
Received February 12, 2022, accepted March 19, 2022, date of publication March 25, 2022, date of current version March 31, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3162227

Solidity Code Generation From UML State
Machines in Model-Driven Smart
Contract Development
MANTAS JURGELAITIS , LINA ČEPONIENĖ , AND RITA BUTKIENĖ
Department of Information Systems, Faculty of Informatics, Kaunas University of Technology, 51368 Kaunas, Lithuania

Corresponding author: Mantas Jurgelaitis (mantas.jurgelaitis@ktu.lt)

ABSTRACT For the development of blockchain smart contracts, a structured approach based on the princi-
ples of the Model Driven Architecture can be beneficial and facilitate the implementation of smart contracts.
This paper presents such an approach, which, in combination with Unified Modeling Language (UML)
Class and State machine diagrams, allows the smart contract structure and behavior logic to be modeled in
several abstraction layers. This paper delves into details on how the model-to-model transformations from
the specified Blockchain Platform Independent Model (PIM) with specified state-like behavior can be used
to produce a Solidity Platform Specific Model (PSM). Subsequently, we elaborate on how the Solidity PSM
is used for Solidity smart contract code generation by employing model-to-text transformations. The paper
also demonstrates the process of our proposed transformations and code generation using smart contract
code examples from Solidity documentation. Based on the examples, a Blockchain PIM is specified and
transformed to Solidity PSM, which is then used for Solidity smart contract code generation. The generated
smart contract code is then compiled, deployed on the Ethereum blockchain JavaScript virtual machine,
and compared to the original smart contract code in terms of Solidity code metrics, similarity scores, and
execution costs. The evaluation results indicate that our approach could be successfully used to model and
later generate smart contract code.

INDEX TERMS Blockchain, model driven architecture, model-driven development, smart contracts,
solidity, state machine, unified modeling language.

I. INTRODUCTION
Blockchain technology enables the utilization of distributed
networks for decentralizing data storage and promotes trust
and transparency by employing common ledger and consen-
sus algorithms. Currently, blockchain technology is being
used to decentralize various business processes using pro-
grams deployed on a blockchain network called smart con-
tracts [1]. These smart contracts allow automatic execution,
control, and documentation of relevant events and actions [2].
Although blockchain technology and smart contracts are
being integrated into various information systems, the adop-
tion rate is still relatively slow [3]. The use of blockchain
comes with a number of advantages, but its implementa-
tion is accompanied by development difficulties, such as
dealing with the immutability of the smart contract, the

The associate editor coordinating the review of this manuscript and

approving it for publication was Bing Li .

immaturity of the technology, and its rapid change. Con-
sequently, blockchain would be made more accessible and
widely used by providing tools for the more straightforward
implementation of blockchain solutions [3].

Unfortunately, there is no standard way to develop decen-
tralized solutions for business processes, making the smart
contract development process quite difficult and ambiguous.
The solutions are prone to human errors since, unlike tra-
ditional software development, the software code deployed
to the blockchain cannot be modified further. Due to the
architectural differences with other technologies, especially
the immutability of smart contracts, code copying and reusing
have become prevalent in the development of blockchain
solutions [4]. Continuing the trend, the community-based
project EIP [5] aims to provide smart contracts standards as
building blocks or code samples to deal with application-
level conventions, such as token standards, name registries,
wallet formats, etc. These standardized code samples could,

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 33465

https://orcid.org/0000-0003-2221-0765
https://orcid.org/0000-0002-6812-0215
https://orcid.org/0000-0003-3250-4599
https://orcid.org/0000-0002-4780-1708


M. Jurgelaitis et al.: Solidity Code Generation From UML State Machines in Model-Driven Smart Contract Development

in turn, help developers create their custom solutions. EIP
participants like OpenZeppelin [6] provide reusable Solid-
ity components or implementation examples of collectively
developed ERC standards. The provided standard code sam-
ples can be used in their current state or adapted for a specific
application. This adaptation is currently performed manually,
requiring the developer to invest time in code understanding,
modification, and testing. The process could be alleviated
using the principles of model-driven development (MDD)
and code generation [7]–[9].

The principles ofmodel-driven development are elaborated
in the Model Driven Architecture (MDA) framework pro-
posed and standardized by OMG [10]. MDA provides guide-
lines for structuring the development process by utilizing
models at different levels of abstraction. MDA encompasses
three different models: Computation Independent Model
(CIM), Platform Independent Model (PIM), and Platform
Specific Model (PSM). These models are transformed in the
sequence provided and ultimately used to generate platform
specific source code [11]. Combining the MDA principles
and the smart contract development practices of using stan-
dard code samples, a structured development approach can be
provided, which can facilitate the implementation of smart
contracts and decrease the number of errors arising during
the manual development. Furthermore, according to MDA,
PIM can be developed to be generic enough to include fun-
damental principles of blockchain technology and allow the
transition to PSMs for different implementation platforms
when required.

The official standard for modeling in MDA is the Uni-
fied Modeling Language (UML) [12], which encompasses
several types of diagrams for specifying the structure and
behavior of the system under development. UML can be
successfully used for smart contract modeling, which can
increase the readability, comprehensibility, and verifiability
of the developed software. The most persuasive example of
the usefulness of UML in smart contract development can be
the inclusion of the sol2uml tool in the Etherscan environ-
ment [13], which enables reverse engineering of the deployed
smart contract into the UML class diagram to help the devel-
oper understand the structure of the analyzed smart contract.
Although structural UML diagrams, like class diagrams, can
facilitate the generation of smart contract boilerplate code
for selected implementation language, the behavioral UML
diagrams, like sequence, activity, statemachine diagrams, can
be even more useful in the generation of complete executable
smart contract code.

Another important aspect for facilitating smart contract
development is the application of reusable architectural solu-
tions, called design patterns, which assist developers in solv-
ing common architectural problems. Various smart contract
design patterns exist [14] and can be used in manual smart
contract development and incorporated at a higher level of
abstraction – UML models. Using the smart contract design
patterns together with MDA principles, structural boilerplate
code could be generated and behavioral code samples adapted

and integrated into the software code. One such pattern, the
state machine pattern [15], enables a smart contract to go
through states by exposing different functionality based on
a specific state. Similar software patterns are quite common
in software engineering, and proposals for utilizing state
machine for smart contract development purposes already
exist [16]–[18], together with approaches that use a state
machine to generate smart contract code [19], [20].

For smart contracts, the concept of state is an important
construct [15] and in the development of smart contracts,
state machines can be useful in many aspects. Moreover, state
machines are already used in the verification of smart con-
tract behavior against functional requirements [17], detecting
security issues [16], avoiding deadlock scenarios, detecting
vulnerabilities, and facilitating the specification of smart con-
tract properties [21]. The state machine can be represented
and modeled using various notations, amongst which are
UML state machine diagrams. The UML state machine dia-
gram can define event-driven behavior by specifying different
states and transitions between them. The UML state machine
diagram can be part of the overall smart contract specification
in PIM or PSM according to MDA principles [22]. Thus,
UML models, code samples, and software design patterns
can be combined to produce code and facilitate the process
of smart contract development.

Our research aims to demonstrate that the principles of
MDA and UML diagrams can be successfully applied to
facilitate the development of smart contracts for blockchain.
In this paper, we present the algorithms for transforma-
tion from the Platform Independent Model (PIM) to the
EthereumSolidity Platform SpecificModel (PSM) and Solid-
ity smart contract code generation from the specified PSM.
Our approach in combination with UML allows the smart
contract structure and behavior logic to be modeled in a
few different perspectives and combined to generate code.
The algorithms developed are part of a broader methodol-
ogy under development [23] that encompasses the whole
MDA process of transformations from CIM to PIM, then
to PSM, and finally to source code for a chosen blockchain
platform. Adherence to the MDA principles allows extending
the approach with different technologies at the PSM level.
In our previous work [24], we demonstrated the approach
to generate the Go chaincode source code from PSM for
Hyperledger Fabric.

The goal of this paper is to place a greater focus on
the Ethereum platform and propose a Solidity code gen-
eration solution based on MDA and a set of UML dia-
grams. Our approach is based on MDA for enabling the
developers to focus on the structural and behavioral design
of smart contracts, rather than on technical details of the
specific blockchain platform. Additionally, we aim to facil-
itate common understanding of smart contract elements
amongst different blockchain platform developers by pro-
viding guidelines for development of Blockchain Platform
Independent Model. A greater focus is put on specification of
smart contract behavior using UML state machine. The main

33466 VOLUME 10, 2022



M. Jurgelaitis et al.: Solidity Code Generation From UML State Machines in Model-Driven Smart Contract Development

contribution of the paper is the outlined algorithms for model
transformations and generating executable smart contracts.
The generated code encompasses not only the structural
elements in terms of boilerplate code, but also additional
behavioral logic, like Solidity conditional statements, state
declarations, modifiers, and Solidity specific state machine
design patterns. This facilitates the development of smart
contract, which is more resilient, as the contents of the con-
tract are revised in graphical form more than once during the
transformations and furthermore the contract can be straight-
forwardly transferred to a different platform if required.

