our method is
not applicable to ShapeNet as our data collection and trainign process is more
complicated.

ShapeNet AMASS
Method EMD CD EMD CD
PointNet w/ FCAE [21] 0.0832 0.0182 33806 4.9042
PCN [36] 0.0734 00121 3.0456 4.0955
AtlasNet [37] 0.0653 00182 2.0875 64343
MSN [38] 00378 00114 11525 0.8016
Our method NA  NA 00603 0.0292
(Cleanup)
Our method NA  NA 0059 0.0790
(Reconstruction)

Additionally, we inspect synthetic and real world data results visually
using expert knowledge. Figure 12 depicts synthetic models input (orange)
being compared side by side. As we can see, the majority of the
reconstruction flaws occur at the ends of the limbs (both hands and feet) due
to those features requiring much finer granularity. Alongside ground-truth to
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prediction side by side comparisons, we perform input-to-prediction overlap
visual inspection as it helps us see to better compartmentalize what features
were given as the input to neural network and what it had to make a guess.

Figure 12. Comparison of ground truth (left/orange) and prediction (right/teal) from
different viewpoints.

From Figure 13, we can see that, despite being given very little input
(orange) about legs, our network has managed to predict (teal) the entirety of
its orientation. As we can see, the network has managed to predict and
reconstruct the entire human posture, while being given less than half of the
body features. Finally, we compare real world data reconstruct in comparison
to the input depth (see Figure 14).
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Figure 13. Stacked views for synthetic input (orange) and its prediction (teal).

As we can see, the network has had no issue in reconstructing the human
posture and cleaning out the majority of deformations. The biggest defects for
real world data reconstruction are where the depth has large deformities; for
example, in the top row, we can see that, at the end of the hand, there is an
extra lump that was captured by the depth sensor. This has caused the
reconstruction prediction to fail cut off part of the hand. Additionally, there
visually seem to be small scaling discrepancies between input and
reconstruction, although these discrepancies are somewhat hard to evaluate,
even with expert knowledge; regardless of that, we can safely assert that the
addition of adversarial refinement to the network has allowed the network to
understand and reconstruct real world depth sensor data, whereas other
approaches have failed without. Finally, we have tried applying our approach
to ITOP dataset. However, due to very different noise model and point
distribution of Microsoft Kinect sensor when compared to Intel Realsense, the
reconstruction results proved to be inconsistent. Having the model trained
with /TOP dataset would greatly improve the results. Unfortunately, the
dataset has additional background noise that we were unable to isolate to be

220



used during the training process. Further research could improve our model
by making it compatible with Kinect-like device noise; however, due to the
Microsoft Kinect being a discontinued product, we feel like pursuing this is
not as useful.

Figure 14. Stacked views for real depth sensor input (orange) and its prediction
(teal). Real input is quite distorted due to depth sensor inaccuracies, and the cleanup
stage manages to clean up the majority of the noise.

8.4.5. Discussion

The main of advantage over other state-of-the-art approaches involving
object reconstruction, is that our three-staged neural network architecture is
capable of reconstructing full human body postures with no external
interference using real world depth sensor frames. The addition of the cleanup
stage has allowed our approach to not only denoise the input data, but it also
acted as real world input refinement, which has allowed us to train the
network without actually having ground truths for it. Furthermore, our
solution, unlike voxel grid-based approaches, does not require us finding the
objects’ transformation matrix in order to scale and translate it to place it in
3D space. Instead, it is easily adaptable to existing 3D applications, such as
AR or VR. Finally, while our solution had no issue in reconstructing the
general objects’ shape with less than half of the object visible, finer details,
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like palms and fingers, tend to be too small features for reconstruction,
causing ambiguities and bad reconstruction results.

8.4.6. Conclusions

We proposed three-staged adversarial auto-refining reconstruction
network, which is capable of reconstructing human body using both: synthetic
depth inputs and real world depth sensor data. The network has achieved
Earth Mover’s and Chamfer distances of 0.059 and 0.079, respectively,
indicating good reconstruction quality, when compared to other
state-of-the-art methods. Additionally, when comparing the reconstructed
pointclouds visually, it is clear that the network manages to meet the
expectations of reconstructing both synthetic and real world samples with
most of the defects being concentrated at the ends of the limbs, or in the case
of real world data, large defects in the depth map can cause defects in the
reconstruction even when cleaning. This is likely due to constraints of refiner
attempting to retain the original shape of the object.

Finally, we have proposed a four-phased training approach for training the
adversarial auto-refiner. The addition of adversarial refinement to the network
has allowed our approach to work with real-world depth sensor data, which
other approaches are unable to do.
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Appendix A. ABBREVIATIONS AND TERMS

Object reconstruction/completion — a type of method which performs
attempts to fill in the missing object information that was occluded either by
another object or by itself, e.g., self-occluded back side of the object;

SLAM — simultaneous localization and mapping;

Point cloud — an unstructured data type used for three-dimensional object
representation using points in space;

Point cloud fusion — method based on the process in which multiple point
clouds from several perspectives are fused into one final point cloud result. It
is generally used in combination with SLAM type algorithms;

Voxel — volumetric pixel. A type of a data point that represents a point in
three-dimensional space that has a defined volume;

Voxel grid — a structured data type used for three-dimensional object
representation using volumetric points in space;

EMD — Earth Mover’s distance;

CD — Chamfer distance;

Unsupervised learning — a type of machine learning algorithms which
attempt to analyze an unlabeled dataset in order to find the hidden patterns
without additional human intervention;

Adversarial learning — a type of machine learning algorithms where two
separate machine learning algorithms, generally neural networks, attempt to
deceive each other;

Convex hull — represents the smallest convex shape that can encompass a
given three-dimensional object;

Temporally shifting/morphing — objects that can change in the dimension
of time;

LSTM — long short-term memory;

Generative Neural Networks — a type of neural network which is capable
of generating new data samples from a given input, generally a random noise;

GANN — generative adversarial neural networks;

Object mask — an overlay that when combined with the original image
would only segment/extract only the object contained within the masked region;

Intrinsic matrix — a matrix which describes a pinhole type camera or
sensors, e.g., focal point, skewing, center offset;

Latent feature vector — a vector describing the result of a neural network’s
hidden layer;

ReLU — rectified linear unit;

Dead neurons — neurons which for any given input always output a zero,
generally a downside found in the rectified linear unit type activation function
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using neurons;

FC — fully-connected;

Auto-encoder — a type of a machine learning approach where an input is
passed through a bottleneck while retaining the output value very similar to that
of the input;

GPU — graphics processing unit;

TPU — tensor processing unit;

Rol — region of interest;

Bounding box — a region in two-dimensional or three-dimensional space
that describes the minimum object bounds;

FPS — farthest point sampling;

Residual connection — a type of neural network connection that allows the
gradient flow to skip connections without having to flow through entire network
during back-propagation;

EXP — expansion penalty;

FPS — frames per second.
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Appendix B. SYMBOLS AND NOTATION
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> — comment;

< — empty set;

< — value assignment;

€ —in set;

(?) — branch selection;

@ — binary mask multiplication;
@ — residual connection;

— — negate;

N — logical and.
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