The proposed algorithms were implemented in Eclipse
ATL [25] and Acceleo [26] tools for model-to-model (M2M)
and model-to-text (M2T) transformations and used to gen-
erate three different smart contracts, based on the exam-
ples provided in Solidity documentation. The generated code
was successfully deployed on a sandbox blockchain in a
JavaScript virtual machine environment and compared with
the original smart contract counterparts.

The remainder of the paper is structured as follows. In the
second section, the related work is overviewed. In the third
section, a proposal is outlined, Blockchain PIM to Solidity
PSM transformation, and Solidity smart contract code gen-
eration algorithms are presented. The fourth section presents
the results of the application of the algorithm implementation
to specific smart contract specifications and the generated
code evaluation metrics. Lastly, conclusions and future work
are outlined.

II. RELATED WORK
The area of applying model-driven development techniques
for smart contract code generation has been under active
development during recent years [8], [27], [28]. Model-
driven approaches are applicable in smart contract devel-
opment, as they provide a valuable abstraction [27], [29].
This abstraction not only facilitates the understanding of
software, but also helps to introduce validation/verification
at earlier stages. Additionally, the use of models at different
abstraction levels enables the transformation of the same
model into source code for multiple platforms, which can
reduce development times and costs [11], [18]. One of the key
arguments for usingMDD and code generation approaches in
smart contract development is blockchain immutability and
the need to verify smart contracts before deployment. Once
deployed, the smart contract code cannot be updated [8], [30].

Smart contract development is a relatively novel field,
so no unified approach exists. In recent years, model-driven
development approaches have become more prominent for
smart contract development, as they provide systemized
design practices. The scientific community aims to pro-
vide a unified software development lifecycle, as in terms
of smart contract development, Software Development Life
Cycle (SDLC) phases are often unlinked [18].

The focus on the systemized process of smart contract
development is placed in [27]. The authors propose the Smart
Contract Engineering (SCE) approach, which provides the

developer with the guidelines for designing, verifying, auto-
matically generating, and testing the smart contract code.
In this approach, ATLmodel transformations are proposed for
transformations between formal models and for generating
smart contract source code. Whereas the authors describe the
method in detail, the presented case study is focused only on
the formal verification of smart contract code using an event-
based approach.

Another proposed approach for a structured development
process for DApps (decentralized applications, which encom-
pass smart contracts) is presented in [29]. The authors devel-
oped an Agile development process called ABCDE (Agile
Block Chain DApp Engineering) for implementing DApps
for blockchain. The approach is tailored for the Ethereum
platform, Solidity programming language. UML class, use
case, and sequence diagrams are used to describe smart con-
tract and system actor interactions. Moreover, UML class and
sequence diagrams are extended by using specific Solidity
stereotypes. ABCDE requires the developer to outline system
goals, determine actors, write user stories, develop use cases,
divide the functionality between the smart contract and appli-
cation as well as to specify the smart contract structure. Addi-
tionally, ABCDE provides a security checklist to evaluate
security and gas consumption costs during the development
of the DApp.

In addition to the proposed structured approaches, numer-
ous less broad proposals exist that do not cover the entirety
of SDLC but try to incorporate different existing notations
for modeling the smart contract structure and behavior.
The proposals encompass the usage of UML class dia-
grams [31], [32], UML sequence diagrams [29], UML state
diagrams [20], UML deployment diagram [33], finite state
machines (FSM) [28], BPMN [30], [34], [35], and even
custom domain specific languages (DSL) [36]–[38] in smart
contract development. In our research, we focus on trans-
formation from models to smart contract code, and for this
reason, we have analyzed in more detail several of the afore-
mentioned proposals [30], [34], [35], [37], [39] that place a
heavier focus on the usage of models for smart contract code
generation purposes.

iContractML [37] provides a DSL for modeling the smart
contract structure and the generation of smart contracts for
multiple platforms, including Ethereum, Microsoft Azure,
and Hyperledger Composer. Authors use Acceleo MTL
(Model to Text Transformation Language) for code genera-
tion purposes and provide transformation templates for each
analyzed blockchain implementation platform.

An approach for auto-generating smart contracts is pre-
sented in [39] that uses OWL (Web Ontology Language)
ontology specifications and SWRL (SemanticWeb Rule Lan-
guage) rules to specify transaction-focused systems. Domain
specific ontologies and semantic rules are used for defining
the additional smart contract constraints and generating smart
contracts in the Go programming language.

The model-driven approach based on DSL DasContract
is presented in [35]. DSL is used not only to define smart

VOLUME 10, 2022 33467



M. Jurgelaitis et al.: Solidity Code Generation From UML State Machines in Model-Driven Smart Contract Development

contract structure, but also to apply an extended subset
of BPMN for smart contract behavior specification. The
algorithm for generating smart contract code tailored for
non-fungible tokens is presented using the specified DSL
model as an input.

Catterpillar [34] is a BMPN execution engine that encom-
passes a set of tools for compiling, deployment, and moni-
toring of business processes on the blockchain. Catterpillar
provides a BPM platform that emphasizes custom workflow
execution on the Ethereum blockchain.

Another BPMN based solution is Lorikeet [30]. The Lori-
keet tool encompasses business processmanagement and pro-
vides an asset registry generator for creating smart contracts
based on registry models. Both business processes and asset
registries are integrated for the decentralization of fungible or
non-fungible asset management.

Other approaches employ various UML diagrams for code
generation. The usage of UML class diagrams [31] limits
the generation of smart contracts by providing only boil-
erplate source code. Other existing proposals try to incor-
porate behavioral diagrams, such as UML state machine
diagrams [20], for smart contract code generation. As state
machines are similar, we present in more detail the proposed
methods that incorporate UML state machines [20], transition
systems [21], FSMs [40], and Petri Nets [41] in smart contract
behavior specification for code generation purposes.

Transition systems (discrete systems consisting of states
and transitions) are used to generate Solidity smart contracts
in the VeriSolid tool [21]. VerySolid allows to define smart
contract variable declarations, expressions, and event, return,
if, loop, and compound statements. The VeriSolid generator
can generate smart contract constructor, fallback functions,
and introduce an additional state to denote the moment the
smart contract is transitioning between the states.

The toolset for finite state machine synthesis called
EFSM [40] is used to create finite state machines from LTL
traces and a set of test scenarios. The generated FSMs are
then augmented with state and action definitions and further
used to generate Solidity code [19]. Although the proposed
solution demonstrates the suitable approach for using formal
specifications in smart contract development, the authors
suggest that amore expressive formal system should be devel-
oped in the future.

In [42], the MDA framework is used as the basis for the
structured development method of smart contracts. Based on
MDA, the author establishes three models at different levels
of abstraction. In the first model (CIM), ADICO (attribute,
deontic, aim, condition, or else) statements are employed.
On the basis of ADICO statements, a set of transitions for the
FSM is created in the second model (PIM). In the third model
(PSM), the FSM is extended by the contract variables and
transitions; specific design patterns for access control, lock-
ing, transition counter, and timed transitions can be applied.

A graphical modeling tool is presented in [41] that allows
modeling Petri Nets for smart contract generation purposes.
Smart contract workflows can be modeled in Petri Net

Markup Language, simulated, and formally verified before
translation into smart contract code. Petri Net transitions
are extended with guarded commands that represent busi-
ness logic. The framework then maps transitions, places,
and guarded commands to global variables and functions
that implement the execution logic of transitions. The pre-
sented approach capabilities are demonstrated by generating
Solidity smart contract code, but the authors state that the
same principles can be applied to support other blockchain
platforms.

In [20], a model-driven engineering approach is pre-
sented to generate Solidity smart contracts from UML state
machine diagrams, placing greater emphasis on IoT and
cyber-physical systems (CPS). CPSs are considered specific
and complicated, as they are dynamically composed of smart
devices and interconnected edge and cloud services, introduc-
ing additional dependability issues and cyber security risks.
The authors choose to express the state of cyber-physical
systems by employing UML state machine diagrams. UML
elements are mapped to Solidity language constructs for
code generation and verification purposes. Like FSM-based
approaches, this approach enables the definition of states and
transitions with guards and supports composite and history
states. The provided proof of concept Solidity smart contract
is generated for the Ethereum platform.

Our approach combines a clearly defined MDA frame-
work and application of UML throughout the design process
to ensure a smoother transition between different levels of
abstraction via model transformation techniques. We utilize
UML State machine diagram for defining smart contract
behavior, ultimately resulting in generated smart contract
code which includes not only the structure of smart contract,
but also behavior for a chosen blockchain platform. Thus
our approach is closely related to [20], [27], [29] in terms
of application of model-driven development, usage of UML,
and employment of state machines. Similarly to [42], MDA
is used to define three models at different levels of abstrac-
tion that are ultimately used to generate code for different
blockchain platforms. However, in our proposed solution for
PIM and PSM, we opt out to use UML notation, as recom-
mended by OMG [10], instead of relying on FSMs to model
smart contract behavior. In our approach, the structure of the
smart contract is specified using a UML class diagram, and
the behavior can be specified using state machine diagrams.
Similarly to [20], we also employ a UML state machine
diagram to model the simple states, transitions, and guard
constraints of the PIM smart contract.

Although the principles presented in our approach resem-
ble the ideas from the related works, they differ from
our approach in several key aspects. Although MDD is
used extensively in [27] and [29], the models are not
used to directly produce software artifacts applicable in
the development of smart contracts. Meanwhile, proposals
like [30], [34], [35] employ a modelling language (BPMN),
but instead of generating code as in our approach, they rather
develop a BPM engine, which executes processes and uses

33468 VOLUME 10, 2022



M. Jurgelaitis et al.: Solidity Code Generation From UML State Machines in Model-Driven Smart Contract Development

the custom generated smart contract registries to store data
on a blockchain. In [37], [39] the modeling principles are
also used, and code is generated, but the new modeling nota-
tions are proposed and employed to produce smart contract
code, instead of relying on generalized modelling language
like UML, as our process does. Furthermore, a partially
MDA-based proposal in [42] supports Solidity code gener-
ation, which does not employ model transformations from
PIM to PSM, and thus the capability to extend the method to
support another platform according to MDA principles is not
available. In comparison to [42], our proposed method pro-
duces not only structural code elements (like variables, func-
tion headers), and state machine pattern specific elements
(like State enumeration, the timedTransition modifier), but
also contract events and contract constructor, modifiers for
recurring guards, as well as atStatemodifier, thus supporting
a more extensive code generation.

In the upcoming section, we will detail our proposal and
explain the details of the proposed solution to generate Solid-
ity smart contract code.

III. MDA BASED SOLIDITY SMART CONTRACT
DEVELOPMENT
MDA is based on transformations between models, which
enable moving from one abstraction level to another. This
paper focuses on transformations from PIM to PSM for
Ethereum Solidity and from Solidity PSM to smart contract
Solidity code. The general process encompassing our pro-
posed transformations is presented in Fig. 1. The process
consists of three main steps: the development of Blockchain
PIM, the transformation from PIM to Solidity PSM, and the
transformation from Solidity PSM to Solidity smart contract
code. For the implementation of transformations,metamodels
for the PIM, Solidity PSM, and Solidity code are defined.
Furthermore, algorithms are provided to perform both trans-
formations. The final result of the transformations is the smart
contract code, which can be compiled and executed on the
Ethereum blockchain.

FIGURE 1. The MDA based process of Solidity smart contract code
generation.

In MDA, PIM is used to capture essential details of the
system under development without elaborating the specifics
of the implementation technology platform of choice. In our
approach, Blockchain PIM (hereafter referred to as PIM) is
used to capture the smart contract details while remaining

independent of the blockchain implementation platform.
Our PIM is specifically intended for blockchain and smart
contract development and captures common structural and
behavioral features that can be further translated into dif-
ferent blockchain platform implementations. Following the
MDA principles, our proposed PIM must be specified using
UML. The PIM metamodel is based entirely on the UML
metamodel [12] and only includes two smart contract specific
elements: an additional Datatype (address) and an additional
stereotype, which denotes the financial context (�pay�).
The proposed PIM encompasses several types of UML dia-
grams: Class diagram for smart contract structure specifi-
cation, State Machine diagram for smart contract behavior
specification. In the PIM, the Class directly contained in
the PIM package is treated as a smart contract. It can have
properties, operations, and owned classifiers that define the
smart contract structure or enumerations. In order to describe
a smart contract behavior, the State Machine can be spec-
ified, which has to be owned by the smart contract class
as its Behaviored Classifier representation. The developed
PIM is further used as an input for the transformation to
PSM. Since we focus on the Ethereum platform, in the next
section, we present the Ethereum Solidity PSM metamodel
and elaborate on the process of how the transformation to
Solidity PSM is performed.

A. TRANSFORMATION FROM BLOCKCHAIN PLATFORM
INDEPENDENT MODEL TO SOLIDITY PLATFORM SPECIFIC
MODEL
As the proposed Blockchain PIM defines the input for the
PIM to PSM transformation, the Solidity PSM is the output.
Therefore, we have defined the Solidity PSM metamodel,
which is based on the UML metamodel, and extended it with
Solidity specific stereotypes (Fig. 2). The introduced stereo-
types extend the application of different UML elements,
like Class, Property, Operation, Parameter, etc., by defining
Solidity specific concepts as stereotypes, e.g., contract, struct,
enum, variable, function, etc. Furthermore, the Solidity PSM
metamodel includes a set of additional Solidity Datatypes,
which will be further mapped to Solidity code (uint, string,
bool, address, etc.). Solidity PSM consists of UML Class and
State Machine diagrams, the very same types of diagrams as
used in Blockchain PIM. PSM Class diagrams represent the
structural view of the model and, during transformation, are
enriched not only with Solidity specific types but also with
additional information extracted from PIM State Machines.
Both PIM and PSM smart contracts are specified using State
Machines for capturing relevant States, Transitions, Tran-
sition Guards, Call Events, and Pseudostates. PSM State
Machines differ from PIM State Machines since, during the
transformation from PIM to PSM, some of the State Machine
elements are modified: any recurring guards Constraints of
Transitions are extracted and transformed to function mod-
ifiers, any Time Events used in Triggers are substituted by
Guard Constraints, and any Time Expressions now used in

VOLUME 10, 2022 33469



M. Jurgelaitis et al.: Solidity Code Generation From UML State Machines in Model-Driven Smart Contract Development

FIGURE 2. Solidity PSM metamodel (based on UML metamodel).

transition guards are substituted by Solidity global variable
block.timestamp.

The algorithm for the transformation of PIM to PSM is
presented in Fig. 3. In the first step of the algorithm, the main
PIM Class (which is owned directly by the PIM package)
is transformed into the Ethereum Solidity smart contract by
creating a copy of the PIM Class in PSM and applying the
�contract� stereotype. Similarly, nested PIM classifiers
are transformed into PSM classifiers. Based on the nested
classifier type, either the PIMClass is transformed into a PSM
Class with a�struct� stereotype applied, and each Property
of the nested Class is transformed into the PSM �struct�
Class Property with a �member� stereotype, or the PIM
Enumeration with its literals is transformed into the PSM
Enumeration with the�enum� stereotype. Then, each PIM
Property is transformed into a PSM Property with applied
stereotype�variable� having an appropriate Solidity PSM
datatype. Moreover, if any Property is found in PIM that
describes a set of Elements, a corresponding PSM Property
with stereotype �mapping� is created. The �mapping�
PSM Property is created to include two qualifiers: a type and
a key. Furthermore, the PIM Operations are transformed into
PSM Operations with a specified �function� stereotype.
Once the PIM Class diagram elements are transformed, the
analysis of the specified PIM State Machine is initiated.

Provided the State Machine was specified in PIM, during
transformation, a new Enumeration named State with a PSM
stereotype �enum� is created, which lists all States (as
Enumeration literals) that are outlined in the State Machine

diagram (Fig. 3). Furthermore, PIM State Machine Tran-
sitions that have specified effects are collected, and using
their OpaqueBehavior, a PSM contract Operation with either
�event� or �constructor� stereotype is created. If the
OpaqueBehavior has stereotypes, Attributes, or Parameters,
these are also transformed and applied to PSM Operation.
The selection of relevant stereotype depends on the transition
source: the OpaqueBehavior of the Transition from initial
Pseudostate is transformed into a�constructor�Operation;
all other Transition OpaqueBehaviors are transformed into
PSM contract�event� Operations.

Afterward, all PIM State Machine Transitions are col-
lected and analyzed (Get the list of all transitions step in
Fig. 3). During the Transition analysis, if determined that
PIM Operation has been used only once per Transition, or the
Operation usage is recurring, but the source of the Transition
is the same for all recurring Transitions, a common Solidity
state machine design pattern can be applied. Then a new
PSM atState Constraint with a stereotype �modifier� is
created, and the Dependency relationship between the PSM
�function� Operation and the Transition source PSM State
�enum� Enumeration literal is created.

In addition, if the collected PIM Transitions list contains
at least one Transition with a specified Time Event Trig-
ger, a PSM Constraint�modifier� named timedTransitions
is created (Fig. 3), which checks whether a specific point
in time was reached by comparing with the current times-
tamp. As a Time Event from UML State Machine cannot be
directly transformed to any Solidity specific element because

33470 VOLUME 10, 2022



M. Jurgelaitis et al.: Solidity Code Generation From UML State Machines in Model-Driven Smart Contract Development

FIGURE 3. Blockchain PIM to Solidity PSM transformation algorithm.

Solidity does not support time-based transitions between
states, any PIM Transition Time Events are transformed to
PSM guard Constraints and the transitional logic is relocated
to the PSM Constraint �modifier� timedTransitions. For
this�modifier� implementation, an additional PSM Prop-
erty �variable� named creationTime is required, which is
used to calculate the point in time when the smart contract
in a specific State is supposed to transition to a different
State. Each PIM Time Event Transition is then transformed
to a PSM guard Constraint, which compares the current
time and the time (relative or absolute) when the transition
should occur. The relative time (specified on the UML state
machine transition as after(relativeTime)) is calculated based
on the Time Event usage: the first Time Event usage can be
described as creationTime + relativeTime, but for all other
following Time Event Transitions, the time needs to be cal-
culated by adding up all preceding Transitions Time Event
relativeTime values. Once the�modifier� timedTransitions
is created, it is retroactively applied to every smart contract
PSM Operation with a�function� stereotype.
During the last step of the algorithm (Fig. 3), the list

of all PIM Transitions is analyzed again and Transition
guards Constraints that are used more than once are extracted
and transformed into a PSM Constraint with stereotype
�modifier�. Instead of recurring guards from PIM Tran-
sitions, the Constraint �modifier� is applied to relevant
�function� Operations in Solidity PSM.

After the transformation from PIM to PSM, the PSM
�function� Operations can be extended by selecting
OpaqueBehaviors from the curated library of code samples.
Each OpaqueBehavior in the library is specified by a body
that includes the software code and can also have Proper-
ties, Parameters, and additional Operations that need to be
appended to the smart contract. Currently, the library includes

code samples from the Solidity documentation [43]. Later,
it is also planned to include the code samples from ERC stan-
dard implementations [5], and a set of Interactions specified
for a specific �function� Operation and would be further
transformed into Solidity code (the analogous possibility of
generating the Hyperledger Go smart contract code from the
sequence diagram is demonstrated in [24]). The proposed
idea of a curated library and the possibility to extend PSMs
withOpaqueBehaviors would allow developers to specify and
reuse relevant smart contract implementation code samples.

The result of the transformation is Solidity PSM, which
encompasses Class and State Machine diagrams. In contrast
to PIM, the Solidity PSM additionally includes the elements
that were extracted from the State Machine: �modifier�
Constraints, �constructor� Operation, �event� Opera-
tions, the�enum� State and its literals.

B. TRANSFORMATION FROM SOLIDITY PLATFORM
SPECIFIC MODEL TO SOLIDITY CODE
The proposed algorithm for generating the Solidity smart
contract code uses the previously transformed Solidity PSM
as an input, and by reading the model produces the smart
contract Solidity file. For this transformation, the Ethereum
Solidity metamodel is outlined in Fig. 4, which defines
the main supported elements of the generated Solidity
v0.8.0 source code (as our approach is intended for smart con-
tract code generation only, the Solidity constructs related to
library or interface development are not supported). The PSM
model elements are mapped to relevant Solidity constructs
during the transformation.

The smart contract boilerplate code is produced relatively
straightforwardly from the PSM Elements specified in the
Class diagram, such as Classes, Properties, Operations, and
Constraints. Nevertheless, the full potential of our approach
can be achieved when the Solidity PSM has a specified
State Machine diagram, and Operations are extended with
code samples by describing behavior either by specifying an
OpaqueBehavior or by Sequence diagram as an Interaction.
During the M2T transformation, each PSM Operation with
the stereotype �function� is transformed into the Solid-
ity Function and extended to include the logic specified in
the PSM State Machine diagram. Additionally, if Opaque-
Behavior was provided to the PSM �function� Opera-
tion, the OpaqueBehavior body is extended with the State
Machine logic and appended to the Solidity Function code.
Any sequence diagram specifying the PSM Operation as an
Interaction can also be transformed into source code, but the
idea of transformation of the sequence diagram into smart
contract code is presented in [24] and is not elaborated further
in this paper.

The main algorithm for transforming the Solidity PSM to
the Solidity source code is presented in Fig. 5. The algo-
rithm creates the Solidity file by reading the Solidity PSM
and appends the code to this file line by line. During the
Transform Contract Class step, the PSM�contract� Class
and its�variable� Properties are transformed to the Solidity

VOLUME 10, 2022 33471



M. Jurgelaitis et al.: Solidity Code Generation From UML State Machines in Model-Driven Smart Contract Development

FIGURE 4. Ethereum Solidity smart contract metamodel: key elements used in transformation.

Contract and its Variable declarations. Similarly, during the
Transform Struct Class step, the PSM �struct� Class is
transformed to a Solidity Struct type and its Members. In the
Transform Enumeration step, the PSM Enumeration and its
literals are transformed to Solidity Enum and its members.
Correspondingly, the PSM �modifier� Constraints and
their specifications are transformed into Solidity Modifiers
and their Blocks of Statements.

Once all PSM �contract�, �variable�, �struct�,
�member�, �enum�, �modifier� Elements are trans-
formed, the algorithm checks for the Operation usage in the
specified PSM State Machine diagram. If such usage is not
detected, the Operation is considered as a nonextendable
Operation. During the Transform nonextendable Operation
step (Fig. 5), based on the PSM Operation stereotype, the
Operation is transformed into Solidity Constructor, Event,
or Function definition. Additionally, any specified Parame-
ters are appended to code, and in case �modifier� Con-
straints were applied to �function� Operation, Solidity
Modifier invocations are appended to Function code as well.
Furthermore, if Operation Behavior was specified either by
OpaqueBehavior or an Interaction, the OpaqueBehavior body
or the code generated from the Interaction is appended to the
Solidity Function code.

When all the PSMOperations not used in the Statemachine
are transformed, the Transform PSM State Machine step
(Fig. 5) starts. During this step, the�function� Operations
specified in State Machine Transition Trigger Call Events
(considered as extendable Operations) are transformed to
Solidity Function definitions and extended with the informa-
tion specified in the State Machine. This transformation is
performed by selecting all Transitions Triggers and checking
for Call Event Operation usage. Once found, all Transitions
with the relevant Call Event Operation are selected for further

analysis, and the Solidity Function name, Parameters, and
Function Modifier invocations are appended to the code. The
last step is Transform extendable Operation (Fig. 5), further
detailed in Fig. 6.

Each extendable Operation transformation (Fig. 6) mainly
consists of Transition sources and Transition targets transfor-
mations. In the first step, Transition sources are transformed,
which results in Solidity Conditional Statements appended
to Function code. Additionally, if Operation has a specified
OpaqueBehavior, the part of its body before the return state-
ment is appended to the code. Afterwards, the Transition
targets are transformed, resulting in a Block of Statements
(encompassing all necessary Conditional Statements, Vari-
able state declarations, and emit Statements) that is appended
to the Function code. And finally, if Operation has a specified
OpaqueBehavior, its return statement is appended. The steps
of Transforming transitions sources and Targets are elabo-
rated in more detail in Fig. 7 and Fig. 8.

During the transformation of Transition sources (Fig. 7),
the Solidity Function code is extended to include the Condi-
tional Statements, which check whether the smart contract is
in a specific State, and a specific Function can be executed.
Since the Transitions with specific guard Constraints can be
specified in two ways, one using the junction Pseudostate
and the other by specifying multiple Transitions between the
same source Vertices, the algorithm covers both alternatives
by collecting and further analyzing all Transition sources
from the selected list of Transitions for a specific Opera-
tion. Afterwards, by determining each Transition source type,
a Conditional Statement is appended (except when the source
is an initial Pseudostate, then this step is skipped). For the
Transition Trigger Call Event Operation that is reused mul-
tiple times in the State Machine, or has multiple sources,
either specified by using junction Pseudostate, or specified by

33472 VOLUME 10, 2022



M. Jurgelaitis et al.: Solidity Code Generation From UML State Machines in Model-Driven Smart Contract Development

FIGURE 5. Solidity PSM to Solidity smart contract code transformation algorithm.

multiple Transitions, a Conditional Expression require is gen-
erated which lists the multiple State sources inside separated
by an or operator for the relevant Function. Additionally,
regardless of the Transition source, each Transition is checked
for a specified Transition guard Constraint. If such Constraint
exists, Conditional expression is also appended, this time
using the and operator.
Similarly, the Transition targets are transformed (Fig. 8)

into state Variable declarations inside a particular Function
source code, but this time by analyzing all Transition targets
from selected the list of Transitions for a specific PSMOpera-
tion. The Transition targets are collected once again since the
Transitions can be specified in multiple ways, either by hav-
ing multiple transitions using the same Call Event Operation
or by using the junction or choice Pseudostates. During the
transformation to code, the Transition set is checked if more
than one Transition source Vertex exists, and if it does, addi-
tional if Conditional Statement is appended, which checks
whether the smart contract is in a specific State and whether

expression transformed from specified guard Constraint is
true. Then the Transition list is checked for Transition targets,
and by determining the Transition target type, if the type is a
State, a Transition effect (if specified) is transformed to emit
Statement, and a state Variable declaration (if the target does
not match the source) is appended. Additionally, if the target
of a Transition is of a choice or junction Pseudostate, addi-
tional outgoing Transitions and their targets are determined.
Based on the collected set of Transitions, additional nested
if/else Conditional Expressions based on the Transition guard
Constraints are appended. Once each Conditional Expression
is appended, the emit Statement is appended. Finally, if the
source and target of the Transition are different, the Variable
state declaration expression is appended.

C. IMPLEMENTATION OF THE TRANSFORMATIONS
For the necessary transformation implementation, a combi-
nation of Eclipse Modeling Tools was used. Eclipse ATL was
used to develop M2M transformations, and Eclipse Acceleo

VOLUME 10, 2022 33473



M. Jurgelaitis et al.: Solidity Code Generation From UML State Machines in Model-Driven Smart Contract Development

FIGURE 6. Extendable operation to the solidity function code transformation algorithm.

FIGURE 7. Transform transition sources step in extendable operation transformation algorithm.

tool was used for the implementation of M2T transforma-
tions. Additionally, the Magicdraw 19.0 CASE tool was used
to specify the required Blockchain PIM and later review and
extend the generated Solidity PSM, which supports the UML
2.5 version.

The specified Blockchain PIM has to be exported as
Eclipse compliant (UML 2 (v5.0)) XMI format file and used
as an input for Eclipse ATL during M2M transformations.
The Blockchain PIM to Solidity PSM transformation algo-
rithm was developed using the Eclipse ATL tool [25] in the
ATL transformation language. The implemented transforma-
tion uses the Blockchain PIM metamodel and the Solidity
PSM metamodel to map relevant model elements. The result
of PIM to PSM transformation is a Solidity PSM XMI file,
which encompasses UML Class, State Machine diagrams,
and UML Elements with relevant PSM stereotypes. The gen-
erated XMI format file can be imported to the Magicdraw
CASE tool, using which the generated PSM can be reviewed
and extended by the developer if necessary. Afterwards,
like Blockchain PIM previously, Solidity PSM needs to be
exported as Eclipse supported XMI format file and is used
as an input for the Eclipse Acceleo tool during the M2T
transformation. The proposed Solidity PSM to code transfor-
mation algorithms were implemented in the Eclipse Acceleo
tool [26] using the MOFM2T templating language. Acceleo
uses the Solidity PSM metamodel to map relevant model
elements and executes the transformations during which the
specific MOFM2T templates are applied for Solidity code

production. The Eclipse Acceleo uses the Solidity PSM XMI
format file as an input and, as a result, produces the.sol
file, which contains the generated smart contract code in
the Solidity programming language. The generated smart
contract code needs to be compiled using a Solidity compiler
and afterward can be deployed on a network.

IV. EVALUATION OF IMPLEMENTED TRANSFORMATIONS
FOR SMART CONTRACT DEVELOPMENT
This section demonstrates how the proposed approach can
be employed to model smart contract behavior and generate
Solidity source code. For this demonstration, three different
smart contract examples from the Solidity documentation
were selected. The selected smart contracts were modeled
according to the principles of our approach, and then the
Solidity code was generated using the algorithms imple-
mented in the Eclipse ATL and Acceleo tools. The generated
Solidity source code was evaluated and compared with the
original counterparts from Solidity documentation in terms of
Solidity code metrics, similarity scores, and execution costs.

A. THE PROCESS OF EVALUATION
To demonstrate the capabilities of our approach, three
different smart contract examples (SimpleAuction [44],
Purchase [45], and StateMachine[46]) from the Solidity
documentation were selected, which have state machine-
like constructs. The smart contracts were specified as
Blockchain PIMs, depicting the structure and behavior of the

33474 VOLUME 10, 2022



M. Jurgelaitis et al.: Solidity Code Generation From UML State Machines in Model-Driven Smart Contract Development

FIGURE 8. Transform transition targets step in extendable operation transformation algorithm.

SimpleAuction, Purchase, and StateMachine smart contracts.
In the next step, Solidity PSMs were generated for each
smart contract. The generated SimpleAuction, Purchase, and
StateMachine PSMs were later imported into the Magicdraw
CASE tool, extended by OpaqueBehavior specifications, and
once again exported as XMI format files. The XMI files
were used in the Eclipse Acceleo tool to generate Solidity
SimpleAuction, Purchase, and StateMachine smart contract
code files. The generated smart contract files are available
at.github.com/m-jurgelaitis/generated-smart-contracts.

For each generated smart contract code file, Solidity code
metrics were calculated using the Visual Studio Code tool and
the VSCode Solidity Metrics plugin [47]. Normalized source
lines of code (nSLOC) count and complexity score metrics
(custom score inferred from complexity introducing code
statements, like branches, calls, etc.) were used to compare
the generated and the original smart contracts. Additionally,
for each pair of smart contracts (original and generated), simi-
larity scores were calculated using the SmartEmbed tool [48],
which estimates similarity based on the semantic distance
between two fragments of code. SmartEmbed parsed each
Solidity file into an Abstract Syntax Tree (AST) and calcu-
lated numerical vectors, which were later used to estimate
similarity scores. In addition to the SmartEmbed similarity
score, the cosine similarity was calculated for each smart
contract pair, using the Solidity smart contract numerical
vectors.

Lastly, both original and generated smart contracts were
compiled using the Remix IDE and deployed onto the
JavaScript Virtual Machine running on a Firefox browser to
calculate and compare smart contract execution costs.

B. SIMPLEAUCTION SMART CONTRACT CODE
GENERATION
The first smart contract example used to demonstrate trans-
formations is a simple auction example provided in the

FIGURE 9. Blockchain PIM SimpleAuction smart contract: Class diagram.

Solidity documentation [44]. The SimpleAuction smart con-
tract overviews the basic principles of how state machines
can model smart contract behavior. Even though the original
SimpleAuction smart contract does not have any specified
states, it has a bool variable ended for tracking the status of
the auction, which in our approach was specified using the
PIM State Machine diagram.

The SimpleAuction smart contract structure was speci-
fied using a Class diagram (Fig. 9), and the behavior was
modeled using the State Machine diagram (Fig. 10). The
SimpleAuction Class encompasses three Operations and five
Attributes. The original attribute ended was omitted and,
instead, a state machine was specified, encompassing Open
and Ended states. Additionally, the PIM state machine for
SimpleAuction encompasses two Operations as Call Event
Transitions, two Transition guard Constraints, and three
effect OpaqueBehaviors.

The diagrams resulting of the transformation from
Blockchain PIM to Solidity PSM are presented in Fig. 11 and
Fig. 12. One of the important differences between the PIM
Class diagram (Fig. 9) and PSM Class diagram (Fig. 11)

VOLUME 10, 2022 33475



M. Jurgelaitis et al.: Solidity Code Generation From UML State Machines in Model-Driven Smart Contract Development

FIGURE 10. Blockchain PIM SimpleAuction smart contract: State machine
diagram.

FIGURE 11. Solidity PSM SimpleAuction smart contract: Class diagram.

is that the PIM Property pendingReturns (a set of address)
(Fig. 9) was transformed to PSM mapping variable (Fig. 11),
having two properties: a key (uint) and a type (address).
Although these two Properties are not visible in the diagram,
they are recorded as qualifier Properties of the variable.
Another difference is that the bid() function and the ben-
eficiary variable in PSM have the �payable� stereotype
applied.Moreover, based on the PIMStateMachine (Fig. 10),
the PSM smart contract Class (Fig. 11) has several newly
created Elements, like state variable and State enum, which
lists the defined Open andEnded states. Likewise, a construc-
tor and two events (HighesBidIncreased and AuctionEnded)
were created in PSM (Fig. 11), based on the specified effects
in the PIM State Machine. Lastly, the atState modifier was
created and applied to the auctionEnd(), and bid() functions
according to their usage in PIMStateMachine Transition Call
Events (Fig. 10). The main difference between the PIM state
machine (Fig. 10) and the PSM state machine (Fig. 12) is that
the time expression now was transformed to global variable
block.timestamp.

The generated Solidity source code for SimpleAuction
is compared with the original smart contract code using
calculated code metrics (Table 1), encompassing the AST
node count, source units, and similarity scores. Based on the

FIGURE 12. Solidity PSM SimpleAuction smart contract: State machine
diagram.

results, the generated and original Solidity code differ mainly
in terms of State enum usage (AST elements EnumDefinition
and Enum Value) and generated atState modifier (AST ele-
ments Modifier Definition, Block and Modifier Invocation,
Expression Statement) that were introduced during transfor-
mations. Additionally, compared to the original one, more
Variable Declaration (a variable declaration is included in a
constructor). In terms of Source Units metrics, the contracts
are almost identical, the nSLOC differs by one line of code,
and the Complexity Score differs by two; this is also because
of the inclusion and usage of enum and modifier.

For the more specific comparison between the original
and generated smart contracts, the similarity scores were
calculated, demonstrating that generated smart contracts are
similar enough to the original, reaching approximately 90%
similarity calculated using the SmartEmbed tool, and approx.
99% cosine similarity.

Additionally, the generated code was deployed on a
JavaScript VM for the calculation of smart contract
execution costs (Table 2). In the calculation of the
constructor+deployment cost, constructor gas execution
costs (if the constructor was defined) and smart contract
deployment cost are included. The execution cost of the
generated smart contract is reduced by 5% compared to
the original in terms of constructor+deployment cost and
is slightly increased for smart contract functions. The most
notable difference of 3% is in the case of the bid() function,
which now has additional modifier invocation compared to
the original smart contract code.

C. PURCHASE SMART CONTRACT CODE GENERATION
The second example is the Purchase smart contract [45],
which provides an implementation pattern that employs states
and functions to transition between these states. This example
demonstrates how the Solidity modifiers can be produced
based on the specified recurring guard Constraints.

ThePurchaseBlockchain PIM, based on the Solidity docu-
mentation implementation code example, wasmanually spec-
ified to include three Properties and four Operations (Fig. 13).
The Properties seller and buyer, and the Operation confirm-
Purchase, have the �pay� stereotype applied. Addition-
ally, PIM State Machine representing the Purchase smart
contract behavior was specified (Fig. 14), which encom-
passesCreated, Locked,Release, and Inactive States, and four

33476 VOLUME 10, 2022



M. Jurgelaitis et al.: Solidity Code Generation From UML State Machines in Model-Driven Smart Contract Development

TABLE 1. Comparison of SimpleAuction smart contract code metrics.

TABLE 2. Comparison of SimpleAuction smart contracts code execution
costs (gas).

Transitions between them. Each Transition has a Trigger Call
Event Operation, a guard Constraint, and a specified effect
OpaqueBehavior.

The diagrams that depict the outcomes of the Purchase PIM
to PSM transformation are presented in Fig. 15 and Fig. 16.
Like in the previous example, a new state variable was cre-
ated in the PSM Class diagram (Fig. 15), accompanying the
State enum, which lists four states (Created, Locked, Inactive,
Released) specified in PIM State Machine (Fig. 14). Another
important difference between PIM and PSM Class diagrams
is that in PSM, the smart contract constructor, the Oper-
ations Aborted, PurchaseConfirmed, ItemReceived, Seller-
Refunded, and atState modifier are created, and the modifier
is applied to every function of the PSM smart contract Class
(Fig. 15). Furthermore, the onlySeller modifier for a guard
Constraint which was used twice in the PIM State machine
(Fig. 14), is applied to the PSM Class Operations abort()
and refundSeller() (Fig. 15), which in PIM were specified on
the relevant Transitions as Call Events. Since this modifier
was automatically generated, it was first given a default name
mod1, but later manually renamed to onlySeller for the sake
of comprehension and readability.

While comparing PIM and PSM State Machines
(Fig. 14 and Fig. 16), it can be noted that the recurring
guard Constraints from PIM State Machine are omitted in the
PSM State Machine (Fig. 16), as they resulted in onlySeller
modifier, applied to relevant functions of the PSM smart
contract Class (Fig. 15). Additionally, the generic expres-
sions transactionValue and transactionSender, used in the
guard Constraint specifications in PIM, were transformed

FIGURE 13. Blockchain PIM Purchase smart contract: Class diagram.

FIGURE 14. Blockchain PIM Purchase smart contract: State machine
diagram.

to msg.value and msg.sender global Solidity variables in the
PSM state machine diagram (Fig. 16).

The analysis of the generated and original Purchase smart
contract code has revealed that the original has fewer lines of
code (nSLOC) and a lower complexity score calculated by the
VSCode Solidity Metrics plugin (Table 3). The AST Element
(Block,Modifier Definition,Modifier Invocation, Expression
Statement) count for the generated smart contract differs from
the original because of the modifier usage: the modifiers
onlyBuyer and condition, used in the original smart contract,
are not present in the generated code. These modifiers were
not generated since the algorithm only creates the modifiers
for recurring guard Constraints, and the onlyBuyer and con-
dition modifiers are used only once in the original smart
contract code. It should also be mentioned that the atState
modifier was generated instead of the inStatemodifier, which
was present in the original smart contract; still, both mod-
ifiers serve the same purpose and differ in name and error
message only. The AST metric VariableDeclaration varies
between the original and generated versions because a state
variable declaration is included in the generated constructor
code. Nevertheless, both smart contracts are similar, reaching
approx. 94% similarity score calculated by SmartEmbed, and
approx. 99% cosine similarity.

Themost notable differences are observed in the smart con-
tract execution costs (Table 4): the constructor+deployment
gas costs are reduced by approximately 18%, and the abort()
and confirmPurchase() function execution costs are reduced
by 46% and 36% accordingly. These differences can be
attributed to the use of smart contract modifiers because our
approach does not create a modifier unless the specific condi-
tion can be applied at least twice, thus leading to a generated

VOLUME 10, 2022 33477



M. Jurgelaitis et al.: Solidity Code Generation From UML State Machines in Model-Driven Smart Contract Development

FIGURE 15. Solidity PSM Purchase smart contract: Class diagram.

FIGURE 16. Solidity PSM Purchase smart contract: State machine
diagram.

smart contract having lower complexity. The execution of the
generated abort() function differs from the original in terms
of the sequence of modifier invocation, and the generated
confirmPurchase() function does not employ the condition
modifier; instead, the conditional statement is included in the
function body.

D. STATEMACHINE SMART CONTRACT CODE
GENERATION
The last example is the StateMachine smart contract provided
along with common patterns in Solidity documentation [46],
which illustrates the usage of common state machine pattern.
The original example not only includes the atState modifier,
but also introduces a way to circumvent the unsupported
automatic timed function execution by employing the timed-
Transitions modifier.

Like in previous examples, the smart contract was specified
as Blockchain PIM, encompassing Class diagram (Fig. 17)
and State machine diagram (Fig. 18), where the naming

TABLE 3. Comparison of Purchase smart contract code metrics.

TABLE 4. Comparison of Purchase smart contracts code execution costs
(gas).

of diagram elements was based on the naming provided in
the Solidity documentation. In addition, some changes were
made to the original smart contract to simplify the testing
process: the Time expressions in the Time Event specifica-
tions were changed to 2 minutes and 3 minutes accordingly,
instead of 10 days and 2 days, as provided in the original
StateMachine smart contract code. So, the resulting PIM
encompasses five functions (bid(), reveal(), g(), h(), i()) that
are used in the PIM State Machine as Call Event Operations,
and the previously discussed TimeEvents.

The results of the StateMachine PIM to PSM transforma-
tion are presented in the Solidity PSMClass diagram (Fig. 19)
and the State Machine diagram (Fig. 20). The PSMClass dia-
gram (Fig. 19) differs from the PIM Class diagram (Fig. 17),
as it includes newly created state variable and State enum list-
ing all five states (AcceptingBlindedBids,RevealBids, Anoth-
erStage, AreWeDoneYet, Finished). Furthermore, a generated
atStatemodifier is applied to PSM functions (Fig. 19), based
on PIM State Machine Transitions. Likewise, according to
the Time Events usage, a timedTransitionsmodifier is applied
to all functions, and an additional smart contract Property
creationTime is included in PSM Class.

The main differences between the PIM State Machine
(Fig. 18) and the PSM State Machine (Fig. 20) are related
to the usage of UML Time Event: PIM Time Events are
represented as guard Constraints in the PSM State Machine,
specifically the Time Event after(2 mins) (Fig. 18) was
transformed into a guard Constraint [block.timestamp >=

creationTime + 2 minutes] (Fig. 20), and the Time Event
after(3 minutes) was transformed into another guard Con-
straint [block.timestamp >= creationTime + 5 minutes]

33478 VOLUME 10, 2022



M. Jurgelaitis et al.: Solidity Code Generation From UML State Machines in Model-Driven Smart Contract Development

FIGURE 17. Blockchain PIM StateMachine smart contract: Class diagram.

FIGURE 18. Blockchain PIM StateMachine smart contract: State machine
diagram.

which added up three minutes to the previous Time Expres-
sion. The transition logic based on the transformed Time
Events and the Time Expressions, is recorded in the timed-
Transitions modifier applied to functions of the PSM smart
contract Class (Fig. 19).

The results of a comparison of the generated StateMachine
smart contract code and the original (Table 5) demonstrate
that these smart contracts differ in terms of nSLOCby 17 lines
and Complexity Score by 7 points. The difference stems
from the reduction of one function and one modifier usage:
the original StateMachine code includes the transitionNext
modifier and the nextState() function, which are not present
in the generated smart contract code. Our approach does not
support this implementation variation because the transition-
Next modifier and nextState() function usage are applica-
ble in a relatively small number of cases. The same result
can be achieved by using state variable declarations in the
appropriate function. This is also reflected in the decrease
of the AST Element (Block, Expression Statement, Function
Definition, Modifier Definition, Modifier Invocation) count
in the generated smart contract. The most notable difference
is the Function Call count since the nextState() function
in the original smart contract code is used multiple times.
Still, the calculated SmartEmbed Similarity score and Cosine
Similarity show that the generated and the original smart
contracts are similar, reaching a similarity of 82% and 95%,
respectively.

Although the original and generated smart contracts dif-
fer in several aspects according to the code metrics, this

FIGURE 19. Solidity PSM StateMachine smart contract: Class diagram.

FIGURE 20. Solidity PSM StateMachine smart contract: State machine
diagram.

TABLE 5. Comparison of StateMachine smart contract code metrics.

difference is not reflected in the execution costs of the smart
contract (Table 6). The generated code execution costs are
lower in terms of constructor+deployment (this smart con-
tract does not have a constructor, so only deployment costs
are included) and g() and h() function execution. Still, the
reduction is marginal, at most 4% for the deployment cost
and less than 3% for the g() and h() functions.

VOLUME 10, 2022 33479



M. Jurgelaitis et al.: Solidity Code Generation From UML State Machines in Model-Driven Smart Contract Development

TABLE 6. Comparison of StateMachine smart contracts code execution
costs.

V. CONCLUSION
The development of smart contracts is a complex task,
especially since the smart contract code deployed to the
blockchain cannot be further modified. Therefore, smart con-
tract development strategies based on the reuse of existing
smart contract code are quite prevalent in current develop-
ment practices, although they require much effort from the
developer to understand and modify the reused code sam-
ples. On the other hand, modeling approaches are commonly
employed for their key advantages, such as visualization
and alleviation of comprehension of the modeled solutions.
Moreover,Model DrivenArchitecture provides guidelines for
shifting development focus from the source code onto the
higher level of abstraction, i.e., models.

Our proposed approach is based on MDA principles and
uses UML models not only to increase the comprehension
and reusability of smart contracts but also to produce smart
contract implementation code. We demonstrate how the prin-
ciples of MDA, the UML Class and State machine diagrams,
and our proposed transformation algorithms can be success-
fully applied for the development of Solidity smart contracts
for the Ethereum blockchain.

In order to demonstrate the main capabilities of our
approach, we have decided to use readily available smart
contracts code from Solidity documentation examples for
developing the Blockchain PIM, transforming it to Solidity
PSM, and then generating Solidity smart contract code. The
original smart contract code (from the Solidity documenta-
tion) and the generated smart contract code were compared
in terms of similarity. Since it is difficult to unambiguously
evaluate the similarity of two smart contracts, we used several
metrics and techniques: Visual Studio Code Solidity code
metrics, similarity scores calculated using the SmartEmbed
tool, and gas costs for executing the deployed smart contract.
The comparison results indicate that our approach can be
successfully used for modeling smart contract structure and
behavior using UML Class and State Machine diagrams and
generating smart contract code.

However, a threat to the validity of the evaluation of our
approach should be noted: different developers could produce
a variety of models for the same solution, and the results
of code generation depend on the contents of Blockchain
PIM. However, if Blockchain PIM is developed by strictly
adhering to our approach and using the exact types of UML
diagrams, the specifiedmodels and the generated code should
be similar in essence. Tominimize the impact of the modeling
tendencies or preferences on the evaluation of the generated

code, we chose to evaluate our approach by using three
different smart contract examples from the official Solidity
documentation. The results of the comparison of codemetrics
for original and generated smart contracts tend to be quite
similar, reaching more than 90% of the cosine similarity for
all pairs of smart contracts.

Current plans for future work have two directions. The first
direction is based on an important advantage of adhering to
MDA principles, as it allows expanding the approach to other
technologies at the PSM level, e.g., in addition to Ethereum
Solidity PSM, the Hyperledger Go PSM could be developed
for enabling the developer to choose the preferred platform
after the main design decisions were made at the PIM level.
Another important direction for future work is to develop an
extensible curated library of specified Solidity code samples
as OpaqueBehaviors, which could be reused in various smart
contracts as an extension to the developed models.

REFERENCES
[1] G. A. Pierro, R. Tonelli, and M. Marchesi, ‘‘An organized repository of

ethereum smart contracts’ source codes and metrics,’’ Future Internet,
vol. 12, no. 11, p. 197, 2020, doi: 10.3390/fi12110197.

[2] F. Casino, T. K. Dasaklis, and C. Patsakis, ‘‘A systematic literature
review of blockchain-based applications: Current status, classification and
open issues,’’ Telematics Informat., vol. 36, pp. 55–81, Mar. 2019, doi:
10.1016/j.tele.2018.11.006.

[3] D. Berdik, S. Otoum, N. Schmidt, D. Porter, and Y. Jararweh, ‘‘A sur-
vey on blockchain for information systems management and security,’’
Inf. Process. Manage., vol. 58, no. 1, Jan. 2021, Art. no. 102397, doi:
10.1016/j.ipm.2020.102397.

[4] M. Kondo, G. A. Oliva, Z. M. Jiang, A. E. Hassan, and O. Mizuno, ‘‘Code
cloning in smart contracts: A case study on verified contracts from the
ethereum blockchain platform,’’ Empirical Softw. Eng., vol. 25, no. 6,
pp. 4617–4675, Nov. 2020, doi: 10.1007/s10664-020-09852-5.

[5] Ethereum. Ethereum Improvement Proposals. Accessed: Mar. 20, 2022.
[Online]. Available: https://eips.ethereum.org/erc

[6] OpenZeppelin. OpenZeppelin contracts. Accessed: Mar. 20, 2022.
[Online]. Available: https://openzeppelin.com/contracts/

[7] E. Domènguez, B. Pérez, L. Rubio, and M. A. Zapata, ‘‘A systematic
review of code generation proposals from state machine specifications,’’
Inf. Softw. Technol., vol. 54, no. 10, pp. 1045–1066, Oct. 2012, doi:
10.1016/j.infsof.2012.04.008.

[8] A. Hsain and N. L. S. Mbarki, ‘‘Ethereum’s smart contracts construc-
tion and development using model driven engineering technologies:
A review,’’ Proc. Comput. Sci., vol. 184, pp. 785–790, Oct. 2021, doi:
10.1016/j.procs.2021.03.097.

[9] E. Syriani, L. Luhunu, and H. Sahraoui, ‘‘Systematic mapping study of
template-based code generation,’’ Comput. Lang., Syst. Struct., vol. 52,
pp. 43–62, Jun. 2018, doi: 10.1016/j.cl.2017.11.003.

[10] Object Management Group. (Jun. 18, 2014). Model Driven Architecture
(MDA) MDA Guide Review 2.0. Accessed: Mar. 20, 2022. [Online]. Avail-
able: https://www.omg.org/cgi-bin/doc?ormsc/14-06-01

[11] G. Sebastián, J. A. Gallud, and R. Tesoriero, ‘‘Code generation using
model driven architecture: A systematicmapping study,’’ J. Comput. Lang.,
vol. 56, Feb. 2020, Art. no. 100935, doi: 10.1016/j.cola.2019.100935.

[12] Object Management Group. (Dec. 2017). UML 2.5.1 Specification.
Accessed: Mar. 20, 2022. [Online]. Available: https://www.omg.
org/spec/UML/2.5.1/About-UML/

[13] N. Addison. Unified Modeling Language (UML) Class Diagram Genera-
tor for Solidity Contracts. Accessed: Mar. 20, 2022. [Online]. Available:
https://github.com/naddison36/sol2uml

[14] M. Wáhrer and U. Zdun, ‘‘Design patterns for smart
contracts in the Ethereum ecosystem,’’ in Proc.
Things/GreenCom/CPSCom/SmartData/Blockchain/CIT, Halifax, BC,
Canada, 2018, pp. 1–9, doi: 10.1109/ICBC48266.2020.9169399.

[15] F. Volland. State Machine|Solidity Patterns. Accessed:
Mar. 20, 2022. [Online]. Available: https://fravoll.github.io/solidity-
patterns/state_machine.html

33480 VOLUME 10, 2022

http://dx.doi.org/10.3390/fi12110197
http://dx.doi.org/10.1016/j.tele.2018.11.006
http://dx.doi.org/10.1016/j.ipm.2020.102397
http://dx.doi.org/10.1007/s10664-020-09852-5
http://dx.doi.org/10.1016/j.infsof.2012.04.008
http://dx.doi.org/10.1016/j.procs.2021.03.097
http://dx.doi.org/10.1016/j.cl.2017.11.003
http://dx.doi.org/10.1016/j.cola.2019.100935
http://dx.doi.org/10.1109/ICBC48266.2020.9169399


M. Jurgelaitis et al.: Solidity Code Generation From UML State Machines in Model-Driven Smart Contract Development

[16] M. Almakhour, L. Sliman, A. E. Samhat, and A. Mellouk, ‘‘Verification of
smart contracts: A survey,’’ Pervas. Mobile Comput., vol. 67, Sep. 2020,
Art. no. 101227, doi: 10.1016/j.pmcj.2020.101227.

[17] S. Alqahtani, X. He, R. Gamble, and M. Papa, ‘‘Formal verifica-
tion of functional requirements for smart contract compositions in sup-
ply chain management systems,’’ in Proc. HICSS, 2020, pp. 1–5, doi:
10.24251/HICSS.2020.650.

[18] N. Sanchez-Gomez, J. Torres-Valderrama, and M. J. Escalona, ‘‘Model-
based software design and testing in blockchain smart contracts: A sys-
tematic literature review,’’ IEEE Access, vol. 8, pp. 164556–164569, 2020,
doi: 10.1109/ACCESS.2020.3021502.

[19] D. Suvorov and V. Ulyantsev, ‘‘Smart contract design meets state machine
synthesis: Case studies,’’ 2019, arXiv:1906.02906.

[20] P. Garamvölgyi, I. Kocsis, B. Gehl, and A. Klenik, ‘‘Towards model-
driven engineering of smart contracts for cyber-physical systems,’’ in
Proc. DSNW, Luxembourg City, Luxembourg, 2018, pp. 134–139, doi:
10.1109/DSN-W.2018.00052.

[21] A. Mavridou, A. Laszka, E. Stachtiari, and A. Dubey, ‘‘VeriSolid: Correct-
by-design smart contracts for Ethereum,’’ Financial Cryptogr. Data Secur.,
vol. 11598, pp. 446–465, Oct. 2019, doi: 10.1007/978-3-030-32101-7_27.

[22] E. V. Sunitha and P. Samuel, 2019, ‘‘Automatic code generation fromUML
state chart diagrams,’’ IEEE Access, vol. 7, pp. 8591–8608, 2019, doi:
10.1109/ACCESS.2018.2890791.

[23] M. Jurgelaitis and V. Drungilas, ‘‘Modelling principles for blockchain-
based implementation of business or scientific processes,’’ in Proc. IVUS,
Kaunas, Lithuania, 2019, pp. 43–47. [Online]. Available: http://ceur-
ws.org/Vol-2470/p13.pdf

[24] M. Jurgelaitis and V. Drungilas, ‘‘Smart contract code generation from
platform specific model for Hyperledger go,’’ in Proc. Adv. Intell. Syst.
Comput., vol. 1368, 2021, pp. 63–73, doi: 10.1007/978-3-030-72654-6_7.

[25] The Eclipse Foundation. ATL. Accessed: Mar. 20, 2022. [Online]. Avail-
able: https://www.eclipse.org/atl/

[26] Obeo. Acceleo. Accessed: Mar. 20, 2022. [Online]. Available:
https://www.eclipse.org/acceleo/

[27] K. Hu, J. Zhu, Y. Ding, X. Bai, and J. Huang, ‘‘Smart contract engineer-
ing,’’ Electronics, vol. 9, no. 12, p. 2042, 2020, doi: 10.3390/electron-
ics9122042.

[28] V. A. D. Sousa, C. Burnay, and M. Snoeck, ‘‘B-MERODE: A model-
driven engineering and artifact-centric approach to generate blockchain-
based information systems,’’ in Advanced Information Systems Engineer-
ing (Lecture Notes in Computer Science), Cham, Switzerland: Springer,
2020, pp. 117–133, doi: 10.1007/978-3-030-49435-3_8.

[29] L. Marchesi, M. Marchesi, and R. Tonelli, ‘‘ABCDE—Agile block chain
DApp engineering,’’ Blockchain, Res. Appl., vol. 1, nos. 1–2, 2020,
Art. no. 100002, doi: 10.1016/j.bcra.2020.100002.

[30] Q. Lu, A. B. Tran, I. Weber, H. O’Connor, P. Rimba, X. Xu, M. Sta-
ples, L. Zhu, and R. Jeffery, ‘‘Integrated model-driven engineering of
blockchain applications for business processes and asset management,’’
Softw., Pract. Exp., vol. 51, no. 5, pp. 1059–1079, May 2021, doi:
10.1002/spe.2931.

[31] H. Syahputra and H. Weigand, ‘‘The development of smart contracts
for heterogeneous blockchains,’’ in Proc. I-ESA, Berlin, Germany, 2019,
pp. 229–238, doi: 10.1007/978-3-030-13693-2_19.

[32] G. A. Pierro, ‘‘Smart-graph: Graphical representations for smart contract
on the Ethereum blockchain,’’ in Proc. SANER, Honolulu, HI, USA, 2021,
pp. 708–714, doi: 10.1109/SANER50967.2021.00090.

[33] T. Gorski and J. Bednarski, ‘‘Applying model-driven engineering to dis-
tributed ledger deployment,’’ IEEE Access, vol. 8, pp. 118245–118261,
2020, doi: 10.1109/ACCESS.2020.3005519.

[34] M. Dumas, I. Weber, and A. Ponomarev, ‘‘CATERPILLAR: A busi-
ness process execution engine on the Ethereum blockchain,’’ 2019,
arXiv:1808.03517v3.

[35] M. Skotnica, J. Klicpera, and R. Pergl, ‘‘Towards model-driven smart
contract systems—Code generation and improving expressivity of smart
contract modeling,’’ in Proc. EEWC, Bolzano, Italy, 2020, pp. 1–15.
[Online]. Available: http://ceur-ws.org/Vol-2825/paper1.pdf

[36] M. Wáhrer and U. Zdun, ‘‘Domain specific language for smart contract
development,’’ in Proc. ICBC, Toronto, ON, Canada, 2020, pp. 1–9, doi:
10.1109/ICBC48266.2020.9169399.

[37] M. Hamdaqa, L. A. P. Metz, and I. Qasse, ‘‘IContractML: A domain-
specific language for modeling and deploying smart contracts onto mul-
tiple blockchain platforms,’’ in Proc. SAM, Montreal, QC, Canada, 2020,
pp. 33–34, doi: 10.1145/3419804.3421454.

[38] V. Dwivedi and A. Norta, ‘‘Auto-generation of smart contracts
from a domain-specific XML-based language,’’ in Intelligent
Data Engineering and Analytic. Singapore: Springer, 2021, doi:
10.13140/RG.2.2.34511.61609.

[39] O. Choudhury, N. Rudolph, I. Sylla, N. Fairoza, and
A. Das, ‘‘Auto-generation of smart contracts from
domain-specific ontologies and semantic rules,’’ in Proc.
iThings/GreenCom/CPSCom/SmartData/Blockchain/CIT, Halifax, BC,
Canada, 2018, pp. 963–970, doi: 10.1109/Cybermatics_2018.2018.00183.

[40] V. Ulyantsev, I. Buzhinsky, and A. Shalyto, ‘‘Exact finite-state machine
identification from scenarios and temporal properties,’’ Int. J. Softw. Tools
Technol. Transf. vol. 20, no. 1, pp. 35–55, Feb. 2018, doi: 10.1007/s10009-
016-0442-1.

[41] N. Zupan, P. Kasinathan, J. Cuellar, and M. Sauer, ‘‘Secure smart contract
generation based on Petri nets,’’ in Blockchain Technology for Industry 4.0.
Singapore: Springer, 2020, pp. 73–98, doi: 10.1007/978-981-15-1137-0_4.

[42] K. Boogaard, ‘‘A model-driven approach to smart contract develop-
ment,’’ M.S. thesis, Dept. Inf. Comput. Sci., Utrecht Univ., Utrecht,
The Netherlands, 2018.

[43] Ethereum. (2021). Solidity Documentation. Accessed: Mar. 20, 2022.
[Online]. Available: https://docs.soliditylang.org/

[44] Ethereum. Solidity by Example|Simple Open Auction. Accessed:
Mar. 20, 2022. [Online]. Available: https://docs.soliditylang.
org/en/v0.8.0/solidity-by-example.html#simple-open-auction

[45] Ethereum. Solidity by Example|Safe Remote Purchase. Accessed:
Mar. 20, 2022. [Online]. Available: https://docs.soliditylang.
org/en/v0.8.0/solidity-by-example.html#safe-remote-purchase

[46] Ethereum. Common Patterns/State Machine. Accessed: Mar. 20, 2022.
[Online]. Available: https://docs.soliditylang.org/en/v0.8.0/common-
patterns.html#state-machine

[47] ConsenSys Software. VSCode Solidity Metrics. Accessed: Mar. 20, 2022.
[Online]. Available: https://github.com/ConsenSys/vscode-solidity-
metrics/

[48] Z. Gao, L. Jiang, X. Xia, D. Lo, and J. Grundy, ‘‘Checking smart contracts
with structural code embedding,’’ IEEE Trans. Softw. Eng., vol. 47, no. 12,
pp. 2874–2891, Dec. 2021, doi: 10.1109/TSE.2020.2971482.

MANTAS JURGELAITIS received the B.Sc. and
M.Sc. degrees in computer science from the
Kaunas University of Technology, in 2016 and
2018, respectively, where he is currently pur-
suing the Ph.D. degree with the Faculty of
Informatics. His research interests include UML
modeling, MDA, model transformations, code
generation, software, and blockchain-based sys-
tems engineering.

LINA ČEPONIENĖ received the B.Sc., M.Sc., and
Ph.D. degrees from theKaunasUniversity of Tech-
nology, in 2000, 2002, and 2006, respectively. She
is currently an Associate Professor and the Head
of theDepartment of Information Systems, Faculty
of Informatics, Kaunas University of Technology.
Her research interests include UML modeling,
MDA, model transformations, code generation,
and blockchain-based systems engineering.

RITA BUTKIENĖ received the B.Sc., M.Sc., and
Ph.D. degrees from the Kaunas University of
Technology, in 1993, 1995, and 2002, respec-
tively. She is currently an Associate Professor at
the Kaunas University of Technology, where she
is also the Dean of the Faculty of Informatics.
Her research interests include information system
engineering, ontologies, semantic technologies,
databases, distributed ledger, information extrac-
tion, and retrieval.

VOLUME 10, 2022 33481

http://dx.doi.org/10.1016/j.pmcj.2020.101227
http://dx.doi.org/10.24251/HICSS.2020.650
http://dx.doi.org/10.1109/ACCESS.2020.3021502
http://dx.doi.org/10.1109/DSN-W.2018.00052
http://dx.doi.org/10.1007/978-3-030-32101-7_27
http://dx.doi.org/10.1109/ACCESS.2018.2890791
http://dx.doi.org/10.1007/978-3-030-72654-6_7
http://dx.doi.org/10.3390/electronics9122042
http://dx.doi.org/10.3390/electronics9122042
http://dx.doi.org/10.1007/978-3-030-49435-3_8
http://dx.doi.org/10.1016/j.bcra.2020.100002
http://dx.doi.org/10.1002/spe.2931
http://dx.doi.org/10.1007/978-3-030-13693-2_19
http://dx.doi.org/10.1109/SANER50967.2021.00090
http://dx.doi.org/10.1109/ACCESS.2020.3005519
http://dx.doi.org/10.1109/ICBC48266.2020.9169399
http://dx.doi.org/10.1145/3419804.3421454
http://dx.doi.org/10.13140/RG.2.2.34511.61609
http://dx.doi.org/10.1109/Cybermatics_2018.2018.00183
http://dx.doi.org/10.1007/s10009-016-0442-1
http://dx.doi.org/10.1007/s10009-016-0442-1
http://dx.doi.org/10.1007/978-981-15-1137-0_4
http://dx.doi.org/10.1109/TSE.2020.2971482

